xref: /dragonfly/sys/kern/vfs_cache.c (revision bcb3e04d)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/malloc.h>
76 #include <sys/sysproto.h>
77 #include <sys/spinlock.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/nlookup.h>
81 #include <sys/filedesc.h>
82 #include <sys/fnv_hash.h>
83 #include <sys/globaldata.h>
84 #include <sys/kern_syscall.h>
85 #include <sys/dirent.h>
86 #include <ddb/ddb.h>
87 
88 #include <sys/sysref2.h>
89 #include <sys/spinlock2.h>
90 #include <sys/mplock2.h>
91 
92 #define MAX_RECURSION_DEPTH	64
93 
94 /*
95  * Random lookups in the cache are accomplished with a hash table using
96  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
97  *
98  * Negative entries may exist and correspond to resolved namecache
99  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
100  * will be set if the entry corresponds to a whited-out directory entry
101  * (verses simply not finding the entry at all).   ncneglist is locked
102  * with a global spinlock (ncspin).
103  *
104  * MPSAFE RULES:
105  *
106  * (1) A ncp must be referenced before it can be locked.
107  *
108  * (2) A ncp must be locked in order to modify it.
109  *
110  * (3) ncp locks are always ordered child -> parent.  That may seem
111  *     backwards but forward scans use the hash table and thus can hold
112  *     the parent unlocked when traversing downward.
113  *
114  *     This allows insert/rename/delete/dot-dot and other operations
115  *     to use ncp->nc_parent links.
116  *
117  *     This also prevents a locked up e.g. NFS node from creating a
118  *     chain reaction all the way back to the root vnode / namecache.
119  *
120  * (4) parent linkages require both the parent and child to be locked.
121  */
122 
123 /*
124  * Structures associated with name cacheing.
125  */
126 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
127 #define MINNEG		1024
128 #define MINPOS		1024
129 
130 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
131 
132 LIST_HEAD(nchash_list, namecache);
133 
134 struct nchash_head {
135        struct nchash_list list;
136        struct spinlock	spin;
137 };
138 
139 static struct nchash_head	*nchashtbl;
140 static struct namecache_list	ncneglist;
141 static struct spinlock		ncspin;
142 
143 /*
144  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
145  * to create the namecache infrastructure leading to a dangling vnode.
146  *
147  * 0	Only errors are reported
148  * 1	Successes are reported
149  * 2	Successes + the whole directory scan is reported
150  * 3	Force the directory scan code run as if the parent vnode did not
151  *	have a namecache record, even if it does have one.
152  */
153 static int	ncvp_debug;
154 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
155 
156 static u_long	nchash;			/* size of hash table */
157 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
158 
159 static int	ncnegfactor = 16;	/* ratio of negative entries */
160 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
161 
162 static int	nclockwarn;		/* warn on locked entries in ticks */
163 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
164 
165 static int	numdefered;		/* number of cache entries allocated */
166 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, "");
167 
168 static int	ncposlimit;		/* number of cache entries allocated */
169 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0, "");
170 
171 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
172 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
173 
174 int cache_mpsafe = 1;
175 SYSCTL_INT(_vfs, OID_AUTO, cache_mpsafe, CTLFLAG_RW, &cache_mpsafe, 0, "");
176 
177 static int cache_resolve_mp(struct mount *mp);
178 static struct vnode *cache_dvpref(struct namecache *ncp);
179 static void _cache_lock(struct namecache *ncp);
180 static void _cache_setunresolved(struct namecache *ncp);
181 static void _cache_cleanneg(int count);
182 static void _cache_cleanpos(int count);
183 static void _cache_cleandefered(void);
184 
185 /*
186  * The new name cache statistics
187  */
188 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
189 #define STATNODE(mode, name, var) \
190 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
191 #define STATNODE_INT(mode, name, var) \
192 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
193 static int numneg; STATNODE_INT(CTLFLAG_RD, numneg, &numneg);
194 static int numcache; STATNODE_INT(CTLFLAG_RD, numcache, &numcache);
195 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
196 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
197 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
198 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
199 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
200 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
201 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
202 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
203 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
204 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
205 
206 struct nchstats nchstats[SMP_MAXCPU];
207 /*
208  * Export VFS cache effectiveness statistics to user-land.
209  *
210  * The statistics are left for aggregation to user-land so
211  * neat things can be achieved, like observing per-CPU cache
212  * distribution.
213  */
214 static int
215 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
216 {
217 	struct globaldata *gd;
218 	int i, error;
219 
220 	error = 0;
221 	for (i = 0; i < ncpus; ++i) {
222 		gd = globaldata_find(i);
223 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
224 			sizeof(struct nchstats))))
225 			break;
226 	}
227 
228 	return (error);
229 }
230 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
231   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
232 
233 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
234 
235 /*
236  * Namespace locking.  The caller must already hold a reference to the
237  * namecache structure in order to lock/unlock it.  This function prevents
238  * the namespace from being created or destroyed by accessors other then
239  * the lock holder.
240  *
241  * Note that holding a locked namecache structure prevents other threads
242  * from making namespace changes (e.g. deleting or creating), prevents
243  * vnode association state changes by other threads, and prevents the
244  * namecache entry from being resolved or unresolved by other threads.
245  *
246  * The lock owner has full authority to associate/disassociate vnodes
247  * and resolve/unresolve the locked ncp.
248  *
249  * The primary lock field is nc_exlocks.  nc_locktd is set after the
250  * fact (when locking) or cleared prior to unlocking.
251  *
252  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
253  *	     or recycled, but it does NOT help you if the vnode had already
254  *	     initiated a recyclement.  If this is important, use cache_get()
255  *	     rather then cache_lock() (and deal with the differences in the
256  *	     way the refs counter is handled).  Or, alternatively, make an
257  *	     unconditional call to cache_validate() or cache_resolve()
258  *	     after cache_lock() returns.
259  *
260  * MPSAFE
261  */
262 static
263 void
264 _cache_lock(struct namecache *ncp)
265 {
266 	thread_t td;
267 	int didwarn;
268 	int error;
269 	u_int count;
270 
271 	KKASSERT(ncp->nc_refs != 0);
272 	didwarn = 0;
273 	td = curthread;
274 
275 	for (;;) {
276 		count = ncp->nc_exlocks;
277 
278 		if (count == 0) {
279 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
280 				/*
281 				 * The vp associated with a locked ncp must
282 				 * be held to prevent it from being recycled.
283 				 *
284 				 * WARNING!  If VRECLAIMED is set the vnode
285 				 * could already be in the middle of a recycle.
286 				 * Callers must use cache_vref() or
287 				 * cache_vget() on the locked ncp to
288 				 * validate the vp or set the cache entry
289 				 * to unresolved.
290 				 *
291 				 * NOTE! vhold() is allowed if we hold a
292 				 *	 lock on the ncp (which we do).
293 				 */
294 				ncp->nc_locktd = td;
295 				if (ncp->nc_vp)
296 					vhold(ncp->nc_vp);	/* MPSAFE */
297 				break;
298 			}
299 			/* cmpset failed */
300 			continue;
301 		}
302 		if (ncp->nc_locktd == td) {
303 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
304 					      count + 1)) {
305 				break;
306 			}
307 			/* cmpset failed */
308 			continue;
309 		}
310 		tsleep_interlock(ncp, 0);
311 		if (atomic_cmpset_int(&ncp->nc_exlocks, count,
312 				      count | NC_EXLOCK_REQ) == 0) {
313 			/* cmpset failed */
314 			continue;
315 		}
316 		error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
317 		if (error == EWOULDBLOCK) {
318 			if (didwarn == 0) {
319 				didwarn = ticks;
320 				kprintf("[diagnostic] cache_lock: blocked "
321 					"on %p",
322 					ncp);
323 				kprintf(" \"%*.*s\"\n",
324 					ncp->nc_nlen, ncp->nc_nlen,
325 					ncp->nc_name);
326 			}
327 		}
328 	}
329 	if (didwarn) {
330 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
331 			"%d secs\n",
332 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
333 			(int)(ticks - didwarn) / hz);
334 	}
335 }
336 
337 /*
338  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
339  *	 such as the case where one of its children is locked.
340  *
341  * MPSAFE
342  */
343 static
344 int
345 _cache_lock_nonblock(struct namecache *ncp)
346 {
347 	thread_t td;
348 	u_int count;
349 
350 	td = curthread;
351 
352 	for (;;) {
353 		count = ncp->nc_exlocks;
354 
355 		if (count == 0) {
356 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
357 				/*
358 				 * The vp associated with a locked ncp must
359 				 * be held to prevent it from being recycled.
360 				 *
361 				 * WARNING!  If VRECLAIMED is set the vnode
362 				 * could already be in the middle of a recycle.
363 				 * Callers must use cache_vref() or
364 				 * cache_vget() on the locked ncp to
365 				 * validate the vp or set the cache entry
366 				 * to unresolved.
367 				 *
368 				 * NOTE! vhold() is allowed if we hold a
369 				 *	 lock on the ncp (which we do).
370 				 */
371 				ncp->nc_locktd = td;
372 				if (ncp->nc_vp)
373 					vhold(ncp->nc_vp);	/* MPSAFE */
374 				break;
375 			}
376 			/* cmpset failed */
377 			continue;
378 		}
379 		if (ncp->nc_locktd == td) {
380 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
381 					      count + 1)) {
382 				break;
383 			}
384 			/* cmpset failed */
385 			continue;
386 		}
387 		return(EWOULDBLOCK);
388 	}
389 	return(0);
390 }
391 
392 /*
393  * Helper function
394  *
395  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
396  *
397  *	 nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
398  *
399  * MPSAFE
400  */
401 static
402 void
403 _cache_unlock(struct namecache *ncp)
404 {
405 	thread_t td __debugvar = curthread;
406 	u_int count;
407 
408 	KKASSERT(ncp->nc_refs >= 0);
409 	KKASSERT(ncp->nc_exlocks > 0);
410 	KKASSERT(ncp->nc_locktd == td);
411 
412 	count = ncp->nc_exlocks;
413 	if ((count & ~NC_EXLOCK_REQ) == 1) {
414 		ncp->nc_locktd = NULL;
415 		if (ncp->nc_vp)
416 			vdrop(ncp->nc_vp);
417 	}
418 	for (;;) {
419 		if ((count & ~NC_EXLOCK_REQ) == 1) {
420 			if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
421 				if (count & NC_EXLOCK_REQ)
422 					wakeup(ncp);
423 				break;
424 			}
425 		} else {
426 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
427 					      count - 1)) {
428 				break;
429 			}
430 		}
431 		count = ncp->nc_exlocks;
432 	}
433 }
434 
435 
436 /*
437  * cache_hold() and cache_drop() prevent the premature deletion of a
438  * namecache entry but do not prevent operations (such as zapping) on
439  * that namecache entry.
440  *
441  * This routine may only be called from outside this source module if
442  * nc_refs is already at least 1.
443  *
444  * This is a rare case where callers are allowed to hold a spinlock,
445  * so we can't ourselves.
446  *
447  * MPSAFE
448  */
449 static __inline
450 struct namecache *
451 _cache_hold(struct namecache *ncp)
452 {
453 	atomic_add_int(&ncp->nc_refs, 1);
454 	return(ncp);
455 }
456 
457 /*
458  * Drop a cache entry, taking care to deal with races.
459  *
460  * For potential 1->0 transitions we must hold the ncp lock to safely
461  * test its flags.  An unresolved entry with no children must be zapped
462  * to avoid leaks.
463  *
464  * The call to cache_zap() itself will handle all remaining races and
465  * will decrement the ncp's refs regardless.  If we are resolved or
466  * have children nc_refs can safely be dropped to 0 without having to
467  * zap the entry.
468  *
469  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
470  *
471  * NOTE: cache_zap() may return a non-NULL referenced parent which must
472  *	 be dropped in a loop.
473  *
474  * MPSAFE
475  */
476 static __inline
477 void
478 _cache_drop(struct namecache *ncp)
479 {
480 	int refs;
481 
482 	while (ncp) {
483 		KKASSERT(ncp->nc_refs > 0);
484 		refs = ncp->nc_refs;
485 
486 		if (refs == 1) {
487 			if (_cache_lock_nonblock(ncp) == 0) {
488 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
489 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
490 				    TAILQ_EMPTY(&ncp->nc_list)) {
491 					ncp = cache_zap(ncp, 1);
492 					continue;
493 				}
494 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
495 					_cache_unlock(ncp);
496 					break;
497 				}
498 				_cache_unlock(ncp);
499 			}
500 		} else {
501 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
502 				break;
503 		}
504 		cpu_pause();
505 	}
506 }
507 
508 /*
509  * Link a new namecache entry to its parent and to the hash table.  Be
510  * careful to avoid races if vhold() blocks in the future.
511  *
512  * Both ncp and par must be referenced and locked.
