xref: /dragonfly/sys/kern/vfs_cluster.c (revision 8a7bdfea)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37  * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.33 2008/04/22 18:46:51 dillon Exp $
38  */
39 
40 #include "opt_debug_cluster.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
58 
59 #if defined(CLUSTERDEBUG)
60 #include <sys/sysctl.h>
61 static int	rcluster= 0;
62 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
63 #endif
64 
65 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
66 
67 static struct cluster_save *
68 	cluster_collectbufs (struct vnode *vp, struct buf *last_bp,
69 			    int lblocksize);
70 static struct buf *
71 	cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
72 			    off_t doffset, int size, int run,
73 			    struct buf *fbp, int doasync);
74 static void cluster_callback (struct bio *);
75 
76 
77 static int write_behind = 1;
78 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
79 
80 extern vm_page_t	bogus_page;
81 
82 extern int cluster_pbuf_freecnt;
83 
84 /*
85  * Maximum number of blocks for read-ahead.
86  */
87 #define MAXRA 32
88 
89 /*
90  * This replaces bread.
91  */
92 int
93 cluster_read(struct vnode *vp, off_t filesize, off_t loffset,
94 	     int size, int totread, int seqcount, struct buf **bpp)
95 {
96 	struct buf *bp, *rbp, *reqbp;
97 	off_t origoffset;
98 	off_t doffset;
99 	int error;
100 	int i;
101 	int maxra, racluster;
102 
103 	error = 0;
104 
105 	/*
106 	 * Try to limit the amount of read-ahead by a few
107 	 * ad-hoc parameters.  This needs work!!!
108 	 */
109 	racluster = vp->v_mount->mnt_iosize_max / size;
110 	maxra = 2 * racluster + (totread / size);
111 	if (maxra > MAXRA)
112 		maxra = MAXRA;
113 	if (maxra > nbuf/8)
114 		maxra = nbuf/8;
115 
116 	/*
117 	 * get the requested block
118 	 */
119 	*bpp = reqbp = bp = getblk(vp, loffset, size, 0, 0);
120 	origoffset = loffset;
121 
122 	/*
123 	 * if it is in the cache, then check to see if the reads have been
124 	 * sequential.  If they have, then try some read-ahead, otherwise
125 	 * back-off on prospective read-aheads.
126 	 */
127 	if (bp->b_flags & B_CACHE) {
128 		if (!seqcount) {
129 			return 0;
130 		} else if ((bp->b_flags & B_RAM) == 0) {
131 			return 0;
132 		} else {
133 			struct buf *tbp;
134 			bp->b_flags &= ~B_RAM;
135 			/*
136 			 * We do the crit here so that there is no window
137 			 * between the findblk and the b_usecount increment
138 			 * below.  We opt to keep the crit out of the loop
139 			 * for efficiency.
140 			 */
141 			crit_enter();
142 			for (i = 1; i < maxra; i++) {
143 				if (!(tbp = findblk(vp, loffset + i * size))) {
144 					break;
145 				}
146 
147 				/*
148 				 * Set another read-ahead mark so we know
149 				 * to check again.
150 				 */
151 				if (((i % racluster) == (racluster - 1)) ||
152 					(i == (maxra - 1)))
153 					tbp->b_flags |= B_RAM;
154 			}
155 			crit_exit();
156 			if (i >= maxra) {
157 				return 0;
158 			}
159 			loffset += i * size;
160 		}
161 		reqbp = bp = NULL;
162 	} else {
163 		off_t firstread = bp->b_loffset;
164 		int nblks;
165 
166 		KASSERT(firstread != NOOFFSET,
167 			("cluster_read: no buffer offset"));
168 		if (firstread + totread > filesize)
169 			totread = (int)(filesize - firstread);
170 		nblks = totread / size;
171 		if (nblks) {
172 			int burstbytes;
173 
174 			if (nblks > racluster)
175 				nblks = racluster;
176 
177 	    		error = VOP_BMAP(vp, loffset,
178 					 &doffset, &burstbytes, NULL);
179 			if (error)
180 				goto single_block_read;
181 			if (doffset == NOOFFSET)
182 				goto single_block_read;
183 			if (burstbytes < size * 2)
184 				goto single_block_read;
185 			if (nblks > burstbytes / size)
186 				nblks = burstbytes / size;
187 
188 			bp = cluster_rbuild(vp, filesize, loffset,
189 					    doffset, size, nblks, bp, 0);
190 			loffset += bp->b_bufsize;
191 		} else {
192 single_block_read:
193 			/*
194 			 * if it isn't in the cache, then get a chunk from
195 			 * disk if sequential, otherwise just get the block.
