xref: /dragonfly/sys/kern/vfs_mount.c (revision a68e0df0)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 struct vnlru_info {
111 	int	pass;
112 };
113 
114 static int vnlru_nowhere = 0;
115 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
116 	    &vnlru_nowhere, 0,
117 	    "Number of times the vnlru process ran without success");
118 
119 
120 static struct lwkt_token mntid_token;
121 static struct mount dummymount;
122 
123 /* note: mountlist exported to pstat */
124 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
125 static TAILQ_HEAD(,mountscan_info) mountscan_list;
126 static struct lwkt_token mountlist_token;
127 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
128 struct lwkt_token mntvnode_token;
129 
130 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
131 
132 /*
133  * Called from vfsinit()
134  */
135 void
136 vfs_mount_init(void)
137 {
138 	lwkt_token_init(&mountlist_token);
139 	lwkt_token_init(&mntvnode_token);
140 	lwkt_token_init(&mntid_token);
141 	TAILQ_INIT(&mountscan_list);
142 	TAILQ_INIT(&mntvnodescan_list);
143 	mount_init(&dummymount);
144 	dummymount.mnt_flag |= MNT_RDONLY;
145 }
146 
147 /*
148  * Support function called with mntvnode_token held to remove a vnode
149  * from the mountlist.  We must update any list scans which are in progress.
150  */
151 static void
152 vremovevnodemnt(struct vnode *vp)
153 {
154         struct vmntvnodescan_info *info;
155 
156 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
157 		if (info->vp == vp)
158 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
159 	}
160 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
161 }
162 
163 /*
164  * Allocate a new vnode and associate it with a tag, mount point, and
165  * operations vector.
166  *
167  * A VX locked and refd vnode is returned.  The caller should setup the
168  * remaining fields and vx_put() or, if he wishes to leave a vref,
169  * vx_unlock() the vnode.
170  */
171 int
172 getnewvnode(enum vtagtype tag, struct mount *mp,
173 		struct vnode **vpp, int lktimeout, int lkflags)
174 {
175 	struct vnode *vp;
176 
177 	KKASSERT(mp != NULL);
178 
179 	vp = allocvnode(lktimeout, lkflags);
180 	vp->v_tag = tag;
181 	vp->v_data = NULL;
182 
183 	/*
184 	 * By default the vnode is assigned the mount point's normal
185 	 * operations vector.
186 	 */
187 	vp->v_ops = &mp->mnt_vn_use_ops;
188 
189 	/*
190 	 * Placing the vnode on the mount point's queue makes it visible.
191 	 * VNON prevents it from being messed with, however.
192 	 */
193 	insmntque(vp, mp);
194 
195 	/*
196 	 * A VX locked & refd vnode is returned.
197 	 */
198 	*vpp = vp;
199 	return (0);
200 }
201 
202 /*
203  * This function creates vnodes with special operations vectors.  The
204  * mount point is optional.
205  *
206  * This routine is being phased out but is still used by vfs_conf to
207  * create vnodes for devices prior to the root mount (with mp == NULL).
208  */
209 int
210 getspecialvnode(enum vtagtype tag, struct mount *mp,
211 		struct vop_ops **ops,
212 		struct vnode **vpp, int lktimeout, int lkflags)
213 {
214 	struct vnode *vp;
215 
216 	vp = allocvnode(lktimeout, lkflags);
217 	vp->v_tag = tag;
218 	vp->v_data = NULL;
219 	vp->v_ops = ops;
220 
221 	if (mp == NULL)
222 		mp = &dummymount;
223 
224 	/*
225 	 * Placing the vnode on the mount point's queue makes it visible.
226 	 * VNON prevents it from being messed with, however.
227 	 */
228 	insmntque(vp, mp);
229 
230 	/*
231 	 * A VX locked & refd vnode is returned.
232 	 */
233 	*vpp = vp;
234 	return (0);
235 }
236 
237 /*
238  * Interlock against an unmount, return 0 on success, non-zero on failure.
239  *
240  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
241  * is in-progress.
242  *
243  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
244  * are used.  A shared locked will be obtained and the filesystem will not
245  * be unmountable until the lock is released.
246  */
247 int
248 vfs_busy(struct mount *mp, int flags)
249 {
250 	int lkflags;
251 
252 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
253 		if (flags & LK_NOWAIT)
254 			return (ENOENT);
255 		/* XXX not MP safe */
256 		mp->mnt_kern_flag |= MNTK_MWAIT;
257 		/*
258 		 * Since all busy locks are shared except the exclusive
259 		 * lock granted when unmounting, the only place that a
260 		 * wakeup needs to be done is at the release of the
261 		 * exclusive lock at the end of dounmount.
