xref: /dragonfly/sys/kern/vfs_mount.c (revision b4f25088)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/buf.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 
92 struct mountscan_info {
93 	TAILQ_ENTRY(mountscan_info) msi_entry;
94 	int msi_how;
95 	struct mount *msi_node;
96 };
97 
98 struct vmntvnodescan_info {
99 	TAILQ_ENTRY(vmntvnodescan_info) entry;
100 	struct vnode *vp;
101 };
102 
103 struct vnlru_info {
104 	int	pass;
105 };
106 
107 static int vnlru_nowhere = 0;
108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
109 	    &vnlru_nowhere, 0,
110 	    "Number of times the vnlru process ran without success");
111 
112 
113 static struct lwkt_token mntid_token;
114 static struct mount dummymount;
115 
116 /* note: mountlist exported to pstat */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 
121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token, "mntlist");
130 	lwkt_token_init(&mntid_token, "mntid");
131 	TAILQ_INIT(&mountscan_list);
132 	mount_init(&dummymount);
133 	dummymount.mnt_flag |= MNT_RDONLY;
134 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
135 }
136 
137 /*
138  * Support function called to remove a vnode from the mountlist and
139  * deal with side effects for scans in progress.
140  *
141  * Target mnt_token is held on call.
142  */
143 static void
144 vremovevnodemnt(struct vnode *vp)
145 {
146         struct vmntvnodescan_info *info;
147 	struct mount *mp = vp->v_mount;
148 
149 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 
182 	/*
183 	 * Placing the vnode on the mount point's queue makes it visible.
184 	 * VNON prevents it from being messed with, however.
185 	 */
186 	insmntque(vp, mp);
187 
188 	/*
189 	 * A VX locked & refd vnode is returned.
190 	 */
191 	*vpp = vp;
192 	return (0);
193 }
194 
195 /*
196  * This function creates vnodes with special operations vectors.  The
197  * mount point is optional.
198  *
199  * This routine is being phased out but is still used by vfs_conf to
200  * create vnodes for devices prior to the root mount (with mp == NULL).
201  */
202 int
203 getspecialvnode(enum vtagtype tag, struct mount *mp,
204 		struct vop_ops **ops,
205 		struct vnode **vpp, int lktimeout, int lkflags)
206 {
207 	struct vnode *vp;
208 
209 	vp = allocvnode(lktimeout, lkflags);
210 	vp->v_tag = tag;
211 	vp->v_data = NULL;
212 	vp->v_ops = ops;
213 
214 	if (mp == NULL)
215 		mp = &dummymount;
216 
217 	/*
218 	 * Placing the vnode on the mount point's queue makes it visible.
219 	 * VNON prevents it from being messed with, however.
220 	 */
221 	insmntque(vp, mp);
222 
223 	/*
224 	 * A VX locked & refd vnode is returned.
225 	 */
226 	*vpp = vp;
227 	return (0);
228 }
229 
230 /*
231  * Interlock against an unmount, return 0 on success, non-zero on failure.
232  *
233  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
234  * is in-progress.
235  *
236  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
237  * are used.  A shared locked will be obtained and the filesystem will not
238  * be unmountable until the lock is released.
239  */
240 int
241 vfs_busy(struct mount *mp, int flags)
242 {
243 	int lkflags;
244 
245 	atomic_add_int(&mp->mnt_refs, 1);
246 	lwkt_gettoken(&mp->mnt_token);
247 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
248 		if (flags & LK_NOWAIT) {
249 			lwkt_reltoken(&mp->mnt_token);
250 			atomic_add_int(&mp->mnt_refs, -1);
251 			return (ENOENT);
252 		}
253 		/* XXX not MP safe */
254 		mp->mnt_kern_flag |= MNTK_MWAIT;
255 		/*
256 		 * Since all busy locks are shared except the exclusive
257 		 * lock granted when unmounting, the only place that a
258 		 * wakeup needs to be done is at the release of the
259 		 * exclusive lock at the end of dounmount.
260 		 */
261 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
262 		lwkt_reltoken(&mp->mnt_token);
263 		atomic_add_int(&mp->mnt_refs, -1);
264 		return (ENOENT);
265 	}
266 	lkflags = LK_SHARED;
267 	if (lockmgr(&mp->mnt_lock, lkflags))
268 		panic("vfs_busy: unexpected lock failure");
269 	lwkt_reltoken(&mp->mnt_token);
270 	return (0);
271 }
272 
273 /*
274  * Free a busy filesystem.