196 			 */
197 			bp->b_flags |= B_RAM;
198 			loffset += size;
199 		}
200 	}
201 
202 	/*
203 	 * Handle the synchronous read.  This only occurs if B_CACHE was
204 	 * not set.  bp (and rbp) could be either a cluster bp or a normal
205 	 * bp depending on the what cluster_rbuild() decided to do.  If
206 	 * it is a cluster bp, vfs_busy_pages() has already been called.
207 	 */
208 	if (bp) {
209 #if defined(CLUSTERDEBUG)
210 		if (rcluster)
211 			kprintf("S(%lld,%d,%d) ",
212 			    bp->b_loffset, bp->b_bcount, seqcount);
213 #endif
214 		bp->b_cmd = BUF_CMD_READ;
215 		if ((bp->b_flags & B_CLUSTER) == 0)
216 			vfs_busy_pages(vp, bp);
217 		bp->b_flags &= ~(B_ERROR|B_INVAL);
218 		if ((bp->b_flags & B_ASYNC) || bp->b_bio1.bio_done != NULL)
219 			BUF_KERNPROC(bp);
220 		vn_strategy(vp, &bp->b_bio1);
221 		error = bp->b_error;
222 	}
223 
224 	/*
225 	 * If we have been doing sequential I/O, then do some read-ahead.
226 	 */
227 	rbp = NULL;
228 	if (!error &&
229 	    seqcount &&
230 	    loffset < origoffset + seqcount * size &&
231 	    loffset + size <= filesize
232 	) {
233 		int nblksread;
234 		int ntoread;
235 		int burstbytes;
236 
237 		rbp = getblk(vp, loffset, size, 0, 0);
238 		if ((rbp->b_flags & B_CACHE)) {
239 			bqrelse(rbp);
240 			goto no_read_ahead;
241 		}
242 
243 		error = VOP_BMAP(vp, loffset,
244 				 &doffset, &burstbytes, NULL);
245 		if (error || doffset == NOOFFSET) {
246 			rbp->b_flags |= B_INVAL;
247 			brelse(rbp);
248 			rbp = NULL;
249 			goto no_read_ahead;
250 		}
251 		ntoread = burstbytes / size;
252 		nblksread = (totread + size - 1) / size;
253 		if (seqcount < nblksread)
254 			seqcount = nblksread;
255 		if (seqcount < ntoread)
256 			ntoread = seqcount;
257 
258 		rbp->b_flags |= B_RAM;
259 		if (burstbytes) {
260 			rbp = cluster_rbuild(vp, filesize, loffset,
261 					     doffset, size,
262 					     ntoread, rbp, 1);
263 		} else {
264 			rbp->b_bio2.bio_offset = doffset;
265 		}
266 #if defined(CLUSTERDEBUG)
267 		if (rcluster) {
268 			if (bp)
269 				kprintf("A+(%lld,%d,%lld,%d) ",
270 				    rbp->b_loffset, rbp->b_bcount,
271 				    rbp->b_loffset - origoffset,
272 				    seqcount);
273 			else
274 				kprintf("A(%lld,%d,%lld,%d) ",
275 				    rbp->b_loffset, rbp->b_bcount,
276 				    rbp->b_loffset - origoffset,
277 				    seqcount);
278 		}
279 #endif
280 		rbp->b_flags &= ~(B_ERROR|B_INVAL);
281 		rbp->b_flags |= B_ASYNC;
282 		rbp->b_cmd = BUF_CMD_READ;
283 
284 		if ((rbp->b_flags & B_CLUSTER) == 0)
285 			vfs_busy_pages(vp, rbp);
286 		BUF_KERNPROC(rbp);			/* B_ASYNC */
287 		vn_strategy(vp, &rbp->b_bio1);
288 	}
289 no_read_ahead:
290 
291 	if (reqbp)
292 		return (biowait(reqbp));
293 	else
294 		return (error);
295 }
296 
297 /*
298  * If blocks are contiguous on disk, use this to provide clustered
299  * read ahead.  We will read as many blocks as possible sequentially
300  * and then parcel them up into logical blocks in the buffer hash table.
