xref: /dragonfly/sys/kern/vfs_cluster.c (revision 1fe7e945)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *	Copyright (c) 2012-2013 Matthew Dillon.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_debug_cluster.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/buf.h>
40 #include <sys/vnode.h>
41 #include <sys/malloc.h>
42 #include <sys/mount.h>
43 #include <sys/resourcevar.h>
44 #include <sys/vmmeter.h>
45 #include <vm/vm.h>
46 #include <vm/vm_object.h>
47 #include <vm/vm_page.h>
48 #include <sys/sysctl.h>
49 
50 #include <sys/buf2.h>
51 #include <vm/vm_page2.h>
52 
53 #include <machine/limits.h>
54 
55 /*
56  * Cluster tracking cache - replaces the original vnode v_* fields which had
57  * limited utility and were not MP safe.
58  *
59  * The cluster tracking cache is a simple 4-way set-associative non-chained
60  * cache.  It is capable of tracking up to four zones separated by 1MB or
61  * more per vnode.
62  *
63  * NOTE: We want this structure to be cache-line friendly so the iterator
64  *	 is embedded rather than in a separate array.
65  *
66  * NOTE: A cluster cache entry can become stale when a vnode is recycled.
67  *	 For now we treat the values as heuristical but also self-consistent.
68  *	 i.e. the values cannot be completely random and cannot be SMP unsafe
69  *	 or the cluster code might end-up clustering non-contiguous buffers
70  *	 at the wrong offsets.
71  */
72 struct cluster_cache {
73 	struct vnode *vp;
74 	u_int	locked;
75 	off_t	v_lastw;		/* last write (end) (write cluster) */
76 	off_t	v_cstart;		/* start block (beg) of cluster */
77 	off_t	v_lasta;		/* last allocation (end) */
78 	u_int	v_clen;			/* length of current cluster */
79 	u_int	iterator;
80 } __cachealign;
81 
82 typedef struct cluster_cache cluster_cache_t;
83 
84 #define CLUSTER_CACHE_SIZE	512
85 #define CLUSTER_CACHE_MASK	(CLUSTER_CACHE_SIZE - 1)
86 
87 #define CLUSTER_ZONE		((off_t)(1024 * 1024))
88 
89 cluster_cache_t cluster_array[CLUSTER_CACHE_SIZE];
90 
91 #if defined(CLUSTERDEBUG)
92 #include <sys/sysctl.h>
93 static int	rcluster= 0;
94 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
95 #endif
96 
97 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
98 
99 static struct cluster_save *
100 	cluster_collectbufs (cluster_cache_t *cc, struct vnode *vp,
101 				struct buf *last_bp, int blksize);
102 static struct buf *
103 	cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
104 			    off_t doffset, int blksize, int run,
105 			    struct buf *fbp, int *srp);
106 static void cluster_callback (struct bio *);
107 static void cluster_setram (struct buf *);
108 static void cluster_clrram (struct buf *);
109 static int cluster_wbuild(struct vnode *vp, struct buf **bpp, int blksize,
110 			    off_t start_loffset, int bytes);
111 
112 static int write_behind = 1;
113 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
114     "Cluster write-behind setting");
115 static quad_t write_behind_minfilesize = 10 * 1024 * 1024;
116 SYSCTL_QUAD(_vfs, OID_AUTO, write_behind_minfilesize, CTLFLAG_RW,
117     &write_behind_minfilesize, 0, "Cluster write-behind setting");
118 static int max_readahead = 2 * 1024 * 1024;
119 SYSCTL_INT(_vfs, OID_AUTO, max_readahead, CTLFLAG_RW, &max_readahead, 0,
120     "Limit in bytes for desired cluster read-ahead");
121 
122 extern vm_page_t	bogus_page;
123 
124 /*
125  * nblks is our cluster_rbuild request size.  The approximate number of
126  * physical read-ahead requests is maxra / nblks.  The physical request
127  * size is limited by the device (maxrbuild).  We also do not want to make
128  * the request size too big or it will mess up the B_RAM streaming.
129  */
130 static __inline
131 int
132 calc_rbuild_reqsize(int maxra, int maxrbuild)
133 {
134 	int nblks;
135 
136 	if ((nblks = maxra / 4) > maxrbuild)
137 		nblks = maxrbuild;
138 	if (nblks < 1)
139 		nblks = maxra;
140 	return nblks;
141 }
142 
143 /*
144  * Acquire/release cluster cache (can return dummy entry)
145  */
146 static
147 cluster_cache_t *
148 cluster_getcache(cluster_cache_t *dummy, struct vnode *vp, off_t loffset)
149 {
150 	cluster_cache_t *cc;
151 	size_t hv;
152 	int i;
153 	int xact;
154 
155 	hv = (size_t)(intptr_t)vp ^ (size_t)(intptr_t)vp / sizeof(*vp);
156 	hv &= CLUSTER_CACHE_MASK & ~3;
157 	cc = &cluster_array[hv];
158 
159 	xact = -1;
160 	for (i = 0; i < 4; ++i) {
161 		if (cc[i].vp != vp)
162 			continue;
163 		if (((cc[i].v_cstart ^ loffset) & ~(CLUSTER_ZONE - 1)) == 0) {
164 			xact = i;
165 			break;
166 		}
167 	}
168 	if (xact >= 0 && atomic_swap_int(&cc[xact].locked, 1) == 0) {
169 		if (cc[xact].vp == vp &&
170 		    ((cc[i].v_cstart ^ loffset) & ~(CLUSTER_ZONE - 1)) == 0) {
171 			return(&cc[xact]);
172 		}
173 		atomic_swap_int(&cc[xact].locked, 0);
174 	}
175 
176 	/*
177 	 * New entry.  If we can't acquire the cache line then use the
178 	 * passed-in dummy element and reset all fields.
179 	 *
180 	 * When we are able to acquire the cache line we only clear the
181 	 * fields if the vp does not match.  This allows us to multi-zone
182 	 * a vp and for excessive zones / partial clusters to be retired.
183 	 */
184 	i = cc->iterator++ & 3;
185 	cc += i;
186 	if (atomic_swap_int(&cc->locked, 1) != 0) {
187 		cc = dummy;
188 		cc->locked = 1;
189 		cc->vp = NULL;
190 	}
191 	if (cc->vp != vp) {
192 		cc->vp = vp;
193 		cc->v_lasta = 0;
194 		cc->v_clen = 0;
195 		cc->v_cstart = 0;
196 		cc->v_lastw = 0;
197 	}
198 	return(cc);
199 }
200 
201 static
202 void
203 cluster_putcache(cluster_cache_t *cc)
204 {
205 	atomic_swap_int(&cc->locked, 0);
206 }
207 
208 /*
209  * This replaces bread(), providing a synchronous read of the requested
210  * buffer plus asynchronous read-ahead within the specified bounds.
211  *
212  * The caller may pre-populate *bpp if it already has the requested buffer
213  * in-hand, else must set *bpp to NULL.  Note that the cluster_read() inline
214  * sets *bpp to NULL and then calls cluster_readx() for compatibility.
215  *
216  * filesize	- read-ahead @ blksize will not cross this boundary
217  * loffset	- loffset for returned *bpp
218  * blksize	- blocksize for returned *bpp and read-ahead bps
219  * minreq	- minimum (not a hard minimum) in bytes, typically reflects
220  *		  a higher level uio resid.
221  * maxreq	- maximum (sequential heuristic) in bytes (highet typ ~2MB)
222  * bpp		- return buffer (*bpp) for (loffset,blksize)
223  */
224 int
225 cluster_readx(struct vnode *vp, off_t filesize, off_t loffset, int blksize,
226 	      int bflags, size_t minreq, size_t maxreq,
227 	      struct buf **bpp)
228 {
229 	struct buf *bp, *rbp, *reqbp;
230 	off_t origoffset;
231 	off_t doffset;
232 	int error;
233 	int i;
234 	int maxra;
235 	int maxrbuild;
236 	int sr;
237 
238 	sr = 0;
239 
240 	/*
241 	 * Calculate the desired read-ahead in blksize'd blocks (maxra).
242 	 * To do this we calculate maxreq.
243 	 *
244 	 * maxreq typically starts out as a sequential heuristic.  If the
245 	 * high level uio/resid is bigger (minreq), we pop maxreq up to
246 	 * minreq.  This represents the case where random I/O is being
247 	 * performed by the userland is issuing big read()'s.