513  *
514  * NOTE: The hash table spinlock is likely held during this call, we
515  *	 can't do anything fancy.
516  *
517  * MPSAFE
518  */
519 static void
520 _cache_link_parent(struct namecache *ncp, struct namecache *par,
521 		   struct nchash_head *nchpp)
522 {
523 	KKASSERT(ncp->nc_parent == NULL);
524 	ncp->nc_parent = par;
525 	ncp->nc_head = nchpp;
526 
527 	/*
528 	 * Set inheritance flags.  Note that the parent flags may be
529 	 * stale due to getattr potentially not having been run yet
530 	 * (it gets run during nlookup()'s).
531 	 */
532 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
533 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
534 		ncp->nc_flag |= NCF_SF_PNOCACHE;
535 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
536 		ncp->nc_flag |= NCF_UF_PCACHE;
537 
538 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
539 
540 	if (TAILQ_EMPTY(&par->nc_list)) {
541 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
542 		/*
543 		 * Any vp associated with an ncp which has children must
544 		 * be held to prevent it from being recycled.
545 		 */
546 		if (par->nc_vp)
547 			vhold(par->nc_vp);
548 	} else {
549 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
550 	}
551 }
552 
553 /*
554  * Remove the parent and hash associations from a namecache structure.
555  * If this is the last child of the parent the cache_drop(par) will
556  * attempt to recursively zap the parent.
557  *
558  * ncp must be locked.  This routine will acquire a temporary lock on
559  * the parent as wlel as the appropriate hash chain.
560  *
561  * MPSAFE
562  */
563 static void
564 _cache_unlink_parent(struct namecache *ncp)
565 {
566 	struct namecache *par;
567 	struct vnode *dropvp;
568 
569 	if ((par = ncp->nc_parent) != NULL) {
570 		KKASSERT(ncp->nc_parent == par);
571 		_cache_hold(par);
572 		_cache_lock(par);
573 		spin_lock(&ncp->nc_head->spin);
574 		LIST_REMOVE(ncp, nc_hash);
575 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
576 		dropvp = NULL;
577 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
578 			dropvp = par->nc_vp;
579 		spin_unlock(&ncp->nc_head->spin);
580 		ncp->nc_parent = NULL;
581 		ncp->nc_head = NULL;
582 		_cache_unlock(par);
583 		_cache_drop(par);
584 
585 		/*
586 		 * We can only safely vdrop with no spinlocks held.
587 		 */
588 		if (dropvp)
589 			vdrop(dropvp);
590 	}
591 }
592 
593 /*
594  * Allocate a new namecache structure.  Most of the code does not require
595  * zero-termination of the string but it makes vop_compat_ncreate() easier.
596  *
597  * MPSAFE
598  */
599 static struct namecache *
600 cache_alloc(int nlen)
601 {
602 	struct namecache *ncp;
603 
604 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
605 	if (nlen)
606 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
607 	ncp->nc_nlen = nlen;
608 	ncp->nc_flag = NCF_UNRESOLVED;
609 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
610 	ncp->nc_refs = 1;
611 
612 	TAILQ_INIT(&ncp->nc_list);
613 	_cache_lock(ncp);
614 	return(ncp);
615 }
616 
617 /*
618  * Can only be called for the case where the ncp has never been
619  * associated with anything (so no spinlocks are needed).
620  *
621  * MPSAFE
622  */
623 static void
624 _cache_free(struct namecache *ncp)
625 {
626 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
627 	if (ncp->nc_name)
628 		kfree(ncp->nc_name, M_VFSCACHE);
629 	kfree(ncp, M_VFSCACHE);
630 }
631 
632 /*
633  * MPSAFE
634  */
635 void
636 cache_zero(struct nchandle *nch)
637 {
638 	nch->ncp = NULL;
639 	nch->mount = NULL;
640 }
641 
642 /*
643  * Ref and deref a namecache structure.
644  *
645  * The caller must specify a stable ncp pointer, typically meaning the
646  * ncp is already referenced but this can also occur indirectly through
647  * e.g. holding a lock on a direct child.
648  *
649  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
650  *	    use read spinlocks here.
651  *
652  * MPSAFE if nch is
653  */
654 struct nchandle *
655 cache_hold(struct nchandle *nch)
656 {
657 	_cache_hold(nch->ncp);
658 	atomic_add_int(&nch->mount->mnt_refs, 1);
659 	return(nch);
660 }
661 
662 /*
663  * Create a copy of a namecache handle for an already-referenced
664  * entry.
665  *
666  * MPSAFE if nch is
667  */
668 void
669 cache_copy(struct nchandle *nch, struct nchandle *target)
670 {
671 	*target = *nch;
672 	if (target->ncp)
673 		_cache_hold(target->ncp);
674 	atomic_add_int(&nch->mount->mnt_refs, 1);
675 }
676 
677 /*
678  * MPSAFE if nch is
679  */
680 void
681 cache_changemount(struct nchandle *nch, struct mount *mp)
682 {
683 	atomic_add_int(&nch->mount->mnt_refs, -1);
684 	nch->mount = mp;
685 	atomic_add_int(&nch->mount->mnt_refs, 1);
686 }
687 
688 /*
689  * MPSAFE
690  */
691 void
692 cache_drop(struct nchandle *nch)
693 {
694 	atomic_add_int(&nch->mount->mnt_refs, -1);
695 	_cache_drop(nch->ncp);
696 	nch->ncp = NULL;
697 	nch->mount = NULL;
698 }
699 
700 /*
701  * MPSAFE
702  */
703 void
704 cache_lock(struct nchandle *nch)
705 {
706 	_cache_lock(nch->ncp);
707 }
708 
709 /*
710  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
711  * is responsible for checking both for validity on return as they
712  * may have become invalid.
713  *
714  * We have to deal with potential deadlocks here, just ping pong
715  * the lock until we get it (we will always block somewhere when
716  * looping so this is not cpu-intensive).
717  *
718  * which = 0	nch1 not locked, nch2 is locked
719  * which = 1	nch1 is locked, nch2 is not locked
720  */
721 void
722 cache_relock(struct nchandle *nch1, struct ucred *cred1,
723 	     struct nchandle *nch2, struct ucred *cred2)
724 {
725 	int which;
726 
727 	which = 0;
728 
729 	for (;;) {
730 		if (which == 0) {
731 			if (cache_lock_nonblock(nch1) == 0) {
732 				cache_resolve(nch1, cred1);
733 				break;
734 			}
735 			cache_unlock(nch2);
736 			cache_lock(nch1);
737 			cache_resolve(nch1, cred1);
738 			which = 1;
739 		} else {
740 			if (cache_lock_nonblock(nch2) == 0) {
741 				cache_resolve(nch2, cred2);
742 				break;
743 			}
744 			cache_unlock(nch1);
745 			cache_lock(nch2);
746 			cache_resolve(nch2, cred2);
747 			which = 0;
748 		}
749 	}
750 }
751 
752 /*
753  * MPSAFE
754  */
755 int
756 cache_lock_nonblock(struct nchandle *nch)
757 {
758 	return(_cache_lock_nonblock(nch->ncp));
759 }
760 
761 
762 /*
763  * MPSAFE
764  */
765 void
766 cache_unlock(struct nchandle *nch)
767 {
768 	_cache_unlock(nch->ncp);
769 }
770 
771 /*
772  * ref-and-lock, unlock-and-deref functions.
773  *
774  * This function is primarily used by nlookup.  Even though cache_lock
775  * holds the vnode, it is possible that the vnode may have already
776  * initiated a recyclement.
777  *
778  * We want cache_get() to return a definitively usable vnode or a
779  * definitively unresolved ncp.
780  *
781  * MPSAFE
782  */
783 static
784 struct namecache *
785 _cache_get(struct namecache *ncp)
786 {
787 	_cache_hold(ncp);
788 	_cache_lock(ncp);
789 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
790 		_cache_setunresolved(ncp);
791 	return(ncp);
792 }
793 
794 /*
795  * This is a special form of _cache_lock() which only succeeds if
796  * it can get a pristine, non-recursive lock.  The caller must have
797  * already ref'd the ncp.
798  *
799  * On success the ncp will be locked, on failure it will not.  The
800  * ref count does not change either way.
801  *
802  * We want _cache_lock_special() (on success) to return a definitively
803  * usable vnode or a definitively unresolved ncp.
804  *
805  * MPSAFE
806  */
807 static int
808 _cache_lock_special(struct namecache *ncp)
809 {
810 	if (_cache_lock_nonblock(ncp) == 0) {
811 		if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
812 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
813 				_cache_setunresolved(ncp);
814 			return(0);
815 		}
816 		_cache_unlock(ncp);
817 	}
818 	return(EWOULDBLOCK);
819 }
820 
821 
822 /*
823  * NOTE: The same nchandle can be passed for both arguments.
824  *
825  * MPSAFE
826  */
827 void
828 cache_get(struct nchandle *nch, struct nchandle *target)
829 {
830 	KKASSERT(nch->ncp->nc_refs > 0);
831 	target->mount = nch->mount;
832 	target->ncp = _cache_get(nch->ncp);
833 	atomic_add_int(&target->mount->mnt_refs, 1);
834 }
835 
836 /*
837  * MPSAFE
838  */
839 static __inline
840 void
841 _cache_put(struct namecache *ncp)
842 {
843 	_cache_unlock(ncp);
844 	_cache_drop(ncp);
845 }
846 
847 /*
848  * MPSAFE
849  */
850 void
851 cache_put(struct nchandle *nch)
852 {
853 	atomic_add_int(&nch->mount->mnt_refs, -1);
854 	_cache_put(nch->ncp);
855 	nch->ncp = NULL;
856 	nch->mount = NULL;
857 }
858 
859 /*
860  * Resolve an unresolved ncp by associating a vnode with it.  If the
861  * vnode is NULL, a negative cache entry is created.
862  *
863  * The ncp should be locked on entry and will remain locked on return.
864  *
865  * MPSAFE
866  */
867 static
868 void
869 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
870 {
871 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
872 
873 	if (vp != NULL) {
874 		/*
875 		 * Any vp associated with an ncp which has children must
876 		 * be held.  Any vp associated with a locked ncp must be held.
877 		 */
878 		if (!TAILQ_EMPTY(&ncp->nc_list))
879 			vhold(vp);
880 		spin_lock(&vp->v_spinlock);
881 		ncp->nc_vp = vp;
882 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
883 		spin_unlock(&vp->v_spinlock);
884 		if (ncp->nc_exlocks)
885 			vhold(vp);
886 
887 		/*
888 		 * Set auxiliary flags
889 		 */
890 		switch(vp->v_type) {
891 		case VDIR:
892 			ncp->nc_flag |= NCF_ISDIR;
893 			break;
894 		case VLNK:
895 			ncp->nc_flag |= NCF_ISSYMLINK;
896 			/* XXX cache the contents of the symlink */
897 			break;
898 		default:
899 			break;
900 		}
901 		atomic_add_int(&numcache, 1);
902 		ncp->nc_error = 0;
903 	} else {
904 		/*
905 		 * When creating a negative cache hit we set the
906 		 * namecache_gen.  A later resolve will clean out the
907 		 * negative cache hit if the mount point's namecache_gen
908 		 * has changed.  Used by devfs, could also be used by
909 		 * other remote FSs.
910 		 */
911 		ncp->nc_vp = NULL;
912 		spin_lock(&ncspin);
913 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
914 		++numneg;
915 		spin_unlock(&ncspin);
916 		ncp->nc_error = ENOENT;
917 		if (mp)
918 			ncp->nc_namecache_gen = mp->mnt_namecache_gen;
919 	}
920 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
921 }
922 
923 /*
924  * MPSAFE
925  */
926 void
927 cache_setvp(struct nchandle *nch, struct vnode *vp)
928 {
929 	_cache_setvp(nch->mount, nch->ncp, vp);
930 }
931 
932 /*
933  * MPSAFE
934  */
935 void
936 cache_settimeout(struct nchandle *nch, int nticks)
937 {
938 	struct namecache *ncp = nch->ncp;
939 
940 	if ((ncp->nc_timeout = ticks + nticks) == 0)
941 		ncp->nc_timeout = 1;
942 }
943 
944 /*
945  * Disassociate the vnode or negative-cache association and mark a
946  * namecache entry as unresolved again.  Note that the ncp is still
947  * left in the hash table and still linked to its parent.
948  *
949  * The ncp should be locked and refd on entry and will remain locked and refd
950  * on return.
951  *
952  * This routine is normally never called on a directory containing children.
953  * However, NFS often does just that in its rename() code as a cop-out to
954  * avoid complex namespace operations.  This disconnects a directory vnode
955  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
956  * sync.