301  */
302 static struct buf *
303 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset,
304 	off_t doffset, int size, int run, struct buf *fbp, int doasync)
305 {
306 	struct buf *bp, *tbp;
307 	off_t boffset;
308 	int i, j;
309 
310 	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
311 	    ("cluster_rbuild: size %d != filesize %ld\n",
312 	    size, vp->v_mount->mnt_stat.f_iosize));
313 
314 	/*
315 	 * avoid a division
316 	 */
317 	while (loffset + run * size > filesize) {
318 		--run;
319 	}
320 
321 	tbp = fbp;
322 	tbp->b_bio2.bio_offset = doffset;
323 	if((tbp->b_flags & B_MALLOC) ||
324 	    ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
325 		return tbp;
326 	}
327 
328 	bp = trypbuf(&cluster_pbuf_freecnt);
329 	if (bp == NULL)
330 		return tbp;
331 
332 	/*
333 	 * We are synthesizing a buffer out of vm_page_t's, but
334 	 * if the block size is not page aligned then the starting
335 	 * address may not be either.  Inherit the b_data offset
336 	 * from the original buffer.
337 	 */
338 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
339 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
340 	bp->b_flags |= B_ASYNC | B_CLUSTER | B_VMIO;
341 	bp->b_cmd = BUF_CMD_READ;
342 	bp->b_bio1.bio_done = cluster_callback;
343 	bp->b_bio1.bio_caller_info1.cluster_head = NULL;
344 	bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
345 	bp->b_loffset = loffset;
346 	bp->b_bio2.bio_offset = NOOFFSET;
347 	KASSERT(bp->b_loffset != NOOFFSET,
348 		("cluster_rbuild: no buffer offset"));
349 
350 	bp->b_bcount = 0;
351 	bp->b_bufsize = 0;
352 	bp->b_xio.xio_npages = 0;
353 
354 	for (boffset = doffset, i = 0; i < run; ++i, boffset += size) {
355 		if (i) {
356 			if ((bp->b_xio.xio_npages * PAGE_SIZE) +
357 			    round_page(size) > vp->v_mount->mnt_iosize_max) {
358 				break;
359 			}
360 
361 			/*
362 			 * Shortcut some checks and try to avoid buffers that
363 			 * would block in the lock.  The same checks have to
364 			 * be made again after we officially get the buffer.
365 			 */
366 			if ((tbp = findblk(vp, loffset + i * size)) != NULL) {
367 				if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
368 					break;
369 				BUF_UNLOCK(tbp);
370 
371 				for (j = 0; j < tbp->b_xio.xio_npages; j++) {
372 					if (tbp->b_xio.xio_pages[j]->valid)
373 						break;
374 				}
375 
376 				if (j != tbp->b_xio.xio_npages)
377 					break;
378 
379 				if (tbp->b_bcount != size)
380 					break;
381 			}
382 
383 			tbp = getblk(vp, loffset + i * size, size, 0, 0);
384 
385 			/*
386 			 * Stop scanning if the buffer is fuly valid
387 			 * (marked B_CACHE), or locked (may be doing a
388 			 * background write), or if the buffer is not
389 			 * VMIO backed.  The clustering code can only deal
390 			 * with VMIO-backed buffers.
391 			 */
392 			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
393 			    (tbp->b_flags & B_VMIO) == 0 ||
394 			    (LIST_FIRST(&tbp->b_dep) != NULL &&
395 			     buf_checkread(tbp))
396 			) {
397 				bqrelse(tbp);
398 				break;
399 			}
400 
401 			/*
402 			 * The buffer must be completely invalid in order to
403 			 * take part in the cluster.  If it is partially valid
404 			 * then we stop.