262 		 */
263 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
264 		return (ENOENT);
265 	}
266 	lkflags = LK_SHARED;
267 	if (lockmgr(&mp->mnt_lock, lkflags))
268 		panic("vfs_busy: unexpected lock failure");
269 	return (0);
270 }
271 
272 /*
273  * Free a busy filesystem.
274  */
275 void
276 vfs_unbusy(struct mount *mp)
277 {
278 	lockmgr(&mp->mnt_lock, LK_RELEASE);
279 }
280 
281 /*
282  * Lookup a filesystem type, and if found allocate and initialize
283  * a mount structure for it.
284  *
285  * Devname is usually updated by mount(8) after booting.
286  */
287 int
288 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
289 {
290 	struct vfsconf *vfsp;
291 	struct mount *mp;
292 
293 	if (fstypename == NULL)
294 		return (ENODEV);
295 
296 	vfsp = vfsconf_find_by_name(fstypename);
297 	if (vfsp == NULL)
298 		return (ENODEV);
299 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
300 	mount_init(mp);
301 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
302 
303 	vfs_busy(mp, LK_NOWAIT);
304 	mp->mnt_vfc = vfsp;
305 	mp->mnt_op = vfsp->vfc_vfsops;
306 	vfsp->vfc_refcount++;
307 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
308 	mp->mnt_flag |= MNT_RDONLY;
309 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
310 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
311 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
312 	*mpp = mp;
313 	return (0);
314 }
315 
316 /*
317  * Basic mount structure initialization
318  */
319 void
320 mount_init(struct mount *mp)
321 {
322 	lockinit(&mp->mnt_lock, "vfslock", 0, 0);
323 	lwkt_token_init(&mp->mnt_token);
324 
325 	TAILQ_INIT(&mp->mnt_nvnodelist);
326 	TAILQ_INIT(&mp->mnt_reservedvnlist);
327 	TAILQ_INIT(&mp->mnt_jlist);
328 	mp->mnt_nvnodelistsize = 0;
329 	mp->mnt_flag = 0;
330 	mp->mnt_iosize_max = DFLTPHYS;
331 }
332 
333 /*
334  * Lookup a mount point by filesystem identifier.
335  */
336 struct mount *
337 vfs_getvfs(fsid_t *fsid)
338 {
339 	struct mount *mp;
340 	lwkt_tokref ilock;
341 
342 	lwkt_gettoken(&ilock, &mountlist_token);
343 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
344 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
345 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
346 			break;
347 		}
348 	}
349 	lwkt_reltoken(&ilock);
350 	return (mp);
351 }
352 
353 /*
354  * Get a new unique fsid.  Try to make its val[0] unique, since this value
355  * will be used to create fake device numbers for stat().  Also try (but
356  * not so hard) make its val[0] unique mod 2^16, since some emulators only
357  * support 16-bit device numbers.  We end up with unique val[0]'s for the
358  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
359  *
360  * Keep in mind that several mounts may be running in parallel.  Starting
361  * the search one past where the previous search terminated is both a
362  * micro-optimization and a defense against returning the same fsid to
363  * different mounts.
364  */
365 void
366 vfs_getnewfsid(struct mount *mp)
367 {
368 	static u_int16_t mntid_base;
369 	lwkt_tokref ilock;
370 	fsid_t tfsid;
371 	int mtype;
372 
373 	lwkt_gettoken(&ilock, &mntid_token);
374 	mtype = mp->mnt_vfc->vfc_typenum;
375 	tfsid.val[1] = mtype;
376 	mtype = (mtype & 0xFF) << 24;
377 	for (;;) {
378 		tfsid.val[0] = makeudev(255,
379 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
380 		mntid_base++;
381 		if (vfs_getvfs(&tfsid) == NULL)
382 			break;
383 	}
384 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
385 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
386 	lwkt_reltoken(&ilock);
387 }
388 
389 /*
390  * Set the FSID for a new mount point to the template.  Adjust
391  * the FSID to avoid collisions.
392  */
393 int
394 vfs_setfsid(struct mount *mp, fsid_t *template)
395 {
396 	int didmunge = 0;
397 
398 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
399 	for (;;) {
400 		if (vfs_getvfs(template) == NULL)
401 			break;
402 		didmunge = 1;
403 		++template->val[1];
404 	}
405 	mp->mnt_stat.f_fsid = *template;
406 	return(didmunge);
407 }
408 
409 /*
410  * This routine is called when we have too many vnodes.  It attempts
411  * to free <count> vnodes and will potentially free vnodes that still
412  * have VM backing store (VM backing store is typically the cause
413  * of a vnode blowout so we want to do this).  Therefore, this operation
414  * is not considered cheap.
415  *
416  * A number of conditions may prevent a vnode from being reclaimed.