957  *
958  * MPSAFE
959  */
960 static
961 void
962 _cache_setunresolved(struct namecache *ncp)
963 {
964 	struct vnode *vp;
965 
966 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
967 		ncp->nc_flag |= NCF_UNRESOLVED;
968 		ncp->nc_timeout = 0;
969 		ncp->nc_error = ENOTCONN;
970 		if ((vp = ncp->nc_vp) != NULL) {
971 			atomic_add_int(&numcache, -1);
972 			spin_lock(&vp->v_spinlock);
973 			ncp->nc_vp = NULL;
974 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
975 			spin_unlock(&vp->v_spinlock);
976 
977 			/*
978 			 * Any vp associated with an ncp with children is
979 			 * held by that ncp.  Any vp associated with a locked
980 			 * ncp is held by that ncp.  These conditions must be
981 			 * undone when the vp is cleared out from the ncp.
982 			 */
983 			if (!TAILQ_EMPTY(&ncp->nc_list))
984 				vdrop(vp);
985 			if (ncp->nc_exlocks)
986 				vdrop(vp);
987 		} else {
988 			spin_lock(&ncspin);
989 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
990 			--numneg;
991 			spin_unlock(&ncspin);
992 		}
993 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
994 	}
995 }
996 
997 /*
998  * The cache_nresolve() code calls this function to automatically
999  * set a resolved cache element to unresolved if it has timed out
1000  * or if it is a negative cache hit and the mount point namecache_gen
1001  * has changed.
1002  *
1003  * MPSAFE
1004  */
1005 static __inline void
1006 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1007 {
1008 	/*
1009 	 * Already in an unresolved state, nothing to do.
1010 	 */
1011 	if (ncp->nc_flag & NCF_UNRESOLVED)
1012 		return;
1013 
1014 	/*
1015 	 * Try to zap entries that have timed out.  We have
1016 	 * to be careful here because locked leafs may depend
1017 	 * on the vnode remaining intact in a parent, so only
1018 	 * do this under very specific conditions.
1019 	 */
1020 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1021 	    TAILQ_EMPTY(&ncp->nc_list)) {
1022 		_cache_setunresolved(ncp);
1023 		return;
1024 	}
1025 
1026 	/*
1027 	 * If a resolved negative cache hit is invalid due to
1028 	 * the mount's namecache generation being bumped, zap it.
1029 	 */
1030 	if (ncp->nc_vp == NULL &&
1031 	    ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
1032 		_cache_setunresolved(ncp);
1033 		return;
1034 	}
1035 }
1036 
1037 /*
1038  * MPSAFE
1039  */
1040 void
1041 cache_setunresolved(struct nchandle *nch)
1042 {
1043 	_cache_setunresolved(nch->ncp);
1044 }
1045 
1046 /*
1047  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1048  * looking for matches.  This flag tells the lookup code when it must
1049  * check for a mount linkage and also prevents the directories in question
1050  * from being deleted or renamed.
1051  *
1052  * MPSAFE
1053  */
1054 static
1055 int
1056 cache_clrmountpt_callback(struct mount *mp, void *data)
1057 {
1058 	struct nchandle *nch = data;
1059 
1060 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1061 		return(1);
1062 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1063 		return(1);
1064 	return(0);
1065 }
1066 
1067 /*
1068  * MPSAFE
1069  */
1070 void
1071 cache_clrmountpt(struct nchandle *nch)
1072 {
1073 	int count;
1074 
1075 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1076 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1077 	if (count == 0)
1078 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1079 }
1080 
1081 /*
1082  * Invalidate portions of the namecache topology given a starting entry.
1083  * The passed ncp is set to an unresolved state and:
1084  *
1085  * The passed ncp must be referencxed and locked.  The routine may unlock
1086  * and relock ncp several times, and will recheck the children and loop
1087  * to catch races.  When done the passed ncp will be returned with the
1088  * reference and lock intact.
1089  *
1090  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1091  *			  that the physical underlying nodes have been
1092  *			  destroyed... as in deleted.  For example, when
1093  *			  a directory is removed.  This will cause record
1094  *			  lookups on the name to no longer be able to find
1095  *			  the record and tells the resolver to return failure
1096  *			  rather then trying to resolve through the parent.
1097  *
1098  *			  The topology itself, including ncp->nc_name,
1099  *			  remains intact.
1100  *
1101  *			  This only applies to the passed ncp, if CINV_CHILDREN
1102  *			  is specified the children are not flagged.
1103  *
1104  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1105  *			  state as well.
1106  *
1107  *			  Note that this will also have the side effect of
1108  *			  cleaning out any unreferenced nodes in the topology
1109  *			  from the leaves up as the recursion backs out.
1110  *
1111  * Note that the topology for any referenced nodes remains intact, but
1112  * the nodes will be marked as having been destroyed and will be set
1113  * to an unresolved state.
1114  *
1115  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1116  * the namecache entry may not actually be invalidated on return if it was
1117  * revalidated while recursing down into its children.  This code guarentees
1118  * that the node(s) will go through an invalidation cycle, but does not
1119  * guarentee that they will remain in an invalidated state.
1120  *
1121  * Returns non-zero if a revalidation was detected during the invalidation
1122  * recursion, zero otherwise.  Note that since only the original ncp is
1123  * locked the revalidation ultimately can only indicate that the original ncp
1124  * *MIGHT* no have been reresolved.
1125  *
1126  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1127  * have to avoid blowing out the kernel stack.  We do this by saving the
1128  * deep namecache node and aborting the recursion, then re-recursing at that
1129  * node using a depth-first algorithm in order to allow multiple deep
1130  * recursions to chain through each other, then we restart the invalidation
1131  * from scratch.
1132  *
1133  * MPSAFE
1134  */
1135 
1136 struct cinvtrack {
1137 	struct namecache *resume_ncp;
1138 	int depth;
1139 };
1140 
1141 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1142 
1143 static
1144 int
1145 _cache_inval(struct namecache *ncp, int flags)
1146 {
1147 	struct cinvtrack track;
1148 	struct namecache *ncp2;
1149 	int r;
1150 
1151 	track.depth = 0;
1152 	track.resume_ncp = NULL;
1153 
1154 	for (;;) {
1155 		r = _cache_inval_internal(ncp, flags, &track);
1156 		if (track.resume_ncp == NULL)
1157 			break;
1158 		kprintf("Warning: deep namecache recursion at %s\n",
1159 			ncp->nc_name);
1160 		_cache_unlock(ncp);
1161 		while ((ncp2 = track.resume_ncp) != NULL) {
1162 			track.resume_ncp = NULL;
1163 			_cache_lock(ncp2);
1164 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1165 					     &track);
1166 			_cache_put(ncp2);
1167 		}
1168 		_cache_lock(ncp);
1169 	}
1170 	return(r);
1171 }
1172 
1173 int
1174 cache_inval(struct nchandle *nch, int flags)
1175 {
1176 	return(_cache_inval(nch->ncp, flags));
1177 }
1178 
1179 /*
1180  * Helper for _cache_inval().  The passed ncp is refd and locked and
1181  * remains that way on return, but may be unlocked/relocked multiple
1182  * times by the routine.
1183  */
1184 static int
1185 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1186 {
1187 	struct namecache *kid;
1188 	struct namecache *nextkid;
1189 	int rcnt = 0;
1190 
1191 	KKASSERT(ncp->nc_exlocks);
1192 
1193 	_cache_setunresolved(ncp);
1194 	if (flags & CINV_DESTROY)
1195 		ncp->nc_flag |= NCF_DESTROYED;
1196 	if ((flags & CINV_CHILDREN) &&
1197 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1198 	) {
1199 		_cache_hold(kid);
1200 		if (++track->depth > MAX_RECURSION_DEPTH) {
1201 			track->resume_ncp = ncp;
1202 			_cache_hold(ncp);
1203 			++rcnt;
1204 		}
1205 		_cache_unlock(ncp);
1206 		while (kid) {
1207 			if (track->resume_ncp) {
1208 				_cache_drop(kid);
1209 				break;
1210 			}
1211 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1212 				_cache_hold(nextkid);
1213 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1214 			    TAILQ_FIRST(&kid->nc_list)
1215 			) {
1216 				_cache_lock(kid);
1217 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1218 				_cache_unlock(kid);
1219 			}
1220 			_cache_drop(kid);
1221 			kid = nextkid;
1222 		}
1223 		--track->depth;
1224 		_cache_lock(ncp);
1225 	}
1226 
1227 	/*
1228 	 * Someone could have gotten in there while ncp was unlocked,
1229 	 * retry if so.
1230 	 */
1231 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1232 		++rcnt;
1233 	return (rcnt);
1234 }
1235 
1236 /*
1237  * Invalidate a vnode's namecache associations.  To avoid races against
1238  * the resolver we do not invalidate a node which we previously invalidated
1239  * but which was then re-resolved while we were in the invalidation loop.
1240  *
1241  * Returns non-zero if any namecache entries remain after the invalidation
1242  * loop completed.
1243  *
1244  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1245  *	 be ripped out of the topology while held, the vnode's v_namecache
1246  *	 list has no such restriction.  NCP's can be ripped out of the list
1247  *	 at virtually any time if not locked, even if held.
1248  *
1249  *	 In addition, the v_namecache list itself must be locked via
1250  *	 the vnode's spinlock.
1251  *
1252  * MPSAFE
1253  */
1254 int
1255 cache_inval_vp(struct vnode *vp, int flags)
1256 {
1257 	struct namecache *ncp;
1258 	struct namecache *next;
1259 
1260 restart:
1261 	spin_lock(&vp->v_spinlock);
1262 	ncp = TAILQ_FIRST(&vp->v_namecache);
1263 	if (ncp)
1264 		_cache_hold(ncp);
1265 	while (ncp) {
1266 		/* loop entered with ncp held and vp spin-locked */
1267 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1268 			_cache_hold(next);
1269 		spin_unlock(&vp->v_spinlock);
1270 		_cache_lock(ncp);
1271 		if (ncp->nc_vp != vp) {
1272 			kprintf("Warning: cache_inval_vp: race-A detected on "
1273 				"%s\n", ncp->nc_name);
1274 			_cache_put(ncp);
1275 			if (next)
1276 				_cache_drop(next);
1277 			goto restart;
1278 		}
1279 		_cache_inval(ncp, flags);
1280 		_cache_put(ncp);		/* also releases reference */
1281 		ncp = next;
1282 		spin_lock(&vp->v_spinlock);
1283 		if (ncp && ncp->nc_vp != vp) {
1284 			spin_unlock(&vp->v_spinlock);
1285 			kprintf("Warning: cache_inval_vp: race-B detected on "
1286 				"%s\n", ncp->nc_name);
1287 			_cache_drop(ncp);
1288 			goto restart;
1289 		}
1290 	}
1291 	spin_unlock(&vp->v_spinlock);
1292 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1293 }
1294 
1295 /*
1296  * This routine is used instead of the normal cache_inval_vp() when we
1297  * are trying to recycle otherwise good vnodes.
1298  *
1299  * Return 0 on success, non-zero if not all namecache records could be
1300  * disassociated from the vnode (for various reasons).
1301  *
1302  * MPSAFE
1303  */
1304 int
1305 cache_inval_vp_nonblock(struct vnode *vp)
1306 {
1307 	struct namecache *ncp;
1308 	struct namecache *next;
1309 
1310 	spin_lock(&vp->v_spinlock);
1311 	ncp = TAILQ_FIRST(&vp->v_namecache);
1312 	if (ncp)
1313 		_cache_hold(ncp);
1314 	while (ncp) {
1315 		/* loop entered with ncp held */
1316 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1317 			_cache_hold(next);
1318 		spin_unlock(&vp->v_spinlock);
1319 		if (_cache_lock_nonblock(ncp)) {
1320 			_cache_drop(ncp);
1321 			if (next)
1322 				_cache_drop(next);
1323 			goto done;
1324 		}
1325 		if (ncp->nc_vp != vp) {
1326 			kprintf("Warning: cache_inval_vp: race-A detected on "
1327 				"%s\n", ncp->nc_name);
1328 			_cache_put(ncp);
1329 			if (next)
1330 				_cache_drop(next);
1331 			goto done;
1332 		}
1333 		_cache_inval(ncp, 0);
1334 		_cache_put(ncp);		/* also releases reference */
1335 		ncp = next;
1336 		spin_lock(&vp->v_spinlock);
1337 		if (ncp && ncp->nc_vp != vp) {
1338 			spin_unlock(&vp->v_spinlock);
1339 			kprintf("Warning: cache_inval_vp: race-B detected on "
1340 				"%s\n", ncp->nc_name);
1341 			_cache_drop(ncp);
1342 			goto done;
1343 		}
1344 	}
1345 	spin_unlock(&vp->v_spinlock);
1346 done:
1347 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1348 }
1349 
1350 /*
1351  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1352  * must be locked.  The target ncp is destroyed (as a normal rename-over
1353  * would destroy the target file or directory).