275  *
276  * Decrement refs before releasing the lock so e.g. a pending umount
277  * doesn't give us an unexpected busy error.
278  */
279 void
280 vfs_unbusy(struct mount *mp)
281 {
282 	atomic_add_int(&mp->mnt_refs, -1);
283 	lockmgr(&mp->mnt_lock, LK_RELEASE);
284 }
285 
286 /*
287  * Lookup a filesystem type, and if found allocate and initialize
288  * a mount structure for it.
289  *
290  * Devname is usually updated by mount(8) after booting.
291  */
292 int
293 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
294 {
295 	struct vfsconf *vfsp;
296 	struct mount *mp;
297 
298 	if (fstypename == NULL)
299 		return (ENODEV);
300 
301 	vfsp = vfsconf_find_by_name(fstypename);
302 	if (vfsp == NULL)
303 		return (ENODEV);
304 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
305 	mount_init(mp);
306 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
307 
308 	vfs_busy(mp, 0);
309 	mp->mnt_vfc = vfsp;
310 	mp->mnt_op = vfsp->vfc_vfsops;
311 	vfsp->vfc_refcount++;
312 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
313 	mp->mnt_flag |= MNT_RDONLY;
314 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
315 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
316 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
317 	*mpp = mp;
318 	return (0);
319 }
320 
321 /*
322  * Basic mount structure initialization
323  */
324 void
325 mount_init(struct mount *mp)
326 {
327 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
328 	lwkt_token_init(&mp->mnt_token, "permnt");
329 
330 	TAILQ_INIT(&mp->mnt_vnodescan_list);
331 	TAILQ_INIT(&mp->mnt_nvnodelist);
332 	TAILQ_INIT(&mp->mnt_reservedvnlist);
333 	TAILQ_INIT(&mp->mnt_jlist);
334 	mp->mnt_nvnodelistsize = 0;
335 	mp->mnt_flag = 0;
336 	mp->mnt_iosize_max = MAXPHYS;
337 }
338 
339 /*
340  * Lookup a mount point by filesystem identifier.
341  */
342 struct mount *
343 vfs_getvfs(fsid_t *fsid)
344 {
345 	struct mount *mp;
346 
347 	lwkt_gettoken(&mountlist_token);
348 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
349 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
350 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
351 			break;
352 		}
353 	}
354 	lwkt_reltoken(&mountlist_token);
355 	return (mp);
356 }
357 
358 /*
359  * Get a new unique fsid.  Try to make its val[0] unique, since this value
360  * will be used to create fake device numbers for stat().  Also try (but
361  * not so hard) make its val[0] unique mod 2^16, since some emulators only
362  * support 16-bit device numbers.  We end up with unique val[0]'s for the
363  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
364  *
365  * Keep in mind that several mounts may be running in parallel.  Starting
366  * the search one past where the previous search terminated is both a
367  * micro-optimization and a defense against returning the same fsid to
368  * different mounts.
369  */
370 void
371 vfs_getnewfsid(struct mount *mp)
372 {
373 	static u_int16_t mntid_base;
374 	fsid_t tfsid;
375 	int mtype;
376 
377 	lwkt_gettoken(&mntid_token);
378 	mtype = mp->mnt_vfc->vfc_typenum;
379 	tfsid.val[1] = mtype;
380 	mtype = (mtype & 0xFF) << 24;
381 	for (;;) {
382 		tfsid.val[0] = makeudev(255,
383 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
384 		mntid_base++;
385 		if (vfs_getvfs(&tfsid) == NULL)
386 			break;
387 	}
388 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
389 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
390 	lwkt_reltoken(&mntid_token);
391 }
392 
393 /*
394  * Set the FSID for a new mount point to the template.  Adjust
395  * the FSID to avoid collisions.
396  */
397 int
398 vfs_setfsid(struct mount *mp, fsid_t *template)
399 {
400 	int didmunge = 0;
401 
402 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
403 	for (;;) {
404 		if (vfs_getvfs(template) == NULL)
405 			break;
406 		didmunge = 1;
407 		++template->val[1];
408 	}
409 	mp->mnt_stat.f_fsid = *template;
410 	return(didmunge);
411 }
412 
413 /*
414  * This routine is called when we have too many vnodes.  It attempts
415  * to free <count> vnodes and will potentially free vnodes that still
416  * have VM backing store (VM backing store is typically the cause
417  * of a vnode blowout so we want to do this).  Therefore, this operation
418  * is not considered cheap.