248 	 *
249 	 * Then we limit maxreq to max_readahead to ensure it is a reasonable
250 	 * value.
251 	 *
252 	 * Finally we must ensure that (loffset + maxreq) does not cross the
253 	 * boundary (filesize) for the current blocksize.  If we allowed it
254 	 * to cross we could end up with buffers past the boundary with the
255 	 * wrong block size (HAMMER large-data areas use mixed block sizes).
256 	 * minreq is also absolutely limited to filesize.
257 	 */
258 	if (maxreq < minreq)
259 		maxreq = minreq;
260 	/* minreq not used beyond this point */
261 
262 	if (maxreq > max_readahead) {
263 		maxreq = max_readahead;
264 		if (maxreq > 16 * 1024 * 1024)
265 			maxreq = 16 * 1024 * 1024;
266 	}
267 	if (maxreq < blksize)
268 		maxreq = blksize;
269 	if (loffset + maxreq > filesize) {
270 		if (loffset > filesize)
271 			maxreq = 0;
272 		else
273 			maxreq = filesize - loffset;
274 	}
275 
276 	maxra = (int)(maxreq / blksize);
277 
278 	/*
279 	 * Get the requested block.
280 	 */
281 	if (*bpp)
282 		reqbp = bp = *bpp;
283 	else
284 		*bpp = reqbp = bp = getblk(vp, loffset, blksize, 0, 0);
285 	origoffset = loffset;
286 
287 	/*
288 	 * Calculate the maximum cluster size for a single I/O, used
289 	 * by cluster_rbuild().
290 	 */
291 	maxrbuild = vmaxiosize(vp) / blksize;
292 
293 	/*
294 	 * If it is in the cache, then check to see if the reads have been
295 	 * sequential.  If they have, then try some read-ahead, otherwise
296 	 * back-off on prospective read-aheads.
297 	 */
298 	if (bp->b_flags & B_CACHE) {
299 		/*
300 		 * Not sequential, do not do any read-ahead
301 		 */
302 		if (maxra <= 1)
303 			return 0;
304 
305 		/*
306 		 * No read-ahead mark, do not do any read-ahead
307 		 * yet.
308 		 */
309 		if ((bp->b_flags & B_RAM) == 0)
310 			return 0;
311 
312 		/*
313 		 * We hit a read-ahead-mark, figure out how much read-ahead
314 		 * to do (maxra) and where to start (loffset).
315 		 *
316 		 * Typically the way this works is that B_RAM is set in the
317 		 * middle of the cluster and triggers an overlapping
318 		 * read-ahead of 1/2 a cluster more blocks.  This ensures
319 		 * that the cluster read-ahead scales with the read-ahead
320 		 * count and is thus better-able to absorb the caller's
321 		 * latency.
322 		 *
323 		 * Estimate where the next unread block will be by assuming
324 		 * that the B_RAM's are placed at the half-way point.
325 		 */
326 		bp->b_flags &= ~B_RAM;
327 
328 		i = maxra / 2;
329 		rbp = findblk(vp, loffset + i * blksize, FINDBLK_TEST);
330 		if (rbp == NULL || (rbp->b_flags & B_CACHE) == 0) {
331 			while (i) {
332 				--i;
333 				rbp = findblk(vp, loffset + i * blksize,
334 					      FINDBLK_TEST);
335 				if (rbp) {
336 					++i;
337 					break;
338 				}
339 			}
340 		} else {
341 			while (i < maxra) {
342 				rbp = findblk(vp, loffset + i * blksize,
343 					      FINDBLK_TEST);
344 				if (rbp == NULL)
345 					break;
346 				++i;
347 			}
348 		}
349 
350 		/*
351 		 * We got everything or everything is in the cache, no
352 		 * point continuing.
353 		 */
354 		if (i >= maxra)
355 			return 0;
356 
357 		/*
358 		 * Calculate where to start the read-ahead and how much
359 		 * to do.  Generally speaking we want to read-ahead by
360 		 * (maxra) when we've found a read-ahead mark.  We do
361 		 * not want to reduce maxra here as it will cause
362 		 * successive read-ahead I/O's to be smaller and smaller.
363 		 *
364 		 * However, we have to make sure we don't break the
365 		 * filesize limitation for the clustered operation.
366 		 */
367 		loffset += i * blksize;
368 		reqbp = bp = NULL;
369 
370 		if (loffset >= filesize)
371 			return 0;
372 		if (loffset + maxra * blksize > filesize) {
373 			maxreq = filesize - loffset;
374 			maxra = (int)(maxreq / blksize);
375 		}
376 
377 		/*
378 		 * Set RAM on first read-ahead block since we still have
379 		 * approximate maxra/2 blocks ahead of us that are already
380 		 * cached or in-progress.
381 		 */
382 		sr = 1;
383 	} else {
384 		/*
385 		 * Start block is not valid, we will want to do a
386 		 * full read-ahead.
387 		 */
388 		__debugvar off_t firstread = bp->b_loffset;
389 		int nblks;
390 
391 		/*
392 		 * Set-up synchronous read for bp.
393 		 */
394 		bp->b_cmd = BUF_CMD_READ;
395 		bp->b_bio1.bio_done = biodone_sync;
396 		bp->b_bio1.bio_flags |= BIO_SYNC;
397 
398 		KASSERT(firstread != NOOFFSET,
399 			("cluster_read: no buffer offset"));
400 
401 		nblks = calc_rbuild_reqsize(maxra, maxrbuild);
402 
403 		/*
404 		 * Set RAM half-way through the full-cluster.
405 		 */
406 		sr = (maxra + 1) / 2;
407 
408 		if (nblks > 1) {
409 			int burstbytes;
410 
411 	    		error = VOP_BMAP(vp, loffset, &doffset,
412 					 &burstbytes, NULL, BUF_CMD_READ);
413 			if (error)
414 				goto single_block_read;
415 			if (nblks > burstbytes / blksize)
416 				nblks = burstbytes / blksize;
417 			if (doffset == NOOFFSET)
418 				goto single_block_read;
419 			if (nblks <= 1)
420 				goto single_block_read;
421 
422 			bp = cluster_rbuild(vp, filesize, loffset,
423 					    doffset, blksize, nblks, bp, &sr);
424 			loffset += bp->b_bufsize;
425 			maxra -= bp->b_bufsize / blksize;
426 		} else {
427 single_block_read:
428 			/*
429 			 * If it isn't in the cache, then get a chunk from
430 			 * disk if sequential, otherwise just get the block.
431 			 */
432 			loffset += blksize;
433 			--maxra;
434 		}
435 	}
436 
437 	/*
438 	 * If B_CACHE was not set issue bp.  bp will either be an
439 	 * asynchronous cluster buf or a synchronous single-buf.
440 	 * If it is a single buf it will be the same as reqbp.
441 	 *
442 	 * NOTE: Once an async cluster buf is issued bp becomes invalid.
443 	 */
444 	if (bp) {
445 #if defined(CLUSTERDEBUG)
446 		if (rcluster)
447 			kprintf("S(%012jx,%d,%d)\n",
448 			    (intmax_t)bp->b_loffset, bp->b_bcount, maxra);
449 #endif
450 		if ((bp->b_flags & B_CLUSTER) == 0)
451 			vfs_busy_pages(vp, bp);
452 		bp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
453 		bp->b_flags |= bflags;
454 		vn_strategy(vp, &bp->b_bio1);
455 		/* bp invalid now */
456 		bp = NULL;
457 	}
458 
459 #if defined(CLUSTERDEBUG)
460 	if (rcluster)
461 		kprintf("cluster_rd %016jx/%d maxra=%d sr=%d\n",
462 			loffset, blksize, maxra, sr);
463 #endif
464 
465 	/*
466 	 * If we have been doing sequential I/O, then do some read-ahead.
467 	 * The code above us should have positioned us at the next likely
468 	 * offset.
469 	 *
470 	 * Only mess with buffers which we can immediately lock.  HAMMER
471 	 * will do device-readahead irrespective of what the blocks
472 	 * represent.
473 	 *
474 	 * Set B_RAM on the first buffer (the next likely offset needing
475 	 * read-ahead), under the assumption that there are still
476 	 * approximately maxra/2 blocks good ahead of us.