1354  *
1355  * Because there may be references to the source ncp we cannot copy its
1356  * contents to the target.  Instead the source ncp is relinked as the target
1357  * and the target ncp is removed from the namecache topology.
1358  *
1359  * MPSAFE
1360  */
1361 void
1362 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1363 {
1364 	struct namecache *fncp = fnch->ncp;
1365 	struct namecache *tncp = tnch->ncp;
1366 	struct namecache *tncp_par;
1367 	struct nchash_head *nchpp;
1368 	u_int32_t hash;
1369 	char *oname;
1370 
1371 	/*
1372 	 * Rename fncp (unlink)
1373 	 */
1374 	_cache_unlink_parent(fncp);
1375 	oname = fncp->nc_name;
1376 	fncp->nc_name = tncp->nc_name;
1377 	fncp->nc_nlen = tncp->nc_nlen;
1378 	tncp_par = tncp->nc_parent;
1379 	_cache_hold(tncp_par);
1380 	_cache_lock(tncp_par);
1381 
1382 	/*
1383 	 * Rename fncp (relink)
1384 	 */
1385 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1386 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1387 	nchpp = NCHHASH(hash);
1388 
1389 	spin_lock(&nchpp->spin);
1390 	_cache_link_parent(fncp, tncp_par, nchpp);
1391 	spin_unlock(&nchpp->spin);
1392 
1393 	_cache_put(tncp_par);
1394 
1395 	/*
1396 	 * Get rid of the overwritten tncp (unlink)
1397 	 */
1398 	_cache_setunresolved(tncp);
1399 	_cache_unlink_parent(tncp);
1400 	tncp->nc_name = NULL;
1401 	tncp->nc_nlen = 0;
1402 
1403 	if (oname)
1404 		kfree(oname, M_VFSCACHE);
1405 }
1406 
1407 /*
1408  * vget the vnode associated with the namecache entry.  Resolve the namecache
1409  * entry if necessary.  The passed ncp must be referenced and locked.
1410  *
1411  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1412  * (depending on the passed lk_type) will be returned in *vpp with an error
1413  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1414  * most typical error is ENOENT, meaning that the ncp represents a negative
1415  * cache hit and there is no vnode to retrieve, but other errors can occur
1416  * too.
1417  *
1418  * The vget() can race a reclaim.  If this occurs we re-resolve the
1419  * namecache entry.
1420  *
1421  * There are numerous places in the kernel where vget() is called on a
1422  * vnode while one or more of its namecache entries is locked.  Releasing
1423  * a vnode never deadlocks against locked namecache entries (the vnode
1424  * will not get recycled while referenced ncp's exist).  This means we
1425  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1426  * lock when acquiring the vp lock or we might cause a deadlock.
1427  *
1428  * MPSAFE
1429  */
1430 int
1431 cache_vget(struct nchandle *nch, struct ucred *cred,
1432 	   int lk_type, struct vnode **vpp)
1433 {
1434 	struct namecache *ncp;
1435 	struct vnode *vp;
1436 	int error;
1437 
1438 	ncp = nch->ncp;
1439 	KKASSERT(ncp->nc_locktd == curthread);
1440 again:
1441 	vp = NULL;
1442 	if (ncp->nc_flag & NCF_UNRESOLVED)
1443 		error = cache_resolve(nch, cred);
1444 	else
1445 		error = 0;
1446 
1447 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1448 		error = vget(vp, lk_type);
1449 		if (error) {
1450 			/*
1451 			 * VRECLAIM race
1452 			 */
1453 			if (error == ENOENT) {
1454 				kprintf("Warning: vnode reclaim race detected "
1455 					"in cache_vget on %p (%s)\n",
1456 					vp, ncp->nc_name);
1457 				_cache_setunresolved(ncp);
1458 				goto again;
1459 			}
1460 
1461 			/*
1462 			 * Not a reclaim race, some other error.
1463 			 */
1464 			KKASSERT(ncp->nc_vp == vp);
1465 			vp = NULL;
1466 		} else {
1467 			KKASSERT(ncp->nc_vp == vp);
1468 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1469 		}
1470 	}
1471 	if (error == 0 && vp == NULL)
1472 		error = ENOENT;
1473 	*vpp = vp;
1474 	return(error);
1475 }
1476 
1477 int
1478 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1479 {
1480 	struct namecache *ncp;
1481 	struct vnode *vp;
1482 	int error;
1483 
1484 	ncp = nch->ncp;
1485 	KKASSERT(ncp->nc_locktd == curthread);
1486 again:
1487 	vp = NULL;
1488 	if (ncp->nc_flag & NCF_UNRESOLVED)
1489 		error = cache_resolve(nch, cred);
1490 	else
1491 		error = 0;
1492 
1493 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1494 		error = vget(vp, LK_SHARED);
1495 		if (error) {
1496 			/*
1497 			 * VRECLAIM race
1498 			 */
1499 			if (error == ENOENT) {
1500 				kprintf("Warning: vnode reclaim race detected "
1501 					"in cache_vget on %p (%s)\n",
1502 					vp, ncp->nc_name);
1503 				_cache_setunresolved(ncp);
1504 				goto again;
1505 			}
1506 
1507 			/*
1508 			 * Not a reclaim race, some other error.
1509 			 */
1510 			KKASSERT(ncp->nc_vp == vp);
1511 			vp = NULL;
1512 		} else {
1513 			KKASSERT(ncp->nc_vp == vp);
1514 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1515 			/* caller does not want a lock */
1516 			vn_unlock(vp);
1517 		}
1518 	}
1519 	if (error == 0 && vp == NULL)
1520 		error = ENOENT;
1521 	*vpp = vp;
1522 	return(error);
1523 }
1524 
1525 /*
1526  * Return a referenced vnode representing the parent directory of
1527  * ncp.
1528  *
1529  * Because the caller has locked the ncp it should not be possible for
1530  * the parent ncp to go away.  However, the parent can unresolve its
1531  * dvp at any time so we must be able to acquire a lock on the parent
1532  * to safely access nc_vp.
1533  *
1534  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1535  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1536  * getting destroyed.
1537  *
1538  * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1539  *	    lock on the ncp in question..
1540  */
1541 static struct vnode *
1542 cache_dvpref(struct namecache *ncp)
1543 {
1544 	struct namecache *par;
1545 	struct vnode *dvp;
1546 
1547 	dvp = NULL;
1548 	if ((par = ncp->nc_parent) != NULL) {
1549 		_cache_hold(par);
1550 		_cache_lock(par);
1551 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1552 			if ((dvp = par->nc_vp) != NULL)
1553 				vhold(dvp);
1554 		}
1555 		_cache_unlock(par);
1556 		if (dvp) {
1557 			if (vget(dvp, LK_SHARED) == 0) {
1558 				vn_unlock(dvp);
1559 				vdrop(dvp);
1560 				/* return refd, unlocked dvp */
1561 			} else {
1562 				vdrop(dvp);
1563 				dvp = NULL;
1564 			}
1565 		}
1566 		_cache_drop(par);
1567 	}
1568 	return(dvp);
1569 }
1570 
1571 /*
1572  * Convert a directory vnode to a namecache record without any other
1573  * knowledge of the topology.  This ONLY works with directory vnodes and
1574  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1575  * returned ncp (if not NULL) will be held and unlocked.
1576  *
1577  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1578  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1579  * for dvp.  This will fail only if the directory has been deleted out from
1580  * under the caller.
1581  *
1582  * Callers must always check for a NULL return no matter the value of 'makeit'.
1583  *
1584  * To avoid underflowing the kernel stack each recursive call increments
1585  * the makeit variable.
1586  */
1587 
1588 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1589 				  struct vnode *dvp, char *fakename);
1590 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1591 				  struct vnode **saved_dvp);
1592 
1593 int
1594 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1595 	      struct nchandle *nch)
1596 {
1597 	struct vnode *saved_dvp;
1598 	struct vnode *pvp;
1599 	char *fakename;
1600 	int error;
1601 
1602 	nch->ncp = NULL;
1603 	nch->mount = dvp->v_mount;
1604 	saved_dvp = NULL;
1605 	fakename = NULL;
1606 
1607 	/*
1608 	 * Handle the makeit == 0 degenerate case
1609 	 */
1610 	if (makeit == 0) {
1611 		spin_lock(&dvp->v_spinlock);
1612 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1613 		if (nch->ncp)
1614 			cache_hold(nch);
1615 		spin_unlock(&dvp->v_spinlock);
1616 	}
1617 
1618 	/*
1619 	 * Loop until resolution, inside code will break out on error.
1620 	 */
1621 	while (makeit) {
1622 		/*
1623 		 * Break out if we successfully acquire a working ncp.
1624 		 */
1625 		spin_lock(&dvp->v_spinlock);
1626 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1627 		if (nch->ncp) {
1628 			cache_hold(nch);
1629 			spin_unlock(&dvp->v_spinlock);
1630 			break;
1631 		}
1632 		spin_unlock(&dvp->v_spinlock);
1633 
1634 		/*
1635 		 * If dvp is the root of its filesystem it should already
1636 		 * have a namecache pointer associated with it as a side
1637 		 * effect of the mount, but it may have been disassociated.
1638 		 */
1639 		if (dvp->v_flag & VROOT) {
1640 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1641 			error = cache_resolve_mp(nch->mount);
1642 			_cache_put(nch->ncp);
1643 			if (ncvp_debug) {
1644 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1645 					dvp->v_mount, error);
1646 			}
1647 			if (error) {
1648 				if (ncvp_debug)
1649 					kprintf(" failed\n");
1650 				nch->ncp = NULL;
1651 				break;
1652 			}
1653 			if (ncvp_debug)
1654 				kprintf(" succeeded\n");
1655 			continue;
1656 		}
1657 
1658 		/*
1659 		 * If we are recursed too deeply resort to an O(n^2)
1660 		 * algorithm to resolve the namecache topology.  The
1661 		 * resolved pvp is left referenced in saved_dvp to
1662 		 * prevent the tree from being destroyed while we loop.
1663 		 */
1664 		if (makeit > 20) {
1665 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1666 			if (error) {
1667 				kprintf("lookupdotdot(longpath) failed %d "
1668 				       "dvp %p\n", error, dvp);
1669 				nch->ncp = NULL;
1670 				break;
1671 			}
1672 			continue;
1673 		}
1674 
1675 		/*
1676 		 * Get the parent directory and resolve its ncp.
1677 		 */
1678 		if (fakename) {
1679 			kfree(fakename, M_TEMP);
1680 			fakename = NULL;
1681 		}
1682 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1683 					  &fakename);
1684 		if (error) {
1685 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1686 			break;
1687 		}
1688 		vn_unlock(pvp);
1689 
1690 		/*
1691 		 * Reuse makeit as a recursion depth counter.  On success
1692 		 * nch will be fully referenced.
1693 		 */
1694 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1695 		vrele(pvp);
1696 		if (nch->ncp == NULL)
1697 			break;
1698 
1699 		/*
1700 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1701 		 * for dvp.  This will create a namecache record for dvp on
1702 		 * success.  We loop up to recheck on success.
1703 		 *
1704 		 * ncp and dvp are both held but not locked.
1705 		 */
1706 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1707 		if (error) {
1708 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1709 				pvp, nch->ncp->nc_name, dvp);
1710 			cache_drop(nch);
1711 			/* nch was NULLed out, reload mount */
1712 			nch->mount = dvp->v_mount;
1713 			break;
1714 		}
1715 		if (ncvp_debug) {
1716 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1717 				pvp, nch->ncp->nc_name);
1718 		}
1719 		cache_drop(nch);
1720 		/* nch was NULLed out, reload mount */
1721 		nch->mount = dvp->v_mount;
1722 	}
1723 
1724 	/*
1725 	 * If nch->ncp is non-NULL it will have been held already.
1726 	 */
1727 	if (fakename)
1728 		kfree(fakename, M_TEMP);
1729 	if (saved_dvp)
1730 		vrele(saved_dvp);
1731 	if (nch->ncp)
1732 		return (0);
1733 	return (EINVAL);
1734 }
1735 
1736 /*
1737  * Go up the chain of parent directories until we find something
1738  * we can resolve into the namecache.  This is very inefficient.
1739  */
1740 static
1741 int
1742 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1743 		  struct vnode **saved_dvp)
1744 {
1745 	struct nchandle nch;
1746 	struct vnode *pvp;
1747 	int error;
1748 	static time_t last_fromdvp_report;
1749 	char *fakename;
1750 
1751 	/*
1752 	 * Loop getting the parent directory vnode until we get something we
1753 	 * can resolve in the namecache.