417  * the buffer cache may have references on the vnode, a directory
418  * vnode may still have references due to the namei cache representing
419  * underlying files, or the vnode may be in active use.   It is not
420  * desireable to reuse such vnodes.  These conditions may cause the
421  * number of vnodes to reach some minimum value regardless of what
422  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
423  */
424 
425 /*
426  * This is a quick non-blocking check to determine if the vnode is a good
427  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
428  * not a good candidate, 1 if it is.
429  */
430 static __inline int
431 vmightfree(struct vnode *vp, int page_count, int pass)
432 {
433 	if (vp->v_flag & VRECLAIMED)
434 		return (0);
435 #if 0
436 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
437 		return (0);
438 #endif
439 	if (sysref_isactive(&vp->v_sysref))
440 		return (0);
441 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
442 		return (0);
443 
444 	/*
445 	 * XXX horrible hack.  Up to four passes will be taken.  Each pass
446 	 * makes a larger set of vnodes eligible.  For now what this really
447 	 * means is that we try to recycle files opened only once before
448 	 * recycling files opened multiple times.
449 	 */
450 	switch(vp->v_flag & (VAGE0 | VAGE1)) {
451 	case 0:
452 		if (pass < 3)
453 			return(0);
454 		break;
455 	case VAGE0:
456 		if (pass < 2)
457 			return(0);
458 		break;
459 	case VAGE1:
460 		if (pass < 1)
461 			return(0);
462 		break;
463 	case VAGE0 | VAGE1:
464 		break;
465 	}
466 	return (1);
467 }
468 
469 /*
470  * The vnode was found to be possibly vgone()able and the caller has locked it
471  * (thus the usecount should be 1 now).  Determine if the vnode is actually
472  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
473  * can be vgone()'d, 0 otherwise.
474  *
475  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
476  * in the namecache topology and (B) this vnode has buffer cache bufs.
477  * We cannot remove vnodes with non-leaf namecache associations.  We do a
478  * tentitive leaf check prior to attempting to flush out any buffers but the
479  * 'real' test when all is said in done is that v_auxrefs must become 0 for
480  * the vnode to be freeable.
481  *
482  * We could theoretically just unconditionally flush when v_auxrefs != 0,
483  * but flushing data associated with non-leaf nodes (which are always
484  * directories), just throws it away for no benefit.  It is the buffer
485  * cache's responsibility to choose buffers to recycle from the cached
486  * data point of view.
487  */
488 static int
489 visleaf(struct vnode *vp)
490 {
491 	struct namecache *ncp;
492 
493 	spin_lock_wr(&vp->v_spinlock);
494 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
495 		if (!TAILQ_EMPTY(&ncp->nc_list)) {
496 			spin_unlock_wr(&vp->v_spinlock);
497 			return(0);
498 		}
499 	}
500 	spin_unlock_wr(&vp->v_spinlock);
501 	return(1);
502 }
503 
504 /*
505  * Try to clean up the vnode to the point where it can be vgone()'d, returning
506  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
507  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
508  * VFREE are still candidates for vgone()ing because they may hold namecache
509  * resources and could be blocking the namecache directory hierarchy (and
510  * related vnodes) from being freed.
511  */
512 static int
513 vtrytomakegoneable(struct vnode *vp, int page_count)
514 {
515 	if (vp->v_flag & VRECLAIMED)
516 		return (0);
517 	if (vp->v_sysref.refcnt > 1)
518 		return (0);
519 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
520 		return (0);
521 	if (vp->v_auxrefs && visleaf(vp)) {
522 		vinvalbuf(vp, V_SAVE, 0, 0);
523 #if 0	/* DEBUG */
524 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
525 			"vrecycle: vp %p succeeded: %s\n"), vp,
526 			(TAILQ_FIRST(&vp->v_namecache) ?
527 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
528 #endif
529 	}
530 
531 	/*
532 	 * This sequence may seem a little strange, but we need to optimize
533 	 * the critical path a bit.  We can't recycle vnodes with other
534 	 * references and because we are trying to recycle an otherwise
535 	 * perfectly fine vnode we have to invalidate the namecache in a
536 	 * way that avoids possible deadlocks (since the vnode lock is being
537 	 * held here).  Finally, we have to check for other references one
538 	 * last time in case something snuck in during the inval.
539 	 */
540 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
541 		return (0);
542 	if (cache_inval_vp_nonblock(vp))
543 		return (0);
544 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
545 }
546 
547 /*
548  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
549  * to avoid vnodes which have lots of resident pages (we are trying to free
550  * vnodes, not memory).
551  *
552  * This routine is a callback from the mountlist scan.  The mount point
553  * in question will be busied.
554  *
555  * NOTE: The 1/10 reclamation also ensures that the inactive data set
556  *	 (the vnodes being recycled by the one-time use) does not degenerate
557  *	 into too-small a set.  This is important because once a vnode is
558  *	 marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
559  *	 will not be destroyed EXCEPT by this mechanism.  VM pages can still
560  *	 be cleaned/freed by the pageout daemon.