477 	 */
478 	while (maxra > 0) {
479 		int burstbytes;
480 		int nblks;
481 
482 		rbp = getblk(vp, loffset, blksize,
483 			     GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
484 #if defined(CLUSTERDEBUG)
485 		if (rcluster) {
486 			kprintf("read-ahead %016jx rbp=%p ",
487 				loffset, rbp);
488 		}
489 #endif
490 		if (rbp == NULL)
491 			goto no_read_ahead;
492 		if ((rbp->b_flags & B_CACHE)) {
493 			bqrelse(rbp);
494 			goto no_read_ahead;
495 		}
496 
497 		/*
498 		 * If BMAP is not supported or has an issue, we still do
499 		 * (maxra) read-ahead, but we do not try to use rbuild.
500 		 */
501 		error = VOP_BMAP(vp, loffset, &doffset,
502 				 &burstbytes, NULL, BUF_CMD_READ);
503 		if (error || doffset == NOOFFSET) {
504 			nblks = 1;
505 			doffset = NOOFFSET;
506 		} else {
507 			nblks = calc_rbuild_reqsize(maxra, maxrbuild);
508 			if (nblks > burstbytes / blksize)
509 				nblks = burstbytes / blksize;
510 		}
511 		rbp->b_cmd = BUF_CMD_READ;
512 
513 		if (nblks > 1) {
514 			rbp = cluster_rbuild(vp, filesize, loffset,
515 					     doffset, blksize,
516 					     nblks, rbp, &sr);
517 		} else {
518 			rbp->b_bio2.bio_offset = doffset;
519 			if (--sr == 0)
520 				cluster_setram(rbp);
521 		}
522 
523 		rbp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
524 		rbp->b_flags |= bflags;
525 
526 		if ((rbp->b_flags & B_CLUSTER) == 0)
527 			vfs_busy_pages(vp, rbp);
528 		BUF_KERNPROC(rbp);
529 		loffset += rbp->b_bufsize;
530 		maxra -= rbp->b_bufsize / blksize;
531 		vn_strategy(vp, &rbp->b_bio1);
532 		/* rbp invalid now */
533 	}
534 
535 	/*
536 	 * Wait for our original buffer to complete its I/O.  reqbp will
537 	 * be NULL if the original buffer was B_CACHE.  We are returning
538 	 * (*bpp) which is the same as reqbp when reqbp != NULL.
539 	 */
540 no_read_ahead:
541 	if (reqbp) {
542 		KKASSERT(reqbp->b_bio1.bio_flags & BIO_SYNC);
543 		error = biowait(&reqbp->b_bio1, "clurd");
544 	} else {
545 		error = 0;
546 	}
547 	return (error);
548 }
549 
550 /*
551  * This replaces breadcb(), providing an asynchronous read of the requested
552  * buffer with a callback, plus an asynchronous read-ahead within the
553  * specified bounds.
554  *
555  * The callback must check whether BIO_DONE is set in the bio and issue
556  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
557  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
558  *
559  * filesize	- read-ahead @ blksize will not cross this boundary
560  * loffset	- loffset for returned *bpp
561  * blksize	- blocksize for returned *bpp and read-ahead bps
562  * minreq	- minimum (not a hard minimum) in bytes, typically reflects
563  *		  a higher level uio resid.
564  * maxreq	- maximum (sequential heuristic) in bytes (highet typ ~2MB)
565  * bpp		- return buffer (*bpp) for (loffset,blksize)
566  */
567 void
568 cluster_readcb(struct vnode *vp, off_t filesize, off_t loffset, int blksize,
569 	       int bflags, size_t minreq, size_t maxreq,
570 	       void (*func)(struct bio *), void *arg)
571 {
572 	struct buf *bp, *rbp, *reqbp;
573 	off_t origoffset;
574 	off_t doffset;
575 	int i;
576 	int maxra;
577 	int maxrbuild;
578 	int sr;
579 
580 	sr = 0;
581 
582 	/*
583 	 * Calculate the desired read-ahead in blksize'd blocks (maxra).
584 	 * To do this we calculate maxreq.
585 	 *
586 	 * maxreq typically starts out as a sequential heuristic.  If the
587 	 * high level uio/resid is bigger (minreq), we pop maxreq up to
588 	 * minreq.  This represents the case where random I/O is being
589 	 * performed by the userland is issuing big read()'s.
590 	 *
591 	 * Then we limit maxreq to max_readahead to ensure it is a reasonable
592 	 * value.
593 	 *
594 	 * Finally we must ensure that (loffset + maxreq) does not cross the
595 	 * boundary (filesize) for the current blocksize.  If we allowed it
596 	 * to cross we could end up with buffers past the boundary with the
597 	 * wrong block size (HAMMER large-data areas use mixed block sizes).
598 	 * minreq is also absolutely limited to filesize.
599 	 */
600 	if (maxreq < minreq)
601 		maxreq = minreq;
602 	/* minreq not used beyond this point */
603 
604 	if (maxreq > max_readahead) {
605 		maxreq = max_readahead;
606 		if (maxreq > 16 * 1024 * 1024)
607 			maxreq = 16 * 1024 * 1024;
608 	}
609 	if (maxreq < blksize)
610 		maxreq = blksize;
611 	if (loffset + maxreq > filesize) {
612 		if (loffset > filesize)
613 			maxreq = 0;
614 		else
615 			maxreq = filesize - loffset;
616 	}
617 
618 	maxra = (int)(maxreq / blksize);
619 
620 	/*
621 	 * Get the requested block.
622 	 */
623 	reqbp = bp = getblk(vp, loffset, blksize, 0, 0);
624 	origoffset = loffset;
625 
626 	/*
627 	 * Calculate the maximum cluster size for a single I/O, used
628 	 * by cluster_rbuild().
629 	 */
630 	maxrbuild = vmaxiosize(vp) / blksize;
631 
632 	/*
633 	 * if it is in the cache, then check to see if the reads have been
634 	 * sequential.  If they have, then try some read-ahead, otherwise
635 	 * back-off on prospective read-aheads.
636 	 */
637 	if (bp->b_flags & B_CACHE) {
638 		/*
639 		 * Setup for func() call whether we do read-ahead or not.
640 		 */
641 		bp->b_bio1.bio_caller_info1.ptr = arg;
642 		bp->b_bio1.bio_flags |= BIO_DONE;
643 
644 		/*
645 		 * Not sequential, do not do any read-ahead
646 		 */
647 		if (maxra <= 1)
648 			goto no_read_ahead;
649 
650 		/*
651 		 * No read-ahead mark, do not do any read-ahead
652 		 * yet.
653 		 */
654 		if ((bp->b_flags & B_RAM) == 0)
655 			goto no_read_ahead;
656 		bp->b_flags &= ~B_RAM;
657 
658 		/*
659 		 * We hit a read-ahead-mark, figure out how much read-ahead
660 		 * to do (maxra) and where to start (loffset).
661 		 *
662 		 * Shortcut the scan.  Typically the way this works is that
663 		 * we've built up all the blocks inbetween except for the
664 		 * last in previous iterations, so if the second-to-last
665 		 * block is present we just skip ahead to it.
666 		 *
667 		 * This algorithm has O(1) cpu in the steady state no
668 		 * matter how large maxra is.
669 		 */
670 		if (findblk(vp, loffset + (maxra - 2) * blksize, FINDBLK_TEST))
671 			i = maxra - 1;
672 		else
673 			i = 1;
674 		while (i < maxra) {
675 			if (findblk(vp, loffset + i * blksize,
676 				    FINDBLK_TEST) == NULL) {
677 				break;
678 			}
679 			++i;
680 		}
681 
682 		/*
683 		 * We got everything or everything is in the cache, no
684 		 * point continuing.
685 		 */
686 		if (i >= maxra)
687 			goto no_read_ahead;
688 
689 		/*
690 		 * Calculate where to start the read-ahead and how much
691 		 * to do.  Generally speaking we want to read-ahead by
692 		 * (maxra) when we've found a read-ahead mark.  We do
693 		 * not want to reduce maxra here as it will cause
694 		 * successive read-ahead I/O's to be smaller and smaller.
695 		 *
696 		 * However, we have to make sure we don't break the
697 		 * filesize limitation for the clustered operation.