1754 	 */
1755 	vref(dvp);
1756 	nch.mount = dvp->v_mount;
1757 	nch.ncp = NULL;
1758 	fakename = NULL;
1759 
1760 	for (;;) {
1761 		if (fakename) {
1762 			kfree(fakename, M_TEMP);
1763 			fakename = NULL;
1764 		}
1765 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1766 					  &fakename);
1767 		if (error) {
1768 			vrele(dvp);
1769 			break;
1770 		}
1771 		vn_unlock(pvp);
1772 		spin_lock(&pvp->v_spinlock);
1773 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1774 			_cache_hold(nch.ncp);
1775 			spin_unlock(&pvp->v_spinlock);
1776 			vrele(pvp);
1777 			break;
1778 		}
1779 		spin_unlock(&pvp->v_spinlock);
1780 		if (pvp->v_flag & VROOT) {
1781 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1782 			error = cache_resolve_mp(nch.mount);
1783 			_cache_unlock(nch.ncp);
1784 			vrele(pvp);
1785 			if (error) {
1786 				_cache_drop(nch.ncp);
1787 				nch.ncp = NULL;
1788 				vrele(dvp);
1789 			}
1790 			break;
1791 		}
1792 		vrele(dvp);
1793 		dvp = pvp;
1794 	}
1795 	if (error == 0) {
1796 		if (last_fromdvp_report != time_second) {
1797 			last_fromdvp_report = time_second;
1798 			kprintf("Warning: extremely inefficient path "
1799 				"resolution on %s\n",
1800 				nch.ncp->nc_name);
1801 		}
1802 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1803 
1804 		/*
1805 		 * Hopefully dvp now has a namecache record associated with
1806 		 * it.  Leave it referenced to prevent the kernel from
1807 		 * recycling the vnode.  Otherwise extremely long directory
1808 		 * paths could result in endless recycling.
1809 		 */
1810 		if (*saved_dvp)
1811 		    vrele(*saved_dvp);
1812 		*saved_dvp = dvp;
1813 		_cache_drop(nch.ncp);
1814 	}
1815 	if (fakename)
1816 		kfree(fakename, M_TEMP);
1817 	return (error);
1818 }
1819 
1820 /*
1821  * Do an inefficient scan of the directory represented by ncp looking for
1822  * the directory vnode dvp.  ncp must be held but not locked on entry and
1823  * will be held on return.  dvp must be refd but not locked on entry and
1824  * will remain refd on return.
1825  *
1826  * Why do this at all?  Well, due to its stateless nature the NFS server
1827  * converts file handles directly to vnodes without necessarily going through
1828  * the namecache ops that would otherwise create the namecache topology
1829  * leading to the vnode.  We could either (1) Change the namecache algorithms
1830  * to allow disconnect namecache records that are re-merged opportunistically,
1831  * or (2) Make the NFS server backtrack and scan to recover a connected
1832  * namecache topology in order to then be able to issue new API lookups.
1833  *
1834  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1835  * namecache algorithms and introduces a lot of complication in every subsystem
1836  * that calls into the namecache to deal with the re-merge case, especially
1837  * since we are using the namecache to placehold negative lookups and the
1838  * vnode might not be immediately assigned. (2) is certainly far less
1839  * efficient then (1), but since we are only talking about directories here
1840  * (which are likely to remain cached), the case does not actually run all
1841  * that often and has the supreme advantage of not polluting the namecache
1842  * algorithms.
1843  *
1844  * If a fakename is supplied just construct a namecache entry using the
1845  * fake name.
1846  */
1847 static int
1848 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1849 		       struct vnode *dvp, char *fakename)
1850 {
1851 	struct nlcomponent nlc;
1852 	struct nchandle rncp;
1853 	struct dirent *den;
1854 	struct vnode *pvp;
1855 	struct vattr vat;
1856 	struct iovec iov;
1857 	struct uio uio;
1858 	int blksize;
1859 	int eofflag;
1860 	int bytes;
1861 	char *rbuf;
1862 	int error;
1863 
1864 	vat.va_blocksize = 0;
1865 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1866 		return (error);
1867 	cache_lock(nch);
1868 	error = cache_vref(nch, cred, &pvp);
1869 	cache_unlock(nch);
1870 	if (error)
1871 		return (error);
1872 	if (ncvp_debug) {
1873 		kprintf("inefficient_scan: directory iosize %ld "
1874 			"vattr fileid = %lld\n",
1875 			vat.va_blocksize,
1876 			(long long)vat.va_fileid);
1877 	}
1878 
1879 	/*
1880 	 * Use the supplied fakename if not NULL.  Fake names are typically
1881 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1882 	 * to glue @@timestamp recursions together.
1883 	 */
1884 	if (fakename) {
1885 		nlc.nlc_nameptr = fakename;
1886 		nlc.nlc_namelen = strlen(fakename);
1887 		rncp = cache_nlookup(nch, &nlc);
1888 		goto done;
1889 	}
1890 
1891 	if ((blksize = vat.va_blocksize) == 0)
1892 		blksize = DEV_BSIZE;
1893 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1894 	rncp.ncp = NULL;
1895 
1896 	eofflag = 0;
1897 	uio.uio_offset = 0;
1898 again:
1899 	iov.iov_base = rbuf;
1900 	iov.iov_len = blksize;
1901 	uio.uio_iov = &iov;
1902 	uio.uio_iovcnt = 1;
1903 	uio.uio_resid = blksize;
1904 	uio.uio_segflg = UIO_SYSSPACE;
1905 	uio.uio_rw = UIO_READ;
1906 	uio.uio_td = curthread;
1907 
1908 	if (ncvp_debug >= 2)
1909 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1910 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1911 	if (error == 0) {
1912 		den = (struct dirent *)rbuf;
1913 		bytes = blksize - uio.uio_resid;
1914 
1915 		while (bytes > 0) {
1916 			if (ncvp_debug >= 2) {
1917 				kprintf("cache_inefficient_scan: %*.*s\n",
1918 					den->d_namlen, den->d_namlen,
1919 					den->d_name);
1920 			}
1921 			if (den->d_type != DT_WHT &&
1922 			    den->d_ino == vat.va_fileid) {
1923 				if (ncvp_debug) {
1924 					kprintf("cache_inefficient_scan: "
1925 					       "MATCHED inode %lld path %s/%*.*s\n",
1926 					       (long long)vat.va_fileid,
1927 					       nch->ncp->nc_name,
1928 					       den->d_namlen, den->d_namlen,
1929 					       den->d_name);
1930 				}
1931 				nlc.nlc_nameptr = den->d_name;
1932 				nlc.nlc_namelen = den->d_namlen;
1933 				rncp = cache_nlookup(nch, &nlc);
1934 				KKASSERT(rncp.ncp != NULL);
1935 				break;
1936 			}
1937 			bytes -= _DIRENT_DIRSIZ(den);
1938 			den = _DIRENT_NEXT(den);
1939 		}
1940 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1941 			goto again;
1942 	}
1943 	kfree(rbuf, M_TEMP);
1944 done:
1945 	vrele(pvp);
1946 	if (rncp.ncp) {
1947 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1948 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
1949 			if (ncvp_debug >= 2) {
1950 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1951 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1952 			}
1953 		} else {
1954 			if (ncvp_debug >= 2) {
1955 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1956 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1957 					rncp.ncp->nc_vp);
1958 			}
1959 		}
1960 		if (rncp.ncp->nc_vp == NULL)
1961 			error = rncp.ncp->nc_error;
1962 		/*
1963 		 * Release rncp after a successful nlookup.  rncp was fully
1964 		 * referenced.
1965 		 */
1966 		cache_put(&rncp);
1967 	} else {
1968 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1969 			dvp, nch->ncp->nc_name);
1970 		error = ENOENT;
1971 	}
1972 	return (error);
1973 }
1974 
1975 /*
1976  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1977  * state, which disassociates it from its vnode or ncneglist.
1978  *
1979  * Then, if there are no additional references to the ncp and no children,
1980  * the ncp is removed from the topology and destroyed.
1981  *
1982  * References and/or children may exist if the ncp is in the middle of the
1983  * topology, preventing the ncp from being destroyed.
1984  *
1985  * This function must be called with the ncp held and locked and will unlock
1986  * and drop it during zapping.
1987  *
1988  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1989  * This case can occur in the cache_drop() path.
1990  *
1991  * This function may returned a held (but NOT locked) parent node which the
1992  * caller must drop.  We do this so _cache_drop() can loop, to avoid
1993  * blowing out the kernel stack.
1994  *
1995  * WARNING!  For MPSAFE operation this routine must acquire up to three
1996  *	     spin locks to be able to safely test nc_refs.  Lock order is
1997  *	     very important.
1998  *
1999  *	     hash spinlock if on hash list
2000  *	     parent spinlock if child of parent
2001  *	     (the ncp is unresolved so there is no vnode association)
2002  */
2003 static struct namecache *
2004 cache_zap(struct namecache *ncp, int nonblock)
2005 {
2006 	struct namecache *par;
2007 	struct vnode *dropvp;
2008 	int refs;
2009 
2010 	/*
2011 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2012 	 */
2013 	_cache_setunresolved(ncp);
2014 
2015 	/*
2016 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2017 	 * We only scrap unref'd (other then our ref) unresolved entries,
2018 	 * we do not scrap 'live' entries.
2019 	 *
2020 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2021 	 * other references are possible.  If it isn't, however, we have
2022 	 * to decrement but also be sure to avoid a 1->0 transition.
2023 	 */
2024 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2025 	KKASSERT(ncp->nc_refs > 0);
2026 
2027 	/*
2028 	 * Acquire locks.  Note that the parent can't go away while we hold
2029 	 * a child locked.
2030 	 */
2031 	if ((par = ncp->nc_parent) != NULL) {
2032 		if (nonblock) {
2033 			for (;;) {
2034 				if (_cache_lock_nonblock(par) == 0)
2035 					break;
2036 				refs = ncp->nc_refs;
2037 				ncp->nc_flag |= NCF_DEFEREDZAP;
2038 				++numdefered;	/* MP race ok */
2039 				if (atomic_cmpset_int(&ncp->nc_refs,
2040 						      refs, refs - 1)) {
2041 					_cache_unlock(ncp);
2042 					return(NULL);
2043 				}
2044 				cpu_pause();
2045 			}
2046 			_cache_hold(par);
2047 		} else {
2048 			_cache_hold(par);
2049 			_cache_lock(par);
2050 		}
2051 		spin_lock(&ncp->nc_head->spin);
2052 	}
2053 
2054 	/*
2055 	 * If someone other then us has a ref or we have children
2056 	 * we cannot zap the entry.  The 1->0 transition and any
2057 	 * further list operation is protected by the spinlocks
2058 	 * we have acquired but other transitions are not.
2059 	 */
2060 	for (;;) {
2061 		refs = ncp->nc_refs;
2062 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2063 			break;
2064 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2065 			if (par) {
2066 				spin_unlock(&ncp->nc_head->spin);
2067 				_cache_put(par);
2068 			}
2069 			_cache_unlock(ncp);
2070 			return(NULL);
2071 		}
2072 		cpu_pause();
2073 	}
2074 
2075 	/*
2076 	 * We are the only ref and with the spinlocks held no further
2077 	 * refs can be acquired by others.
2078 	 *
2079 	 * Remove us from the hash list and parent list.  We have to
2080 	 * drop a ref on the parent's vp if the parent's list becomes
2081 	 * empty.
2082 	 */
2083 	dropvp = NULL;
2084 	if (par) {
2085 		struct nchash_head *nchpp = ncp->nc_head;
2086 
2087 		KKASSERT(nchpp != NULL);
2088 		LIST_REMOVE(ncp, nc_hash);
2089 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2090 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2091 			dropvp = par->nc_vp;
2092 		ncp->nc_head = NULL;
2093 		ncp->nc_parent = NULL;
2094 		spin_unlock(&nchpp->spin);
2095 		_cache_unlock(par);
2096 	} else {
2097 		KKASSERT(ncp->nc_head == NULL);
2098 	}
2099 
2100 	/*
2101 	 * ncp should not have picked up any refs.  Physically
2102 	 * destroy the ncp.
2103 	 */
2104 	KKASSERT(ncp->nc_refs == 1);
2105 	/* _cache_unlock(ncp) not required */
2106 	ncp->nc_refs = -1;	/* safety */
2107 	if (ncp->nc_name)
2108 		kfree(ncp->nc_name, M_VFSCACHE);
2109 	kfree(ncp, M_VFSCACHE);
2110 
2111 	/*
2112 	 * Delayed drop (we had to release our spinlocks)
2113 	 *
2114 	 * The refed parent (if not  NULL) must be dropped.  The
2115 	 * caller is responsible for looping.
2116 	 */
2117 	if (dropvp)
2118 		vdrop(dropvp);
2119 	return(par);
2120 }
2121 
2122 /*
2123  * Clean up dangling negative cache and defered-drop entries in the
2124  * namecache.
2125  */
2126 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2127 
2128 static cache_hs_t neg_cache_hysteresis_state = CHI_LOW;
2129 static cache_hs_t pos_cache_hysteresis_state = CHI_LOW;
2130 
2131 void
2132 cache_hysteresis(void)
2133 {
2134 	int poslimit;
2135 
2136 	/*
2137 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2138 	 * the impact on the critical path.