561  */
562 static int
563 vlrureclaim(struct mount *mp, void *data)
564 {
565 	struct vnlru_info *info = data;
566 	struct vnode *vp;
567 	lwkt_tokref ilock;
568 	int done;
569 	int trigger;
570 	int usevnodes;
571 	int count;
572 	int trigger_mult = vnlru_nowhere;
573 
574 	/*
575 	 * Calculate the trigger point for the resident pages check.  The
576 	 * minimum trigger value is approximately the number of pages in
577 	 * the system divded by the number of vnodes.  However, due to
578 	 * various other system memory overheads unrelated to data caching
579 	 * it is a good idea to double the trigger (at least).
580 	 *
581 	 * trigger_mult starts at 0.  If the recycler is having problems
582 	 * finding enough freeable vnodes it will increase trigger_mult.
583 	 * This should not happen in normal operation, even on machines with
584 	 * low amounts of memory, but extraordinary memory use by the system
585 	 * verses the amount of cached data can trigger it.
586 	 */
587 	usevnodes = desiredvnodes;
588 	if (usevnodes <= 0)
589 		usevnodes = 1;
590 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
591 
592 	done = 0;
593 	lwkt_gettoken(&ilock, &mntvnode_token);
594 	count = mp->mnt_nvnodelistsize / 10 + 1;
595 
596 	while (count && mp->mnt_syncer) {
597 		/*
598 		 * Next vnode.  Use the special syncer vnode to placemark
599 		 * the LRU.  This way the LRU code does not interfere with
600 		 * vmntvnodescan().
601 		 */
602 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
603 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
604 		if (vp) {
605 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
606 					   mp->mnt_syncer, v_nmntvnodes);
607 		} else {
608 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
609 					  v_nmntvnodes);
610 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
611 			if (vp == NULL)
612 				break;
613 		}
614 
615 		/*
616 		 * __VNODESCAN__
617 		 *
618 		 * The VP will stick around while we hold mntvnode_token,
619 		 * at least until we block, so we can safely do an initial
620 		 * check, and then must check again after we lock the vnode.
621 		 */
622 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
623 		    !vmightfree(vp, trigger, info->pass) /* critical path opt */
624 		) {
625 			--count;
626 			continue;
627 		}
628 
629 		/*
630 		 * VX get the candidate vnode.  If the VX get fails the
631 		 * vnode might still be on the mountlist.  Our loop depends
632 		 * on us at least cycling the vnode to the end of the
633 		 * mountlist.
634 		 */
635 		if (vx_get_nonblock(vp) != 0) {
636 			--count;
637 			continue;
638 		}
639 
640 		/*
641 		 * Since we blocked locking the vp, make sure it is still
642 		 * a candidate for reclamation.  That is, it has not already
643 		 * been reclaimed and only has our VX reference associated
644 		 * with it.
645 		 */
646 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
647 		    (vp->v_flag & VRECLAIMED) ||
648 		    vp->v_mount != mp ||
649 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
650 		) {
651 			--count;
652 			vx_put(vp);
653 			continue;
654 		}
655 
656 		/*
657 		 * All right, we are good, move the vp to the end of the
658 		 * mountlist and clean it out.  The vget will have returned
659 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
660 		 * do not have to check again.  The vput() will move the
661 		 * vnode to the free list if the vgone() was successful.
662 		 */
663 		KKASSERT(vp->v_mount == mp);
664 		vgone_vxlocked(vp);
665 		vx_put(vp);
666 		++done;
667 		--count;
668 	}
669 	lwkt_reltoken(&ilock);
670 	return (done);
671 }
672 
673 /*
674  * Attempt to recycle vnodes in a context that is always safe to block.
675  * Calling vlrurecycle() from the bowels of file system code has some
676  * interesting deadlock problems.
677  */
678 static struct thread *vnlruthread;
679 static int vnlruproc_sig;
680 
681 void
682 vnlru_proc_wait(void)
683 {
684 	if (vnlruproc_sig == 0) {
685 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
686 		wakeup(vnlruthread);
687 	}
688 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
689 }
690 
691 static void
692 vnlru_proc(void)
693 {
694 	struct thread *td = curthread;
695 	struct vnlru_info info;
696 	int done;
697 
698 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
699 	    SHUTDOWN_PRI_FIRST);
700 
701 	crit_enter();
702 	for (;;) {
703 		kproc_suspend_loop();
704 
705 		/*
706 		 * Try to free some vnodes if we have too many
707 		 */
708 		if (numvnodes > desiredvnodes &&
709 		    freevnodes > desiredvnodes * 2 / 10) {
710 			int count = numvnodes - desiredvnodes;
711 
712 			if (count > freevnodes / 100)
713 				count = freevnodes / 100;
714 			if (count < 5)
715 				count = 5;
716 			freesomevnodes(count);
717 		}
718 
719 		/*
720 		 * Nothing to do if most of our vnodes are already on
721 		 * the free list.