698 		 */
699 		loffset += i * blksize;
700 		bp = NULL;
701 		/* leave reqbp intact to force function callback */
702 
703 		if (loffset >= filesize)
704 			goto no_read_ahead;
705 		if (loffset + maxra * blksize > filesize) {
706 			maxreq = filesize - loffset;
707 			maxra = (int)(maxreq / blksize);
708 		}
709 		sr = 1;
710 	} else {
711 		/*
712 		 * bp is not valid, no prior cluster in progress so get a
713 		 * full cluster read-ahead going.
714 		 */
715 		__debugvar off_t firstread = bp->b_loffset;
716 		int nblks;
717 		int error;
718 
719 		/*
720 		 * Set-up synchronous read for bp.
721 		 */
722 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
723 		bp->b_flags |= bflags;
724 		bp->b_cmd = BUF_CMD_READ;
725 		bp->b_bio1.bio_done = func;
726 		bp->b_bio1.bio_caller_info1.ptr = arg;
727 		BUF_KERNPROC(bp);
728 		reqbp = NULL;	/* don't func() reqbp, it's running async */
729 
730 		KASSERT(firstread != NOOFFSET,
731 			("cluster_read: no buffer offset"));
732 
733 		/*
734 		 * nblks is our cluster_rbuild request size, limited
735 		 * primarily by the device.
736 		 */
737 		nblks = calc_rbuild_reqsize(maxra, maxrbuild);
738 
739 		/*
740 		 * Set RAM half-way through the full-cluster.
741 		 */
742 		sr = (maxra + 1) / 2;
743 
744 		if (nblks > 1) {
745 			int burstbytes;
746 
747 			error = VOP_BMAP(vp, loffset, &doffset,
748 					 &burstbytes, NULL, BUF_CMD_READ);
749 			if (error)
750 				goto single_block_read;
751 			if (nblks > burstbytes / blksize)
752 				nblks = burstbytes / blksize;
753 			if (doffset == NOOFFSET)
754 				goto single_block_read;
755 			if (nblks <= 1)
756 				goto single_block_read;
757 
758 			bp = cluster_rbuild(vp, filesize, loffset,
759 					    doffset, blksize, nblks, bp, &sr);
760 			loffset += bp->b_bufsize;
761 			maxra -= bp->b_bufsize / blksize;
762 		} else {
763 single_block_read:
764 			/*
765 			 * If it isn't in the cache, then get a chunk from
766 			 * disk if sequential, otherwise just get the block.
767 			 */
768 			loffset += blksize;
769 			--maxra;
770 		}
771 	}
772 
773 	/*
774 	 * If bp != NULL then B_CACHE was *NOT* set and bp must be issued.
775 	 * bp will either be an asynchronous cluster buf or an asynchronous
776 	 * single-buf.
777 	 *
778 	 * NOTE: Once an async cluster buf is issued bp becomes invalid.
779 	 */
780 	if (bp) {
781 #if defined(CLUSTERDEBUG)
782 		if (rcluster)
783 			kprintf("S(%012jx,%d,%d)\n",
784 			    (intmax_t)bp->b_loffset, bp->b_bcount, maxra);
785 #endif
786 		if ((bp->b_flags & B_CLUSTER) == 0)
787 			vfs_busy_pages(vp, bp);
788 		bp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
789 		bp->b_flags |= bflags;
790 		vn_strategy(vp, &bp->b_bio1);
791 		/* bp invalid now */
792 		bp = NULL;
793 	}
794 
795 #if defined(CLUSTERDEBUG)
796 	if (rcluster)
797 		kprintf("cluster_rd %016jx/%d maxra=%d sr=%d\n",
798 			loffset, blksize, maxra, sr);
799 #endif
800 
801 	/*
802 	 * If we have been doing sequential I/O, then do some read-ahead.
803 	 * The code above us should have positioned us at the next likely
804 	 * offset.
805 	 *
806 	 * Only mess with buffers which we can immediately lock.  HAMMER
807 	 * will do device-readahead irrespective of what the blocks
808 	 * represent.
809 	 */
810 	while (maxra > 0) {
811 		int burstbytes;
812 		int error;
813 		int nblks;
814 
815 		rbp = getblk(vp, loffset, blksize,
816 			     GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
817 		if (rbp == NULL)
818 			goto no_read_ahead;
819 		if ((rbp->b_flags & B_CACHE)) {
820 			bqrelse(rbp);
821 			goto no_read_ahead;
822 		}
823 
824 		/*
825 		 * If BMAP is not supported or has an issue, we still do
826 		 * (maxra) read-ahead, but we do not try to use rbuild.
827 		 */
828 		error = VOP_BMAP(vp, loffset, &doffset,
829 				 &burstbytes, NULL, BUF_CMD_READ);
830 		if (error || doffset == NOOFFSET) {
831 			nblks = 1;
832 			doffset = NOOFFSET;
833 		} else {
834 			nblks = calc_rbuild_reqsize(maxra, maxrbuild);
835 			if (nblks > burstbytes / blksize)
836 				nblks = burstbytes / blksize;
837 		}
838 		rbp->b_cmd = BUF_CMD_READ;
839 
840 		if (nblks > 1) {
841 			rbp = cluster_rbuild(vp, filesize, loffset,
842 					     doffset, blksize,
843 					     nblks, rbp, &sr);
844 		} else {
845 			rbp->b_bio2.bio_offset = doffset;
846 			if (--sr == 0)
847 				cluster_setram(rbp);
848 		}
849 
850 		rbp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
851 		rbp->b_flags |= bflags;
852 
853 		if ((rbp->b_flags & B_CLUSTER) == 0)
854 			vfs_busy_pages(vp, rbp);
855 		BUF_KERNPROC(rbp);
856 		loffset += rbp->b_bufsize;
857 		maxra -= rbp->b_bufsize / blksize;
858 		vn_strategy(vp, &rbp->b_bio1);
859 		/* rbp invalid now */
860 	}
861 
862 	/*
863 	 * If reqbp is non-NULL it had B_CACHE set and we issue the
864 	 * function callback synchronously.
865 	 *
866 	 * Note that we may start additional asynchronous I/O before doing
867 	 * the func() callback for the B_CACHE case
868 	 */
869 no_read_ahead:
870 	if (reqbp)
871 		func(&reqbp->b_bio1);
872 }
873 
874 /*
875  * If blocks are contiguous on disk, use this to provide clustered
876  * read ahead.  We will read as many blocks as possible sequentially
877  * and then parcel them up into logical blocks in the buffer hash table.
878  *
879  * This function either returns a cluster buf or it returns fbp.  fbp is
880  * already expected to be set up as a synchronous or asynchronous request.
881  *
882  * If a cluster buf is returned it will always be async.
883  *
884  * (*srp) counts down original blocks to determine where B_RAM should be set.
885  * Set B_RAM when *srp drops to 0.  If (*srp) starts at 0, B_RAM will not be
886  * set on any buffer.  Make sure B_RAM is cleared on any other buffers to
887  * prevent degenerate read-aheads from being generated.
888  */
889 static struct buf *
890 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset, off_t doffset,
891 	       int blksize, int run, struct buf *fbp, int *srp)
892 {
893 	struct buf *bp, *tbp;
894 	off_t boffset;
895 	int i, j;
896 	int maxiosize = vmaxiosize(vp);
897 
898 	/*
899 	 * avoid a division
900 	 */
901 	while (loffset + run * blksize > filesize) {
902 		--run;
903 	}
904 
905 	tbp = fbp;
906 	tbp->b_bio2.bio_offset = doffset;
907 	if((tbp->b_flags & B_MALLOC) ||
908 	    ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
909 		if (--*srp == 0)
910 			cluster_setram(tbp);
911 		else
912 			cluster_clrram(tbp);
913 		return tbp;
914 	}
915 
916 	/*
917 	 * Get a pbuf, limit cluster I/O on a per-device basis.  If
918 	 * doing cluster I/O for a file, limit cluster I/O on a
919 	 * per-mount basis.
920 	 */
921 	if (vp->v_type == VCHR || vp->v_type == VBLK)
922 		bp = trypbuf_kva(&vp->v_pbuf_count);
923 	else
924 		bp = trypbuf_kva(&vp->v_mount->mnt_pbuf_count);
925 
926 	if (bp == NULL)
927 		return tbp;
928 
929 	/*
930 	 * We are synthesizing a buffer out of vm_page_t's, but
931 	 * if the block size is not page aligned then the starting
932 	 * address may not be either.  Inherit the b_data offset
933 	 * from the original buffer.
