xref: /dragonfly/sys/kern/vfs_cache.c (revision 38c2ea22)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/malloc.h>
76 #include <sys/sysproto.h>
77 #include <sys/spinlock.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/nlookup.h>
81 #include <sys/filedesc.h>
82 #include <sys/fnv_hash.h>
83 #include <sys/globaldata.h>
84 #include <sys/kern_syscall.h>
85 #include <sys/dirent.h>
86 #include <ddb/ddb.h>
87 
88 #include <sys/sysref2.h>
89 #include <sys/spinlock2.h>
90 #include <sys/mplock2.h>
91 
92 #define MAX_RECURSION_DEPTH	64
93 
94 /*
95  * Random lookups in the cache are accomplished with a hash table using
96  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
97  *
98  * Negative entries may exist and correspond to resolved namecache
99  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
100  * will be set if the entry corresponds to a whited-out directory entry
101  * (verses simply not finding the entry at all).   ncneglist is locked
102  * with a global spinlock (ncspin).
103  *
104  * MPSAFE RULES:
105  *
106  * (1) A ncp must be referenced before it can be locked.
107  *
108  * (2) A ncp must be locked in order to modify it.
109  *
110  * (3) ncp locks are always ordered child -> parent.  That may seem
111  *     backwards but forward scans use the hash table and thus can hold
112  *     the parent unlocked when traversing downward.
113  *
114  *     This allows insert/rename/delete/dot-dot and other operations
115  *     to use ncp->nc_parent links.
116  *
117  *     This also prevents a locked up e.g. NFS node from creating a
118  *     chain reaction all the way back to the root vnode / namecache.
119  *
120  * (4) parent linkages require both the parent and child to be locked.
121  */
122 
123 /*
124  * Structures associated with name cacheing.
125  */
126 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
127 #define MINNEG		1024
128 #define MINPOS		1024
129 
130 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
131 
132 LIST_HEAD(nchash_list, namecache);
133 
134 struct nchash_head {
135        struct nchash_list list;
136        struct spinlock	spin;
137 };
138 
139 static struct nchash_head	*nchashtbl;
140 static struct namecache_list	ncneglist;
141 static struct spinlock		ncspin;
142 
143 /*
144  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
145  * to create the namecache infrastructure leading to a dangling vnode.
146  *
147  * 0	Only errors are reported
148  * 1	Successes are reported
149  * 2	Successes + the whole directory scan is reported
150  * 3	Force the directory scan code run as if the parent vnode did not
151  *	have a namecache record, even if it does have one.
152  */
153 static int	ncvp_debug;
154 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
155     "Namecache debug level (0-3)");
156 
157 static u_long	nchash;			/* size of hash table */
158 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
159     "Size of namecache hash table");
160 
161 static int	ncnegfactor = 16;	/* ratio of negative entries */
162 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
163     "Ratio of namecache negative entries");
164 
165 static int	nclockwarn;		/* warn on locked entries in ticks */
166 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
167     "Warn on locked namecache entries in ticks");
168 
169 static int	numdefered;		/* number of cache entries allocated */
170 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
171     "Number of cache entries allocated");
172 
173 static int	ncposlimit;		/* number of cache entries allocated */
174 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
175     "Number of cache entries allocated");
176 
177 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
178     "sizeof(struct vnode)");
179 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
180     "sizeof(struct namecache)");
181 
182 static int cache_resolve_mp(struct mount *mp);
183 static struct vnode *cache_dvpref(struct namecache *ncp);
184 static void _cache_lock(struct namecache *ncp);
185 static void _cache_setunresolved(struct namecache *ncp);
186 static void _cache_cleanneg(int count);
187 static void _cache_cleanpos(int count);
188 static void _cache_cleandefered(void);
189 
190 /*
191  * The new name cache statistics
192  */
193 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
194 static int numneg;
195 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
196     "Number of negative namecache entries");
197 static int numcache;
198 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
199     "Number of namecaches entries");
200 static u_long numcalls;
201 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0,
202     "Number of namecache lookups");
203 static u_long numchecks;
204 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0,
205     "Number of checked entries in namecache lookups");
206 
207 struct nchstats nchstats[SMP_MAXCPU];
208 /*
209  * Export VFS cache effectiveness statistics to user-land.
210  *
211  * The statistics are left for aggregation to user-land so
212  * neat things can be achieved, like observing per-CPU cache
213  * distribution.
214  */
215 static int
216 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
217 {
218 	struct globaldata *gd;
219 	int i, error;
220 
221 	error = 0;
222 	for (i = 0; i < ncpus; ++i) {
223 		gd = globaldata_find(i);
224 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
225 			sizeof(struct nchstats))))
226 			break;
227 	}
228 
229 	return (error);
230 }
231 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
232   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
233 
234 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
235 
236 /*
237  * Namespace locking.  The caller must already hold a reference to the
238  * namecache structure in order to lock/unlock it.  This function prevents
239  * the namespace from being created or destroyed by accessors other then
240  * the lock holder.
241  *
242  * Note that holding a locked namecache structure prevents other threads
243  * from making namespace changes (e.g. deleting or creating), prevents
244  * vnode association state changes by other threads, and prevents the
245  * namecache entry from being resolved or unresolved by other threads.
246  *
247  * The lock owner has full authority to associate/disassociate vnodes
248  * and resolve/unresolve the locked ncp.
249  *
250  * The primary lock field is nc_exlocks.  nc_locktd is set after the
251  * fact (when locking) or cleared prior to unlocking.
252  *
253  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
254  *	     or recycled, but it does NOT help you if the vnode had already
255  *	     initiated a recyclement.  If this is important, use cache_get()
256  *	     rather then cache_lock() (and deal with the differences in the
257  *	     way the refs counter is handled).  Or, alternatively, make an
258  *	     unconditional call to cache_validate() or cache_resolve()
259  *	     after cache_lock() returns.
260  *
261  * MPSAFE
262  */
263 static
264 void
265 _cache_lock(struct namecache *ncp)
266 {
267 	thread_t td;
268 	int didwarn;
269 	int error;
270 	u_int count;
271 
272 	KKASSERT(ncp->nc_refs != 0);
273 	didwarn = 0;
274 	td = curthread;
275 
276 	for (;;) {
277 		count = ncp->nc_exlocks;
278 
279 		if (count == 0) {
280 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
281 				/*
282 				 * The vp associated with a locked ncp must
283 				 * be held to prevent it from being recycled.
284 				 *
285 				 * WARNING!  If VRECLAIMED is set the vnode
286 				 * could already be in the middle of a recycle.
287 				 * Callers must use cache_vref() or
288 				 * cache_vget() on the locked ncp to
289 				 * validate the vp or set the cache entry
290 				 * to unresolved.
291 				 *
292 				 * NOTE! vhold() is allowed if we hold a
293 				 *	 lock on the ncp (which we do).
294 				 */
295 				ncp->nc_locktd = td;
296 				if (ncp->nc_vp)
297 					vhold(ncp->nc_vp);	/* MPSAFE */
298 				break;
299 			}
300 			/* cmpset failed */
301 			continue;
302 		}
303 		if (ncp->nc_locktd == td) {
304 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
305 					      count + 1)) {
306 				break;
307 			}
308 			/* cmpset failed */
309 			continue;
310 		}
311 		tsleep_interlock(ncp, 0);
312 		if (atomic_cmpset_int(&ncp->nc_exlocks, count,
313 				      count | NC_EXLOCK_REQ) == 0) {
314 			/* cmpset failed */
315 			continue;
316 		}
317 		error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
318 		if (error == EWOULDBLOCK) {
319 			if (didwarn == 0) {
320 				didwarn = ticks;
321 				kprintf("[diagnostic] cache_lock: blocked "
322 					"on %p",
323 					ncp);
324 				kprintf(" \"%*.*s\"\n",
325 					ncp->nc_nlen, ncp->nc_nlen,
326 					ncp->nc_name);
327 			}
328 		}
329 	}
330 	if (didwarn) {
331 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
332 			"%d secs\n",
333 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
334 			(int)(ticks - didwarn) / hz);
335 	}
336 }
337 
338 /*
339  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
340  *	 such as the case where one of its children is locked.
341  *
342  * MPSAFE
343  */
344 static
345 int
346 _cache_lock_nonblock(struct namecache *ncp)
347 {
348 	thread_t td;
349 	u_int count;
350 
351 	td = curthread;
352 
353 	for (;;) {
354 		count = ncp->nc_exlocks;
355 
356 		if (count == 0) {
357 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
358 				/*
359 				 * The vp associated with a locked ncp must
360 				 * be held to prevent it from being recycled.
361 				 *
362 				 * WARNING!  If VRECLAIMED is set the vnode
363 				 * could already be in the middle of a recycle.
364 				 * Callers must use cache_vref() or
365 				 * cache_vget() on the locked ncp to
366 				 * validate the vp or set the cache entry
367 				 * to unresolved.
368 				 *
369 				 * NOTE! vhold() is allowed if we hold a
370 				 *	 lock on the ncp (which we do).
371 				 */
372 				ncp->nc_locktd = td;
373 				if (ncp->nc_vp)
374 					vhold(ncp->nc_vp);	/* MPSAFE */
375 				break;
376 			}
377 			/* cmpset failed */
378 			continue;
379 		}
380 		if (ncp->nc_locktd == td) {
381 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
382 					      count + 1)) {
383 				break;
384 			}
385 			/* cmpset failed */
386 			continue;
387 		}
388 		return(EWOULDBLOCK);
389 	}
390 	return(0);
391 }
392 
393 /*
394  * Helper function
395  *
396  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
397  *
398  *	 nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
399  *
400  * MPSAFE
401  */
402 static
403 void
404 _cache_unlock(struct namecache *ncp)
405 {
406 	thread_t td __debugvar = curthread;
407 	u_int count;
408 
409 	KKASSERT(ncp->nc_refs >= 0);
410 	KKASSERT(ncp->nc_exlocks > 0);
411 	KKASSERT(ncp->nc_locktd == td);
412 
413 	count = ncp->nc_exlocks;
414 	if ((count & ~NC_EXLOCK_REQ) == 1) {
415 		ncp->nc_locktd = NULL;
416 		if (ncp->nc_vp)
417 			vdrop(ncp->nc_vp);
418 	}
419 	for (;;) {
420 		if ((count & ~NC_EXLOCK_REQ) == 1) {
421 			if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
422 				if (count & NC_EXLOCK_REQ)
423 					wakeup(ncp);
424 				break;
425 			}
426 		} else {
427 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
428 					      count - 1)) {
429 				break;
430 			}
431 		}
432 		count = ncp->nc_exlocks;
433 	}
434 }
435 
436 
437 /*
438  * cache_hold() and cache_drop() prevent the premature deletion of a
439  * namecache entry but do not prevent operations (such as zapping) on
440  * that namecache entry.
441  *
442  * This routine may only be called from outside this source module if
443  * nc_refs is already at least 1.
444  *
445  * This is a rare case where callers are allowed to hold a spinlock,
446  * so we can't ourselves.
447  *
448  * MPSAFE
449  */
450 static __inline
451 struct namecache *
452 _cache_hold(struct namecache *ncp)
453 {
454 	atomic_add_int(&ncp->nc_refs, 1);
455 	return(ncp);
456 }
457 
458 /*
459  * Drop a cache entry, taking care to deal with races.
460  *
461  * For potential 1->0 transitions we must hold the ncp lock to safely
462  * test its flags.  An unresolved entry with no children must be zapped
463  * to avoid leaks.
464  *
465  * The call to cache_zap() itself will handle all remaining races and
466  * will decrement the ncp's refs regardless.  If we are resolved or
467  * have children nc_refs can safely be dropped to 0 without having to
468  * zap the entry.
469  *
470  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
471  *
472  * NOTE: cache_zap() may return a non-NULL referenced parent which must
473  *	 be dropped in a loop.
474  *
475  * MPSAFE
476  */
477 static __inline
478 void
479 _cache_drop(struct namecache *ncp)
480 {
481 	int refs;
482 
483 	while (ncp) {
484 		KKASSERT(ncp->nc_refs > 0);
485 		refs = ncp->nc_refs;
486 
487 		if (refs == 1) {
488 			if (_cache_lock_nonblock(ncp) == 0) {
489 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
490 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
491 				    TAILQ_EMPTY(&ncp->nc_list)) {
492 					ncp = cache_zap(ncp, 1);
493 					continue;
494 				}
495 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
496 					_cache_unlock(ncp);
497 					break;
498 				}
499 				_cache_unlock(ncp);
500 			}
501 		} else {
502 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
503 				break;
504 		}
505 		cpu_pause();
506 	}
507 }
508 
509 /*
510  * Link a new namecache entry to its parent and to the hash table.  Be
511  * careful to avoid races if vhold() blocks in the future.
512  *
513  * Both ncp and par must be referenced and locked.
514  *
515  * NOTE: The hash table spinlock is likely held during this call, we
516  *	 can't do anything fancy.