405 			 */
406 			for (j = 0;j < tbp->b_xio.xio_npages; j++) {
407 				if (tbp->b_xio.xio_pages[j]->valid)
408 					break;
409 			}
410 			if (j != tbp->b_xio.xio_npages) {
411 				bqrelse(tbp);
412 				break;
413 			}
414 
415 			/*
416 			 * Set a read-ahead mark as appropriate
417 			 */
418 			if (i == 1 || i == (run - 1))
419 				tbp->b_flags |= B_RAM;
420 
421 			/*
422 			 * Set the block number if it isn't set, otherwise
423 			 * if it is make sure it matches the block number we
424 			 * expect.
425 			 */
426 			if (tbp->b_bio2.bio_offset == NOOFFSET) {
427 				tbp->b_bio2.bio_offset = boffset;
428 			} else if (tbp->b_bio2.bio_offset != boffset) {
429 				brelse(tbp);
430 				break;
431 			}
432 		}
433 		/*
434 		 * The first buffer is setup async if doasync is specified.
435 		 * All other buffers in the cluster are setup async.  This
436 		 * way the caller can decide how to deal with the requested
437 		 * buffer.
438 		 */
439 		if (i || doasync)
440 			tbp->b_flags |= B_ASYNC;
441 		tbp->b_cmd = BUF_CMD_READ;
442 		BUF_KERNPROC(tbp);
443 		cluster_append(&bp->b_bio1, tbp);
444 		for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
445 			vm_page_t m;
446 			m = tbp->b_xio.xio_pages[j];
447 			vm_page_io_start(m);
448 			vm_object_pip_add(m->object, 1);
449 			if ((bp->b_xio.xio_npages == 0) ||
450 				(bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
451 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
452 				bp->b_xio.xio_npages++;
453 			}
454 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
455 				tbp->b_xio.xio_pages[j] = bogus_page;
456 		}
457 		/*
458 		 * XXX shouldn't this be += size for both, like in
459 		 * cluster_wbuild()?
460 		 *
461 		 * Don't inherit tbp->b_bufsize as it may be larger due to
462 		 * a non-page-aligned size.  Instead just aggregate using
463 		 * 'size'.
464 		 */
465 		if (tbp->b_bcount != size)
466 		    kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, size);
467 		if (tbp->b_bufsize != size)
468 		    kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, size);
469 		bp->b_bcount += size;
470 		bp->b_bufsize += size;
471 	}
472 
473 	/*
474 	 * Fully valid pages in the cluster are already good and do not need
475 	 * to be re-read from disk.  Replace the page with bogus_page
476 	 */
477 	for (j = 0; j < bp->b_xio.xio_npages; j++) {
478 		if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
479 		    VM_PAGE_BITS_ALL) {
480 			bp->b_xio.xio_pages[j] = bogus_page;
481 		}
482 	}
483 	if (bp->b_bufsize > bp->b_kvasize) {
484 		panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
485 		    bp->b_bufsize, bp->b_kvasize);
486 	}
487 
488 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
489 		(vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
490 	return (bp);
491 }
492 
493 /*
494  * Cleanup after a clustered read or write.
495  * This is complicated by the fact that any of the buffers might have
496  * extra memory (if there were no empty buffer headers at allocbuf time)
497  * that we will need to shift around.
498  *
499  * The returned bio is &bp->b_bio1
500  */
501 void
502 cluster_callback(struct bio *bio)
503 {
504 	struct buf *bp = bio->bio_buf;
505 	struct buf *tbp;
506 	int error = 0;
507 
508 	/*
509 	 * Must propogate errors to all the components.  A short read (EOF)
510 	 * is a critical error.
511 	 */
512 	if (bp->b_flags & B_ERROR) {
513 		error = bp->b_error;
514 	} else if (bp->b_bcount != bp->b_bufsize) {
515 		panic("cluster_callback: unexpected EOF on cluster %p!", bio);
516 	}
517 
518 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
519 	/*
520 	 * Move memory from the large cluster buffer into the component
521 	 * buffers and mark IO as done on these.  Since the memory map
522 	 * is the same, no actual copying is required.
523 	 */
524 	while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
525 		bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
526 		if (error) {
527 			tbp->b_flags |= B_ERROR;
528 			tbp->b_error = error;
529 		} else {
530 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
531 			tbp->b_flags &= ~(B_ERROR|B_INVAL);
532 			/*
533 			 * XXX the bdwrite()/bqrelse() issued during
534 			 * cluster building clears B_RELBUF (see bqrelse()
535 			 * comment).  If direct I/O was specified, we have
536 			 * to restore it here to allow the buffer and VM
537 			 * to be freed.