2139 	 */
2140 	switch(neg_cache_hysteresis_state) {
2141 	case CHI_LOW:
2142 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2143 			_cache_cleanneg(10);
2144 			neg_cache_hysteresis_state = CHI_HIGH;
2145 		}
2146 		break;
2147 	case CHI_HIGH:
2148 		if (numneg > MINNEG * 9 / 10 &&
2149 		    numneg * ncnegfactor * 9 / 10 > numcache
2150 		) {
2151 			_cache_cleanneg(10);
2152 		} else {
2153 			neg_cache_hysteresis_state = CHI_LOW;
2154 		}
2155 		break;
2156 	}
2157 
2158 	/*
2159 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2160 	 * the impact on the critical path.
2161 	 *
2162 	 * Excessive positive hits can accumulate due to large numbers of
2163 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2164 	 * into infinity).
2165 	 */
2166 	if ((poslimit = ncposlimit) == 0)
2167 		poslimit = desiredvnodes * 2;
2168 
2169 	switch(pos_cache_hysteresis_state) {
2170 	case CHI_LOW:
2171 		if (numcache > poslimit && numcache > MINPOS) {
2172 			_cache_cleanpos(10);
2173 			pos_cache_hysteresis_state = CHI_HIGH;
2174 		}
2175 		break;
2176 	case CHI_HIGH:
2177 		if (numcache > poslimit * 5 / 6 && numcache > MINPOS) {
2178 			_cache_cleanpos(10);
2179 		} else {
2180 			pos_cache_hysteresis_state = CHI_LOW;
2181 		}
2182 		break;
2183 	}
2184 
2185 	/*
2186 	 * Clean out dangling defered-zap ncps which could not
2187 	 * be cleanly dropped if too many build up.  Note
2188 	 * that numdefered is not an exact number as such ncps
2189 	 * can be reused and the counter is not handled in a MP
2190 	 * safe manner by design.
2191 	 */
2192 	if (numdefered * ncnegfactor > numcache) {
2193 		_cache_cleandefered();
2194 	}
2195 }
2196 
2197 /*
2198  * NEW NAMECACHE LOOKUP API
2199  *
2200  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2201  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2202  * is ALWAYS returned, eve if the supplied component is illegal.
2203  *
2204  * The resulting namecache entry should be returned to the system with
2205  * cache_put() or cache_unlock() + cache_drop().
2206  *
2207  * namecache locks are recursive but care must be taken to avoid lock order
2208  * reversals (hence why the passed par_nch must be unlocked).  Locking
2209  * rules are to order for parent traversals, not for child traversals.
2210  *
2211  * Nobody else will be able to manipulate the associated namespace (e.g.
2212  * create, delete, rename, rename-target) until the caller unlocks the
2213  * entry.
2214  *
2215  * The returned entry will be in one of three states:  positive hit (non-null
2216  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2217  * Unresolved entries must be resolved through the filesystem to associate the
2218  * vnode and/or determine whether a positive or negative hit has occured.
2219  *
2220  * It is not necessary to lock a directory in order to lock namespace under
2221  * that directory.  In fact, it is explicitly not allowed to do that.  A
2222  * directory is typically only locked when being created, renamed, or
2223  * destroyed.
2224  *
2225  * The directory (par) may be unresolved, in which case any returned child
2226  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2227  * the filesystem lookup requires a resolved directory vnode the caller is
2228  * responsible for resolving the namecache chain top-down.  This API
2229  * specifically allows whole chains to be created in an unresolved state.
2230  */
2231 struct nchandle
2232 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2233 {
2234 	struct nchandle nch;
2235 	struct namecache *ncp;
2236 	struct namecache *new_ncp;
2237 	struct nchash_head *nchpp;
2238 	struct mount *mp;
2239 	u_int32_t hash;
2240 	globaldata_t gd;
2241 	int par_locked;
2242 
2243 	numcalls++;
2244 	gd = mycpu;
2245 	mp = par_nch->mount;
2246 	par_locked = 0;
2247 
2248 	/*
2249 	 * This is a good time to call it, no ncp's are locked by
2250 	 * the caller or us.
2251 	 */
2252 	cache_hysteresis();
2253 
2254 	/*
2255 	 * Try to locate an existing entry
2256 	 */
2257 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2258 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2259 	new_ncp = NULL;
2260 	nchpp = NCHHASH(hash);
2261 restart:
2262 	spin_lock(&nchpp->spin);
2263 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2264 		numchecks++;
2265 
2266 		/*
2267 		 * Break out if we find a matching entry.  Note that
2268 		 * UNRESOLVED entries may match, but DESTROYED entries
2269 		 * do not.
2270 		 */
2271 		if (ncp->nc_parent == par_nch->ncp &&
2272 		    ncp->nc_nlen == nlc->nlc_namelen &&
2273 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2274 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2275 		) {
2276 			_cache_hold(ncp);
2277 			spin_unlock(&nchpp->spin);
2278 			if (par_locked) {
2279 				_cache_unlock(par_nch->ncp);
2280 				par_locked = 0;
2281 			}
2282 			if (_cache_lock_special(ncp) == 0) {
2283 				_cache_auto_unresolve(mp, ncp);
2284 				if (new_ncp)
2285 					_cache_free(new_ncp);
2286 				goto found;
2287 			}
2288 			_cache_get(ncp);
2289 			_cache_put(ncp);
2290 			_cache_drop(ncp);
2291 			goto restart;
2292 		}
2293 	}
2294 
2295 	/*
2296 	 * We failed to locate an entry, create a new entry and add it to
2297 	 * the cache.  The parent ncp must also be locked so we
2298 	 * can link into it.
2299 	 *
2300 	 * We have to relookup after possibly blocking in kmalloc or
2301 	 * when locking par_nch.
2302 	 *
2303 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2304 	 *	 mount case, in which case nc_name will be NULL.
2305 	 */
2306 	if (new_ncp == NULL) {
2307 		spin_unlock(&nchpp->spin);
2308 		new_ncp = cache_alloc(nlc->nlc_namelen);
2309 		if (nlc->nlc_namelen) {
2310 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2311 			      nlc->nlc_namelen);
2312 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2313 		}
2314 		goto restart;
2315 	}
2316 	if (par_locked == 0) {
2317 		spin_unlock(&nchpp->spin);
2318 		_cache_lock(par_nch->ncp);
2319 		par_locked = 1;
2320 		goto restart;
2321 	}
2322 
2323 	/*
2324 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2325 	 *	     table entry atomically.
2326 	 */
2327 	ncp = new_ncp;
2328 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2329 	spin_unlock(&nchpp->spin);
2330 	_cache_unlock(par_nch->ncp);
2331 	/* par_locked = 0 - not used */
2332 found:
2333 	/*
2334 	 * stats and namecache size management
2335 	 */
2336 	if (ncp->nc_flag & NCF_UNRESOLVED)
2337 		++gd->gd_nchstats->ncs_miss;
2338 	else if (ncp->nc_vp)
2339 		++gd->gd_nchstats->ncs_goodhits;
2340 	else
2341 		++gd->gd_nchstats->ncs_neghits;
2342 	nch.mount = mp;
2343 	nch.ncp = ncp;
2344 	atomic_add_int(&nch.mount->mnt_refs, 1);
2345 	return(nch);
2346 }
2347 
2348 /*
2349  * This is a non-blocking verison of cache_nlookup() used by
2350  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2351  * will return nch.ncp == NULL in that case.
2352  */
2353 struct nchandle
2354 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2355 {
2356 	struct nchandle nch;
2357 	struct namecache *ncp;
2358 	struct namecache *new_ncp;
2359 	struct nchash_head *nchpp;
2360 	struct mount *mp;
2361 	u_int32_t hash;
2362 	globaldata_t gd;
2363 	int par_locked;
2364 
2365 	numcalls++;
2366 	gd = mycpu;
2367 	mp = par_nch->mount;
2368 	par_locked = 0;
2369 
2370 	/*
2371 	 * Try to locate an existing entry
2372 	 */
2373 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2374 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2375 	new_ncp = NULL;
2376 	nchpp = NCHHASH(hash);
2377 restart:
2378 	spin_lock(&nchpp->spin);
2379 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2380 		numchecks++;
2381 
2382 		/*
2383 		 * Break out if we find a matching entry.  Note that
2384 		 * UNRESOLVED entries may match, but DESTROYED entries
2385 		 * do not.
2386 		 */
2387 		if (ncp->nc_parent == par_nch->ncp &&
2388 		    ncp->nc_nlen == nlc->nlc_namelen &&
2389 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2390 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2391 		) {
2392 			_cache_hold(ncp);
2393 			spin_unlock(&nchpp->spin);
2394 			if (par_locked) {
2395 				_cache_unlock(par_nch->ncp);
2396 				par_locked = 0;
2397 			}
2398 			if (_cache_lock_special(ncp) == 0) {
2399 				_cache_auto_unresolve(mp, ncp);
2400 				if (new_ncp) {
2401 					_cache_free(new_ncp);
2402 					new_ncp = NULL;
2403 				}
2404 				goto found;
2405 			}
2406 			_cache_drop(ncp);
2407 			goto failed;
2408 		}
2409 	}
2410 
2411 	/*
2412 	 * We failed to locate an entry, create a new entry and add it to
2413 	 * the cache.  The parent ncp must also be locked so we
2414 	 * can link into it.
2415 	 *
2416 	 * We have to relookup after possibly blocking in kmalloc or
2417 	 * when locking par_nch.
2418 	 *
2419 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2420 	 *	 mount case, in which case nc_name will be NULL.
2421 	 */
2422 	if (new_ncp == NULL) {
2423 		spin_unlock(&nchpp->spin);
2424 		new_ncp = cache_alloc(nlc->nlc_namelen);
2425 		if (nlc->nlc_namelen) {
2426 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2427 			      nlc->nlc_namelen);
2428 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2429 		}
2430 		goto restart;
2431 	}
2432 	if (par_locked == 0) {
2433 		spin_unlock(&nchpp->spin);
2434 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2435 			par_locked = 1;
2436 			goto restart;
2437 		}
2438 		goto failed;
2439 	}
2440 
2441 	/*
2442 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2443 	 *	     table entry atomically.
2444 	 */
2445 	ncp = new_ncp;
2446 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2447 	spin_unlock(&nchpp->spin);
2448 	_cache_unlock(par_nch->ncp);
2449 	/* par_locked = 0 - not used */
2450 found:
2451 	/*
2452 	 * stats and namecache size management
2453 	 */
2454 	if (ncp->nc_flag & NCF_UNRESOLVED)
2455 		++gd->gd_nchstats->ncs_miss;
2456 	else if (ncp->nc_vp)
2457 		++gd->gd_nchstats->ncs_goodhits;
2458 	else
2459 		++gd->gd_nchstats->ncs_neghits;
2460 	nch.mount = mp;
2461 	nch.ncp = ncp;
2462 	atomic_add_int(&nch.mount->mnt_refs, 1);
2463 	return(nch);
2464 failed:
2465 	if (new_ncp) {
2466 		_cache_free(new_ncp);
2467 		new_ncp = NULL;
2468 	}
2469 	nch.mount = NULL;
2470 	nch.ncp = NULL;
2471 	return(nch);
2472 }
2473 
2474 /*
2475  * The namecache entry is marked as being used as a mount point.
2476  * Locate the mount if it is visible to the caller.
2477  */
2478 struct findmount_info {
2479 	struct mount *result;
2480 	struct mount *nch_mount;
2481 	struct namecache *nch_ncp;
2482 };
2483 
2484 static
2485 int
2486 cache_findmount_callback(struct mount *mp, void *data)
2487 {
2488 	struct findmount_info *info = data;
2489 
2490 	/*
2491 	 * Check the mount's mounted-on point against the passed nch.
2492 	 */
2493 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
2494 	    mp->mnt_ncmounton.ncp == info->nch_ncp
2495 	) {
2496 	    info->result = mp;
2497 	    return(-1);
2498 	}
2499 	return(0);
2500 }
2501 
2502 struct mount *
2503 cache_findmount(struct nchandle *nch)
2504 {
2505 	struct findmount_info info;
2506 
2507 	info.result = NULL;
2508 	info.nch_mount = nch->mount;
2509 	info.nch_ncp = nch->ncp;
2510 	mountlist_scan(cache_findmount_callback, &info,
2511 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2512 	return(info.result);
2513 }
2514 
2515 /*
2516  * Resolve an unresolved namecache entry, generally by looking it up.
2517  * The passed ncp must be locked and refd.
2518  *
2519  * Theoretically since a vnode cannot be recycled while held, and since
2520  * the nc_parent chain holds its vnode as long as children exist, the
2521  * direct parent of the cache entry we are trying to resolve should
2522  * have a valid vnode.  If not then generate an error that we can
2523  * determine is related to a resolver bug.