517  *
518  * MPSAFE
519  */
520 static void
521 _cache_link_parent(struct namecache *ncp, struct namecache *par,
522 		   struct nchash_head *nchpp)
523 {
524 	KKASSERT(ncp->nc_parent == NULL);
525 	ncp->nc_parent = par;
526 	ncp->nc_head = nchpp;
527 
528 	/*
529 	 * Set inheritance flags.  Note that the parent flags may be
530 	 * stale due to getattr potentially not having been run yet
531 	 * (it gets run during nlookup()'s).
532 	 */
533 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
534 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
535 		ncp->nc_flag |= NCF_SF_PNOCACHE;
536 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
537 		ncp->nc_flag |= NCF_UF_PCACHE;
538 
539 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
540 
541 	if (TAILQ_EMPTY(&par->nc_list)) {
542 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
543 		/*
544 		 * Any vp associated with an ncp which has children must
545 		 * be held to prevent it from being recycled.
546 		 */
547 		if (par->nc_vp)
548 			vhold(par->nc_vp);
549 	} else {
550 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
551 	}
552 }
553 
554 /*
555  * Remove the parent and hash associations from a namecache structure.
556  * If this is the last child of the parent the cache_drop(par) will
557  * attempt to recursively zap the parent.
558  *
559  * ncp must be locked.  This routine will acquire a temporary lock on
560  * the parent as wlel as the appropriate hash chain.
561  *
562  * MPSAFE
563  */
564 static void
565 _cache_unlink_parent(struct namecache *ncp)
566 {
567 	struct namecache *par;
568 	struct vnode *dropvp;
569 
570 	if ((par = ncp->nc_parent) != NULL) {
571 		KKASSERT(ncp->nc_parent == par);
572 		_cache_hold(par);
573 		_cache_lock(par);
574 		spin_lock(&ncp->nc_head->spin);
575 		LIST_REMOVE(ncp, nc_hash);
576 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
577 		dropvp = NULL;
578 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
579 			dropvp = par->nc_vp;
580 		spin_unlock(&ncp->nc_head->spin);
581 		ncp->nc_parent = NULL;
582 		ncp->nc_head = NULL;
583 		_cache_unlock(par);
584 		_cache_drop(par);
585 
586 		/*
587 		 * We can only safely vdrop with no spinlocks held.
588 		 */
589 		if (dropvp)
590 			vdrop(dropvp);
591 	}
592 }
593 
594 /*
595  * Allocate a new namecache structure.  Most of the code does not require
596  * zero-termination of the string but it makes vop_compat_ncreate() easier.
597  *
598  * MPSAFE
599  */
600 static struct namecache *
601 cache_alloc(int nlen)
602 {
603 	struct namecache *ncp;
604 
605 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
606 	if (nlen)
607 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
608 	ncp->nc_nlen = nlen;
609 	ncp->nc_flag = NCF_UNRESOLVED;
610 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
611 	ncp->nc_refs = 1;
612 
613 	TAILQ_INIT(&ncp->nc_list);
614 	_cache_lock(ncp);
615 	return(ncp);
616 }
617 
618 /*
619  * Can only be called for the case where the ncp has never been
620  * associated with anything (so no spinlocks are needed).
621  *
622  * MPSAFE
623  */
624 static void
625 _cache_free(struct namecache *ncp)
626 {
627 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
628 	if (ncp->nc_name)
629 		kfree(ncp->nc_name, M_VFSCACHE);
630 	kfree(ncp, M_VFSCACHE);
631 }
632 
633 /*
634  * MPSAFE
635  */
636 void
637 cache_zero(struct nchandle *nch)
638 {
639 	nch->ncp = NULL;
640 	nch->mount = NULL;
641 }
642 
643 /*
644  * Ref and deref a namecache structure.
645  *
646  * The caller must specify a stable ncp pointer, typically meaning the
647  * ncp is already referenced but this can also occur indirectly through
648  * e.g. holding a lock on a direct child.
649  *
650  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
651  *	    use read spinlocks here.
652  *
653  * MPSAFE if nch is
654  */
655 struct nchandle *
656 cache_hold(struct nchandle *nch)
657 {
658 	_cache_hold(nch->ncp);
659 	atomic_add_int(&nch->mount->mnt_refs, 1);
660 	return(nch);
661 }
662 
663 /*
664  * Create a copy of a namecache handle for an already-referenced
665  * entry.
666  *
667  * MPSAFE if nch is
668  */
669 void
670 cache_copy(struct nchandle *nch, struct nchandle *target)
671 {
672 	*target = *nch;
673 	if (target->ncp)
674 		_cache_hold(target->ncp);
675 	atomic_add_int(&nch->mount->mnt_refs, 1);
676 }
677 
678 /*
679  * MPSAFE if nch is
680  */
681 void
682 cache_changemount(struct nchandle *nch, struct mount *mp)
683 {
684 	atomic_add_int(&nch->mount->mnt_refs, -1);
685 	nch->mount = mp;
686 	atomic_add_int(&nch->mount->mnt_refs, 1);
687 }
688 
689 /*
690  * MPSAFE
691  */
692 void
693 cache_drop(struct nchandle *nch)
694 {
695 	atomic_add_int(&nch->mount->mnt_refs, -1);
696 	_cache_drop(nch->ncp);
697 	nch->ncp = NULL;
698 	nch->mount = NULL;
699 }
700 
701 /*
702  * MPSAFE
703  */
704 void
705 cache_lock(struct nchandle *nch)
706 {
707 	_cache_lock(nch->ncp);
708 }
709 
710 /*
711  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
712  * is responsible for checking both for validity on return as they
713  * may have become invalid.
714  *
715  * We have to deal with potential deadlocks here, just ping pong
716  * the lock until we get it (we will always block somewhere when
717  * looping so this is not cpu-intensive).
718  *
719  * which = 0	nch1 not locked, nch2 is locked
720  * which = 1	nch1 is locked, nch2 is not locked
721  */
722 void
723 cache_relock(struct nchandle *nch1, struct ucred *cred1,
724 	     struct nchandle *nch2, struct ucred *cred2)
725 {
726 	int which;
727 
728 	which = 0;
729 
730 	for (;;) {
731 		if (which == 0) {
732 			if (cache_lock_nonblock(nch1) == 0) {
733 				cache_resolve(nch1, cred1);
734 				break;
735 			}
736 			cache_unlock(nch2);
737 			cache_lock(nch1);
738 			cache_resolve(nch1, cred1);
739 			which = 1;
740 		} else {
741 			if (cache_lock_nonblock(nch2) == 0) {
742 				cache_resolve(nch2, cred2);
743 				break;
744 			}
745 			cache_unlock(nch1);
746 			cache_lock(nch2);
747 			cache_resolve(nch2, cred2);
748 			which = 0;
749 		}
750 	}
751 }
752 
753 /*
754  * MPSAFE
755  */
756 int
757 cache_lock_nonblock(struct nchandle *nch)
758 {
759 	return(_cache_lock_nonblock(nch->ncp));
760 }
761 
762 
763 /*
764  * MPSAFE
765  */
766 void
767 cache_unlock(struct nchandle *nch)
768 {
769 	_cache_unlock(nch->ncp);
770 }
771 
772 /*
773  * ref-and-lock, unlock-and-deref functions.
774  *
775  * This function is primarily used by nlookup.  Even though cache_lock
776  * holds the vnode, it is possible that the vnode may have already
777  * initiated a recyclement.
778  *
779  * We want cache_get() to return a definitively usable vnode or a
780  * definitively unresolved ncp.
781  *
782  * MPSAFE
783  */
784 static
785 struct namecache *
786 _cache_get(struct namecache *ncp)
787 {
788 	_cache_hold(ncp);
789 	_cache_lock(ncp);
790 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
791 		_cache_setunresolved(ncp);
792 	return(ncp);
793 }
794 
795 /*
796  * This is a special form of _cache_lock() which only succeeds if
797  * it can get a pristine, non-recursive lock.  The caller must have
798  * already ref'd the ncp.
799  *
800  * On success the ncp will be locked, on failure it will not.  The
801  * ref count does not change either way.
802  *
803  * We want _cache_lock_special() (on success) to return a definitively
804  * usable vnode or a definitively unresolved ncp.
805  *
806  * MPSAFE
807  */
808 static int
809 _cache_lock_special(struct namecache *ncp)
810 {
811 	if (_cache_lock_nonblock(ncp) == 0) {
812 		if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
813 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
814 				_cache_setunresolved(ncp);
815 			return(0);
816 		}
817 		_cache_unlock(ncp);
818 	}
819 	return(EWOULDBLOCK);
820 }
821 
822 
823 /*
824  * NOTE: The same nchandle can be passed for both arguments.
825  *
826  * MPSAFE
827  */
828 void
829 cache_get(struct nchandle *nch, struct nchandle *target)
830 {
831 	KKASSERT(nch->ncp->nc_refs > 0);
832 	target->mount = nch->mount;
833 	target->ncp = _cache_get(nch->ncp);
834 	atomic_add_int(&target->mount->mnt_refs, 1);
835 }
836 
837 /*
838  * MPSAFE
839  */
840 static __inline
841 void
842 _cache_put(struct namecache *ncp)
843 {
844 	_cache_unlock(ncp);
845 	_cache_drop(ncp);
846 }
847 
848 /*
849  * MPSAFE
850  */
851 void
852 cache_put(struct nchandle *nch)
853 {
854 	atomic_add_int(&nch->mount->mnt_refs, -1);
855 	_cache_put(nch->ncp);
856 	nch->ncp = NULL;
857 	nch->mount = NULL;
858 }
859 
860 /*
861  * Resolve an unresolved ncp by associating a vnode with it.  If the
862  * vnode is NULL, a negative cache entry is created.
863  *
864  * The ncp should be locked on entry and will remain locked on return.
865  *
866  * MPSAFE
867  */
868 static
869 void
870 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
871 {
872 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
873 
874 	if (vp != NULL) {
875 		/*
876 		 * Any vp associated with an ncp which has children must
877 		 * be held.  Any vp associated with a locked ncp must be held.
878 		 */
879 		if (!TAILQ_EMPTY(&ncp->nc_list))
880 			vhold(vp);
881 		spin_lock(&vp->v_spin);
882 		ncp->nc_vp = vp;
883 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
884 		spin_unlock(&vp->v_spin);
885 		if (ncp->nc_exlocks)
886 			vhold(vp);
887 
888 		/*
889 		 * Set auxiliary flags
890 		 */
891 		switch(vp->v_type) {
892 		case VDIR:
893 			ncp->nc_flag |= NCF_ISDIR;
894 			break;
895 		case VLNK:
896 			ncp->nc_flag |= NCF_ISSYMLINK;
897 			/* XXX cache the contents of the symlink */
898 			break;
899 		default:
900 			break;
901 		}
902 		atomic_add_int(&numcache, 1);
903 		ncp->nc_error = 0;
904 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
905 		 * implementation*/
906 		if (mp != NULL)
907 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
908 				vp->v_pfsmp = mp;
909 	} else {
910 		/*
911 		 * When creating a negative cache hit we set the
912 		 * namecache_gen.  A later resolve will clean out the
913 		 * negative cache hit if the mount point's namecache_gen
914 		 * has changed.  Used by devfs, could also be used by
915 		 * other remote FSs.
916 		 */
917 		ncp->nc_vp = NULL;
918 		spin_lock(&ncspin);
919 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
920 		++numneg;
921 		spin_unlock(&ncspin);
922 		ncp->nc_error = ENOENT;
923 		if (mp)
924 			VFS_NCPGEN_SET(mp, ncp);
925 	}
926 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
927 }
928 
929 /*
930  * MPSAFE
931  */
932 void
933 cache_setvp(struct nchandle *nch, struct vnode *vp)
934 {
935 	_cache_setvp(nch->mount, nch->ncp, vp);
936 }
937 
938 /*
939  * MPSAFE
940  */
941 void
942 cache_settimeout(struct nchandle *nch, int nticks)
943 {
944 	struct namecache *ncp = nch->ncp;
945 
946 	if ((ncp->nc_timeout = ticks + nticks) == 0)
947 		ncp->nc_timeout = 1;
948 }
949 
950 /*
951  * Disassociate the vnode or negative-cache association and mark a
952  * namecache entry as unresolved again.  Note that the ncp is still
953  * left in the hash table and still linked to its parent.
954  *
955  * The ncp should be locked and refd on entry and will remain locked and refd
956  * on return.
957  *
958  * This routine is normally never called on a directory containing children.
959  * However, NFS often does just that in its rename() code as a cop-out to
960  * avoid complex namespace operations.  This disconnects a directory vnode
961  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
962  * sync.