538 			 */
539 			if (tbp->b_flags & B_DIRECT)
540 				tbp->b_flags |= B_RELBUF;
541 		}
542 		biodone(&tbp->b_bio1);
543 	}
544 	relpbuf(bp, &cluster_pbuf_freecnt);
545 }
546 
547 /*
548  *	cluster_wbuild_wb:
549  *
550  *	Implement modified write build for cluster.
551  *
552  *		write_behind = 0	write behind disabled
553  *		write_behind = 1	write behind normal (default)
554  *		write_behind = 2	write behind backed-off
555  */
556 
557 static __inline int
558 cluster_wbuild_wb(struct vnode *vp, int size, off_t start_loffset, int len)
559 {
560 	int r = 0;
561 
562 	switch(write_behind) {
563 	case 2:
564 		if (start_loffset < len)
565 			break;
566 		start_loffset -= len;
567 		/* fall through */
568 	case 1:
569 		r = cluster_wbuild(vp, size, start_loffset, len);
570 		/* fall through */
571 	default:
572 		/* fall through */
573 		break;
574 	}
575 	return(r);
576 }
577 
578 /*
579  * Do clustered write for FFS.
580  *
581  * Three cases:
582  *	1. Write is not sequential (write asynchronously)
583  *	Write is sequential:
584  *	2.	beginning of cluster - begin cluster
585  *	3.	middle of a cluster - add to cluster
586  *	4.	end of a cluster - asynchronously write cluster
587  */
588 void
589 cluster_write(struct buf *bp, off_t filesize, int seqcount)
590 {
591 	struct vnode *vp;
592 	off_t loffset;
593 	int maxclen, cursize;
594 	int lblocksize;
595 	int async;
596 
597 	vp = bp->b_vp;
598 	if (vp->v_type == VREG) {
599 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
600 		lblocksize = vp->v_mount->mnt_stat.f_iosize;
601 	} else {
602 		async = 0;
603 		lblocksize = bp->b_bufsize;
604 	}
605 	loffset = bp->b_loffset;
606 	KASSERT(bp->b_loffset != NOOFFSET,
607 		("cluster_write: no buffer offset"));
608 
609 	/* Initialize vnode to beginning of file. */
610 	if (loffset == 0)
611 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
612 
613 	if (vp->v_clen == 0 || loffset != vp->v_lastw + lblocksize ||
614 	    bp->b_bio2.bio_offset == NOOFFSET ||
615 	    (bp->b_bio2.bio_offset != vp->v_lasta + lblocksize)) {
616 		maxclen = vp->v_mount->mnt_iosize_max;
617 		if (vp->v_clen != 0) {
618 			/*
619 			 * Next block is not sequential.
620 			 *
621 			 * If we are not writing at end of file, the process
622 			 * seeked to another point in the file since its last
623 			 * write, or we have reached our maximum cluster size,
624 			 * then push the previous cluster. Otherwise try
625 			 * reallocating to make it sequential.
626 			 *
627 			 * Change to algorithm: only push previous cluster if
628 			 * it was sequential from the point of view of the
629 			 * seqcount heuristic, otherwise leave the buffer
630 			 * intact so we can potentially optimize the I/O
631 			 * later on in the buf_daemon or update daemon
632 			 * flush.
633 			 */
634 			cursize = vp->v_lastw - vp->v_cstart + lblocksize;
635 			if (bp->b_loffset + lblocksize != filesize ||
636 			    loffset != vp->v_lastw + lblocksize || vp->v_clen <= cursize) {
637 				if (!async && seqcount > 0) {
638 					cluster_wbuild_wb(vp, lblocksize,
639 						vp->v_cstart, cursize);
640 				}
641 			} else {
642 				struct buf **bpp, **endbp;
643 				struct cluster_save *buflist;
644 
645 				buflist = cluster_collectbufs(vp, bp,
646 							      lblocksize);
647 				endbp = &buflist->bs_children
648 				    [buflist->bs_nchildren - 1];
649 				if (VOP_REALLOCBLKS(vp, buflist)) {
650 					/*
651 					 * Failed, push the previous cluster
652 					 * if *really* writing sequentially
653 					 * in the logical file (seqcount > 1),
654 					 * otherwise delay it in the hopes that
655 					 * the low level disk driver can
656 					 * optimize the write ordering.