934 	 */
935 	bp->b_vp = vp;
936 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
937 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
938 	bp->b_flags |= B_CLUSTER | B_VMIO;
939 	bp->b_cmd = BUF_CMD_READ;
940 	bp->b_bio1.bio_done = cluster_callback;		/* default to async */
941 	bp->b_bio1.bio_caller_info1.cluster_head = NULL;
942 	bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
943 	bp->b_loffset = loffset;
944 	bp->b_bio2.bio_offset = doffset;
945 	KASSERT(bp->b_loffset != NOOFFSET,
946 		("cluster_rbuild: no buffer offset"));
947 
948 	bp->b_bcount = 0;
949 	bp->b_bufsize = 0;
950 	bp->b_xio.xio_npages = 0;
951 
952 	for (boffset = doffset, i = 0; i < run; ++i, boffset += blksize) {
953 		if (i) {
954 			if ((bp->b_xio.xio_npages * PAGE_SIZE) +
955 			    round_page(blksize) > maxiosize) {
956 				break;
957 			}
958 
959 			/*
960 			 * Shortcut some checks and try to avoid buffers that
961 			 * would block in the lock.  The same checks have to
962 			 * be made again after we officially get the buffer.
963 			 */
964 			tbp = getblk(vp, loffset + i * blksize, blksize,
965 				     GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
966 			if (tbp == NULL)
967 				break;
968 			for (j = 0; j < tbp->b_xio.xio_npages; j++) {
969 				if (tbp->b_xio.xio_pages[j]->valid)
970 					break;
971 			}
972 			if (j != tbp->b_xio.xio_npages) {
973 				bqrelse(tbp);
974 				break;
975 			}
976 
977 			/*
978 			 * Stop scanning if the buffer is fuly valid
979 			 * (marked B_CACHE), or locked (may be doing a
980 			 * background write), or if the buffer is not
981 			 * VMIO backed.  The clustering code can only deal
982 			 * with VMIO-backed buffers.
983 			 */
984 			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
985 			    (tbp->b_flags & B_VMIO) == 0 ||
986 			    (LIST_FIRST(&tbp->b_dep) != NULL &&
987 			     buf_checkread(tbp))
988 			) {
989 				bqrelse(tbp);
990 				break;
991 			}
992 
993 			/*
994 			 * The buffer must be completely invalid in order to
995 			 * take part in the cluster.  If it is partially valid
996 			 * then we stop.
997 			 */
998 			for (j = 0;j < tbp->b_xio.xio_npages; j++) {
999 				if (tbp->b_xio.xio_pages[j]->valid)
1000 					break;
1001 			}
1002 			if (j != tbp->b_xio.xio_npages) {
1003 				bqrelse(tbp);
1004 				break;
1005 			}
1006 
1007 			/*
1008 			 * Depress the priority of buffers not explicitly
1009 			 * requested.
1010 			 */
1011 			/* tbp->b_flags |= B_AGE; */
1012 
1013 			/*
1014 			 * Set the block number if it isn't set, otherwise
1015 			 * if it is make sure it matches the block number we
1016 			 * expect.
1017 			 */
1018 			if (tbp->b_bio2.bio_offset == NOOFFSET) {
1019 				tbp->b_bio2.bio_offset = boffset;
1020 			} else if (tbp->b_bio2.bio_offset != boffset) {
1021 				brelse(tbp);
1022 				break;
1023 			}
1024 		}
1025 
1026 		/*
1027 		 * Set B_RAM if (*srp) is 1.  B_RAM is only set on one buffer
1028 		 * in the cluster, including potentially the first buffer
1029 		 * once we start streaming the read-aheads.
1030 		 */
1031 		if (--*srp == 0)
1032 			cluster_setram(tbp);
1033 		else
1034 			cluster_clrram(tbp);
1035 
1036 		/*
1037 		 * The passed-in tbp (i == 0) will already be set up for
1038 		 * async or sync operation.  All other tbp's acquire in
1039 		 * our loop are set up for async operation.
1040 		 */
1041 		tbp->b_cmd = BUF_CMD_READ;
1042 		BUF_KERNPROC(tbp);
1043 		cluster_append(&bp->b_bio1, tbp);
1044 		for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
1045 			vm_page_t m;
1046 
1047 			m = tbp->b_xio.xio_pages[j];
1048 			vm_page_busy_wait(m, FALSE, "clurpg");
1049 			vm_page_io_start(m);
1050 			vm_page_wakeup(m);
1051 			vm_object_pip_add(m->object, 1);
1052 			if ((bp->b_xio.xio_npages == 0) ||
1053 				(bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
1054 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
1055 				bp->b_xio.xio_npages++;
1056 			}
1057 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
1058 				tbp->b_xio.xio_pages[j] = bogus_page;
1059 				tbp->b_flags |= B_HASBOGUS;
1060 			}
1061 		}
1062 		/*
1063 		 * XXX shouldn't this be += size for both, like in
1064 		 * cluster_wbuild()?
1065 		 *
1066 		 * Don't inherit tbp->b_bufsize as it may be larger due to
1067 		 * a non-page-aligned size.  Instead just aggregate using
1068 		 * 'size'.
1069 		 */
1070 		if (tbp->b_bcount != blksize)
1071 		    kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, blksize);
1072 		if (tbp->b_bufsize != blksize)
1073 		    kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, blksize);
1074 		bp->b_bcount += blksize;
1075 		bp->b_bufsize += blksize;
1076 	}
1077 
1078 	/*
1079 	 * Fully valid pages in the cluster are already good and do not need
1080 	 * to be re-read from disk.  Replace the page with bogus_page
1081 	 */
1082 	for (j = 0; j < bp->b_xio.xio_npages; j++) {
1083 		if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
1084 		    VM_PAGE_BITS_ALL) {
1085 			bp->b_xio.xio_pages[j] = bogus_page;
1086 			bp->b_flags |= B_HASBOGUS;
1087 		}
1088 	}
1089 	if (bp->b_bufsize > bp->b_kvasize) {
1090 		panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
1091 		    bp->b_bufsize, bp->b_kvasize);
1092 	}
1093 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
1094 		(vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1095 	BUF_KERNPROC(bp);
1096 	return (bp);
1097 }
1098 
1099 /*
1100  * Cleanup after a clustered read or write.
1101  * This is complicated by the fact that any of the buffers might have
1102  * extra memory (if there were no empty buffer headers at allocbuf time)
1103  * that we will need to shift around.
1104  *
1105  * The returned bio is &bp->b_bio1
1106  */
1107 static void
1108 cluster_callback(struct bio *bio)
1109 {
1110 	struct buf *bp = bio->bio_buf;
1111 	struct buf *tbp;
1112 	struct vnode *vp;
1113 	int error = 0;
1114 
1115 	/*
1116 	 * Must propogate errors to all the components.  A short read (EOF)
1117 	 * is a critical error.
1118 	 */
1119 	if (bp->b_flags & B_ERROR) {
1120 		error = bp->b_error;
1121 	} else if (bp->b_bcount != bp->b_bufsize) {
1122 		panic("cluster_callback: unexpected EOF on cluster %p!", bio);
1123 	}
1124 
1125 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1126 		     bp->b_xio.xio_npages);
1127 	/*
1128 	 * Move memory from the large cluster buffer into the component
1129 	 * buffers and mark IO as done on these.  Since the memory map
1130 	 * is the same, no actual copying is required.
1131 	 */
1132 	while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
1133 		bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
1134 		if (error) {
1135 			tbp->b_flags |= B_ERROR | B_IOISSUED;
1136 			tbp->b_error = error;
1137 		} else {
1138 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
1139 			tbp->b_flags &= ~(B_ERROR | B_INVAL);
1140 			if (tbp->b_cmd == BUF_CMD_READ) {
1141 				tbp->b_flags = (tbp->b_flags & ~B_NOTMETA) |
1142 					       (bp->b_flags & B_NOTMETA);
1143 			}
1144 			tbp->b_flags |= B_IOISSUED;
1145 			/*
1146 			 * XXX the bdwrite()/bqrelse() issued during
1147 			 * cluster building clears B_RELBUF (see bqrelse()
1148 			 * comment).  If direct I/O was specified, we have
1149 			 * to restore it here to allow the buffer and VM
1150 			 * to be freed.