963  *
964  * MPSAFE
965  */
966 static
967 void
968 _cache_setunresolved(struct namecache *ncp)
969 {
970 	struct vnode *vp;
971 
972 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
973 		ncp->nc_flag |= NCF_UNRESOLVED;
974 		ncp->nc_timeout = 0;
975 		ncp->nc_error = ENOTCONN;
976 		if ((vp = ncp->nc_vp) != NULL) {
977 			atomic_add_int(&numcache, -1);
978 			spin_lock(&vp->v_spin);
979 			ncp->nc_vp = NULL;
980 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
981 			spin_unlock(&vp->v_spin);
982 
983 			/*
984 			 * Any vp associated with an ncp with children is
985 			 * held by that ncp.  Any vp associated with a locked
986 			 * ncp is held by that ncp.  These conditions must be
987 			 * undone when the vp is cleared out from the ncp.
988 			 */
989 			if (!TAILQ_EMPTY(&ncp->nc_list))
990 				vdrop(vp);
991 			if (ncp->nc_exlocks)
992 				vdrop(vp);
993 		} else {
994 			spin_lock(&ncspin);
995 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
996 			--numneg;
997 			spin_unlock(&ncspin);
998 		}
999 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1000 	}
1001 }
1002 
1003 /*
1004  * The cache_nresolve() code calls this function to automatically
1005  * set a resolved cache element to unresolved if it has timed out
1006  * or if it is a negative cache hit and the mount point namecache_gen
1007  * has changed.
1008  *
1009  * MPSAFE
1010  */
1011 static __inline void
1012 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1013 {
1014 	/*
1015 	 * Already in an unresolved state, nothing to do.
1016 	 */
1017 	if (ncp->nc_flag & NCF_UNRESOLVED)
1018 		return;
1019 
1020 	/*
1021 	 * Try to zap entries that have timed out.  We have
1022 	 * to be careful here because locked leafs may depend
1023 	 * on the vnode remaining intact in a parent, so only
1024 	 * do this under very specific conditions.
1025 	 */
1026 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1027 	    TAILQ_EMPTY(&ncp->nc_list)) {
1028 		_cache_setunresolved(ncp);
1029 		return;
1030 	}
1031 
1032 	/*
1033 	 * If a resolved negative cache hit is invalid due to
1034 	 * the mount's namecache generation being bumped, zap it.
1035 	 */
1036 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1037 		_cache_setunresolved(ncp);
1038 		return;
1039 	}
1040 }
1041 
1042 /*
1043  * MPSAFE
1044  */
1045 void
1046 cache_setunresolved(struct nchandle *nch)
1047 {
1048 	_cache_setunresolved(nch->ncp);
1049 }
1050 
1051 /*
1052  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1053  * looking for matches.  This flag tells the lookup code when it must
1054  * check for a mount linkage and also prevents the directories in question
1055  * from being deleted or renamed.
1056  *
1057  * MPSAFE
1058  */
1059 static
1060 int
1061 cache_clrmountpt_callback(struct mount *mp, void *data)
1062 {
1063 	struct nchandle *nch = data;
1064 
1065 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1066 		return(1);
1067 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1068 		return(1);
1069 	return(0);
1070 }
1071 
1072 /*
1073  * MPSAFE
1074  */
1075 void
1076 cache_clrmountpt(struct nchandle *nch)
1077 {
1078 	int count;
1079 
1080 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1081 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1082 	if (count == 0)
1083 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1084 }
1085 
1086 /*
1087  * Invalidate portions of the namecache topology given a starting entry.
1088  * The passed ncp is set to an unresolved state and:
1089  *
1090  * The passed ncp must be referencxed and locked.  The routine may unlock
1091  * and relock ncp several times, and will recheck the children and loop
1092  * to catch races.  When done the passed ncp will be returned with the
1093  * reference and lock intact.
1094  *
1095  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1096  *			  that the physical underlying nodes have been
1097  *			  destroyed... as in deleted.  For example, when
1098  *			  a directory is removed.  This will cause record
1099  *			  lookups on the name to no longer be able to find
1100  *			  the record and tells the resolver to return failure
1101  *			  rather then trying to resolve through the parent.
1102  *
1103  *			  The topology itself, including ncp->nc_name,
1104  *			  remains intact.
1105  *
1106  *			  This only applies to the passed ncp, if CINV_CHILDREN
1107  *			  is specified the children are not flagged.
1108  *
1109  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1110  *			  state as well.
1111  *
1112  *			  Note that this will also have the side effect of
1113  *			  cleaning out any unreferenced nodes in the topology
1114  *			  from the leaves up as the recursion backs out.
1115  *
1116  * Note that the topology for any referenced nodes remains intact, but
1117  * the nodes will be marked as having been destroyed and will be set
1118  * to an unresolved state.
1119  *
1120  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1121  * the namecache entry may not actually be invalidated on return if it was
1122  * revalidated while recursing down into its children.  This code guarentees
1123  * that the node(s) will go through an invalidation cycle, but does not
1124  * guarentee that they will remain in an invalidated state.
1125  *
1126  * Returns non-zero if a revalidation was detected during the invalidation
1127  * recursion, zero otherwise.  Note that since only the original ncp is
1128  * locked the revalidation ultimately can only indicate that the original ncp
1129  * *MIGHT* no have been reresolved.
1130  *
1131  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1132  * have to avoid blowing out the kernel stack.  We do this by saving the
1133  * deep namecache node and aborting the recursion, then re-recursing at that
1134  * node using a depth-first algorithm in order to allow multiple deep
1135  * recursions to chain through each other, then we restart the invalidation
1136  * from scratch.
1137  *
1138  * MPSAFE
1139  */
1140 
1141 struct cinvtrack {
1142 	struct namecache *resume_ncp;
1143 	int depth;
1144 };
1145 
1146 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1147 
1148 static
1149 int
1150 _cache_inval(struct namecache *ncp, int flags)
1151 {
1152 	struct cinvtrack track;
1153 	struct namecache *ncp2;
1154 	int r;
1155 
1156 	track.depth = 0;
1157 	track.resume_ncp = NULL;
1158 
1159 	for (;;) {
1160 		r = _cache_inval_internal(ncp, flags, &track);
1161 		if (track.resume_ncp == NULL)
1162 			break;
1163 		kprintf("Warning: deep namecache recursion at %s\n",
1164 			ncp->nc_name);
1165 		_cache_unlock(ncp);
1166 		while ((ncp2 = track.resume_ncp) != NULL) {
1167 			track.resume_ncp = NULL;
1168 			_cache_lock(ncp2);
1169 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1170 					     &track);
1171 			_cache_put(ncp2);
1172 		}
1173 		_cache_lock(ncp);
1174 	}
1175 	return(r);
1176 }
1177 
1178 int
1179 cache_inval(struct nchandle *nch, int flags)
1180 {
1181 	return(_cache_inval(nch->ncp, flags));
1182 }
1183 
1184 /*
1185  * Helper for _cache_inval().  The passed ncp is refd and locked and
1186  * remains that way on return, but may be unlocked/relocked multiple
1187  * times by the routine.
1188  */
1189 static int
1190 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1191 {
1192 	struct namecache *kid;
1193 	struct namecache *nextkid;
1194 	int rcnt = 0;
1195 
1196 	KKASSERT(ncp->nc_exlocks);
1197 
1198 	_cache_setunresolved(ncp);
1199 	if (flags & CINV_DESTROY)
1200 		ncp->nc_flag |= NCF_DESTROYED;
1201 	if ((flags & CINV_CHILDREN) &&
1202 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1203 	) {
1204 		_cache_hold(kid);
1205 		if (++track->depth > MAX_RECURSION_DEPTH) {
1206 			track->resume_ncp = ncp;
1207 			_cache_hold(ncp);
1208 			++rcnt;
1209 		}
1210 		_cache_unlock(ncp);
1211 		while (kid) {
1212 			if (track->resume_ncp) {
1213 				_cache_drop(kid);
1214 				break;
1215 			}
1216 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1217 				_cache_hold(nextkid);
1218 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1219 			    TAILQ_FIRST(&kid->nc_list)
1220 			) {
1221 				_cache_lock(kid);
1222 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1223 				_cache_unlock(kid);
1224 			}
1225 			_cache_drop(kid);
1226 			kid = nextkid;
1227 		}
1228 		--track->depth;
1229 		_cache_lock(ncp);
1230 	}
1231 
1232 	/*
1233 	 * Someone could have gotten in there while ncp was unlocked,
1234 	 * retry if so.
1235 	 */
1236 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1237 		++rcnt;
1238 	return (rcnt);
1239 }
1240 
1241 /*
1242  * Invalidate a vnode's namecache associations.  To avoid races against
1243  * the resolver we do not invalidate a node which we previously invalidated
1244  * but which was then re-resolved while we were in the invalidation loop.
1245  *
1246  * Returns non-zero if any namecache entries remain after the invalidation
1247  * loop completed.
1248  *
1249  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1250  *	 be ripped out of the topology while held, the vnode's v_namecache
1251  *	 list has no such restriction.  NCP's can be ripped out of the list
1252  *	 at virtually any time if not locked, even if held.
1253  *
1254  *	 In addition, the v_namecache list itself must be locked via
1255  *	 the vnode's spinlock.
1256  *
1257  * MPSAFE
1258  */
1259 int
1260 cache_inval_vp(struct vnode *vp, int flags)
1261 {
1262 	struct namecache *ncp;
1263 	struct namecache *next;
1264 
1265 restart:
1266 	spin_lock(&vp->v_spin);
1267 	ncp = TAILQ_FIRST(&vp->v_namecache);
1268 	if (ncp)
1269 		_cache_hold(ncp);
1270 	while (ncp) {
1271 		/* loop entered with ncp held and vp spin-locked */
1272 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1273 			_cache_hold(next);
1274 		spin_unlock(&vp->v_spin);
1275 		_cache_lock(ncp);
1276 		if (ncp->nc_vp != vp) {
1277 			kprintf("Warning: cache_inval_vp: race-A detected on "
1278 				"%s\n", ncp->nc_name);
1279 			_cache_put(ncp);
1280 			if (next)
1281 				_cache_drop(next);
1282 			goto restart;
1283 		}
1284 		_cache_inval(ncp, flags);
1285 		_cache_put(ncp);		/* also releases reference */
1286 		ncp = next;
1287 		spin_lock(&vp->v_spin);
1288 		if (ncp && ncp->nc_vp != vp) {
1289 			spin_unlock(&vp->v_spin);
1290 			kprintf("Warning: cache_inval_vp: race-B detected on "
1291 				"%s\n", ncp->nc_name);
1292 			_cache_drop(ncp);
1293 			goto restart;
1294 		}
1295 	}
1296 	spin_unlock(&vp->v_spin);
1297 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1298 }
1299 
1300 /*
1301  * This routine is used instead of the normal cache_inval_vp() when we
1302  * are trying to recycle otherwise good vnodes.
1303  *
1304  * Return 0 on success, non-zero if not all namecache records could be
1305  * disassociated from the vnode (for various reasons).
1306  *
1307  * MPSAFE
1308  */
1309 int
1310 cache_inval_vp_nonblock(struct vnode *vp)
1311 {
1312 	struct namecache *ncp;
1313 	struct namecache *next;
1314 
1315 	spin_lock(&vp->v_spin);
1316 	ncp = TAILQ_FIRST(&vp->v_namecache);
1317 	if (ncp)
1318 		_cache_hold(ncp);
1319 	while (ncp) {
1320 		/* loop entered with ncp held */
1321 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1322 			_cache_hold(next);
1323 		spin_unlock(&vp->v_spin);
1324 		if (_cache_lock_nonblock(ncp)) {
1325 			_cache_drop(ncp);
1326 			if (next)
1327 				_cache_drop(next);
1328 			goto done;
1329 		}
1330 		if (ncp->nc_vp != vp) {
1331 			kprintf("Warning: cache_inval_vp: race-A detected on "
1332 				"%s\n", ncp->nc_name);
1333 			_cache_put(ncp);
1334 			if (next)
1335 				_cache_drop(next);
1336 			goto done;
1337 		}
1338 		_cache_inval(ncp, 0);
1339 		_cache_put(ncp);		/* also releases reference */
1340 		ncp = next;
1341 		spin_lock(&vp->v_spin);
1342 		if (ncp && ncp->nc_vp != vp) {
1343 			spin_unlock(&vp->v_spin);
1344 			kprintf("Warning: cache_inval_vp: race-B detected on "
1345 				"%s\n", ncp->nc_name);
1346 			_cache_drop(ncp);
1347 			goto done;
1348 		}
1349 	}
1350 	spin_unlock(&vp->v_spin);
1351 done:
1352 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1353 }
1354 
1355 /*
1356  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1357  * must be locked.  The target ncp is destroyed (as a normal rename-over
1358  * would destroy the target file or directory).
1359  *
1360  * Because there may be references to the source ncp we cannot copy its
1361  * contents to the target.  Instead the source ncp is relinked as the target
1362  * and the target ncp is removed from the namecache topology.