419  *
420  * A number of conditions may prevent a vnode from being reclaimed.
421  * the buffer cache may have references on the vnode, a directory
422  * vnode may still have references due to the namei cache representing
423  * underlying files, or the vnode may be in active use.   It is not
424  * desireable to reuse such vnodes.  These conditions may cause the
425  * number of vnodes to reach some minimum value regardless of what
426  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
427  */
428 
429 /*
430  * This is a quick non-blocking check to determine if the vnode is a good
431  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
432  * not a good candidate, 1 if it is.
433  */
434 static __inline int
435 vmightfree(struct vnode *vp, int page_count, int pass)
436 {
437 	if (vp->v_flag & VRECLAIMED)
438 		return (0);
439 #if 0
440 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
441 		return (0);
442 #endif
443 	if (sysref_isactive(&vp->v_sysref))
444 		return (0);
445 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
446 		return (0);
447 
448 	/*
449 	 * XXX horrible hack.  Up to four passes will be taken.  Each pass
450 	 * makes a larger set of vnodes eligible.  For now what this really
451 	 * means is that we try to recycle files opened only once before
452 	 * recycling files opened multiple times.
453 	 */
454 	switch(vp->v_flag & (VAGE0 | VAGE1)) {
455 	case 0:
456 		if (pass < 3)
457 			return(0);
458 		break;
459 	case VAGE0:
460 		if (pass < 2)
461 			return(0);
462 		break;
463 	case VAGE1:
464 		if (pass < 1)
465 			return(0);
466 		break;
467 	case VAGE0 | VAGE1:
468 		break;
469 	}
470 	return (1);
471 }
472 
473 /*
474  * The vnode was found to be possibly vgone()able and the caller has locked it
475  * (thus the usecount should be 1 now).  Determine if the vnode is actually
476  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
477  * can be vgone()'d, 0 otherwise.
478  *
479  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
480  * in the namecache topology and (B) this vnode has buffer cache bufs.
481  * We cannot remove vnodes with non-leaf namecache associations.  We do a
482  * tentitive leaf check prior to attempting to flush out any buffers but the
483  * 'real' test when all is said in done is that v_auxrefs must become 0 for
484  * the vnode to be freeable.
485  *
486  * We could theoretically just unconditionally flush when v_auxrefs != 0,
487  * but flushing data associated with non-leaf nodes (which are always
488  * directories), just throws it away for no benefit.  It is the buffer
489  * cache's responsibility to choose buffers to recycle from the cached
490  * data point of view.
491  */
492 static int
493 visleaf(struct vnode *vp)
494 {
495 	struct namecache *ncp;
496 
497 	spin_lock(&vp->v_spin);
498 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
499 		if (!TAILQ_EMPTY(&ncp->nc_list)) {
500 			spin_unlock(&vp->v_spin);
501 			return(0);
502 		}
503 	}
504 	spin_unlock(&vp->v_spin);
505 	return(1);
506 }
507 
508 /*
509  * Try to clean up the vnode to the point where it can be vgone()'d, returning
510  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
511  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
512  * VFREE are still candidates for vgone()ing because they may hold namecache
513  * resources and could be blocking the namecache directory hierarchy (and
514  * related vnodes) from being freed.
515  */
516 static int
517 vtrytomakegoneable(struct vnode *vp, int page_count)
518 {
519 	if (vp->v_flag & VRECLAIMED)
520 		return (0);
521 	if (vp->v_sysref.refcnt > 1)
522 		return (0);
523 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
524 		return (0);
525 	if (vp->v_auxrefs && visleaf(vp)) {
526 		vinvalbuf(vp, V_SAVE, 0, 0);
527 #if 0	/* DEBUG */
528 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
529 			"vrecycle: vp %p succeeded: %s\n"), vp,
530 			(TAILQ_FIRST(&vp->v_namecache) ?
531 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
532 #endif
533 	}
534 
535 	/*
536 	 * This sequence may seem a little strange, but we need to optimize
537 	 * the critical path a bit.  We can't recycle vnodes with other
538 	 * references and because we are trying to recycle an otherwise
539 	 * perfectly fine vnode we have to invalidate the namecache in a
540 	 * way that avoids possible deadlocks (since the vnode lock is being
541 	 * held here).  Finally, we have to check for other references one
542 	 * last time in case something snuck in during the inval.