1151 			 */
1152 			if (tbp->b_flags & B_DIRECT)
1153 				tbp->b_flags |= B_RELBUF;
1154 
1155 			/*
1156 			 * XXX I think biodone() below will do this, but do
1157 			 *     it here anyway for consistency.
1158 			 */
1159 			if (tbp->b_cmd == BUF_CMD_WRITE)
1160 				bundirty(tbp);
1161 		}
1162 		biodone(&tbp->b_bio1);
1163 	}
1164 	vp = bp->b_vp;
1165 	bp->b_vp = NULL;
1166 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1167 		relpbuf(bp, &vp->v_pbuf_count);
1168 	else
1169 		relpbuf(bp, &vp->v_mount->mnt_pbuf_count);
1170 }
1171 
1172 /*
1173  * Implement modified write build for cluster.
1174  *
1175  * 	write_behind = 0	write behind disabled
1176  *	write_behind = 1	write behind normal (default)
1177  *	write_behind = 2	write behind backed-off
1178  *
1179  * In addition, write_behind is only activated for files that have
1180  * grown past a certain size (default 10MB).  Otherwise temporary files
1181  * wind up generating a lot of unnecessary disk I/O.
1182  */
1183 static __inline int
1184 cluster_wbuild_wb(struct vnode *vp, int blksize, off_t start_loffset, int len)
1185 {
1186 	int r = 0;
1187 
1188 	switch(write_behind) {
1189 	case 2:
1190 		if (start_loffset < len)
1191 			break;
1192 		start_loffset -= len;
1193 		/* fall through */
1194 	case 1:
1195 		if (vp->v_filesize >= write_behind_minfilesize) {
1196 			r = cluster_wbuild(vp, NULL, blksize,
1197 					   start_loffset, len);
1198 		}
1199 		/* fall through */
1200 	default:
1201 		/* fall through */
1202 		break;
1203 	}
1204 	return(r);
1205 }
1206 
1207 /*
1208  * Do clustered write for FFS.
1209  *
1210  * Three cases:
1211  *	1. Write is not sequential (write asynchronously)
1212  *	Write is sequential:
1213  *	2.	beginning of cluster - begin cluster
1214  *	3.	middle of a cluster - add to cluster
1215  *	4.	end of a cluster - asynchronously write cluster
1216  *
1217  * WARNING! vnode fields are not locked and must ONLY be used heuristically.
1218  */
1219 void
1220 cluster_write(struct buf *bp, off_t filesize, int blksize, int seqcount)
1221 {
1222 	struct vnode *vp;
1223 	off_t loffset;
1224 	int maxclen, cursize;
1225 	int async;
1226 	cluster_cache_t dummy;
1227 	cluster_cache_t *cc;
1228 
1229 	vp = bp->b_vp;
1230 	if (vp->v_type == VREG)
1231 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
1232 	else
1233 		async = 0;
1234 	loffset = bp->b_loffset;
1235 	KASSERT(bp->b_loffset != NOOFFSET,
1236 		("cluster_write: no buffer offset"));
1237 
1238 	cc = cluster_getcache(&dummy, vp, loffset);
1239 
1240 	/*
1241 	 * Initialize vnode to beginning of file.
1242 	 */
1243 	if (loffset == 0)
1244 		cc->v_lasta = cc->v_clen = cc->v_cstart = cc->v_lastw = 0;
1245 
1246 	if (cc->v_clen == 0 || loffset != cc->v_lastw ||
1247 	    (bp->b_bio2.bio_offset != NOOFFSET &&
1248 	     (bp->b_bio2.bio_offset != cc->v_lasta))) {
1249 		/*
1250 		 * Next block is not logically sequential, or, if physical
1251 		 * block offsets are available, not physically sequential.
1252 		 *
1253 		 * If physical block offsets are not available we only
1254 		 * get here if we weren't logically sequential.
1255 		 */
1256 		maxclen = vmaxiosize(vp);
1257 		if (cc->v_clen != 0) {
1258 			/*
1259 			 * Next block is not sequential.
1260 			 *
1261 			 * If we are not writing at end of file, the process
1262 			 * seeked to another point in the file since its last
1263 			 * write, or we have reached our maximum cluster size,
1264 			 * then push the previous cluster. Otherwise try
1265 			 * reallocating to make it sequential.
1266 			 *
1267 			 * Change to algorithm: only push previous cluster if
1268 			 * it was sequential from the point of view of the
1269 			 * seqcount heuristic, otherwise leave the buffer
1270 			 * intact so we can potentially optimize the I/O
1271 			 * later on in the buf_daemon or update daemon
1272 			 * flush.
1273 			 */
1274 			cursize = cc->v_lastw - cc->v_cstart;
1275 			if (bp->b_loffset + blksize < filesize ||
1276 			    loffset != cc->v_lastw ||
1277 			    cc->v_clen <= cursize) {
1278 				if (!async && seqcount > 0) {
1279 					cluster_wbuild_wb(vp, blksize,
1280 						cc->v_cstart, cursize);
1281 				}
1282 			} else {
1283 				struct buf **bpp, **endbp;
1284 				struct cluster_save *buflist;
1285 
1286 				buflist = cluster_collectbufs(cc, vp,
1287 							      bp, blksize);
1288 				endbp = &buflist->bs_children
1289 					[buflist->bs_nchildren - 1];
1290 				if (VOP_REALLOCBLKS(vp, buflist)) {
1291 					/*
1292 					 * Failed, push the previous cluster
1293 					 * if *really* writing sequentially
1294 					 * in the logical file (seqcount > 1),
1295 					 * otherwise delay it in the hopes that
1296 					 * the low level disk driver can
1297 					 * optimize the write ordering.
1298 					 *
1299 					 * NOTE: We do not brelse the last
1300 					 *	 element which is bp, and we
1301 					 *	 do not return here.
1302 					 */
1303 					for (bpp = buflist->bs_children;
1304 					     bpp < endbp; bpp++)
1305 						brelse(*bpp);
1306 					kfree(buflist, M_SEGMENT);
1307 					if (seqcount > 1) {
1308 						cluster_wbuild_wb(vp,
1309 						    blksize, cc->v_cstart,
1310 						    cursize);
1311 					}
1312 				} else {
1313 					/*
1314 					 * Succeeded, keep building cluster.
1315 					 */
1316 					for (bpp = buflist->bs_children;
1317 					     bpp <= endbp; bpp++)
1318 						bdwrite(*bpp);
1319 					kfree(buflist, M_SEGMENT);
1320 					cc->v_lastw = loffset + blksize;
1321 					cc->v_lasta = bp->b_bio2.bio_offset +
1322 						      blksize;
1323 					cluster_putcache(cc);
1324 					return;
1325 				}
1326 			}
1327 		}
1328 
1329 		/*
1330 		 * Consider beginning a cluster. If at end of file, make
1331 		 * cluster as large as possible, otherwise find size of
1332 		 * existing cluster.
1333 		 */
1334 		if ((vp->v_type == VREG) &&
1335 		    bp->b_loffset + blksize < filesize &&
1336 		    (bp->b_bio2.bio_offset == NOOFFSET) &&
1337 		    (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL, BUF_CMD_WRITE) ||
1338 		     bp->b_bio2.bio_offset == NOOFFSET)) {
1339 			bdwrite(bp);
1340 			cc->v_clen = 0;
1341 			cc->v_lasta = bp->b_bio2.bio_offset + blksize;
1342 			cc->v_cstart = loffset;
1343 			cc->v_lastw = loffset + blksize;
1344 			cluster_putcache(cc);
1345 			return;
1346 		}
1347 		if (maxclen > blksize)
1348 			cc->v_clen = maxclen;
1349 		else
1350 			cc->v_clen = blksize;
1351 		if (!async && cc->v_clen == 0) { /* I/O not contiguous */
1352 			cc->v_cstart = loffset;
1353 			bdwrite(bp);
1354 		} else {	/* Wait for rest of cluster */
1355 			cc->v_cstart = loffset;
1356 			bdwrite(bp);
1357 		}
1358 	} else if (loffset == cc->v_cstart + cc->v_clen) {
1359 		/*
1360 		 * At end of cluster, write it out if seqcount tells us we
1361 		 * are operating sequentially, otherwise let the buf or
1362 		 * update daemon handle it.