1363  *
1364  * MPSAFE
1365  */
1366 void
1367 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1368 {
1369 	struct namecache *fncp = fnch->ncp;
1370 	struct namecache *tncp = tnch->ncp;
1371 	struct namecache *tncp_par;
1372 	struct nchash_head *nchpp;
1373 	u_int32_t hash;
1374 	char *oname;
1375 
1376 	/*
1377 	 * Rename fncp (unlink)
1378 	 */
1379 	_cache_unlink_parent(fncp);
1380 	oname = fncp->nc_name;
1381 	fncp->nc_name = tncp->nc_name;
1382 	fncp->nc_nlen = tncp->nc_nlen;
1383 	tncp_par = tncp->nc_parent;
1384 	_cache_hold(tncp_par);
1385 	_cache_lock(tncp_par);
1386 
1387 	/*
1388 	 * Rename fncp (relink)
1389 	 */
1390 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1391 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1392 	nchpp = NCHHASH(hash);
1393 
1394 	spin_lock(&nchpp->spin);
1395 	_cache_link_parent(fncp, tncp_par, nchpp);
1396 	spin_unlock(&nchpp->spin);
1397 
1398 	_cache_put(tncp_par);
1399 
1400 	/*
1401 	 * Get rid of the overwritten tncp (unlink)
1402 	 */
1403 	_cache_setunresolved(tncp);
1404 	_cache_unlink_parent(tncp);
1405 	tncp->nc_name = NULL;
1406 	tncp->nc_nlen = 0;
1407 
1408 	if (oname)
1409 		kfree(oname, M_VFSCACHE);
1410 }
1411 
1412 /*
1413  * vget the vnode associated with the namecache entry.  Resolve the namecache
1414  * entry if necessary.  The passed ncp must be referenced and locked.
1415  *
1416  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1417  * (depending on the passed lk_type) will be returned in *vpp with an error
1418  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1419  * most typical error is ENOENT, meaning that the ncp represents a negative
1420  * cache hit and there is no vnode to retrieve, but other errors can occur
1421  * too.
1422  *
1423  * The vget() can race a reclaim.  If this occurs we re-resolve the
1424  * namecache entry.
1425  *
1426  * There are numerous places in the kernel where vget() is called on a
1427  * vnode while one or more of its namecache entries is locked.  Releasing
1428  * a vnode never deadlocks against locked namecache entries (the vnode
1429  * will not get recycled while referenced ncp's exist).  This means we
1430  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1431  * lock when acquiring the vp lock or we might cause a deadlock.
1432  *
1433  * MPSAFE
1434  */
1435 int
1436 cache_vget(struct nchandle *nch, struct ucred *cred,
1437 	   int lk_type, struct vnode **vpp)
1438 {
1439 	struct namecache *ncp;
1440 	struct vnode *vp;
1441 	int error;
1442 
1443 	ncp = nch->ncp;
1444 	KKASSERT(ncp->nc_locktd == curthread);
1445 again:
1446 	vp = NULL;
1447 	if (ncp->nc_flag & NCF_UNRESOLVED)
1448 		error = cache_resolve(nch, cred);
1449 	else
1450 		error = 0;
1451 
1452 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1453 		error = vget(vp, lk_type);
1454 		if (error) {
1455 			/*
1456 			 * VRECLAIM race
1457 			 */
1458 			if (error == ENOENT) {
1459 				kprintf("Warning: vnode reclaim race detected "
1460 					"in cache_vget on %p (%s)\n",
1461 					vp, ncp->nc_name);
1462 				_cache_setunresolved(ncp);
1463 				goto again;
1464 			}
1465 
1466 			/*
1467 			 * Not a reclaim race, some other error.
1468 			 */
1469 			KKASSERT(ncp->nc_vp == vp);
1470 			vp = NULL;
1471 		} else {
1472 			KKASSERT(ncp->nc_vp == vp);
1473 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1474 		}
1475 	}
1476 	if (error == 0 && vp == NULL)
1477 		error = ENOENT;
1478 	*vpp = vp;
1479 	return(error);
1480 }
1481 
1482 int
1483 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1484 {
1485 	struct namecache *ncp;
1486 	struct vnode *vp;
1487 	int error;
1488 
1489 	ncp = nch->ncp;
1490 	KKASSERT(ncp->nc_locktd == curthread);
1491 again:
1492 	vp = NULL;
1493 	if (ncp->nc_flag & NCF_UNRESOLVED)
1494 		error = cache_resolve(nch, cred);
1495 	else
1496 		error = 0;
1497 
1498 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1499 		error = vget(vp, LK_SHARED);
1500 		if (error) {
1501 			/*
1502 			 * VRECLAIM race
1503 			 */
1504 			if (error == ENOENT) {
1505 				kprintf("Warning: vnode reclaim race detected "
1506 					"in cache_vget on %p (%s)\n",
1507 					vp, ncp->nc_name);
1508 				_cache_setunresolved(ncp);
1509 				goto again;
1510 			}
1511 
1512 			/*
1513 			 * Not a reclaim race, some other error.
1514 			 */
1515 			KKASSERT(ncp->nc_vp == vp);
1516 			vp = NULL;
1517 		} else {
1518 			KKASSERT(ncp->nc_vp == vp);
1519 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1520 			/* caller does not want a lock */
1521 			vn_unlock(vp);
1522 		}
1523 	}
1524 	if (error == 0 && vp == NULL)
1525 		error = ENOENT;
1526 	*vpp = vp;
1527 	return(error);
1528 }
1529 
1530 /*
1531  * Return a referenced vnode representing the parent directory of
1532  * ncp.
1533  *
1534  * Because the caller has locked the ncp it should not be possible for
1535  * the parent ncp to go away.  However, the parent can unresolve its
1536  * dvp at any time so we must be able to acquire a lock on the parent
1537  * to safely access nc_vp.
1538  *
1539  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1540  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1541  * getting destroyed.
1542  *
1543  * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1544  *	    lock on the ncp in question..
1545  */
1546 static struct vnode *
1547 cache_dvpref(struct namecache *ncp)
1548 {
1549 	struct namecache *par;
1550 	struct vnode *dvp;
1551 
1552 	dvp = NULL;
1553 	if ((par = ncp->nc_parent) != NULL) {
1554 		_cache_hold(par);
1555 		_cache_lock(par);
1556 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1557 			if ((dvp = par->nc_vp) != NULL)
1558 				vhold(dvp);
1559 		}
1560 		_cache_unlock(par);
1561 		if (dvp) {
1562 			if (vget(dvp, LK_SHARED) == 0) {
1563 				vn_unlock(dvp);
1564 				vdrop(dvp);
1565 				/* return refd, unlocked dvp */
1566 			} else {
1567 				vdrop(dvp);
1568 				dvp = NULL;
1569 			}
1570 		}
1571 		_cache_drop(par);
1572 	}
1573 	return(dvp);
1574 }
1575 
1576 /*
1577  * Convert a directory vnode to a namecache record without any other
1578  * knowledge of the topology.  This ONLY works with directory vnodes and
1579  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1580  * returned ncp (if not NULL) will be held and unlocked.
1581  *
1582  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1583  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1584  * for dvp.  This will fail only if the directory has been deleted out from
1585  * under the caller.
1586  *
1587  * Callers must always check for a NULL return no matter the value of 'makeit'.
1588  *
1589  * To avoid underflowing the kernel stack each recursive call increments
1590  * the makeit variable.
1591  */
1592 
1593 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1594 				  struct vnode *dvp, char *fakename);
1595 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1596 				  struct vnode **saved_dvp);
1597 
1598 int
1599 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1600 	      struct nchandle *nch)
1601 {
1602 	struct vnode *saved_dvp;
1603 	struct vnode *pvp;
1604 	char *fakename;
1605 	int error;
1606 
1607 	nch->ncp = NULL;
1608 	nch->mount = dvp->v_mount;
1609 	saved_dvp = NULL;
1610 	fakename = NULL;
1611 
1612 	/*
1613 	 * Handle the makeit == 0 degenerate case
1614 	 */
1615 	if (makeit == 0) {
1616 		spin_lock(&dvp->v_spin);
1617 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1618 		if (nch->ncp)
1619 			cache_hold(nch);
1620 		spin_unlock(&dvp->v_spin);
1621 	}
1622 
1623 	/*
1624 	 * Loop until resolution, inside code will break out on error.
1625 	 */
1626 	while (makeit) {
1627 		/*
1628 		 * Break out if we successfully acquire a working ncp.
1629 		 */
1630 		spin_lock(&dvp->v_spin);
1631 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1632 		if (nch->ncp) {
1633 			cache_hold(nch);
1634 			spin_unlock(&dvp->v_spin);
1635 			break;
1636 		}
1637 		spin_unlock(&dvp->v_spin);
1638 
1639 		/*
1640 		 * If dvp is the root of its filesystem it should already
1641 		 * have a namecache pointer associated with it as a side
1642 		 * effect of the mount, but it may have been disassociated.
1643 		 */
1644 		if (dvp->v_flag & VROOT) {
1645 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1646 			error = cache_resolve_mp(nch->mount);
1647 			_cache_put(nch->ncp);
1648 			if (ncvp_debug) {
1649 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1650 					dvp->v_mount, error);
1651 			}
1652 			if (error) {
1653 				if (ncvp_debug)
1654 					kprintf(" failed\n");
1655 				nch->ncp = NULL;
1656 				break;
1657 			}
1658 			if (ncvp_debug)
1659 				kprintf(" succeeded\n");
1660 			continue;
1661 		}
1662 
1663 		/*
1664 		 * If we are recursed too deeply resort to an O(n^2)
1665 		 * algorithm to resolve the namecache topology.  The
1666 		 * resolved pvp is left referenced in saved_dvp to
1667 		 * prevent the tree from being destroyed while we loop.
1668 		 */
1669 		if (makeit > 20) {
1670 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1671 			if (error) {
1672 				kprintf("lookupdotdot(longpath) failed %d "
1673 				       "dvp %p\n", error, dvp);
1674 				nch->ncp = NULL;
1675 				break;
1676 			}
1677 			continue;
1678 		}
1679 
1680 		/*
1681 		 * Get the parent directory and resolve its ncp.
1682 		 */
1683 		if (fakename) {
1684 			kfree(fakename, M_TEMP);
1685 			fakename = NULL;
1686 		}
1687 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1688 					  &fakename);
1689 		if (error) {
1690 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1691 			break;
1692 		}
1693 		vn_unlock(pvp);
1694 
1695 		/*
1696 		 * Reuse makeit as a recursion depth counter.  On success
1697 		 * nch will be fully referenced.
1698 		 */
1699 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1700 		vrele(pvp);
1701 		if (nch->ncp == NULL)
1702 			break;
1703 
1704 		/*
1705 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1706 		 * for dvp.  This will create a namecache record for dvp on
1707 		 * success.  We loop up to recheck on success.
1708 		 *
1709 		 * ncp and dvp are both held but not locked.
1710 		 */
1711 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1712 		if (error) {
1713 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1714 				pvp, nch->ncp->nc_name, dvp);
1715 			cache_drop(nch);
1716 			/* nch was NULLed out, reload mount */
1717 			nch->mount = dvp->v_mount;
1718 			break;
1719 		}
1720 		if (ncvp_debug) {
1721 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1722 				pvp, nch->ncp->nc_name);
1723 		}
1724 		cache_drop(nch);
1725 		/* nch was NULLed out, reload mount */
1726 		nch->mount = dvp->v_mount;
1727 	}
1728 
1729 	/*
1730 	 * If nch->ncp is non-NULL it will have been held already.
1731 	 */
1732 	if (fakename)
1733 		kfree(fakename, M_TEMP);
1734 	if (saved_dvp)
1735 		vrele(saved_dvp);
1736 	if (nch->ncp)
1737 		return (0);
1738 	return (EINVAL);
1739 }
1740 
1741 /*
1742  * Go up the chain of parent directories until we find something
1743  * we can resolve into the namecache.  This is very inefficient.
1744  */
1745 static
1746 int
1747 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1748 		  struct vnode **saved_dvp)
1749 {
1750 	struct nchandle nch;
1751 	struct vnode *pvp;
1752 	int error;
1753 	static time_t last_fromdvp_report;
1754 	char *fakename;
1755 
1756 	/*
1757 	 * Loop getting the parent directory vnode until we get something we
1758 	 * can resolve in the namecache.