722 		 */
723 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
724 			vnlruproc_sig = 0;
725 			wakeup(&vnlruproc_sig);
726 			tsleep(td, 0, "vlruwt", hz);
727 			continue;
728 		}
729 		cache_hysteresis();
730 
731 		/*
732 		 * The pass iterates through the four combinations of
733 		 * VAGE0/VAGE1.  We want to get rid of aged small files
734 		 * first.
735 		 */
736 		info.pass = 0;
737 		done = 0;
738 		while (done == 0 && info.pass < 4) {
739 			done = mountlist_scan(vlrureclaim, &info,
740 					      MNTSCAN_FORWARD);
741 			++info.pass;
742 		}
743 
744 		/*
745 		 * The vlrureclaim() call only processes 1/10 of the vnodes
746 		 * on each mount.  If we couldn't find any repeat the loop
747 		 * at least enough times to cover all available vnodes before
748 		 * we start sleeping.  Complain if the failure extends past
749 		 * 30 second, every 30 seconds.
750 		 */
751 		if (done == 0) {
752 			++vnlru_nowhere;
753 			if (vnlru_nowhere % 10 == 0)
754 				tsleep(td, 0, "vlrup", hz * 3);
755 			if (vnlru_nowhere % 100 == 0)
756 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
757 			if (vnlru_nowhere == 1000)
758 				vnlru_nowhere = 900;
759 		} else {
760 			vnlru_nowhere = 0;
761 		}
762 	}
763 	crit_exit();
764 }
765 
766 /*
767  * MOUNTLIST FUNCTIONS
768  */
769 
770 /*
771  * mountlist_insert (MP SAFE)
772  *
773  * Add a new mount point to the mount list.
774  */
775 void
776 mountlist_insert(struct mount *mp, int how)
777 {
778 	lwkt_tokref ilock;
779 
780 	lwkt_gettoken(&ilock, &mountlist_token);
781 	if (how == MNTINS_FIRST)
782 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
783 	else
784 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
785 	lwkt_reltoken(&ilock);
786 }
787 
788 /*
789  * mountlist_interlock (MP SAFE)
790  *
791  * Execute the specified interlock function with the mountlist token
792  * held.  The function will be called in a serialized fashion verses
793  * other functions called through this mechanism.
794  */
795 int
796 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
797 {
798 	lwkt_tokref ilock;
799 	int error;
800 
801 	lwkt_gettoken(&ilock, &mountlist_token);
802 	error = callback(mp);
803 	lwkt_reltoken(&ilock);
804 	return (error);
805 }
806 
807 /*
808  * mountlist_boot_getfirst (DURING BOOT ONLY)
809  *
810  * This function returns the first mount on the mountlist, which is
811  * expected to be the root mount.  Since no interlocks are obtained
812  * this function is only safe to use during booting.
813  */
814 
815 struct mount *
816 mountlist_boot_getfirst(void)
817 {
818 	return(TAILQ_FIRST(&mountlist));
819 }
820 
821 /*
822  * mountlist_remove (MP SAFE)
823  *
824  * Remove a node from the mountlist.  If this node is the next scan node
825  * for any active mountlist scans, the active mountlist scan will be
826  * adjusted to skip the node, thus allowing removals during mountlist
827  * scans.
828  */
829 void
830 mountlist_remove(struct mount *mp)
831 {
832 	struct mountscan_info *msi;
833 	lwkt_tokref ilock;
834 
835 	lwkt_gettoken(&ilock, &mountlist_token);
836 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
837 		if (msi->msi_node == mp) {
838 			if (msi->msi_how & MNTSCAN_FORWARD)
839 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
840 			else
841 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
842 		}
843 	}
844 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
845 	lwkt_reltoken(&ilock);
846 }
847 
848 /*
849  * mountlist_scan (MP SAFE)
850  *
851  * Safely scan the mount points on the mount list.  Unless otherwise
852  * specified each mount point will be busied prior to the callback and
853  * unbusied afterwords.  The callback may safely remove any mount point
854  * without interfering with the scan.  If the current callback
855  * mount is removed the scanner will not attempt to unbusy it.
856  *
857  * If a mount node cannot be busied it is silently skipped.
858  *
859  * The callback return value is aggregated and a total is returned.  A return
860  * value of < 0 is not aggregated and will terminate the scan.
861  *
862  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
863  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
864  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
865  *			  the mount node.