2524  *
2525  * However, if a vnode was in the middle of a recyclement when the NCP
2526  * got locked, ncp->nc_vp might point to a vnode that is about to become
2527  * invalid.  cache_resolve() handles this case by unresolving the entry
2528  * and then re-resolving it.
2529  *
2530  * Note that successful resolution does not necessarily return an error
2531  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
2532  * will be returned.
2533  *
2534  * MPSAFE
2535  */
2536 int
2537 cache_resolve(struct nchandle *nch, struct ucred *cred)
2538 {
2539 	struct namecache *par_tmp;
2540 	struct namecache *par;
2541 	struct namecache *ncp;
2542 	struct nchandle nctmp;
2543 	struct mount *mp;
2544 	struct vnode *dvp;
2545 	int error;
2546 
2547 	ncp = nch->ncp;
2548 	mp = nch->mount;
2549 restart:
2550 	/*
2551 	 * If the ncp is already resolved we have nothing to do.  However,
2552 	 * we do want to guarentee that a usable vnode is returned when
2553 	 * a vnode is present, so make sure it hasn't been reclaimed.
2554 	 */
2555 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2556 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2557 			_cache_setunresolved(ncp);
2558 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2559 			return (ncp->nc_error);
2560 	}
2561 
2562 	/*
2563 	 * Mount points need special handling because the parent does not
2564 	 * belong to the same filesystem as the ncp.
2565 	 */
2566 	if (ncp == mp->mnt_ncmountpt.ncp)
2567 		return (cache_resolve_mp(mp));
2568 
2569 	/*
2570 	 * We expect an unbroken chain of ncps to at least the mount point,
2571 	 * and even all the way to root (but this code doesn't have to go
2572 	 * past the mount point).
2573 	 */
2574 	if (ncp->nc_parent == NULL) {
2575 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2576 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2577 		ncp->nc_error = EXDEV;
2578 		return(ncp->nc_error);
2579 	}
2580 
2581 	/*
2582 	 * The vp's of the parent directories in the chain are held via vhold()
2583 	 * due to the existance of the child, and should not disappear.
2584 	 * However, there are cases where they can disappear:
2585 	 *
2586 	 *	- due to filesystem I/O errors.
2587 	 *	- due to NFS being stupid about tracking the namespace and
2588 	 *	  destroys the namespace for entire directories quite often.
2589 	 *	- due to forced unmounts.
2590 	 *	- due to an rmdir (parent will be marked DESTROYED)
2591 	 *
2592 	 * When this occurs we have to track the chain backwards and resolve
2593 	 * it, looping until the resolver catches up to the current node.  We
2594 	 * could recurse here but we might run ourselves out of kernel stack
2595 	 * so we do it in a more painful manner.  This situation really should
2596 	 * not occur all that often, or if it does not have to go back too
2597 	 * many nodes to resolve the ncp.
2598 	 */
2599 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2600 		/*
2601 		 * This case can occur if a process is CD'd into a
2602 		 * directory which is then rmdir'd.  If the parent is marked
2603 		 * destroyed there is no point trying to resolve it.
2604 		 */
2605 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2606 			return(ENOENT);
2607 		par = ncp->nc_parent;
2608 		_cache_hold(par);
2609 		_cache_lock(par);
2610 		while ((par_tmp = par->nc_parent) != NULL &&
2611 		       par_tmp->nc_vp == NULL) {
2612 			_cache_hold(par_tmp);
2613 			_cache_lock(par_tmp);
2614 			_cache_put(par);
2615 			par = par_tmp;
2616 		}
2617 		if (par->nc_parent == NULL) {
2618 			kprintf("EXDEV case 2 %*.*s\n",
2619 				par->nc_nlen, par->nc_nlen, par->nc_name);
2620 			_cache_put(par);
2621 			return (EXDEV);
2622 		}
2623 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2624 			par->nc_nlen, par->nc_nlen, par->nc_name);
2625 		/*
2626 		 * The parent is not set in stone, ref and lock it to prevent
2627 		 * it from disappearing.  Also note that due to renames it
2628 		 * is possible for our ncp to move and for par to no longer
2629 		 * be one of its parents.  We resolve it anyway, the loop
2630 		 * will handle any moves.
2631 		 */
2632 		_cache_get(par);	/* additional hold/lock */
2633 		_cache_put(par);	/* from earlier hold/lock */
2634 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2635 			cache_resolve_mp(nch->mount);
2636 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2637 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2638 			_cache_put(par);
2639 			continue;
2640 		} else {
2641 			if (par->nc_flag & NCF_UNRESOLVED) {
2642 				nctmp.mount = mp;
2643 				nctmp.ncp = par;
2644 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2645 			}
2646 			vrele(dvp);
2647 		}
2648 		if ((error = par->nc_error) != 0) {
2649 			if (par->nc_error != EAGAIN) {
2650 				kprintf("EXDEV case 3 %*.*s error %d\n",
2651 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2652 				    par->nc_error);
2653 				_cache_put(par);
2654 				return(error);
2655 			}
2656 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2657 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2658 		}
2659 		_cache_put(par);
2660 		/* loop */
2661 	}
2662 
2663 	/*
2664 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2665 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2666 	 * EAGAIN to force a relookup.
2667 	 *
2668 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2669 	 * ncp must already be resolved.
2670 	 */
2671 	if (dvp) {
2672 		nctmp.mount = mp;
2673 		nctmp.ncp = ncp;
2674 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2675 		vrele(dvp);
2676 	} else {
2677 		ncp->nc_error = EPERM;
2678 	}
2679 	if (ncp->nc_error == EAGAIN) {
2680 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2681 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2682 		goto restart;
2683 	}
2684 	return(ncp->nc_error);
2685 }
2686 
2687 /*
2688  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2689  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2690  * re-resolution more often due to its mac-truck-smash-the-namecache
2691  * method of tracking namespace changes.
2692  *
2693  * The semantics for this call is that the passed ncp must be locked on
2694  * entry and will be locked on return.  However, if we actually have to
2695  * resolve the mount point we temporarily unlock the entry in order to
2696  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2697  * the unlock we have to recheck the flags after we relock.
2698  */
2699 static int
2700 cache_resolve_mp(struct mount *mp)
2701 {
2702 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2703 	struct vnode *vp;
2704 	int error;
2705 
2706 	KKASSERT(mp != NULL);
2707 
2708 	/*
2709 	 * If the ncp is already resolved we have nothing to do.  However,
2710 	 * we do want to guarentee that a usable vnode is returned when
2711 	 * a vnode is present, so make sure it hasn't been reclaimed.
2712 	 */
2713 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2714 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2715 			_cache_setunresolved(ncp);
2716 	}
2717 
2718 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2719 		_cache_unlock(ncp);
2720 		while (vfs_busy(mp, 0))
2721 			;
2722 		error = VFS_ROOT(mp, &vp);
2723 		_cache_lock(ncp);
2724 
2725 		/*
2726 		 * recheck the ncp state after relocking.
2727 		 */
2728 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2729 			ncp->nc_error = error;
2730 			if (error == 0) {
2731 				_cache_setvp(mp, ncp, vp);
2732 				vput(vp);
2733 			} else {
2734 				kprintf("[diagnostic] cache_resolve_mp: failed"
2735 					" to resolve mount %p err=%d ncp=%p\n",
2736 					mp, error, ncp);
2737 				_cache_setvp(mp, ncp, NULL);
2738 			}
2739 		} else if (error == 0) {
2740 			vput(vp);
2741 		}
2742 		vfs_unbusy(mp);
2743 	}
2744 	return(ncp->nc_error);
2745 }
2746 
2747 /*
2748  * Clean out negative cache entries when too many have accumulated.
2749  *
2750  * MPSAFE
2751  */
2752 static void
2753 _cache_cleanneg(int count)
2754 {
2755 	struct namecache *ncp;
2756 
2757 	/*
2758 	 * Attempt to clean out the specified number of negative cache
2759 	 * entries.
2760 	 */
2761 	while (count) {
2762 		spin_lock(&ncspin);
2763 		ncp = TAILQ_FIRST(&ncneglist);
2764 		if (ncp == NULL) {
2765 			spin_unlock(&ncspin);
2766 			break;
2767 		}
2768 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2769 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2770 		_cache_hold(ncp);
2771 		spin_unlock(&ncspin);
2772 		if (_cache_lock_special(ncp) == 0) {
2773 			ncp = cache_zap(ncp, 1);
2774 			if (ncp)
2775 				_cache_drop(ncp);
2776 		} else {
2777 			_cache_drop(ncp);
2778 		}
2779 		--count;
2780 	}
2781 }
2782 
2783 /*
2784  * Clean out positive cache entries when too many have accumulated.
2785  *
2786  * MPSAFE
2787  */
2788 static void
2789 _cache_cleanpos(int count)
2790 {
2791 	static volatile int rover;
2792 	struct nchash_head *nchpp;
2793 	struct namecache *ncp;
2794 	int rover_copy;
2795 
2796 	/*
2797 	 * Attempt to clean out the specified number of negative cache
2798 	 * entries.
2799 	 */
2800 	while (count) {
2801 		rover_copy = ++rover;	/* MPSAFEENOUGH */
2802 		nchpp = NCHHASH(rover_copy);
2803 
2804 		spin_lock(&nchpp->spin);
2805 		ncp = LIST_FIRST(&nchpp->list);
2806 		if (ncp)
2807 			_cache_hold(ncp);
2808 		spin_unlock(&nchpp->spin);
2809 
2810 		if (ncp) {
2811 			if (_cache_lock_special(ncp) == 0) {
2812 				ncp = cache_zap(ncp, 1);
2813 				if (ncp)
2814 					_cache_drop(ncp);
2815 			} else {
2816 				_cache_drop(ncp);
2817 			}
2818 		}
2819 		--count;
2820 	}
2821 }
2822 
2823 /*
2824  * This is a kitchen sink function to clean out ncps which we
2825  * tried to zap from cache_drop() but failed because we were
2826  * unable to acquire the parent lock.
2827  *
2828  * Such entries can also be removed via cache_inval_vp(), such
2829  * as when unmounting.
2830  *
2831  * MPSAFE
2832  */
2833 static void
2834 _cache_cleandefered(void)
2835 {
2836 	struct nchash_head *nchpp;
2837 	struct namecache *ncp;
2838 	struct namecache dummy;
2839 	int i;
2840 
2841 	numdefered = 0;
2842 	bzero(&dummy, sizeof(dummy));
2843 	dummy.nc_flag = NCF_DESTROYED;
2844 
2845 	for (i = 0; i <= nchash; ++i) {
2846 		nchpp = &nchashtbl[i];
2847 
2848 		spin_lock(&nchpp->spin);
2849 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2850 		ncp = &dummy;
2851 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2852 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2853 				continue;
2854 			LIST_REMOVE(&dummy, nc_hash);
2855 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2856 			_cache_hold(ncp);
2857 			spin_unlock(&nchpp->spin);
2858 			if (_cache_lock_nonblock(ncp) == 0) {
2859 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
2860 				_cache_unlock(ncp);
2861 			}
2862 			_cache_drop(ncp);
2863 			spin_lock(&nchpp->spin);
2864 			ncp = &dummy;
2865 		}
2866 		LIST_REMOVE(&dummy, nc_hash);
2867 		spin_unlock(&nchpp->spin);
2868 	}
2869 }
2870 
2871 /*
2872  * Name cache initialization, from vfsinit() when we are booting
2873  */
2874 void
2875 nchinit(void)
2876 {
2877 	int i;
2878 	globaldata_t gd;
2879 
2880 	/* initialise per-cpu namecache effectiveness statistics. */
2881 	for (i = 0; i < ncpus; ++i) {
2882 		gd = globaldata_find(i);
2883 		gd->gd_nchstats = &nchstats[i];
2884 	}
2885 	TAILQ_INIT(&ncneglist);
2886 	spin_init(&ncspin);
2887 	nchashtbl = hashinit_ext(desiredvnodes / 2,
2888 				 sizeof(struct nchash_head),
2889 				 M_VFSCACHE, &nchash);
2890 	for (i = 0; i <= (int)nchash; ++i) {
2891 		LIST_INIT(&nchashtbl[i].list);
2892 		spin_init(&nchashtbl[i].spin);
2893 	}
2894 	nclockwarn = 5 * hz;
2895 }
2896 
2897 /*
2898  * Called from start_init() to bootstrap the root filesystem.  Returns
2899  * a referenced, unlocked namecache record.
2900  */
2901 void
2902 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2903 {
2904 	nch->ncp = cache_alloc(0);
2905 	nch->mount = mp;
2906 	atomic_add_int(&mp->mnt_refs, 1);
2907 	if (vp)
2908 		_cache_setvp(nch->mount, nch->ncp, vp);
2909 }
2910 
2911 /*
2912  * vfs_cache_setroot()
2913  *
2914  *	Create an association between the root of our namecache and
2915  *	the root vnode.  This routine may be called several times during
2916  *	booting.