1759 	 */
1760 	vref(dvp);
1761 	nch.mount = dvp->v_mount;
1762 	nch.ncp = NULL;
1763 	fakename = NULL;
1764 
1765 	for (;;) {
1766 		if (fakename) {
1767 			kfree(fakename, M_TEMP);
1768 			fakename = NULL;
1769 		}
1770 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1771 					  &fakename);
1772 		if (error) {
1773 			vrele(dvp);
1774 			break;
1775 		}
1776 		vn_unlock(pvp);
1777 		spin_lock(&pvp->v_spin);
1778 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1779 			_cache_hold(nch.ncp);
1780 			spin_unlock(&pvp->v_spin);
1781 			vrele(pvp);
1782 			break;
1783 		}
1784 		spin_unlock(&pvp->v_spin);
1785 		if (pvp->v_flag & VROOT) {
1786 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1787 			error = cache_resolve_mp(nch.mount);
1788 			_cache_unlock(nch.ncp);
1789 			vrele(pvp);
1790 			if (error) {
1791 				_cache_drop(nch.ncp);
1792 				nch.ncp = NULL;
1793 				vrele(dvp);
1794 			}
1795 			break;
1796 		}
1797 		vrele(dvp);
1798 		dvp = pvp;
1799 	}
1800 	if (error == 0) {
1801 		if (last_fromdvp_report != time_second) {
1802 			last_fromdvp_report = time_second;
1803 			kprintf("Warning: extremely inefficient path "
1804 				"resolution on %s\n",
1805 				nch.ncp->nc_name);
1806 		}
1807 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1808 
1809 		/*
1810 		 * Hopefully dvp now has a namecache record associated with
1811 		 * it.  Leave it referenced to prevent the kernel from
1812 		 * recycling the vnode.  Otherwise extremely long directory
1813 		 * paths could result in endless recycling.
1814 		 */
1815 		if (*saved_dvp)
1816 		    vrele(*saved_dvp);
1817 		*saved_dvp = dvp;
1818 		_cache_drop(nch.ncp);
1819 	}
1820 	if (fakename)
1821 		kfree(fakename, M_TEMP);
1822 	return (error);
1823 }
1824 
1825 /*
1826  * Do an inefficient scan of the directory represented by ncp looking for
1827  * the directory vnode dvp.  ncp must be held but not locked on entry and
1828  * will be held on return.  dvp must be refd but not locked on entry and
1829  * will remain refd on return.
1830  *
1831  * Why do this at all?  Well, due to its stateless nature the NFS server
1832  * converts file handles directly to vnodes without necessarily going through
1833  * the namecache ops that would otherwise create the namecache topology
1834  * leading to the vnode.  We could either (1) Change the namecache algorithms
1835  * to allow disconnect namecache records that are re-merged opportunistically,
1836  * or (2) Make the NFS server backtrack and scan to recover a connected
1837  * namecache topology in order to then be able to issue new API lookups.
1838  *
1839  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1840  * namecache algorithms and introduces a lot of complication in every subsystem
1841  * that calls into the namecache to deal with the re-merge case, especially
1842  * since we are using the namecache to placehold negative lookups and the
1843  * vnode might not be immediately assigned. (2) is certainly far less
1844  * efficient then (1), but since we are only talking about directories here
1845  * (which are likely to remain cached), the case does not actually run all
1846  * that often and has the supreme advantage of not polluting the namecache
1847  * algorithms.
1848  *
1849  * If a fakename is supplied just construct a namecache entry using the
1850  * fake name.
1851  */
1852 static int
1853 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1854 		       struct vnode *dvp, char *fakename)
1855 {
1856 	struct nlcomponent nlc;
1857 	struct nchandle rncp;
1858 	struct dirent *den;
1859 	struct vnode *pvp;
1860 	struct vattr vat;
1861 	struct iovec iov;
1862 	struct uio uio;
1863 	int blksize;
1864 	int eofflag;
1865 	int bytes;
1866 	char *rbuf;
1867 	int error;
1868 
1869 	vat.va_blocksize = 0;
1870 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1871 		return (error);
1872 	cache_lock(nch);
1873 	error = cache_vref(nch, cred, &pvp);
1874 	cache_unlock(nch);
1875 	if (error)
1876 		return (error);
1877 	if (ncvp_debug) {
1878 		kprintf("inefficient_scan: directory iosize %ld "
1879 			"vattr fileid = %lld\n",
1880 			vat.va_blocksize,
1881 			(long long)vat.va_fileid);
1882 	}
1883 
1884 	/*
1885 	 * Use the supplied fakename if not NULL.  Fake names are typically
1886 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1887 	 * to glue @@timestamp recursions together.
1888 	 */
1889 	if (fakename) {
1890 		nlc.nlc_nameptr = fakename;
1891 		nlc.nlc_namelen = strlen(fakename);
1892 		rncp = cache_nlookup(nch, &nlc);
1893 		goto done;
1894 	}
1895 
1896 	if ((blksize = vat.va_blocksize) == 0)
1897 		blksize = DEV_BSIZE;
1898 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1899 	rncp.ncp = NULL;
1900 
1901 	eofflag = 0;
1902 	uio.uio_offset = 0;
1903 again:
1904 	iov.iov_base = rbuf;
1905 	iov.iov_len = blksize;
1906 	uio.uio_iov = &iov;
1907 	uio.uio_iovcnt = 1;
1908 	uio.uio_resid = blksize;
1909 	uio.uio_segflg = UIO_SYSSPACE;
1910 	uio.uio_rw = UIO_READ;
1911 	uio.uio_td = curthread;
1912 
1913 	if (ncvp_debug >= 2)
1914 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1915 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1916 	if (error == 0) {
1917 		den = (struct dirent *)rbuf;
1918 		bytes = blksize - uio.uio_resid;
1919 
1920 		while (bytes > 0) {
1921 			if (ncvp_debug >= 2) {
1922 				kprintf("cache_inefficient_scan: %*.*s\n",
1923 					den->d_namlen, den->d_namlen,
1924 					den->d_name);
1925 			}
1926 			if (den->d_type != DT_WHT &&
1927 			    den->d_ino == vat.va_fileid) {
1928 				if (ncvp_debug) {
1929 					kprintf("cache_inefficient_scan: "
1930 					       "MATCHED inode %lld path %s/%*.*s\n",
1931 					       (long long)vat.va_fileid,
1932 					       nch->ncp->nc_name,
1933 					       den->d_namlen, den->d_namlen,
1934 					       den->d_name);
1935 				}
1936 				nlc.nlc_nameptr = den->d_name;
1937 				nlc.nlc_namelen = den->d_namlen;
1938 				rncp = cache_nlookup(nch, &nlc);
1939 				KKASSERT(rncp.ncp != NULL);
1940 				break;
1941 			}
1942 			bytes -= _DIRENT_DIRSIZ(den);
1943 			den = _DIRENT_NEXT(den);
1944 		}
1945 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1946 			goto again;
1947 	}
1948 	kfree(rbuf, M_TEMP);
1949 done:
1950 	vrele(pvp);
1951 	if (rncp.ncp) {
1952 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1953 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
1954 			if (ncvp_debug >= 2) {
1955 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1956 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1957 			}
1958 		} else {
1959 			if (ncvp_debug >= 2) {
1960 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1961 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1962 					rncp.ncp->nc_vp);
1963 			}
1964 		}
1965 		if (rncp.ncp->nc_vp == NULL)
1966 			error = rncp.ncp->nc_error;
1967 		/*
1968 		 * Release rncp after a successful nlookup.  rncp was fully
1969 		 * referenced.
1970 		 */
1971 		cache_put(&rncp);
1972 	} else {
1973 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1974 			dvp, nch->ncp->nc_name);
1975 		error = ENOENT;
1976 	}
1977 	return (error);
1978 }
1979 
1980 /*
1981  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1982  * state, which disassociates it from its vnode or ncneglist.
1983  *
1984  * Then, if there are no additional references to the ncp and no children,
1985  * the ncp is removed from the topology and destroyed.
1986  *
1987  * References and/or children may exist if the ncp is in the middle of the
1988  * topology, preventing the ncp from being destroyed.
1989  *
1990  * This function must be called with the ncp held and locked and will unlock
1991  * and drop it during zapping.
1992  *
1993  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1994  * This case can occur in the cache_drop() path.
1995  *
1996  * This function may returned a held (but NOT locked) parent node which the
1997  * caller must drop.  We do this so _cache_drop() can loop, to avoid
1998  * blowing out the kernel stack.
1999  *
2000  * WARNING!  For MPSAFE operation this routine must acquire up to three
2001  *	     spin locks to be able to safely test nc_refs.  Lock order is
2002  *	     very important.
2003  *
2004  *	     hash spinlock if on hash list
2005  *	     parent spinlock if child of parent
2006  *	     (the ncp is unresolved so there is no vnode association)
2007  */
2008 static struct namecache *
2009 cache_zap(struct namecache *ncp, int nonblock)
2010 {
2011 	struct namecache *par;
2012 	struct vnode *dropvp;
2013 	int refs;
2014 
2015 	/*
2016 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2017 	 */
2018 	_cache_setunresolved(ncp);
2019 
2020 	/*
2021 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2022 	 * We only scrap unref'd (other then our ref) unresolved entries,
2023 	 * we do not scrap 'live' entries.
2024 	 *
2025 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2026 	 * other references are possible.  If it isn't, however, we have
2027 	 * to decrement but also be sure to avoid a 1->0 transition.
2028 	 */
2029 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2030 	KKASSERT(ncp->nc_refs > 0);
2031 
2032 	/*
2033 	 * Acquire locks.  Note that the parent can't go away while we hold
2034 	 * a child locked.
2035 	 */
2036 	if ((par = ncp->nc_parent) != NULL) {
2037 		if (nonblock) {
2038 			for (;;) {
2039 				if (_cache_lock_nonblock(par) == 0)
2040 					break;
2041 				refs = ncp->nc_refs;
2042 				ncp->nc_flag |= NCF_DEFEREDZAP;
2043 				++numdefered;	/* MP race ok */
2044 				if (atomic_cmpset_int(&ncp->nc_refs,
2045 						      refs, refs - 1)) {
2046 					_cache_unlock(ncp);
2047 					return(NULL);
2048 				}
2049 				cpu_pause();
2050 			}
2051 			_cache_hold(par);
2052 		} else {
2053 			_cache_hold(par);
2054 			_cache_lock(par);
2055 		}
2056 		spin_lock(&ncp->nc_head->spin);
2057 	}
2058 
2059 	/*
2060 	 * If someone other then us has a ref or we have children
2061 	 * we cannot zap the entry.  The 1->0 transition and any
2062 	 * further list operation is protected by the spinlocks
2063 	 * we have acquired but other transitions are not.
2064 	 */
2065 	for (;;) {
2066 		refs = ncp->nc_refs;
2067 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2068 			break;
2069 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2070 			if (par) {
2071 				spin_unlock(&ncp->nc_head->spin);
2072 				_cache_put(par);
2073 			}
2074 			_cache_unlock(ncp);
2075 			return(NULL);
2076 		}
2077 		cpu_pause();
2078 	}
2079 
2080 	/*
2081 	 * We are the only ref and with the spinlocks held no further
2082 	 * refs can be acquired by others.
2083 	 *
2084 	 * Remove us from the hash list and parent list.  We have to
2085 	 * drop a ref on the parent's vp if the parent's list becomes
2086 	 * empty.
2087 	 */
2088 	dropvp = NULL;
2089 	if (par) {
2090 		struct nchash_head *nchpp = ncp->nc_head;
2091 
2092 		KKASSERT(nchpp != NULL);
2093 		LIST_REMOVE(ncp, nc_hash);
2094 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2095 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2096 			dropvp = par->nc_vp;
2097 		ncp->nc_head = NULL;
2098 		ncp->nc_parent = NULL;
2099 		spin_unlock(&nchpp->spin);
2100 		_cache_unlock(par);
2101 	} else {
2102 		KKASSERT(ncp->nc_head == NULL);
2103 	}
2104 
2105 	/*
2106 	 * ncp should not have picked up any refs.  Physically
2107 	 * destroy the ncp.
2108 	 */
2109 	KKASSERT(ncp->nc_refs == 1);
2110 	/* _cache_unlock(ncp) not required */
2111 	ncp->nc_refs = -1;	/* safety */
2112 	if (ncp->nc_name)
2113 		kfree(ncp->nc_name, M_VFSCACHE);
2114 	kfree(ncp, M_VFSCACHE);
2115 
2116 	/*
2117 	 * Delayed drop (we had to release our spinlocks)
2118 	 *
2119 	 * The refed parent (if not  NULL) must be dropped.  The
2120 	 * caller is responsible for looping.
2121 	 */
2122 	if (dropvp)
2123 		vdrop(dropvp);
2124 	return(par);
2125 }
2126 
2127 /*
2128  * Clean up dangling negative cache and defered-drop entries in the
2129  * namecache.
2130  */
2131 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2132 
2133 static cache_hs_t neg_cache_hysteresis_state = CHI_LOW;
2134 static cache_hs_t pos_cache_hysteresis_state = CHI_LOW;
2135 
2136 void
2137 cache_hysteresis(void)
2138 {
2139 	int poslimit;
2140 
2141 	/*
2142 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2143 	 * the impact on the critical path.
2144 	 */
2145 	switch(neg_cache_hysteresis_state) {
2146 	case CHI_LOW:
2147 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2148 			_cache_cleanneg(10);
2149 			neg_cache_hysteresis_state = CHI_HIGH;
2150 		}
2151 		break;
2152 	case CHI_HIGH:
2153 		if (numneg > MINNEG * 9 / 10 &&
2154 		    numneg * ncnegfactor * 9 / 10 > numcache
2155 		) {
2156 			_cache_cleanneg(10);
2157 		} else {
2158 			neg_cache_hysteresis_state = CHI_LOW;
2159 		}
2160 		break;
2161 	}
2162 
2163 	/*
2164 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2165 	 * the impact on the critical path.