543 	 */
544 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
545 		return (0);
546 	if (cache_inval_vp_nonblock(vp))
547 		return (0);
548 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
549 }
550 
551 /*
552  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
553  * to avoid vnodes which have lots of resident pages (we are trying to free
554  * vnodes, not memory).
555  *
556  * This routine is a callback from the mountlist scan.  The mount point
557  * in question will be busied.
558  *
559  * NOTE: The 1/10 reclamation also ensures that the inactive data set
560  *	 (the vnodes being recycled by the one-time use) does not degenerate
561  *	 into too-small a set.  This is important because once a vnode is
562  *	 marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
563  *	 will not be destroyed EXCEPT by this mechanism.  VM pages can still
564  *	 be cleaned/freed by the pageout daemon.
565  */
566 static int
567 vlrureclaim(struct mount *mp, void *data)
568 {
569 	struct vnlru_info *info = data;
570 	struct vnode *vp;
571 	int done;
572 	int trigger;
573 	int usevnodes;
574 	int count;
575 	int trigger_mult = vnlru_nowhere;
576 
577 	/*
578 	 * Calculate the trigger point for the resident pages check.  The
579 	 * minimum trigger value is approximately the number of pages in
580 	 * the system divded by the number of vnodes.  However, due to
581 	 * various other system memory overheads unrelated to data caching
582 	 * it is a good idea to double the trigger (at least).
583 	 *
584 	 * trigger_mult starts at 0.  If the recycler is having problems
585 	 * finding enough freeable vnodes it will increase trigger_mult.
586 	 * This should not happen in normal operation, even on machines with
587 	 * low amounts of memory, but extraordinary memory use by the system
588 	 * verses the amount of cached data can trigger it.
589 	 *
590 	 * (long) -> deal with 64 bit machines, intermediate overflow
591 	 */
592 	usevnodes = desiredvnodes;
593 	if (usevnodes <= 0)
594 		usevnodes = 1;
595 	trigger = (long)vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
596 
597 	done = 0;
598 	lwkt_gettoken(&mp->mnt_token);
599 	count = mp->mnt_nvnodelistsize / 10 + 1;
600 
601 	while (count && mp->mnt_syncer) {
602 		/*
603 		 * Next vnode.  Use the special syncer vnode to placemark
604 		 * the LRU.  This way the LRU code does not interfere with
605 		 * vmntvnodescan().
606 		 */
607 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
608 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
609 		if (vp) {
610 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
611 					   mp->mnt_syncer, v_nmntvnodes);
612 		} else {
613 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
614 					  v_nmntvnodes);
615 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
616 			if (vp == NULL)
617 				break;
618 		}
619 
620 		/*
621 		 * __VNODESCAN__
622 		 *
623 		 * The VP will stick around while we hold mnt_token,
624 		 * at least until we block, so we can safely do an initial
625 		 * check, and then must check again after we lock the vnode.
626 		 */
627 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
628 		    !vmightfree(vp, trigger, info->pass) /* critical path opt */
629 		) {
630 			--count;
631 			continue;
632 		}
633 
634 		/*
635 		 * VX get the candidate vnode.  If the VX get fails the
636 		 * vnode might still be on the mountlist.  Our loop depends
637 		 * on us at least cycling the vnode to the end of the
638 		 * mountlist.
639 		 */
640 		if (vx_get_nonblock(vp) != 0) {
641 			--count;
642 			continue;
643 		}
644 
645 		/*
646 		 * Since we blocked locking the vp, make sure it is still
647 		 * a candidate for reclamation.  That is, it has not already
648 		 * been reclaimed and only has our VX reference associated
649 		 * with it.
650 		 */
651 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
652 		    (vp->v_flag & VRECLAIMED) ||
653 		    vp->v_mount != mp ||
654 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
655 		) {
656 			--count;
657 			vx_put(vp);
658 			continue;
659 		}
660 
661 		/*
662 		 * All right, we are good, move the vp to the end of the
663 		 * mountlist and clean it out.  The vget will have returned
664 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
665 		 * do not have to check again.  The vput() will move the
666 		 * vnode to the free list if the vgone() was successful.