866  */
867 int
868 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
869 {
870 	struct mountscan_info info;
871 	lwkt_tokref ilock;
872 	struct mount *mp;
873 	thread_t td;
874 	int count;
875 	int res;
876 
877 	lwkt_gettoken(&ilock, &mountlist_token);
878 
879 	info.msi_how = how;
880 	info.msi_node = NULL;	/* paranoia */
881 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
882 
883 	res = 0;
884 	td = curthread;
885 
886 	if (how & MNTSCAN_FORWARD) {
887 		info.msi_node = TAILQ_FIRST(&mountlist);
888 		while ((mp = info.msi_node) != NULL) {
889 			if (how & MNTSCAN_NOBUSY) {
890 				count = callback(mp, data);
891 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
892 				count = callback(mp, data);
893 				if (mp == info.msi_node)
894 					vfs_unbusy(mp);
895 			} else {
896 				count = 0;
897 			}
898 			if (count < 0)
899 				break;
900 			res += count;
901 			if (mp == info.msi_node)
902 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
903 		}
904 	} else if (how & MNTSCAN_REVERSE) {
905 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
906 		while ((mp = info.msi_node) != NULL) {
907 			if (how & MNTSCAN_NOBUSY) {
908 				count = callback(mp, data);
909 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
910 				count = callback(mp, data);
911 				if (mp == info.msi_node)
912 					vfs_unbusy(mp);
913 			} else {
914 				count = 0;
915 			}
916 			if (count < 0)
917 				break;
918 			res += count;
919 			if (mp == info.msi_node)
920 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
921 		}
922 	}
923 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
924 	lwkt_reltoken(&ilock);
925 	return(res);
926 }
927 
928 /*
929  * MOUNT RELATED VNODE FUNCTIONS
930  */
931 
932 static struct kproc_desc vnlru_kp = {
933 	"vnlru",
934 	vnlru_proc,
935 	&vnlruthread
936 };
937 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
938 
939 /*
940  * Move a vnode from one mount queue to another.
941  *
942  * MPSAFE
943  */
944 void
945 insmntque(struct vnode *vp, struct mount *mp)
946 {
947 	lwkt_tokref ilock;
948 
949 	lwkt_gettoken(&ilock, &mntvnode_token);
950 	/*
951 	 * Delete from old mount point vnode list, if on one.
952 	 */
953 	if (vp->v_mount != NULL) {
954 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
955 			("bad mount point vnode list size"));
956 		vremovevnodemnt(vp);
957 		vp->v_mount->mnt_nvnodelistsize--;
958 	}
959 	/*
960 	 * Insert into list of vnodes for the new mount point, if available.
961 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
962 	 */
963 	if ((vp->v_mount = mp) == NULL) {
964 		lwkt_reltoken(&ilock);
965 		return;
966 	}
967 	if (mp->mnt_syncer) {
968 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
969 	} else {
970 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
971 	}
972 	mp->mnt_nvnodelistsize++;
973 	lwkt_reltoken(&ilock);
974 }
975 
976 
977 /*
978  * Scan the vnodes under a mount point and issue appropriate callbacks.
979  *
980  * The fastfunc() callback is called with just the mountlist token held
981  * (no vnode lock).  It may not block and the vnode may be undergoing
982  * modifications while the caller is processing it.  The vnode will
983  * not be entirely destroyed, however, due to the fact that the mountlist
984  * token is held.  A return value < 0 skips to the next vnode without calling
985  * the slowfunc(), a return value > 0 terminates the loop.
986  *
987  * The slowfunc() callback is called after the vnode has been successfully
988  * locked based on passed flags.  The vnode is skipped if it gets rearranged
989  * or destroyed while blocking on the lock.  A non-zero return value from
990  * the slow function terminates the loop.  The slow function is allowed to
991  * arbitrarily block.  The scanning code guarentees consistency of operation
992  * even if the slow function deletes or moves the node, or blocks and some
993  * other thread deletes or moves the node.
994  */
995 int
996 vmntvnodescan(
997     struct mount *mp,
998     int flags,
999     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1000     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1001     void *data
1002 ) {
1003 	struct vmntvnodescan_info info;
1004 	lwkt_tokref ilock;
1005 	struct vnode *vp;
1006 	int r = 0;
1007 	int maxcount = 1000000;
1008 	int stopcount = 0;
1009 	int count = 0;
1010 
1011 	lwkt_gettoken(&ilock, &mntvnode_token);
1012 
1013 	/*
1014 	 * If asked to do one pass stop after iterating available vnodes.
1015 	 * Under heavy loads new vnodes can be added while we are scanning,
1016 	 * so this isn't perfect.  Create a slop factor of 2x.
1017 	 */
1018 	if (flags & VMSC_ONEPASS)
1019 		stopcount = mp->mnt_nvnodelistsize * 2;
1020 
1021 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1022 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1023 	while ((vp = info.vp) != NULL) {
1024 		if (--maxcount == 0)
1025 			panic("maxcount reached during vmntvnodescan");
1026 
1027 		/*
1028 		 * Skip if visible but not ready, or special (e.g.