2166 	 *
2167 	 * Excessive positive hits can accumulate due to large numbers of
2168 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2169 	 * into infinity).
2170 	 */
2171 	if ((poslimit = ncposlimit) == 0)
2172 		poslimit = desiredvnodes * 2;
2173 
2174 	switch(pos_cache_hysteresis_state) {
2175 	case CHI_LOW:
2176 		if (numcache > poslimit && numcache > MINPOS) {
2177 			_cache_cleanpos(10);
2178 			pos_cache_hysteresis_state = CHI_HIGH;
2179 		}
2180 		break;
2181 	case CHI_HIGH:
2182 		if (numcache > poslimit * 5 / 6 && numcache > MINPOS) {
2183 			_cache_cleanpos(10);
2184 		} else {
2185 			pos_cache_hysteresis_state = CHI_LOW;
2186 		}
2187 		break;
2188 	}
2189 
2190 	/*
2191 	 * Clean out dangling defered-zap ncps which could not
2192 	 * be cleanly dropped if too many build up.  Note
2193 	 * that numdefered is not an exact number as such ncps
2194 	 * can be reused and the counter is not handled in a MP
2195 	 * safe manner by design.
2196 	 */
2197 	if (numdefered * ncnegfactor > numcache) {
2198 		_cache_cleandefered();
2199 	}
2200 }
2201 
2202 /*
2203  * NEW NAMECACHE LOOKUP API
2204  *
2205  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2206  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2207  * is ALWAYS returned, eve if the supplied component is illegal.
2208  *
2209  * The resulting namecache entry should be returned to the system with
2210  * cache_put() or cache_unlock() + cache_drop().
2211  *
2212  * namecache locks are recursive but care must be taken to avoid lock order
2213  * reversals (hence why the passed par_nch must be unlocked).  Locking
2214  * rules are to order for parent traversals, not for child traversals.
2215  *
2216  * Nobody else will be able to manipulate the associated namespace (e.g.
2217  * create, delete, rename, rename-target) until the caller unlocks the
2218  * entry.
2219  *
2220  * The returned entry will be in one of three states:  positive hit (non-null
2221  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2222  * Unresolved entries must be resolved through the filesystem to associate the
2223  * vnode and/or determine whether a positive or negative hit has occured.
2224  *
2225  * It is not necessary to lock a directory in order to lock namespace under
2226  * that directory.  In fact, it is explicitly not allowed to do that.  A
2227  * directory is typically only locked when being created, renamed, or
2228  * destroyed.
2229  *
2230  * The directory (par) may be unresolved, in which case any returned child
2231  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2232  * the filesystem lookup requires a resolved directory vnode the caller is
2233  * responsible for resolving the namecache chain top-down.  This API
2234  * specifically allows whole chains to be created in an unresolved state.
2235  */
2236 struct nchandle
2237 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2238 {
2239 	struct nchandle nch;
2240 	struct namecache *ncp;
2241 	struct namecache *new_ncp;
2242 	struct nchash_head *nchpp;
2243 	struct mount *mp;
2244 	u_int32_t hash;
2245 	globaldata_t gd;
2246 	int par_locked;
2247 
2248 	numcalls++;
2249 	gd = mycpu;
2250 	mp = par_nch->mount;
2251 	par_locked = 0;
2252 
2253 	/*
2254 	 * This is a good time to call it, no ncp's are locked by
2255 	 * the caller or us.
2256 	 */
2257 	cache_hysteresis();
2258 
2259 	/*
2260 	 * Try to locate an existing entry
2261 	 */
2262 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2263 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2264 	new_ncp = NULL;
2265 	nchpp = NCHHASH(hash);
2266 restart:
2267 	spin_lock(&nchpp->spin);
2268 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2269 		numchecks++;
2270 
2271 		/*
2272 		 * Break out if we find a matching entry.  Note that
2273 		 * UNRESOLVED entries may match, but DESTROYED entries
2274 		 * do not.
2275 		 */
2276 		if (ncp->nc_parent == par_nch->ncp &&
2277 		    ncp->nc_nlen == nlc->nlc_namelen &&
2278 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2279 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2280 		) {
2281 			_cache_hold(ncp);
2282 			spin_unlock(&nchpp->spin);
2283 			if (par_locked) {
2284 				_cache_unlock(par_nch->ncp);
2285 				par_locked = 0;
2286 			}
2287 			if (_cache_lock_special(ncp) == 0) {
2288 				_cache_auto_unresolve(mp, ncp);
2289 				if (new_ncp)
2290 					_cache_free(new_ncp);
2291 				goto found;
2292 			}
2293 			_cache_get(ncp);
2294 			_cache_put(ncp);
2295 			_cache_drop(ncp);
2296 			goto restart;
2297 		}
2298 	}
2299 
2300 	/*
2301 	 * We failed to locate an entry, create a new entry and add it to
2302 	 * the cache.  The parent ncp must also be locked so we
2303 	 * can link into it.
2304 	 *
2305 	 * We have to relookup after possibly blocking in kmalloc or
2306 	 * when locking par_nch.
2307 	 *
2308 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2309 	 *	 mount case, in which case nc_name will be NULL.
2310 	 */
2311 	if (new_ncp == NULL) {
2312 		spin_unlock(&nchpp->spin);
2313 		new_ncp = cache_alloc(nlc->nlc_namelen);
2314 		if (nlc->nlc_namelen) {
2315 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2316 			      nlc->nlc_namelen);
2317 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2318 		}
2319 		goto restart;
2320 	}
2321 	if (par_locked == 0) {
2322 		spin_unlock(&nchpp->spin);
2323 		_cache_lock(par_nch->ncp);
2324 		par_locked = 1;
2325 		goto restart;
2326 	}
2327 
2328 	/*
2329 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2330 	 *	     table entry atomically.
2331 	 */
2332 	ncp = new_ncp;
2333 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2334 	spin_unlock(&nchpp->spin);
2335 	_cache_unlock(par_nch->ncp);
2336 	/* par_locked = 0 - not used */
2337 found:
2338 	/*
2339 	 * stats and namecache size management
2340 	 */
2341 	if (ncp->nc_flag & NCF_UNRESOLVED)
2342 		++gd->gd_nchstats->ncs_miss;
2343 	else if (ncp->nc_vp)
2344 		++gd->gd_nchstats->ncs_goodhits;
2345 	else
2346 		++gd->gd_nchstats->ncs_neghits;
2347 	nch.mount = mp;
2348 	nch.ncp = ncp;
2349 	atomic_add_int(&nch.mount->mnt_refs, 1);
2350 	return(nch);
2351 }
2352 
2353 /*
2354  * This is a non-blocking verison of cache_nlookup() used by
2355  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2356  * will return nch.ncp == NULL in that case.
2357  */
2358 struct nchandle
2359 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2360 {
2361 	struct nchandle nch;
2362 	struct namecache *ncp;
2363 	struct namecache *new_ncp;
2364 	struct nchash_head *nchpp;
2365 	struct mount *mp;
2366 	u_int32_t hash;
2367 	globaldata_t gd;
2368 	int par_locked;
2369 
2370 	numcalls++;
2371 	gd = mycpu;
2372 	mp = par_nch->mount;
2373 	par_locked = 0;
2374 
2375 	/*
2376 	 * Try to locate an existing entry
2377 	 */
2378 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2379 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2380 	new_ncp = NULL;
2381 	nchpp = NCHHASH(hash);
2382 restart:
2383 	spin_lock(&nchpp->spin);
2384 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2385 		numchecks++;
2386 
2387 		/*
2388 		 * Break out if we find a matching entry.  Note that
2389 		 * UNRESOLVED entries may match, but DESTROYED entries
2390 		 * do not.
2391 		 */
2392 		if (ncp->nc_parent == par_nch->ncp &&
2393 		    ncp->nc_nlen == nlc->nlc_namelen &&
2394 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2395 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2396 		) {
2397 			_cache_hold(ncp);
2398 			spin_unlock(&nchpp->spin);
2399 			if (par_locked) {
2400 				_cache_unlock(par_nch->ncp);
2401 				par_locked = 0;
2402 			}
2403 			if (_cache_lock_special(ncp) == 0) {
2404 				_cache_auto_unresolve(mp, ncp);
2405 				if (new_ncp) {
2406 					_cache_free(new_ncp);
2407 					new_ncp = NULL;
2408 				}
2409 				goto found;
2410 			}
2411 			_cache_drop(ncp);
2412 			goto failed;
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * We failed to locate an entry, create a new entry and add it to
2418 	 * the cache.  The parent ncp must also be locked so we
2419 	 * can link into it.
2420 	 *
2421 	 * We have to relookup after possibly blocking in kmalloc or
2422 	 * when locking par_nch.
2423 	 *
2424 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2425 	 *	 mount case, in which case nc_name will be NULL.
2426 	 */
2427 	if (new_ncp == NULL) {
2428 		spin_unlock(&nchpp->spin);
2429 		new_ncp = cache_alloc(nlc->nlc_namelen);
2430 		if (nlc->nlc_namelen) {
2431 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2432 			      nlc->nlc_namelen);
2433 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2434 		}
2435 		goto restart;
2436 	}
2437 	if (par_locked == 0) {
2438 		spin_unlock(&nchpp->spin);
2439 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2440 			par_locked = 1;
2441 			goto restart;
2442 		}
2443 		goto failed;
2444 	}
2445 
2446 	/*
2447 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2448 	 *	     table entry atomically.
2449 	 */
2450 	ncp = new_ncp;
2451 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2452 	spin_unlock(&nchpp->spin);
2453 	_cache_unlock(par_nch->ncp);
2454 	/* par_locked = 0 - not used */
2455 found:
2456 	/*
2457 	 * stats and namecache size management
2458 	 */
2459 	if (ncp->nc_flag & NCF_UNRESOLVED)
2460 		++gd->gd_nchstats->ncs_miss;
2461 	else if (ncp->nc_vp)
2462 		++gd->gd_nchstats->ncs_goodhits;
2463 	else
2464 		++gd->gd_nchstats->ncs_neghits;
2465 	nch.mount = mp;
2466 	nch.ncp = ncp;
2467 	atomic_add_int(&nch.mount->mnt_refs, 1);
2468 	return(nch);
2469 failed:
2470 	if (new_ncp) {
2471 		_cache_free(new_ncp);
2472 		new_ncp = NULL;
2473 	}
2474 	nch.mount = NULL;
2475 	nch.ncp = NULL;
2476 	return(nch);
2477 }
2478 
2479 /*
2480  * The namecache entry is marked as being used as a mount point.
2481  * Locate the mount if it is visible to the caller.
2482  */
2483 struct findmount_info {
2484 	struct mount *result;
2485 	struct mount *nch_mount;
2486 	struct namecache *nch_ncp;
2487 };
2488 
2489 static
2490 int
2491 cache_findmount_callback(struct mount *mp, void *data)
2492 {
2493 	struct findmount_info *info = data;
2494 
2495 	/*
2496 	 * Check the mount's mounted-on point against the passed nch.
2497 	 */
2498 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
2499 	    mp->mnt_ncmounton.ncp == info->nch_ncp
2500 	) {
2501 	    info->result = mp;
2502 	    atomic_add_int(&mp->mnt_refs, 1);
2503 	    return(-1);
2504 	}
2505 	return(0);
2506 }
2507 
2508 struct mount *
2509 cache_findmount(struct nchandle *nch)
2510 {
2511 	struct findmount_info info;
2512 
2513 	info.result = NULL;
2514 	info.nch_mount = nch->mount;
2515 	info.nch_ncp = nch->ncp;
2516 	mountlist_scan(cache_findmount_callback, &info,
2517 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2518 	return(info.result);
2519 }
2520 
2521 void
2522 cache_dropmount(struct mount *mp)
2523 {
2524 	atomic_add_int(&mp->mnt_refs, -1);
2525 }
2526 
2527 /*
2528  * Resolve an unresolved namecache entry, generally by looking it up.
2529  * The passed ncp must be locked and refd.
2530  *
2531  * Theoretically since a vnode cannot be recycled while held, and since
2532  * the nc_parent chain holds its vnode as long as children exist, the
2533  * direct parent of the cache entry we are trying to resolve should
2534  * have a valid vnode.  If not then generate an error that we can
2535  * determine is related to a resolver bug.
2536  *
2537  * However, if a vnode was in the middle of a recyclement when the NCP
2538  * got locked, ncp->nc_vp might point to a vnode that is about to become
2539  * invalid.  cache_resolve() handles this case by unresolving the entry
2540  * and then re-resolving it.
2541  *
2542  * Note that successful resolution does not necessarily return an error
2543  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
2544  * will be returned.