657 					 */
658 					for (bpp = buflist->bs_children;
659 					     bpp < endbp; bpp++)
660 						brelse(*bpp);
661 					kfree(buflist, M_SEGMENT);
662 					if (seqcount > 1) {
663 						cluster_wbuild_wb(vp,
664 						    lblocksize, vp->v_cstart,
665 						    cursize);
666 					}
667 				} else {
668 					/*
669 					 * Succeeded, keep building cluster.
670 					 */
671 					for (bpp = buflist->bs_children;
672 					     bpp <= endbp; bpp++)
673 						bdwrite(*bpp);
674 					kfree(buflist, M_SEGMENT);
675 					vp->v_lastw = loffset;
676 					vp->v_lasta = bp->b_bio2.bio_offset;
677 					return;
678 				}
679 			}
680 		}
681 		/*
682 		 * Consider beginning a cluster. If at end of file, make
683 		 * cluster as large as possible, otherwise find size of
684 		 * existing cluster.
685 		 */
686 		if ((vp->v_type == VREG) &&
687 		    bp->b_loffset + lblocksize != filesize &&
688 		    (bp->b_bio2.bio_offset == NOOFFSET) &&
689 		    (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL) ||
690 		     bp->b_bio2.bio_offset == NOOFFSET)) {
691 			bawrite(bp);
692 			vp->v_clen = 0;
693 			vp->v_lasta = bp->b_bio2.bio_offset;
694 			vp->v_cstart = loffset + lblocksize;
695 			vp->v_lastw = loffset;
696 			return;
697 		}
698 		if (maxclen > lblocksize)
699 			vp->v_clen = maxclen - lblocksize;
700 		else
701 			vp->v_clen = 0;
702 		if (!async && vp->v_clen == 0) { /* I/O not contiguous */
703 			vp->v_cstart = loffset + lblocksize;
704 			bawrite(bp);
705 		} else {	/* Wait for rest of cluster */
706 			vp->v_cstart = loffset;
707 			bdwrite(bp);
708 		}
709 	} else if (loffset == vp->v_cstart + vp->v_clen) {
710 		/*
711 		 * At end of cluster, write it out if seqcount tells us we
712 		 * are operating sequentially, otherwise let the buf or
713 		 * update daemon handle it.
714 		 */
715 		bdwrite(bp);
716 		if (seqcount > 1)
717 			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
718 					  vp->v_clen + lblocksize);
719 		vp->v_clen = 0;
720 		vp->v_cstart = loffset + lblocksize;
721 	} else if (vm_page_count_severe()) {
722 		/*
723 		 * We are low on memory, get it going NOW
724 		 */
725 		bawrite(bp);
726 	} else {
727 		/*
728 		 * In the middle of a cluster, so just delay the I/O for now.
729 		 */
730 		bdwrite(bp);
731 	}
732 	vp->v_lastw = loffset;
733 	vp->v_lasta = bp->b_bio2.bio_offset;
734 }
735 
736 
737 /*
738  * This is an awful lot like cluster_rbuild...wish they could be combined.
739  * The last lbn argument is the current block on which I/O is being
740  * performed.  Check to see that it doesn't fall in the middle of
741  * the current block (if last_bp == NULL).
742  */
743 int
744 cluster_wbuild(struct vnode *vp, int size, off_t start_loffset, int bytes)
745 {
746 	struct buf *bp, *tbp;
747 	int i, j;
748 	int totalwritten = 0;
749 
750 	while (bytes > 0) {
751 		crit_enter();
752 		/*
753 		 * If the buffer is not delayed-write (i.e. dirty), or it
754 		 * is delayed-write but either locked or inval, it cannot
755 		 * partake in the clustered write.