667 		 */
668 		KKASSERT(vp->v_mount == mp);
669 		vgone_vxlocked(vp);
670 		vx_put(vp);
671 		++done;
672 		--count;
673 	}
674 	lwkt_reltoken(&mp->mnt_token);
675 	return (done);
676 }
677 
678 /*
679  * Attempt to recycle vnodes in a context that is always safe to block.
680  * Calling vlrurecycle() from the bowels of file system code has some
681  * interesting deadlock problems.
682  */
683 static struct thread *vnlruthread;
684 
685 static void
686 vnlru_proc(void)
687 {
688 	struct thread *td = curthread;
689 	struct vnlru_info info;
690 	int done;
691 
692 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
693 			      SHUTDOWN_PRI_FIRST);
694 
695 	for (;;) {
696 		kproc_suspend_loop();
697 
698 		/*
699 		 * Do some opportunistic roving.
700 		 */
701 		if (numvnodes > 100000)
702 			vnode_free_rover_scan(50);
703 		else if (numvnodes > 10000)
704 			vnode_free_rover_scan(20);
705 		else
706 			vnode_free_rover_scan(5);
707 
708 		/*
709 		 * Try to free some vnodes if we have too many
710 		 *
711 		 * (long) -> deal with 64 bit machines, intermediate overflow
712 		 */
713 		if (numvnodes > desiredvnodes &&
714 		    freevnodes > desiredvnodes * 2 / 10) {
715 			int count = numvnodes - desiredvnodes;
716 
717 			if (count > freevnodes / 100)
718 				count = freevnodes / 100;
719 			if (count < 5)
720 				count = 5;
721 			freesomevnodes(count);
722 		}
723 
724 		/*
725 		 * Do non-critical-path (more robust) cache cleaning,
726 		 * even if vnode counts are nominal, to try to avoid
727 		 * having to do it in the critical path.
728 		 */
729 		cache_hysteresis(0);
730 
731 		/*
732 		 * Nothing to do if most of our vnodes are already on
733 		 * the free list.
734 		 */
735 		if (numvnodes - freevnodes <= (long)desiredvnodes * 9 / 10) {
736 			tsleep(vnlruthread, 0, "vlruwt", hz);
737 			continue;
738 		}
739 
740 		/*
741 		 * The pass iterates through the four combinations of
742 		 * VAGE0/VAGE1.  We want to get rid of aged small files
743 		 * first.
744 		 */
745 		info.pass = 0;
746 		done = 0;
747 		while (done == 0 && info.pass < 4) {
748 			done = mountlist_scan(vlrureclaim, &info,
749 					      MNTSCAN_FORWARD);
750 			++info.pass;
751 		}
752 
753 		/*
754 		 * The vlrureclaim() call only processes 1/10 of the vnodes
755 		 * on each mount.  If we couldn't find any repeat the loop
756 		 * at least enough times to cover all available vnodes before
757 		 * we start sleeping.  Complain if the failure extends past
758 		 * 30 second, every 30 seconds.
759 		 */
760 		if (done == 0) {
761 			++vnlru_nowhere;
762 			if (vnlru_nowhere % 10 == 0)
763 				tsleep(vnlruthread, 0, "vlrup", hz * 3);
764 			if (vnlru_nowhere % 100 == 0)
765 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
766 			if (vnlru_nowhere == 1000)
767 				vnlru_nowhere = 900;
768 		} else {
769 			vnlru_nowhere = 0;
770 		}
771 	}
772 }
773 
774 /*
775  * MOUNTLIST FUNCTIONS
776  */
777 
778 /*
779  * mountlist_insert (MP SAFE)
780  *
781  * Add a new mount point to the mount list.
782  */
783 void
784 mountlist_insert(struct mount *mp, int how)
785 {
786 	lwkt_gettoken(&mountlist_token);
787 	if (how == MNTINS_FIRST)
788 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
789 	else
790 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
791 	lwkt_reltoken(&mountlist_token);
792 }
793 
794 /*
795  * mountlist_interlock (MP SAFE)
796  *
797  * Execute the specified interlock function with the mountlist token
798  * held.  The function will be called in a serialized fashion verses
799  * other functions called through this mechanism.
800  */
801 int
802 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
803 {
804 	int error;
805 
806 	lwkt_gettoken(&mountlist_token);
807 	error = callback(mp);
808 	lwkt_reltoken(&mountlist_token);
809 	return (error);
810 }
811 
812 /*
813  * mountlist_boot_getfirst (DURING BOOT ONLY)
814  *
815  * This function returns the first mount on the mountlist, which is
816  * expected to be the root mount.  Since no interlocks are obtained
817  * this function is only safe to use during booting.