2545  *
2546  * MPSAFE
2547  */
2548 int
2549 cache_resolve(struct nchandle *nch, struct ucred *cred)
2550 {
2551 	struct namecache *par_tmp;
2552 	struct namecache *par;
2553 	struct namecache *ncp;
2554 	struct nchandle nctmp;
2555 	struct mount *mp;
2556 	struct vnode *dvp;
2557 	int error;
2558 
2559 	ncp = nch->ncp;
2560 	mp = nch->mount;
2561 restart:
2562 	/*
2563 	 * If the ncp is already resolved we have nothing to do.  However,
2564 	 * we do want to guarentee that a usable vnode is returned when
2565 	 * a vnode is present, so make sure it hasn't been reclaimed.
2566 	 */
2567 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2568 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2569 			_cache_setunresolved(ncp);
2570 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2571 			return (ncp->nc_error);
2572 	}
2573 
2574 	/*
2575 	 * Mount points need special handling because the parent does not
2576 	 * belong to the same filesystem as the ncp.
2577 	 */
2578 	if (ncp == mp->mnt_ncmountpt.ncp)
2579 		return (cache_resolve_mp(mp));
2580 
2581 	/*
2582 	 * We expect an unbroken chain of ncps to at least the mount point,
2583 	 * and even all the way to root (but this code doesn't have to go
2584 	 * past the mount point).
2585 	 */
2586 	if (ncp->nc_parent == NULL) {
2587 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2588 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2589 		ncp->nc_error = EXDEV;
2590 		return(ncp->nc_error);
2591 	}
2592 
2593 	/*
2594 	 * The vp's of the parent directories in the chain are held via vhold()
2595 	 * due to the existance of the child, and should not disappear.
2596 	 * However, there are cases where they can disappear:
2597 	 *
2598 	 *	- due to filesystem I/O errors.
2599 	 *	- due to NFS being stupid about tracking the namespace and
2600 	 *	  destroys the namespace for entire directories quite often.
2601 	 *	- due to forced unmounts.
2602 	 *	- due to an rmdir (parent will be marked DESTROYED)
2603 	 *
2604 	 * When this occurs we have to track the chain backwards and resolve
2605 	 * it, looping until the resolver catches up to the current node.  We
2606 	 * could recurse here but we might run ourselves out of kernel stack
2607 	 * so we do it in a more painful manner.  This situation really should
2608 	 * not occur all that often, or if it does not have to go back too
2609 	 * many nodes to resolve the ncp.
2610 	 */
2611 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2612 		/*
2613 		 * This case can occur if a process is CD'd into a
2614 		 * directory which is then rmdir'd.  If the parent is marked
2615 		 * destroyed there is no point trying to resolve it.
2616 		 */
2617 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2618 			return(ENOENT);
2619 		par = ncp->nc_parent;
2620 		_cache_hold(par);
2621 		_cache_lock(par);
2622 		while ((par_tmp = par->nc_parent) != NULL &&
2623 		       par_tmp->nc_vp == NULL) {
2624 			_cache_hold(par_tmp);
2625 			_cache_lock(par_tmp);
2626 			_cache_put(par);
2627 			par = par_tmp;
2628 		}
2629 		if (par->nc_parent == NULL) {
2630 			kprintf("EXDEV case 2 %*.*s\n",
2631 				par->nc_nlen, par->nc_nlen, par->nc_name);
2632 			_cache_put(par);
2633 			return (EXDEV);
2634 		}
2635 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2636 			par->nc_nlen, par->nc_nlen, par->nc_name);
2637 		/*
2638 		 * The parent is not set in stone, ref and lock it to prevent
2639 		 * it from disappearing.  Also note that due to renames it
2640 		 * is possible for our ncp to move and for par to no longer
2641 		 * be one of its parents.  We resolve it anyway, the loop
2642 		 * will handle any moves.
2643 		 */
2644 		_cache_get(par);	/* additional hold/lock */
2645 		_cache_put(par);	/* from earlier hold/lock */
2646 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2647 			cache_resolve_mp(nch->mount);
2648 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2649 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2650 			_cache_put(par);
2651 			continue;
2652 		} else {
2653 			if (par->nc_flag & NCF_UNRESOLVED) {
2654 				nctmp.mount = mp;
2655 				nctmp.ncp = par;
2656 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2657 			}
2658 			vrele(dvp);
2659 		}
2660 		if ((error = par->nc_error) != 0) {
2661 			if (par->nc_error != EAGAIN) {
2662 				kprintf("EXDEV case 3 %*.*s error %d\n",
2663 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2664 				    par->nc_error);
2665 				_cache_put(par);
2666 				return(error);
2667 			}
2668 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2669 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2670 		}
2671 		_cache_put(par);
2672 		/* loop */
2673 	}
2674 
2675 	/*
2676 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2677 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2678 	 * EAGAIN to force a relookup.
2679 	 *
2680 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2681 	 * ncp must already be resolved.
2682 	 */
2683 	if (dvp) {
2684 		nctmp.mount = mp;
2685 		nctmp.ncp = ncp;
2686 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2687 		vrele(dvp);
2688 	} else {
2689 		ncp->nc_error = EPERM;
2690 	}
2691 	if (ncp->nc_error == EAGAIN) {
2692 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2693 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2694 		goto restart;
2695 	}
2696 	return(ncp->nc_error);
2697 }
2698 
2699 /*
2700  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2701  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2702  * re-resolution more often due to its mac-truck-smash-the-namecache
2703  * method of tracking namespace changes.
2704  *
2705  * The semantics for this call is that the passed ncp must be locked on
2706  * entry and will be locked on return.  However, if we actually have to
2707  * resolve the mount point we temporarily unlock the entry in order to
2708  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2709  * the unlock we have to recheck the flags after we relock.
2710  */
2711 static int
2712 cache_resolve_mp(struct mount *mp)
2713 {
2714 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2715 	struct vnode *vp;
2716 	int error;
2717 
2718 	KKASSERT(mp != NULL);
2719 
2720 	/*
2721 	 * If the ncp is already resolved we have nothing to do.  However,
2722 	 * we do want to guarentee that a usable vnode is returned when
2723 	 * a vnode is present, so make sure it hasn't been reclaimed.
2724 	 */
2725 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2726 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2727 			_cache_setunresolved(ncp);
2728 	}
2729 
2730 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2731 		_cache_unlock(ncp);
2732 		while (vfs_busy(mp, 0))
2733 			;
2734 		error = VFS_ROOT(mp, &vp);
2735 		_cache_lock(ncp);
2736 
2737 		/*
2738 		 * recheck the ncp state after relocking.
2739 		 */
2740 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2741 			ncp->nc_error = error;
2742 			if (error == 0) {
2743 				_cache_setvp(mp, ncp, vp);
2744 				vput(vp);
2745 			} else {
2746 				kprintf("[diagnostic] cache_resolve_mp: failed"
2747 					" to resolve mount %p err=%d ncp=%p\n",
2748 					mp, error, ncp);
2749 				_cache_setvp(mp, ncp, NULL);
2750 			}
2751 		} else if (error == 0) {
2752 			vput(vp);
2753 		}
2754 		vfs_unbusy(mp);
2755 	}
2756 	return(ncp->nc_error);
2757 }
2758 
2759 /*
2760  * Clean out negative cache entries when too many have accumulated.
2761  *
2762  * MPSAFE
2763  */
2764 static void
2765 _cache_cleanneg(int count)
2766 {
2767 	struct namecache *ncp;
2768 
2769 	/*
2770 	 * Attempt to clean out the specified number of negative cache
2771 	 * entries.
2772 	 */
2773 	while (count) {
2774 		spin_lock(&ncspin);
2775 		ncp = TAILQ_FIRST(&ncneglist);
2776 		if (ncp == NULL) {
2777 			spin_unlock(&ncspin);
2778 			break;
2779 		}
2780 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2781 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2782 		_cache_hold(ncp);
2783 		spin_unlock(&ncspin);
2784 		if (_cache_lock_special(ncp) == 0) {
2785 			ncp = cache_zap(ncp, 1);
2786 			if (ncp)
2787 				_cache_drop(ncp);
2788 		} else {
2789 			_cache_drop(ncp);
2790 		}
2791 		--count;
2792 	}
2793 }
2794 
2795 /*
2796  * Clean out positive cache entries when too many have accumulated.
2797  *
2798  * MPSAFE
2799  */
2800 static void
2801 _cache_cleanpos(int count)
2802 {
2803 	static volatile int rover;
2804 	struct nchash_head *nchpp;
2805 	struct namecache *ncp;
2806 	int rover_copy;
2807 
2808 	/*
2809 	 * Attempt to clean out the specified number of negative cache
2810 	 * entries.
2811 	 */
2812 	while (count) {
2813 		rover_copy = ++rover;	/* MPSAFEENOUGH */
2814 		cpu_ccfence();
2815 		nchpp = NCHHASH(rover_copy);
2816 
2817 		spin_lock(&nchpp->spin);
2818 		ncp = LIST_FIRST(&nchpp->list);
2819 		if (ncp)
2820 			_cache_hold(ncp);
2821 		spin_unlock(&nchpp->spin);
2822 
2823 		if (ncp) {
2824 			if (_cache_lock_special(ncp) == 0) {
2825 				ncp = cache_zap(ncp, 1);
2826 				if (ncp)
2827 					_cache_drop(ncp);
2828 			} else {
2829 				_cache_drop(ncp);
2830 			}
2831 		}
2832 		--count;
2833 	}
2834 }
2835 
2836 /*
2837  * This is a kitchen sink function to clean out ncps which we
2838  * tried to zap from cache_drop() but failed because we were
2839  * unable to acquire the parent lock.
2840  *
2841  * Such entries can also be removed via cache_inval_vp(), such
2842  * as when unmounting.
2843  *
2844  * MPSAFE
2845  */
2846 static void
2847 _cache_cleandefered(void)
2848 {
2849 	struct nchash_head *nchpp;
2850 	struct namecache *ncp;
2851 	struct namecache dummy;
2852 	int i;
2853 
2854 	numdefered = 0;
2855 	bzero(&dummy, sizeof(dummy));
2856 	dummy.nc_flag = NCF_DESTROYED;
2857 
2858 	for (i = 0; i <= nchash; ++i) {
2859 		nchpp = &nchashtbl[i];
2860 
2861 		spin_lock(&nchpp->spin);
2862 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2863 		ncp = &dummy;
2864 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2865 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2866 				continue;
2867 			LIST_REMOVE(&dummy, nc_hash);
2868 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2869 			_cache_hold(ncp);
2870 			spin_unlock(&nchpp->spin);
2871 			if (_cache_lock_nonblock(ncp) == 0) {
2872 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
2873 				_cache_unlock(ncp);
2874 			}
2875 			_cache_drop(ncp);
2876 			spin_lock(&nchpp->spin);
2877 			ncp = &dummy;
2878 		}
2879 		LIST_REMOVE(&dummy, nc_hash);
2880 		spin_unlock(&nchpp->spin);
2881 	}
2882 }
2883 
2884 /*
2885  * Name cache initialization, from vfsinit() when we are booting
2886  */
2887 void
2888 nchinit(void)
2889 {
2890 	int i;
2891 	globaldata_t gd;
2892 
2893 	/* initialise per-cpu namecache effectiveness statistics. */
2894 	for (i = 0; i < ncpus; ++i) {
2895 		gd = globaldata_find(i);
2896 		gd->gd_nchstats = &nchstats[i];
2897 	}
2898 	TAILQ_INIT(&ncneglist);
2899 	spin_init(&ncspin);
2900 	nchashtbl = hashinit_ext(desiredvnodes / 2,
2901 				 sizeof(struct nchash_head),
2902 				 M_VFSCACHE, &nchash);
2903 	for (i = 0; i <= (int)nchash; ++i) {
2904 		LIST_INIT(&nchashtbl[i].list);
2905 		spin_init(&nchashtbl[i].spin);
2906 	}
2907 	nclockwarn = 5 * hz;
2908 }
2909 
2910 /*
2911  * Called from start_init() to bootstrap the root filesystem.  Returns
2912  * a referenced, unlocked namecache record.
2913  */
2914 void
2915 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2916 {
2917 	nch->ncp = cache_alloc(0);
2918 	nch->mount = mp;
2919 	atomic_add_int(&mp->mnt_refs, 1);
2920 	if (vp)
2921 		_cache_setvp(nch->mount, nch->ncp, vp);
2922 }
2923 
2924 /*
2925  * vfs_cache_setroot()
2926  *
2927  *	Create an association between the root of our namecache and
2928  *	the root vnode.  This routine may be called several times during
2929  *	booting.
2930  *
2931  *	If the caller intends to save the returned namecache pointer somewhere
2932  *	it must cache_hold() it.