1029 		 * mp->mnt_syncer)
1030 		 */
1031 		if (vp->v_type == VNON)
1032 			goto next;
1033 		KKASSERT(vp->v_mount == mp);
1034 
1035 		/*
1036 		 * Quick test.  A negative return continues the loop without
1037 		 * calling the slow test.  0 continues onto the slow test.
1038 		 * A positive number aborts the loop.
1039 		 */
1040 		if (fastfunc) {
1041 			if ((r = fastfunc(mp, vp, data)) < 0) {
1042 				r = 0;
1043 				goto next;
1044 			}
1045 			if (r)
1046 				break;
1047 		}
1048 
1049 		/*
1050 		 * Get a vxlock on the vnode, retry if it has moved or isn't
1051 		 * in the mountlist where we expect it.
1052 		 */
1053 		if (slowfunc) {
1054 			int error;
1055 
1056 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1057 			case VMSC_GETVP:
1058 				error = vget(vp, LK_EXCLUSIVE);
1059 				break;
1060 			case VMSC_GETVP|VMSC_NOWAIT:
1061 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1062 				break;
1063 			case VMSC_GETVX:
1064 				vx_get(vp);
1065 				error = 0;
1066 				break;
1067 			default:
1068 				error = 0;
1069 				break;
1070 			}
1071 			if (error)
1072 				goto next;
1073 			/*
1074 			 * Do not call the slow function if the vnode is
1075 			 * invalid or if it was ripped out from under us
1076 			 * while we (potentially) blocked.
1077 			 */
1078 			if (info.vp == vp && vp->v_type != VNON)
1079 				r = slowfunc(mp, vp, data);
1080 
1081 			/*
1082 			 * Cleanup
1083 			 */
1084 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1085 			case VMSC_GETVP:
1086 			case VMSC_GETVP|VMSC_NOWAIT:
1087 				vput(vp);
1088 				break;
1089 			case VMSC_GETVX:
1090 				vx_put(vp);
1091 				break;
1092 			default:
1093 				break;
1094 			}
1095 			if (r != 0)
1096 				break;
1097 		}
1098 
1099 next:
1100 		/*
1101 		 * Yield after some processing.  Depending on the number
1102 		 * of vnodes, we might wind up running for a long time.
1103 		 * Because threads are not preemptable, time critical
1104 		 * userland processes might starve.  Give them a chance
1105 		 * now and then.
1106 		 */
1107 		if (++count == 10000) {
1108 			/* We really want to yield a bit, so we simply sleep a tick */
1109 			tsleep(mp, 0, "vnodescn", 1);
1110 			count = 0;
1111 		}
1112 
1113 		/*
1114 		 * If doing one pass this decrements to zero.  If it starts
1115 		 * at zero it is effectively unlimited for the purposes of
1116 		 * this loop.
1117 		 */
1118 		if (--stopcount == 0)
1119 			break;
1120 
1121 		/*
1122 		 * Iterate.  If the vnode was ripped out from under us
1123 		 * info.vp will already point to the next vnode, otherwise
1124 		 * we have to obtain the next valid vnode ourselves.
1125 		 */
1126 		if (info.vp == vp)
1127 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1128 	}
1129 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1130 	lwkt_reltoken(&ilock);
1131 	return(r);
1132 }
1133 
1134 /*
1135  * Remove any vnodes in the vnode table belonging to mount point mp.
1136  *
1137  * If FORCECLOSE is not specified, there should not be any active ones,
1138  * return error if any are found (nb: this is a user error, not a
1139  * system error). If FORCECLOSE is specified, detach any active vnodes
1140  * that are found.
1141  *
1142  * If WRITECLOSE is set, only flush out regular file vnodes open for
1143  * writing.
1144  *
1145  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1146  *
1147  * `rootrefs' specifies the base reference count for the root vnode
1148  * of this filesystem. The root vnode is considered busy if its
1149  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1150  * will call vrele() on the root vnode exactly rootrefs times.
1151  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1152  * be zero.
1153  */
1154 #ifdef DIAGNOSTIC
1155 static int busyprt = 0;		/* print out busy vnodes */
1156 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1157 #endif
1158 
1159 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1160 
1161 struct vflush_info {
1162 	int flags;
1163 	int busy;
1164 	thread_t td;
1165 };
1166 
1167 int
1168 vflush(struct mount *mp, int rootrefs, int flags)
1169 {
1170 	struct thread *td = curthread;	/* XXX */
1171 	struct vnode *rootvp = NULL;
1172 	int error;
1173 	struct vflush_info vflush_info;
1174 
1175 	if (rootrefs > 0) {
1176 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1177 		    ("vflush: bad args"));
1178 		/*
1179 		 * Get the filesystem root vnode. We can vput() it
1180 		 * immediately, since with rootrefs > 0, it won't go away.