1363 		 */
1364 		bdwrite(bp);
1365 		if (seqcount > 1)
1366 			cluster_wbuild_wb(vp, blksize, cc->v_cstart,
1367 					  cc->v_clen + blksize);
1368 		cc->v_clen = 0;
1369 		cc->v_cstart = loffset;
1370 	} else if (vm_page_count_severe() &&
1371 		   bp->b_loffset + blksize < filesize) {
1372 		/*
1373 		 * We are low on memory, get it going NOW.  However, do not
1374 		 * try to push out a partial block at the end of the file
1375 		 * as this could lead to extremely non-optimal write activity.
1376 		 */
1377 		bawrite(bp);
1378 	} else {
1379 		/*
1380 		 * In the middle of a cluster, so just delay the I/O for now.
1381 		 */
1382 		bdwrite(bp);
1383 	}
1384 	cc->v_lastw = loffset + blksize;
1385 	cc->v_lasta = bp->b_bio2.bio_offset + blksize;
1386 	cluster_putcache(cc);
1387 }
1388 
1389 /*
1390  * This is the clustered version of bawrite().  It works similarly to
1391  * cluster_write() except I/O on the buffer is guaranteed to occur.
1392  */
1393 int
1394 cluster_awrite(struct buf *bp)
1395 {
1396 	int total;
1397 
1398 	/*
1399 	 * Don't bother if it isn't clusterable.
1400 	 */
1401 	if ((bp->b_flags & B_CLUSTEROK) == 0 ||
1402 	    bp->b_vp == NULL ||
1403 	    (bp->b_vp->v_flag & VOBJBUF) == 0) {
1404 		total = bp->b_bufsize;
1405 		bawrite(bp);
1406 		return (total);
1407 	}
1408 
1409 	total = cluster_wbuild(bp->b_vp, &bp, bp->b_bufsize,
1410 			       bp->b_loffset, vmaxiosize(bp->b_vp));
1411 
1412 	/*
1413 	 * If bp is still non-NULL then cluster_wbuild() did not initiate
1414 	 * I/O on it and we must do so here to provide the API guarantee.
1415 	 */
1416 	if (bp)
1417 		bawrite(bp);
1418 
1419 	return total;
1420 }
1421 
1422 /*
1423  * This is an awful lot like cluster_rbuild...wish they could be combined.
1424  * The last lbn argument is the current block on which I/O is being
1425  * performed.  Check to see that it doesn't fall in the middle of
1426  * the current block (if last_bp == NULL).
1427  *
1428  * cluster_wbuild() normally does not guarantee anything.  If bpp is
1429  * non-NULL and cluster_wbuild() is able to incorporate it into the
1430  * I/O it will set *bpp to NULL, otherwise it will leave it alone and
1431  * the caller must dispose of *bpp.
1432  */
1433 static int
1434 cluster_wbuild(struct vnode *vp, struct buf **bpp,
1435 	       int blksize, off_t start_loffset, int bytes)
1436 {
1437 	struct buf *bp, *tbp;
1438 	int i, j;
1439 	int totalwritten = 0;
1440 	int must_initiate;
1441 	int maxiosize = vmaxiosize(vp);
1442 
1443 	while (bytes > 0) {
1444 		/*
1445 		 * If the buffer matches the passed locked & removed buffer
1446 		 * we used the passed buffer (which might not be B_DELWRI).
1447 		 *
1448 		 * Otherwise locate the buffer and determine if it is
1449 		 * compatible.
1450 		 */
1451 		if (bpp && (*bpp)->b_loffset == start_loffset) {
1452 			tbp = *bpp;
1453 			*bpp = NULL;
1454 			bpp = NULL;
1455 		} else {
1456 			tbp = findblk(vp, start_loffset, FINDBLK_NBLOCK);
1457 			if (tbp == NULL ||
1458 			    (tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) !=
1459 			     B_DELWRI ||
1460 			    (LIST_FIRST(&tbp->b_dep) && buf_checkwrite(tbp))) {
1461 				if (tbp)
1462 					BUF_UNLOCK(tbp);
1463 				start_loffset += blksize;
1464 				bytes -= blksize;
1465 				continue;
1466 			}
1467 			bremfree(tbp);
1468 		}
1469 		KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
1470 
1471 		/*
1472 		 * Extra memory in the buffer, punt on this buffer.
1473 		 * XXX we could handle this in most cases, but we would
1474 		 * have to push the extra memory down to after our max
1475 		 * possible cluster size and then potentially pull it back
1476 		 * up if the cluster was terminated prematurely--too much
1477 		 * hassle.
1478 		 */
1479 		if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
1480 		    (tbp->b_bcount != tbp->b_bufsize) ||
1481 		    (tbp->b_bcount != blksize) ||
1482 		    (bytes == blksize)) {
1483 			totalwritten += tbp->b_bufsize;
1484 			bawrite(tbp);
1485 			start_loffset += blksize;
1486 			bytes -= blksize;
1487 			continue;
1488 		}
1489 
1490 		/*
1491 		 * Get a pbuf, limit cluster I/O on a per-device basis.  If
1492 		 * doing cluster I/O for a file, limit cluster I/O on a
1493 		 * per-mount basis.
1494 		 *
1495 		 * HAMMER and other filesystems may attempt to queue a massive
1496 		 * amount of write I/O, using trypbuf() here easily results in
1497 		 * situation where the I/O stream becomes non-clustered.
1498 		 */
1499 		if (vp->v_type == VCHR || vp->v_type == VBLK)
1500 			bp = getpbuf_kva(&vp->v_pbuf_count);
1501 		else
1502 			bp = getpbuf_kva(&vp->v_mount->mnt_pbuf_count);
1503 
1504 		/*
1505 		 * Set up the pbuf.  Track our append point with b_bcount
1506 		 * and b_bufsize.  b_bufsize is not used by the device but
1507 		 * our caller uses it to loop clusters and we use it to
1508 		 * detect a premature EOF on the block device.
1509 		 */
1510 		bp->b_bcount = 0;
1511 		bp->b_bufsize = 0;
1512 		bp->b_xio.xio_npages = 0;
1513 		bp->b_loffset = tbp->b_loffset;
1514 		bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
1515 		bp->b_vp = vp;
1516 
1517 		/*
1518 		 * We are synthesizing a buffer out of vm_page_t's, but
1519 		 * if the block size is not page aligned then the starting
1520 		 * address may not be either.  Inherit the b_data offset
1521 		 * from the original buffer.
1522 		 */
1523 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
1524 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
1525 		bp->b_flags &= ~(B_ERROR | B_NOTMETA);
1526 		bp->b_flags |= B_CLUSTER | B_BNOCLIP |
1527 			       (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT |
1528 						B_NOTMETA));
1529 		bp->b_bio1.bio_caller_info1.cluster_head = NULL;
1530 		bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
1531 
1532 		/*
1533 		 * From this location in the file, scan forward to see
1534 		 * if there are buffers with adjacent data that need to
1535 		 * be written as well.
1536 		 *
1537 		 * IO *must* be initiated on index 0 at this point
1538 		 * (particularly when called from cluster_awrite()).
1539 		 */
1540 		for (i = 0; i < bytes; (i += blksize), (start_loffset += blksize)) {
1541 			if (i == 0) {
1542 				must_initiate = 1;
1543 			} else {
1544 				/*
1545 				 * Not first buffer.
1546 				 */
1547 				must_initiate = 0;
1548 				tbp = findblk(vp, start_loffset,
1549 					      FINDBLK_NBLOCK);
1550 				/*
1551 				 * Buffer not found or could not be locked
1552 				 * non-blocking.
1553 				 */
1554 				if (tbp == NULL)
1555 					break;
1556 
1557 				/*
1558 				 * If it IS in core, but has different
1559 				 * characteristics, then don't cluster
1560 				 * with it.
1561 				 */
1562 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
1563 				     B_INVAL | B_DELWRI | B_NEEDCOMMIT))
1564 				    != (B_DELWRI | B_CLUSTEROK |
1565 				     (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
1566 				    (tbp->b_flags & B_LOCKED)
1567 				) {
1568 					BUF_UNLOCK(tbp);
1569 					break;
1570 				}
1571 
1572 				/*
1573 				 * Check that the combined cluster
1574 				 * would make sense with regard to pages
1575 				 * and would not be too large
1576 				 *
1577 				 * WARNING! buf_checkwrite() must be the last
1578 				 *	    check made.  If it returns 0 then
1579 				 *	    we must initiate the I/O.