2917  *
2918  *	If the caller intends to save the returned namecache pointer somewhere
2919  *	it must cache_hold() it.
2920  */
2921 void
2922 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2923 {
2924 	struct vnode *ovp;
2925 	struct nchandle onch;
2926 
2927 	ovp = rootvnode;
2928 	onch = rootnch;
2929 	rootvnode = nvp;
2930 	if (nch)
2931 		rootnch = *nch;
2932 	else
2933 		cache_zero(&rootnch);
2934 	if (ovp)
2935 		vrele(ovp);
2936 	if (onch.ncp)
2937 		cache_drop(&onch);
2938 }
2939 
2940 /*
2941  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2942  * topology and is being removed as quickly as possible.  The new VOP_N*()
2943  * API calls are required to make specific adjustments using the supplied
2944  * ncp pointers rather then just bogusly purging random vnodes.
2945  *
2946  * Invalidate all namecache entries to a particular vnode as well as
2947  * any direct children of that vnode in the namecache.  This is a
2948  * 'catch all' purge used by filesystems that do not know any better.
2949  *
2950  * Note that the linkage between the vnode and its namecache entries will
2951  * be removed, but the namecache entries themselves might stay put due to
2952  * active references from elsewhere in the system or due to the existance of
2953  * the children.   The namecache topology is left intact even if we do not
2954  * know what the vnode association is.  Such entries will be marked
2955  * NCF_UNRESOLVED.
2956  */
2957 void
2958 cache_purge(struct vnode *vp)
2959 {
2960 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2961 }
2962 
2963 /*
2964  * Flush all entries referencing a particular filesystem.
2965  *
2966  * Since we need to check it anyway, we will flush all the invalid
2967  * entries at the same time.
2968  */
2969 #if 0
2970 
2971 void
2972 cache_purgevfs(struct mount *mp)
2973 {
2974 	struct nchash_head *nchpp;
2975 	struct namecache *ncp, *nnp;
2976 
2977 	/*
2978 	 * Scan hash tables for applicable entries.
2979 	 */
2980 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2981 		spin_lock_wr(&nchpp->spin); XXX
2982 		ncp = LIST_FIRST(&nchpp->list);
2983 		if (ncp)
2984 			_cache_hold(ncp);
2985 		while (ncp) {
2986 			nnp = LIST_NEXT(ncp, nc_hash);
2987 			if (nnp)
2988 				_cache_hold(nnp);
2989 			if (ncp->nc_mount == mp) {
2990 				_cache_lock(ncp);
2991 				ncp = cache_zap(ncp, 0);
2992 				if (ncp)
2993 					_cache_drop(ncp);
2994 			} else {
2995 				_cache_drop(ncp);
2996 			}
2997 			ncp = nnp;
2998 		}
2999 		spin_unlock_wr(&nchpp->spin); XXX
3000 	}
3001 }
3002 
3003 #endif
3004 
3005 static int disablecwd;
3006 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
3007 
3008 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
3009 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
3010 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
3011 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
3012 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
3013 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
3014 
3015 /*
3016  * MPALMOSTSAFE
3017  */
3018 int
3019 sys___getcwd(struct __getcwd_args *uap)
3020 {
3021 	u_int buflen;
3022 	int error;
3023 	char *buf;
3024 	char *bp;
3025 
3026 	if (disablecwd)
3027 		return (ENODEV);
3028 
3029 	buflen = uap->buflen;
3030 	if (buflen == 0)
3031 		return (EINVAL);
3032 	if (buflen > MAXPATHLEN)
3033 		buflen = MAXPATHLEN;
3034 
3035 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3036 	get_mplock();
3037 	bp = kern_getcwd(buf, buflen, &error);
3038 	rel_mplock();
3039 	if (error == 0)
3040 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3041 	kfree(buf, M_TEMP);
3042 	return (error);
3043 }
3044 
3045 char *
3046 kern_getcwd(char *buf, size_t buflen, int *error)
3047 {
3048 	struct proc *p = curproc;
3049 	char *bp;
3050 	int i, slash_prefixed;
3051 	struct filedesc *fdp;
3052 	struct nchandle nch;
3053 	struct namecache *ncp;
3054 
3055 	numcwdcalls++;
3056 	bp = buf;
3057 	bp += buflen - 1;
3058 	*bp = '\0';
3059 	fdp = p->p_fd;
3060 	slash_prefixed = 0;
3061 
3062 	nch = fdp->fd_ncdir;
3063 	ncp = nch.ncp;
3064 	if (ncp)
3065 		_cache_hold(ncp);
3066 
3067 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3068 	       nch.mount != fdp->fd_nrdir.mount)
3069 	) {
3070 		/*
3071 		 * While traversing upwards if we encounter the root
3072 		 * of the current mount we have to skip to the mount point
3073 		 * in the underlying filesystem.
3074 		 */
3075 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3076 			nch = nch.mount->mnt_ncmounton;
3077 			_cache_drop(ncp);
3078 			ncp = nch.ncp;
3079 			if (ncp)
3080 				_cache_hold(ncp);
3081 			continue;
3082 		}
3083 
3084 		/*
3085 		 * Prepend the path segment
3086 		 */
3087 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3088 			if (bp == buf) {
3089 				numcwdfail4++;
3090 				*error = ERANGE;
3091 				bp = NULL;
3092 				goto done;
3093 			}
3094 			*--bp = ncp->nc_name[i];
3095 		}
3096 		if (bp == buf) {
3097 			numcwdfail4++;
3098 			*error = ERANGE;
3099 			bp = NULL;
3100 			goto done;
3101 		}
3102 		*--bp = '/';
3103 		slash_prefixed = 1;
3104 
3105 		/*
3106 		 * Go up a directory.  This isn't a mount point so we don't
3107 		 * have to check again.
3108 		 */
3109 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3110 			_cache_lock(ncp);
3111 			if (nch.ncp != ncp->nc_parent) {
3112 				_cache_unlock(ncp);
3113 				continue;
3114 			}
3115 			_cache_hold(nch.ncp);
3116 			_cache_unlock(ncp);
3117 			break;
3118 		}
3119 		_cache_drop(ncp);
3120 		ncp = nch.ncp;
3121 	}
3122 	if (ncp == NULL) {
3123 		numcwdfail2++;
3124 		*error = ENOENT;
3125 		bp = NULL;
3126 		goto done;
3127 	}
3128 	if (!slash_prefixed) {
3129 		if (bp == buf) {
3130 			numcwdfail4++;
3131 			*error = ERANGE;
3132 			bp = NULL;
3133 			goto done;
3134 		}
3135 		*--bp = '/';
3136 	}
3137 	numcwdfound++;
3138 	*error = 0;
3139 done:
3140 	if (ncp)
3141 		_cache_drop(ncp);
3142 	return (bp);
3143 }
3144 
3145 /*
3146  * Thus begins the fullpath magic.
3147  *
3148  * The passed nchp is referenced but not locked.
3149  */
3150 #undef STATNODE
3151 #define STATNODE(name)							\
3152 	static u_int name;						\
3153 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
3154 
3155 static int disablefullpath;
3156 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3157     &disablefullpath, 0, "");
3158 
3159 STATNODE(numfullpathcalls);
3160 STATNODE(numfullpathfail1);
3161 STATNODE(numfullpathfail2);
3162 STATNODE(numfullpathfail3);
3163 STATNODE(numfullpathfail4);
3164 STATNODE(numfullpathfound);
3165 
3166 int
3167 cache_fullpath(struct proc *p, struct nchandle *nchp,
3168 	       char **retbuf, char **freebuf, int guess)
3169 {
3170 	struct nchandle fd_nrdir;
3171 	struct nchandle nch;
3172 	struct namecache *ncp;
3173 	struct mount *mp, *new_mp;
3174 	char *bp, *buf;
3175 	int slash_prefixed;
3176 	int error = 0;
3177 	int i;
3178 
3179 	atomic_add_int(&numfullpathcalls, -1);
3180 
3181 	*retbuf = NULL;
3182 	*freebuf = NULL;
3183 
3184 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3185 	bp = buf + MAXPATHLEN - 1;
3186 	*bp = '\0';
3187 	if (p != NULL)
3188 		fd_nrdir = p->p_fd->fd_nrdir;
3189 	else
3190 		fd_nrdir = rootnch;
3191 	slash_prefixed = 0;
3192 	nch = *nchp;
3193 	ncp = nch.ncp;
3194 	if (ncp)
3195 		_cache_hold(ncp);
3196 	mp = nch.mount;
3197 
3198 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3199 		new_mp = NULL;
3200 
3201 		/*
3202 		 * If we are asked to guess the upwards path, we do so whenever
3203 		 * we encounter an ncp marked as a mountpoint. We try to find
3204 		 * the actual mountpoint by finding the mountpoint with this ncp.
3205 		 */
3206 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3207 			new_mp = mount_get_by_nc(ncp);
3208 		}
3209 		/*
3210 		 * While traversing upwards if we encounter the root
3211 		 * of the current mount we have to skip to the mount point.
3212 		 */
3213 		if (ncp == mp->mnt_ncmountpt.ncp) {
3214 			new_mp = mp;
3215 		}
3216 		if (new_mp) {
3217 			nch = new_mp->mnt_ncmounton;
3218 			_cache_drop(ncp);
3219 			ncp = nch.ncp;
3220 			if (ncp)
3221 				_cache_hold(ncp);
3222 			mp = nch.mount;
3223 			continue;
3224 		}
3225 
3226 		/*
3227 		 * Prepend the path segment
3228 		 */
3229 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3230 			if (bp == buf) {
3231 				numfullpathfail4++;
3232 				kfree(buf, M_TEMP);
3233 				error = ENOMEM;
3234 				goto done;
3235 			}
3236 			*--bp = ncp->nc_name[i];
3237 		}
3238 		if (bp == buf) {
3239 			numfullpathfail4++;
3240 			kfree(buf, M_TEMP);
3241 			error = ENOMEM;
3242 			goto done;
3243 		}
3244 		*--bp = '/';
3245 		slash_prefixed = 1;
3246 
3247 		/*
3248 		 * Go up a directory.  This isn't a mount point so we don't
3249 		 * have to check again.
3250 		 *
3251 		 * We can only safely access nc_parent with ncp held locked.
3252 		 */
3253 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3254 			_cache_lock(ncp);
3255 			if (nch.ncp != ncp->nc_parent) {
3256 				_cache_unlock(ncp);
3257 				continue;
3258 			}
3259 			_cache_hold(nch.ncp);
3260 			_cache_unlock(ncp);
3261 			break;
3262 		}
3263 		_cache_drop(ncp);
3264 		ncp = nch.ncp;
3265 	}
3266 	if (ncp == NULL) {
3267 		numfullpathfail2++;
3268 		kfree(buf, M_TEMP);
3269 		error = ENOENT;
3270 		goto done;
3271 	}
3272 
3273 	if (!slash_prefixed) {
3274 		if (bp == buf) {
3275 			numfullpathfail4++;
3276 			kfree(buf, M_TEMP);
3277 			error = ENOMEM;
3278 			goto done;
3279 		}
3280 		*--bp = '/';
3281 	}
3282 	numfullpathfound++;
3283 	*retbuf = bp;
3284 	*freebuf = buf;
3285 	error = 0;
3286 done:
3287 	if (ncp)
3288 		_cache_drop(ncp);
3289 	return(error);
3290 }
3291 
3292 int
3293 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf, int guess)
3294 {
3295 	struct namecache *ncp;
3296 	struct nchandle nch;
3297 	int error;
3298 
3299 	atomic_add_int(&numfullpathcalls, 1);
3300 	if (disablefullpath)
3301 		return (ENODEV);
3302 
3303 	if (p == NULL)
3304 		return (EINVAL);
3305 
3306 	/* vn is NULL, client wants us to use p->p_textvp */
3307 	if (vn == NULL) {
3308 		if ((vn = p->p_textvp) == NULL)
3309 			return (EINVAL);
3310 	}
3311 	spin_lock(&vn->v_spinlock);
3312 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3313 		if (ncp->nc_nlen)
3314 			break;
3315 	}
3316 	if (ncp == NULL) {
3317 		spin_unlock(&vn->v_spinlock);
3318 		return (EINVAL);
3319 	}
3320 	_cache_hold(ncp);
3321 	spin_unlock(&vn->v_spinlock);
3322 
3323 	atomic_add_int(&numfullpathcalls, -1);
3324 	nch.ncp = ncp;;
3325 	nch.mount = vn->v_mount;
3326 	error = cache_fullpath(p, &nch, retbuf, freebuf, guess);
3327 	_cache_drop(ncp);
3328 	return (error);
3329 }
3330