1181 		 */
1182 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1183 			if ((flags & FORCECLOSE) == 0)
1184 				return (error);
1185 			rootrefs = 0;
1186 			/* continue anyway */
1187 		}
1188 		if (rootrefs)
1189 			vput(rootvp);
1190 	}
1191 
1192 	vflush_info.busy = 0;
1193 	vflush_info.flags = flags;
1194 	vflush_info.td = td;
1195 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1196 
1197 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1198 		/*
1199 		 * If just the root vnode is busy, and if its refcount
1200 		 * is equal to `rootrefs', then go ahead and kill it.
1201 		 */
1202 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1203 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1204 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1205 			vx_lock(rootvp);
1206 			vgone_vxlocked(rootvp);
1207 			vx_unlock(rootvp);
1208 			vflush_info.busy = 0;
1209 		}
1210 	}
1211 	if (vflush_info.busy)
1212 		return (EBUSY);
1213 	for (; rootrefs > 0; rootrefs--)
1214 		vrele(rootvp);
1215 	return (0);
1216 }
1217 
1218 /*
1219  * The scan callback is made with an VX locked vnode.
1220  */
1221 static int
1222 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1223 {
1224 	struct vflush_info *info = data;
1225 	struct vattr vattr;
1226 
1227 	/*
1228 	 * Skip over a vnodes marked VSYSTEM.
1229 	 */
1230 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1231 		return(0);
1232 	}
1233 
1234 	/*
1235 	 * If WRITECLOSE is set, flush out unlinked but still open
1236 	 * files (even if open only for reading) and regular file
1237 	 * vnodes open for writing.
1238 	 */
1239 	if ((info->flags & WRITECLOSE) &&
1240 	    (vp->v_type == VNON ||
1241 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1242 	    vattr.va_nlink > 0)) &&
1243 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1244 		return(0);
1245 	}
1246 
1247 	/*
1248 	 * If we are the only holder (refcnt of 1) or the vnode is in
1249 	 * termination (refcnt < 0), we can vgone the vnode.
1250 	 */
1251 	if (vp->v_sysref.refcnt <= 1) {
1252 		vgone_vxlocked(vp);
1253 		return(0);
1254 	}
1255 
1256 	/*
1257 	 * If FORCECLOSE is set, forcibly close the vnode. For block
1258 	 * or character devices we just clean and leave the vp
1259 	 * associated with devfs.  For all other files, just kill them.
1260 	 *
1261 	 * XXX we need to do something about devfs here, I'd rather not
1262 	 *     blow away device associations.
1263 	 */
1264 	if (info->flags & FORCECLOSE) {
1265 		vgone_vxlocked(vp);
1266 #if 0
1267 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
1268 			vgone_vxlocked(vp);
1269 		} else {
1270 			vclean_vxlocked(vp, 0);
1271 			/*vp->v_ops = &devfs_vnode_dev_vops_p;*/
1272 			insmntque(vp, NULL);
1273 		}
1274 #endif
1275 		return(0);
1276 	}
1277 #ifdef DIAGNOSTIC
1278 	if (busyprt)
1279 		vprint("vflush: busy vnode", vp);
1280 #endif
1281 	++info->busy;
1282 	return(0);
1283 }
1284 
1285 void
1286 add_bio_ops(struct bio_ops *ops)
1287 {
1288 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1289 }
1290 
1291 void
1292 rem_bio_ops(struct bio_ops *ops)
1293 {
1294 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1295 }
1296 
1297 /*
1298  * This calls the bio_ops io_sync function either for a mount point
1299  * or generally.
1300  *
1301  * WARNING: softdeps is weirdly coded and just isn't happy unless
1302  * io_sync is called with a NULL mount from the general syncing code.
1303  */
1304 void
1305 bio_ops_sync(struct mount *mp)
1306 {
1307 	struct bio_ops *ops;
1308 
1309 	if (mp) {
1310 		if ((ops = mp->mnt_bioops) != NULL)
1311 			ops->io_sync(mp);
1312 	} else {
1313 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1314 			ops->io_sync(NULL);
1315 		}
1316 	}
1317 }
1318 
1319 /*
1320  * Lookup a mount point by nch
1321  */
1322 struct mount *
1323 mount_get_by_nc(struct namecache *ncp)
1324 {
1325 	struct mount *mp = NULL;
1326 	lwkt_tokref ilock;
1327 
1328 	lwkt_gettoken(&ilock, &mountlist_token);
1329 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1330 		if (ncp == mp->mnt_ncmountpt.ncp)
1331 			break;
1332 	}
1333 	lwkt_reltoken(&ilock);
1334 	return (mp);
1335 }
1336 
1337