818  */
819 
820 struct mount *
821 mountlist_boot_getfirst(void)
822 {
823 	return(TAILQ_FIRST(&mountlist));
824 }
825 
826 /*
827  * mountlist_remove (MP SAFE)
828  *
829  * Remove a node from the mountlist.  If this node is the next scan node
830  * for any active mountlist scans, the active mountlist scan will be
831  * adjusted to skip the node, thus allowing removals during mountlist
832  * scans.
833  */
834 void
835 mountlist_remove(struct mount *mp)
836 {
837 	struct mountscan_info *msi;
838 
839 	lwkt_gettoken(&mountlist_token);
840 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
841 		if (msi->msi_node == mp) {
842 			if (msi->msi_how & MNTSCAN_FORWARD)
843 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
844 			else
845 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
846 		}
847 	}
848 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
849 	lwkt_reltoken(&mountlist_token);
850 }
851 
852 /*
853  * mountlist_exists (MP SAFE)
854  *
855  * Checks if a node exists in the mountlist.
856  * This function is mainly used by VFS quota code to check if a
857  * cached nullfs struct mount pointer is still valid at use time
858  *
859  * FIXME: there is no warranty the mp passed to that function
860  * will be the same one used by VFS_ACCOUNT() later
861  */
862 int
863 mountlist_exists(struct mount *mp)
864 {
865 	int node_exists = 0;
866 	struct mount* lmp;
867 
868 	lwkt_gettoken(&mountlist_token);
869 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
870 		if (lmp == mp) {
871 			node_exists = 1;
872 			break;
873 		}
874 	}
875 	lwkt_reltoken(&mountlist_token);
876 	return(node_exists);
877 }
878 
879 /*
880  * mountlist_scan (MP SAFE)
881  *
882  * Safely scan the mount points on the mount list.  Unless otherwise
883  * specified each mount point will be busied prior to the callback and
884  * unbusied afterwords.  The callback may safely remove any mount point
885  * without interfering with the scan.  If the current callback
886  * mount is removed the scanner will not attempt to unbusy it.
887  *
888  * If a mount node cannot be busied it is silently skipped.
889  *
890  * The callback return value is aggregated and a total is returned.  A return
891  * value of < 0 is not aggregated and will terminate the scan.
892  *
893  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
894  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
895  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
896  *			  the mount node.
897  */
898 int
899 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
900 {
901 	struct mountscan_info info;
902 	struct mount *mp;
903 	int count;
904 	int res;
905 
906 	lwkt_gettoken(&mountlist_token);
907 
908 	info.msi_how = how;
909 	info.msi_node = NULL;	/* paranoia */
910 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
911 
912 	res = 0;
913 
914 	if (how & MNTSCAN_FORWARD) {
915 		info.msi_node = TAILQ_FIRST(&mountlist);
916 		while ((mp = info.msi_node) != NULL) {
917 			if (how & MNTSCAN_NOBUSY) {
918 				count = callback(mp, data);
919 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
920 				count = callback(mp, data);
921 				if (mp == info.msi_node)
922 					vfs_unbusy(mp);
923 			} else {
924 				count = 0;
925 			}
926 			if (count < 0)
927 				break;
928 			res += count;
929 			if (mp == info.msi_node)
930 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
931 		}
932 	} else if (how & MNTSCAN_REVERSE) {
933 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
934 		while ((mp = info.msi_node) != NULL) {
935 			if (how & MNTSCAN_NOBUSY) {
936 				count = callback(mp, data);
937 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
938 				count = callback(mp, data);
939 				if (mp == info.msi_node)
940 					vfs_unbusy(mp);
941 			} else {
942 				count = 0;
943 			}
944 			if (count < 0)
945 				break;
946 			res += count;
947 			if (mp == info.msi_node)
948 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
949 		}
950 	}
951 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
952 	lwkt_reltoken(&mountlist_token);
953 	return(res);
954 }
955 
956 /*
957  * MOUNT RELATED VNODE FUNCTIONS
958  */
959 
960 static struct kproc_desc vnlru_kp = {
961 	"vnlru",
962 	vnlru_proc,
963 	&vnlruthread
964 };
965 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
966 
967 /*
968  * Move a vnode from one mount queue to another.