2933  */
2934 void
2935 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2936 {
2937 	struct vnode *ovp;
2938 	struct nchandle onch;
2939 
2940 	ovp = rootvnode;
2941 	onch = rootnch;
2942 	rootvnode = nvp;
2943 	if (nch)
2944 		rootnch = *nch;
2945 	else
2946 		cache_zero(&rootnch);
2947 	if (ovp)
2948 		vrele(ovp);
2949 	if (onch.ncp)
2950 		cache_drop(&onch);
2951 }
2952 
2953 /*
2954  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2955  * topology and is being removed as quickly as possible.  The new VOP_N*()
2956  * API calls are required to make specific adjustments using the supplied
2957  * ncp pointers rather then just bogusly purging random vnodes.
2958  *
2959  * Invalidate all namecache entries to a particular vnode as well as
2960  * any direct children of that vnode in the namecache.  This is a
2961  * 'catch all' purge used by filesystems that do not know any better.
2962  *
2963  * Note that the linkage between the vnode and its namecache entries will
2964  * be removed, but the namecache entries themselves might stay put due to
2965  * active references from elsewhere in the system or due to the existance of
2966  * the children.   The namecache topology is left intact even if we do not
2967  * know what the vnode association is.  Such entries will be marked
2968  * NCF_UNRESOLVED.
2969  */
2970 void
2971 cache_purge(struct vnode *vp)
2972 {
2973 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2974 }
2975 
2976 /*
2977  * Flush all entries referencing a particular filesystem.
2978  *
2979  * Since we need to check it anyway, we will flush all the invalid
2980  * entries at the same time.
2981  */
2982 #if 0
2983 
2984 void
2985 cache_purgevfs(struct mount *mp)
2986 {
2987 	struct nchash_head *nchpp;
2988 	struct namecache *ncp, *nnp;
2989 
2990 	/*
2991 	 * Scan hash tables for applicable entries.
2992 	 */
2993 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2994 		spin_lock_wr(&nchpp->spin); XXX
2995 		ncp = LIST_FIRST(&nchpp->list);
2996 		if (ncp)
2997 			_cache_hold(ncp);
2998 		while (ncp) {
2999 			nnp = LIST_NEXT(ncp, nc_hash);
3000 			if (nnp)
3001 				_cache_hold(nnp);
3002 			if (ncp->nc_mount == mp) {
3003 				_cache_lock(ncp);
3004 				ncp = cache_zap(ncp, 0);
3005 				if (ncp)
3006 					_cache_drop(ncp);
3007 			} else {
3008 				_cache_drop(ncp);
3009 			}
3010 			ncp = nnp;
3011 		}
3012 		spin_unlock_wr(&nchpp->spin); XXX
3013 	}
3014 }
3015 
3016 #endif
3017 
3018 static int disablecwd;
3019 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3020     "Disable getcwd");
3021 
3022 static u_long numcwdcalls;
3023 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3024     "Number of current directory resolution calls");
3025 static u_long numcwdfailnf;
3026 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
3027     "Number of current directory failures due to lack of file");
3028 static u_long numcwdfailsz;
3029 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
3030     "Number of current directory failures due to large result");
3031 static u_long numcwdfound;
3032 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
3033     "Number of current directory resolution successes");
3034 
3035 /*
3036  * MPALMOSTSAFE
3037  */
3038 int
3039 sys___getcwd(struct __getcwd_args *uap)
3040 {
3041 	u_int buflen;
3042 	int error;
3043 	char *buf;
3044 	char *bp;
3045 
3046 	if (disablecwd)
3047 		return (ENODEV);
3048 
3049 	buflen = uap->buflen;
3050 	if (buflen == 0)
3051 		return (EINVAL);
3052 	if (buflen > MAXPATHLEN)
3053 		buflen = MAXPATHLEN;
3054 
3055 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3056 	get_mplock();
3057 	bp = kern_getcwd(buf, buflen, &error);
3058 	rel_mplock();
3059 	if (error == 0)
3060 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3061 	kfree(buf, M_TEMP);
3062 	return (error);
3063 }
3064 
3065 char *
3066 kern_getcwd(char *buf, size_t buflen, int *error)
3067 {
3068 	struct proc *p = curproc;
3069 	char *bp;
3070 	int i, slash_prefixed;
3071 	struct filedesc *fdp;
3072 	struct nchandle nch;
3073 	struct namecache *ncp;
3074 
3075 	numcwdcalls++;
3076 	bp = buf;
3077 	bp += buflen - 1;
3078 	*bp = '\0';
3079 	fdp = p->p_fd;
3080 	slash_prefixed = 0;
3081 
3082 	nch = fdp->fd_ncdir;
3083 	ncp = nch.ncp;
3084 	if (ncp)
3085 		_cache_hold(ncp);
3086 
3087 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3088 	       nch.mount != fdp->fd_nrdir.mount)
3089 	) {
3090 		/*
3091 		 * While traversing upwards if we encounter the root
3092 		 * of the current mount we have to skip to the mount point
3093 		 * in the underlying filesystem.
3094 		 */
3095 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3096 			nch = nch.mount->mnt_ncmounton;
3097 			_cache_drop(ncp);
3098 			ncp = nch.ncp;
3099 			if (ncp)
3100 				_cache_hold(ncp);
3101 			continue;
3102 		}
3103 
3104 		/*
3105 		 * Prepend the path segment
3106 		 */
3107 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3108 			if (bp == buf) {
3109 				numcwdfailsz++;
3110 				*error = ERANGE;
3111 				bp = NULL;
3112 				goto done;
3113 			}
3114 			*--bp = ncp->nc_name[i];
3115 		}
3116 		if (bp == buf) {
3117 			numcwdfailsz++;
3118 			*error = ERANGE;
3119 			bp = NULL;
3120 			goto done;
3121 		}
3122 		*--bp = '/';
3123 		slash_prefixed = 1;
3124 
3125 		/*
3126 		 * Go up a directory.  This isn't a mount point so we don't
3127 		 * have to check again.
3128 		 */
3129 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3130 			_cache_lock(ncp);
3131 			if (nch.ncp != ncp->nc_parent) {
3132 				_cache_unlock(ncp);
3133 				continue;
3134 			}
3135 			_cache_hold(nch.ncp);
3136 			_cache_unlock(ncp);
3137 			break;
3138 		}
3139 		_cache_drop(ncp);
3140 		ncp = nch.ncp;
3141 	}
3142 	if (ncp == NULL) {
3143 		numcwdfailnf++;
3144 		*error = ENOENT;
3145 		bp = NULL;
3146 		goto done;
3147 	}
3148 	if (!slash_prefixed) {
3149 		if (bp == buf) {
3150 			numcwdfailsz++;
3151 			*error = ERANGE;
3152 			bp = NULL;
3153 			goto done;
3154 		}
3155 		*--bp = '/';
3156 	}
3157 	numcwdfound++;
3158 	*error = 0;
3159 done:
3160 	if (ncp)
3161 		_cache_drop(ncp);
3162 	return (bp);
3163 }
3164 
3165 /*
3166  * Thus begins the fullpath magic.
3167  *
3168  * The passed nchp is referenced but not locked.
3169  */
3170 static int disablefullpath;
3171 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3172     &disablefullpath, 0,
3173     "Disable fullpath lookups");
3174 
3175 static u_int numfullpathcalls;
3176 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
3177     &numfullpathcalls, 0,
3178     "Number of full path resolutions in progress");
3179 static u_int numfullpathfailnf;
3180 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
3181     &numfullpathfailnf, 0,
3182     "Number of full path resolution failures due to lack of file");
3183 static u_int numfullpathfailsz;
3184 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
3185     &numfullpathfailsz, 0,
3186     "Number of full path resolution failures due to insufficient memory");
3187 static u_int numfullpathfound;
3188 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
3189     &numfullpathfound, 0,
3190     "Number of full path resolution successes");
3191 
3192 int
3193 cache_fullpath(struct proc *p, struct nchandle *nchp,
3194 	       char **retbuf, char **freebuf, int guess)
3195 {
3196 	struct nchandle fd_nrdir;
3197 	struct nchandle nch;
3198 	struct namecache *ncp;
3199 	struct mount *mp, *new_mp;
3200 	char *bp, *buf;
3201 	int slash_prefixed;
3202 	int error = 0;
3203 	int i;
3204 
3205 	atomic_add_int(&numfullpathcalls, -1);
3206 
3207 	*retbuf = NULL;
3208 	*freebuf = NULL;
3209 
3210 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3211 	bp = buf + MAXPATHLEN - 1;
3212 	*bp = '\0';
3213 	if (p != NULL)
3214 		fd_nrdir = p->p_fd->fd_nrdir;
3215 	else
3216 		fd_nrdir = rootnch;
3217 	slash_prefixed = 0;
3218 	nch = *nchp;
3219 	ncp = nch.ncp;
3220 	if (ncp)
3221 		_cache_hold(ncp);
3222 	mp = nch.mount;
3223 
3224 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3225 		new_mp = NULL;
3226 
3227 		/*
3228 		 * If we are asked to guess the upwards path, we do so whenever
3229 		 * we encounter an ncp marked as a mountpoint. We try to find
3230 		 * the actual mountpoint by finding the mountpoint with this ncp.
3231 		 */
3232 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3233 			new_mp = mount_get_by_nc(ncp);
3234 		}
3235 		/*
3236 		 * While traversing upwards if we encounter the root
3237 		 * of the current mount we have to skip to the mount point.
3238 		 */
3239 		if (ncp == mp->mnt_ncmountpt.ncp) {
3240 			new_mp = mp;
3241 		}
3242 		if (new_mp) {
3243 			nch = new_mp->mnt_ncmounton;
3244 			_cache_drop(ncp);
3245 			ncp = nch.ncp;
3246 			if (ncp)
3247 				_cache_hold(ncp);
3248 			mp = nch.mount;
3249 			continue;
3250 		}
3251 
3252 		/*
3253 		 * Prepend the path segment
3254 		 */
3255 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3256 			if (bp == buf) {
3257 				numfullpathfailsz++;
3258 				kfree(buf, M_TEMP);
3259 				error = ENOMEM;
3260 				goto done;
3261 			}
3262 			*--bp = ncp->nc_name[i];
3263 		}
3264 		if (bp == buf) {
3265 			numfullpathfailsz++;
3266 			kfree(buf, M_TEMP);
3267 			error = ENOMEM;
3268 			goto done;
3269 		}
3270 		*--bp = '/';
3271 		slash_prefixed = 1;
3272 
3273 		/*
3274 		 * Go up a directory.  This isn't a mount point so we don't
3275 		 * have to check again.
3276 		 *
3277 		 * We can only safely access nc_parent with ncp held locked.
3278 		 */
3279 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3280 			_cache_lock(ncp);
3281 			if (nch.ncp != ncp->nc_parent) {
3282 				_cache_unlock(ncp);
3283 				continue;
3284 			}
3285 			_cache_hold(nch.ncp);
3286 			_cache_unlock(ncp);
3287 			break;
3288 		}
3289 		_cache_drop(ncp);
3290 		ncp = nch.ncp;
3291 	}
3292 	if (ncp == NULL) {
3293 		numfullpathfailnf++;
3294 		kfree(buf, M_TEMP);
3295 		error = ENOENT;
3296 		goto done;
3297 	}
3298 
3299 	if (!slash_prefixed) {
3300 		if (bp == buf) {
3301 			numfullpathfailsz++;
3302 			kfree(buf, M_TEMP);
3303 			error = ENOMEM;
3304 			goto done;
3305 		}
3306 		*--bp = '/';
3307 	}
3308 	numfullpathfound++;
3309 	*retbuf = bp;
3310 	*freebuf = buf;
3311 	error = 0;
3312 done:
3313 	if (ncp)
3314 		_cache_drop(ncp);
3315 	return(error);
3316 }
3317 
3318 int
3319 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf,
3320     int guess)
3321 {
3322 	struct namecache *ncp;
3323 	struct nchandle nch;
3324 	int error;
3325 
3326 	*freebuf = NULL;
3327 	atomic_add_int(&numfullpathcalls, 1);
3328 	if (disablefullpath)
3329 		return (ENODEV);
3330 
3331 	if (p == NULL)
3332 		return (EINVAL);
3333 
3334 	/* vn is NULL, client wants us to use p->p_textvp */
3335 	if (vn == NULL) {
3336 		if ((vn = p->p_textvp) == NULL)
3337 			return (EINVAL);
3338 	}
3339 	spin_lock(&vn->v_spin);
3340 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3341 		if (ncp->nc_nlen)
3342 			break;
3343 	}
3344 	if (ncp == NULL) {
3345 		spin_unlock(&vn->v_spin);
3346 		return (EINVAL);
3347 	}
3348 	_cache_hold(ncp);
3349 	spin_unlock(&vn->v_spin);
3350 
3351 	atomic_add_int(&numfullpathcalls, -1);
3352 	nch.ncp = ncp;;
3353 	nch.mount = vn->v_mount;
3354 	error = cache_fullpath(p, &nch, retbuf, freebuf, guess);
3355 	_cache_drop(ncp);
3356 	return (error);
3357 }
3358