756 		 */
757 		if (((tbp = findblk(vp, start_loffset)) == NULL) ||
758 		  ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
759 		  (LIST_FIRST(&tbp->b_dep) != NULL && buf_checkwrite(tbp)) ||
760 		  BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
761 			start_loffset += size;
762 			bytes -= size;
763 			crit_exit();
764 			continue;
765 		}
766 		bremfree(tbp);
767 		KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
768 		crit_exit();
769 
770 		/*
771 		 * Extra memory in the buffer, punt on this buffer.
772 		 * XXX we could handle this in most cases, but we would
773 		 * have to push the extra memory down to after our max
774 		 * possible cluster size and then potentially pull it back
775 		 * up if the cluster was terminated prematurely--too much
776 		 * hassle.
777 		 */
778 		if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
779 		  (tbp->b_bcount != tbp->b_bufsize) ||
780 		  (tbp->b_bcount != size) ||
781 		  (bytes == size) ||
782 		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
783 			totalwritten += tbp->b_bufsize;
784 			bawrite(tbp);
785 			start_loffset += size;
786 			bytes -= size;
787 			continue;
788 		}
789 
790 		/*
791 		 * Set up the pbuf.  Track our append point with b_bcount
792 		 * and b_bufsize.  b_bufsize is not used by the device but
793 		 * our caller uses it to loop clusters and we use it to
794 		 * detect a premature EOF on the block device.
795 		 */
796 		bp->b_bcount = 0;
797 		bp->b_bufsize = 0;
798 		bp->b_xio.xio_npages = 0;
799 		bp->b_loffset = tbp->b_loffset;
800 		bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
801 
802 		/*
803 		 * We are synthesizing a buffer out of vm_page_t's, but
804 		 * if the block size is not page aligned then the starting
805 		 * address may not be either.  Inherit the b_data offset
806 		 * from the original buffer.
807 		 */
808 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
809 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
810 		bp->b_flags &= ~B_ERROR;
811 		bp->b_flags |= B_CLUSTER | B_BNOCLIP |
812 			(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
813 		bp->b_bio1.bio_done = cluster_callback;
814 		bp->b_bio1.bio_caller_info1.cluster_head = NULL;
815 		bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
816 		/*
817 		 * From this location in the file, scan forward to see
818 		 * if there are buffers with adjacent data that need to
819 		 * be written as well.
820 		 */
821 		for (i = 0; i < bytes; (i += size), (start_loffset += size)) {
822 			if (i != 0) { /* If not the first buffer */
823 				crit_enter();
824 				/*
825 				 * If the adjacent data is not even in core it
826 				 * can't need to be written.
827 				 */
828 				if ((tbp = findblk(vp, start_loffset)) == NULL) {
829 					crit_exit();
830 					break;
831 				}
832 
833 				/*
834 				 * If it IS in core, but has different
835 				 * characteristics, or is locked (which
836 				 * means it could be undergoing a background
837 				 * I/O or be in a weird state), then don't
838 				 * cluster with it.
839 				 */
840 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
841 				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
842 				  != (B_DELWRI | B_CLUSTEROK |
843 				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
844 				    (tbp->b_flags & B_LOCKED) ||
845 		  (LIST_FIRST(&tbp->b_dep) != NULL && buf_checkwrite(tbp)) ||
846 				    BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
847 					crit_exit();
848 					break;
849 				}
850 
851 				/*
852 				 * Check that the combined cluster
853 				 * would make sense with regard to pages
854 				 * and would not be too large
855 				 */
856 				if ((tbp->b_bcount != size) ||
857 				  ((bp->b_bio2.bio_offset + i) !=
858 				    tbp->b_bio2.bio_offset) ||
859 				  ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
860 				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
861 					BUF_UNLOCK(tbp);
862 					crit_exit();
863 					break;
864 				}
865 				/*
866 				 * Ok, it's passed all the tests,
867 				 * so remove it from the free list
868 				 * and mark it busy. We will use it.
869 				 */
870 				bremfree(tbp);
871 				KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
872 				crit_exit();
873 			} /* end of code for non-first buffers only */
874 
875 			/*
876 			 * If the IO is via the VM then we do some
877 			 * special VM hackery (yuck).  Since the buffer's
878 			 * block size may not be page-aligned it is possible
879 			 * for a page to be shared between two buffers.  We
880 			 * have to get rid of the duplication when building
881 			 * the cluster.