969  *
970  * MPSAFE
971  */
972 void
973 insmntque(struct vnode *vp, struct mount *mp)
974 {
975 	struct mount *omp;
976 
977 	/*
978 	 * Delete from old mount point vnode list, if on one.
979 	 */
980 	if ((omp = vp->v_mount) != NULL) {
981 		lwkt_gettoken(&omp->mnt_token);
982 		KKASSERT(omp == vp->v_mount);
983 		KASSERT(omp->mnt_nvnodelistsize > 0,
984 			("bad mount point vnode list size"));
985 		vremovevnodemnt(vp);
986 		omp->mnt_nvnodelistsize--;
987 		lwkt_reltoken(&omp->mnt_token);
988 	}
989 
990 	/*
991 	 * Insert into list of vnodes for the new mount point, if available.
992 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
993 	 */
994 	if (mp == NULL) {
995 		vp->v_mount = NULL;
996 		return;
997 	}
998 	lwkt_gettoken(&mp->mnt_token);
999 	vp->v_mount = mp;
1000 	if (mp->mnt_syncer) {
1001 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
1002 	} else {
1003 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1004 	}
1005 	mp->mnt_nvnodelistsize++;
1006 	lwkt_reltoken(&mp->mnt_token);
1007 }
1008 
1009 
1010 /*
1011  * Scan the vnodes under a mount point and issue appropriate callbacks.
1012  *
1013  * The fastfunc() callback is called with just the mountlist token held
1014  * (no vnode lock).  It may not block and the vnode may be undergoing
1015  * modifications while the caller is processing it.  The vnode will
1016  * not be entirely destroyed, however, due to the fact that the mountlist
1017  * token is held.  A return value < 0 skips to the next vnode without calling
1018  * the slowfunc(), a return value > 0 terminates the loop.
1019  *
1020  * The slowfunc() callback is called after the vnode has been successfully
1021  * locked based on passed flags.  The vnode is skipped if it gets rearranged
1022  * or destroyed while blocking on the lock.  A non-zero return value from
1023  * the slow function terminates the loop.  The slow function is allowed to
1024  * arbitrarily block.  The scanning code guarentees consistency of operation
1025  * even if the slow function deletes or moves the node, or blocks and some
1026  * other thread deletes or moves the node.
1027  *
1028  * NOTE: We hold vmobj_token to prevent a VM object from being destroyed
1029  *	 out from under the fastfunc()'s vnode test.  It will not prevent
1030  *	 v_object from getting NULL'd out but it will ensure that the
1031  *	 pointer (if we race) will remain stable.
1032  */
1033 int
1034 vmntvnodescan(
1035     struct mount *mp,
1036     int flags,
1037     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1038     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1039     void *data
1040 ) {
1041 	struct vmntvnodescan_info info;
1042 	struct vnode *vp;
1043 	int r = 0;
1044 	int maxcount = mp->mnt_nvnodelistsize * 2;
1045 	int stopcount = 0;
1046 	int count = 0;
1047 
1048 	lwkt_gettoken(&mp->mnt_token);
1049 	lwkt_gettoken(&vmobj_token);
1050 
1051 	/*
1052 	 * If asked to do one pass stop after iterating available vnodes.
1053 	 * Under heavy loads new vnodes can be added while we are scanning,
1054 	 * so this isn't perfect.  Create a slop factor of 2x.
1055 	 */
1056 	if (flags & VMSC_ONEPASS)
1057 		stopcount = mp->mnt_nvnodelistsize;
1058 
1059 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1060 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
1061 
1062 	while ((vp = info.vp) != NULL) {
1063 		if (--maxcount == 0) {
1064 			kprintf("Warning: excessive fssync iteration\n");
1065 			maxcount = mp->mnt_nvnodelistsize * 2;
1066 		}
1067 
1068 		/*
1069 		 * Skip if visible but not ready, or special (e.g.
1070 		 * mp->mnt_syncer)
1071 		 */
1072 		if (vp->v_type == VNON)
1073 			goto next;
1074 		KKASSERT(vp->v_mount == mp);
1075 
1076 		/*
1077 		 * Quick test.  A negative return continues the loop without
1078 		 * calling the slow test.  0 continues onto the slow test.
1079 		 * A positive number aborts the loop.