1580 				 */
1581 				if ((tbp->b_bcount != blksize) ||
1582 				  ((bp->b_bio2.bio_offset + i) !=
1583 				    tbp->b_bio2.bio_offset) ||
1584 				  ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
1585 				    (maxiosize / PAGE_SIZE)) ||
1586 				  (LIST_FIRST(&tbp->b_dep) &&
1587 				   buf_checkwrite(tbp))
1588 				) {
1589 					BUF_UNLOCK(tbp);
1590 					break;
1591 				}
1592 				if (LIST_FIRST(&tbp->b_dep))
1593 					must_initiate = 1;
1594 				/*
1595 				 * Ok, it's passed all the tests,
1596 				 * so remove it from the free list
1597 				 * and mark it busy. We will use it.
1598 				 */
1599 				bremfree(tbp);
1600 				KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
1601 			}
1602 
1603 			/*
1604 			 * If the IO is via the VM then we do some
1605 			 * special VM hackery (yuck).  Since the buffer's
1606 			 * block size may not be page-aligned it is possible
1607 			 * for a page to be shared between two buffers.  We
1608 			 * have to get rid of the duplication when building
1609 			 * the cluster.
1610 			 */
1611 			if (tbp->b_flags & B_VMIO) {
1612 				vm_page_t m;
1613 
1614 				/*
1615 				 * Try to avoid deadlocks with the VM system.
1616 				 * However, we cannot abort the I/O if
1617 				 * must_initiate is non-zero.
1618 				 */
1619 				if (must_initiate == 0) {
1620 					for (j = 0;
1621 					     j < tbp->b_xio.xio_npages;
1622 					     ++j) {
1623 						m = tbp->b_xio.xio_pages[j];
1624 						if (m->flags & PG_BUSY) {
1625 							bqrelse(tbp);
1626 							goto finishcluster;
1627 						}
1628 					}
1629 				}
1630 
1631 				for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
1632 					m = tbp->b_xio.xio_pages[j];
1633 					vm_page_busy_wait(m, FALSE, "clurpg");
1634 					vm_page_io_start(m);
1635 					vm_page_wakeup(m);
1636 					vm_object_pip_add(m->object, 1);
1637 					if ((bp->b_xio.xio_npages == 0) ||
1638 					  (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
1639 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
1640 						bp->b_xio.xio_npages++;
1641 					}
1642 				}
1643 			}
1644 			bp->b_bcount += blksize;
1645 			bp->b_bufsize += blksize;
1646 
1647 			/*
1648 			 * NOTE: see bwrite/bawrite code for why we no longer
1649 			 *	 undirty tbp here.
1650 			 *
1651 			 *       bundirty(tbp); REMOVED
1652 			 */
1653 			tbp->b_flags &= ~B_ERROR;
1654 			tbp->b_cmd = BUF_CMD_WRITE;
1655 			BUF_KERNPROC(tbp);
1656 			cluster_append(&bp->b_bio1, tbp);
1657 
1658 			/*
1659 			 * check for latent dependencies to be handled
1660 			 */
1661 			if (LIST_FIRST(&tbp->b_dep) != NULL)
1662 				buf_start(tbp);
1663 		}
1664 	finishcluster:
1665 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1666 			    (vm_page_t *)bp->b_xio.xio_pages,
1667 			    bp->b_xio.xio_npages);
1668 		if (bp->b_bufsize > bp->b_kvasize) {
1669 			panic("cluster_wbuild: b_bufsize(%d) "
1670 			      "> b_kvasize(%d)\n",
1671 			      bp->b_bufsize, bp->b_kvasize);
1672 		}
1673 		totalwritten += bp->b_bufsize;
1674 		bp->b_dirtyoff = 0;
1675 		bp->b_dirtyend = bp->b_bufsize;
1676 		bp->b_bio1.bio_done = cluster_callback;
1677 		bp->b_cmd = BUF_CMD_WRITE;
1678 
1679 		vfs_busy_pages(vp, bp);
1680 		bsetrunningbufspace(bp, bp->b_bufsize);
1681 		BUF_KERNPROC(bp);
1682 		vn_strategy(vp, &bp->b_bio1);
1683 
1684 		bytes -= i;
1685 	}
1686 	return totalwritten;
1687 }
1688 
1689 /*
1690  * Collect together all the buffers in a cluster, plus add one
1691  * additional buffer passed-in.
1692  *
1693  * Only pre-existing buffers whos block size matches blksize are collected.
1694  * (this is primarily because HAMMER1 uses varying block sizes and we don't
1695  * want to override its choices).
1696  *
1697  * This code will not try to collect buffers that it cannot lock, otherwise
1698  * it might deadlock against SMP-friendly filesystems.
1699  */
1700 static struct cluster_save *
1701 cluster_collectbufs(cluster_cache_t *cc, struct vnode *vp,
1702 		    struct buf *last_bp, int blksize)
1703 {
1704 	struct cluster_save *buflist;
1705 	struct buf *bp;
1706 	off_t loffset;
1707 	int i, len;
1708 	int j;
1709 	int k;
1710 
1711 	len = (int)(cc->v_lastw - cc->v_cstart) / blksize;
1712 	KKASSERT(len > 0);
1713 	buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1714 			 M_SEGMENT, M_WAITOK);
1715 	buflist->bs_nchildren = 0;
1716 	buflist->bs_children = (struct buf **) (buflist + 1);
1717 	for (loffset = cc->v_cstart, i = 0, j = 0;
1718 	     i < len;
1719 	     (loffset += blksize), i++) {
1720 		bp = getcacheblk(vp, loffset,
1721 				 last_bp->b_bcount, GETBLK_SZMATCH |
1722 						    GETBLK_NOWAIT);
1723 		buflist->bs_children[i] = bp;
1724 		if (bp == NULL) {
1725 			j = i + 1;
1726 		} else if (bp->b_bio2.bio_offset == NOOFFSET) {
1727 			VOP_BMAP(bp->b_vp, bp->b_loffset,
1728 				 &bp->b_bio2.bio_offset,
1729 				 NULL, NULL, BUF_CMD_WRITE);
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * Get rid of gaps
1735 	 */
1736 	for (k = 0; k < j; ++k) {
1737 		if (buflist->bs_children[k]) {
1738 			bqrelse(buflist->bs_children[k]);
1739 			buflist->bs_children[k] = NULL;
1740 		}
1741 	}
1742 	if (j != 0) {
1743 		if (j != i) {
1744 			bcopy(buflist->bs_children + j,
1745 			      buflist->bs_children + 0,
1746 			      sizeof(buflist->bs_children[0]) * (i - j));
1747 		}
1748 		i -= j;
1749 	}
1750 	buflist->bs_children[i] = bp = last_bp;
1751 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1752 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1753 			 NULL, NULL, BUF_CMD_WRITE);
1754 	}
1755 	buflist->bs_nchildren = i + 1;
1756 	return (buflist);
1757 }
1758 
1759 void
1760 cluster_append(struct bio *bio, struct buf *tbp)
1761 {
1762 	tbp->b_cluster_next = NULL;
1763 	if (bio->bio_caller_info1.cluster_head == NULL) {
1764 		bio->bio_caller_info1.cluster_head = tbp;
1765 		bio->bio_caller_info2.cluster_tail = tbp;
1766 	} else {
1767 		bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
1768 		bio->bio_caller_info2.cluster_tail = tbp;
1769 	}
1770 }
1771 
1772 static
1773 void
1774 cluster_setram(struct buf *bp)
1775 {
1776 	bp->b_flags |= B_RAM;
1777 	if (bp->b_xio.xio_npages)
1778 		vm_page_flag_set(bp->b_xio.xio_pages[0], PG_RAM);
1779 }
1780 
1781 static
1782 void
1783 cluster_clrram(struct buf *bp)
1784 {
1785 	bp->b_flags &= ~B_RAM;
1786 	if (bp->b_xio.xio_npages)
1787 		vm_page_flag_clear(bp->b_xio.xio_pages[0], PG_RAM);
1788 }
1789