882 			 */
883 			if (tbp->b_flags & B_VMIO) {
884 				vm_page_t m;
885 
886 				if (i != 0) { /* if not first buffer */
887 					for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
888 						m = tbp->b_xio.xio_pages[j];
889 						if (m->flags & PG_BUSY) {
890 							bqrelse(tbp);
891 							goto finishcluster;
892 						}
893 					}
894 				}
895 
896 				for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
897 					m = tbp->b_xio.xio_pages[j];
898 					vm_page_io_start(m);
899 					vm_object_pip_add(m->object, 1);
900 					if ((bp->b_xio.xio_npages == 0) ||
901 					  (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
902 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
903 						bp->b_xio.xio_npages++;
904 					}
905 				}
906 			}
907 			bp->b_bcount += size;
908 			bp->b_bufsize += size;
909 
910 			crit_enter();
911 			bundirty(tbp);
912 			tbp->b_flags &= ~B_ERROR;
913 			tbp->b_flags |= B_ASYNC;
914 			tbp->b_cmd = BUF_CMD_WRITE;
915 			crit_exit();
916 			BUF_KERNPROC(tbp);
917 			cluster_append(&bp->b_bio1, tbp);
918 
919 			/*
920 			 * check for latent dependencies to be handled
921 			 */
922 			if (LIST_FIRST(&tbp->b_dep) != NULL)
923 				buf_start(tbp);
924 		}
925 	finishcluster:
926 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
927 			(vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
928 		if (bp->b_bufsize > bp->b_kvasize) {
929 			panic(
930 			    "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
931 			    bp->b_bufsize, bp->b_kvasize);
932 		}
933 		totalwritten += bp->b_bufsize;
934 		bp->b_dirtyoff = 0;
935 		bp->b_dirtyend = bp->b_bufsize;
936 		bp->b_flags |= B_ASYNC;
937 		bp->b_cmd = BUF_CMD_WRITE;
938 		vfs_busy_pages(vp, bp);
939 		bp->b_runningbufspace = bp->b_bufsize;
940 		runningbufspace += bp->b_runningbufspace;
941 		BUF_KERNPROC(bp);	/* B_ASYNC */
942 		vn_strategy(vp, &bp->b_bio1);
943 
944 		bytes -= i;
945 	}
946 	return totalwritten;
947 }
948 
949 /*
950  * Collect together all the buffers in a cluster.
951  * Plus add one additional buffer.
952  */
953 static struct cluster_save *
954 cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int lblocksize)
955 {
956 	struct cluster_save *buflist;
957 	struct buf *bp;
958 	off_t loffset;
959 	int i, len;
960 
961 	len = (int)(vp->v_lastw - vp->v_cstart + lblocksize) / lblocksize;
962 	buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
963 			 M_SEGMENT, M_WAITOK);
964 	buflist->bs_nchildren = 0;
965 	buflist->bs_children = (struct buf **) (buflist + 1);
966 	for (loffset = vp->v_cstart, i = 0; i < len; (loffset += lblocksize), i++) {
967 		(void) bread(vp, loffset, last_bp->b_bcount, &bp);
968 		buflist->bs_children[i] = bp;
969 		if (bp->b_bio2.bio_offset == NOOFFSET) {
970 			VOP_BMAP(bp->b_vp, bp->b_loffset,
971 				 &bp->b_bio2.bio_offset, NULL, NULL);
972 		}
973 	}
974 	buflist->bs_children[i] = bp = last_bp;
975 	if (bp->b_bio2.bio_offset == NOOFFSET) {
976 		VOP_BMAP(bp->b_vp, bp->b_loffset,
977 			 &bp->b_bio2.bio_offset, NULL, NULL);
978 	}
979 	buflist->bs_nchildren = i + 1;
980 	return (buflist);
981 }
982 
983 void
984 cluster_append(struct bio *bio, struct buf *tbp)
985 {
986 	tbp->b_cluster_next = NULL;
987 	if (bio->bio_caller_info1.cluster_head == NULL) {
988 		bio->bio_caller_info1.cluster_head = tbp;
989 		bio->bio_caller_info2.cluster_tail = tbp;
990 	} else {
991 		bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
992 		bio->bio_caller_info2.cluster_tail = tbp;
993 	}
994 }
995 
996