1080 		 */
1081 		if (fastfunc) {
1082 			if ((r = fastfunc(mp, vp, data)) < 0) {
1083 				r = 0;
1084 				goto next;
1085 			}
1086 			if (r)
1087 				break;
1088 		}
1089 
1090 		/*
1091 		 * Get a vxlock on the vnode, retry if it has moved or isn't
1092 		 * in the mountlist where we expect it.
1093 		 */
1094 		if (slowfunc) {
1095 			int error;
1096 
1097 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1098 			case VMSC_GETVP:
1099 				error = vget(vp, LK_EXCLUSIVE);
1100 				break;
1101 			case VMSC_GETVP|VMSC_NOWAIT:
1102 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1103 				break;
1104 			case VMSC_GETVX:
1105 				vx_get(vp);
1106 				error = 0;
1107 				break;
1108 			default:
1109 				error = 0;
1110 				break;
1111 			}
1112 			if (error)
1113 				goto next;
1114 			/*
1115 			 * Do not call the slow function if the vnode is
1116 			 * invalid or if it was ripped out from under us
1117 			 * while we (potentially) blocked.
1118 			 */
1119 			if (info.vp == vp && vp->v_type != VNON)
1120 				r = slowfunc(mp, vp, data);
1121 
1122 			/*
1123 			 * Cleanup
1124 			 */
1125 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1126 			case VMSC_GETVP:
1127 			case VMSC_GETVP|VMSC_NOWAIT:
1128 				vput(vp);
1129 				break;
1130 			case VMSC_GETVX:
1131 				vx_put(vp);
1132 				break;
1133 			default:
1134 				break;
1135 			}
1136 			if (r != 0)
1137 				break;
1138 		}
1139 
1140 next:
1141 		/*
1142 		 * Yield after some processing.  Depending on the number
1143 		 * of vnodes, we might wind up running for a long time.
1144 		 * Because threads are not preemptable, time critical
1145 		 * userland processes might starve.  Give them a chance
1146 		 * now and then.
1147 		 */
1148 		if (++count == 10000) {
1149 			/* We really want to yield a bit, so we simply sleep a tick */
1150 			tsleep(mp, 0, "vnodescn", 1);
1151 			count = 0;
1152 		}
1153 
1154 		/*
1155 		 * If doing one pass this decrements to zero.  If it starts
1156 		 * at zero it is effectively unlimited for the purposes of
1157 		 * this loop.
1158 		 */
1159 		if (--stopcount == 0)
1160 			break;
1161 
1162 		/*
1163 		 * Iterate.  If the vnode was ripped out from under us
1164 		 * info.vp will already point to the next vnode, otherwise
1165 		 * we have to obtain the next valid vnode ourselves.
1166 		 */
1167 		if (info.vp == vp)
1168 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1169 	}
1170 
1171 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
1172 	lwkt_reltoken(&vmobj_token);
1173 	lwkt_reltoken(&mp->mnt_token);
1174 	return(r);
1175 }
1176 
1177 /*
1178  * Remove any vnodes in the vnode table belonging to mount point mp.
1179  *
1180  * If FORCECLOSE is not specified, there should not be any active ones,
1181  * return error if any are found (nb: this is a user error, not a
1182  * system error). If FORCECLOSE is specified, detach any active vnodes
1183  * that are found.
1184  *
1185  * If WRITECLOSE is set, only flush out regular file vnodes open for
1186  * writing.
1187  *
1188  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1189  *
1190  * `rootrefs' specifies the base reference count for the root vnode
1191  * of this filesystem. The root vnode is considered busy if its
1192  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1193  * will call vrele() on the root vnode exactly rootrefs times.
1194  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1195  * be zero.
1196  */
1197 #ifdef DIAGNOSTIC
1198 static int busyprt = 0;		/* print out busy vnodes */
1199 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1200 #endif
1201 
1202 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1203 
1204 struct vflush_info {
1205 	int flags;
1206 	int busy;
1207 	thread_t td;
1208 };
1209 
1210 int
1211 vflush(struct mount *mp, int rootrefs, int flags)
1212 {
1213 	struct thread *td = curthread;	/* XXX */
1214 	struct vnode *rootvp = NULL;
1215 	int error;
1216 	struct vflush_info vflush_info;
1217 
1218 	if (rootrefs > 0) {
1219 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1220 		    ("vflush: bad args"));
1221 		/*
1222 		 * Get the filesystem root vnode. We can vput() it
1223 		 * immediately, since with rootrefs > 0, it won't go away.
1224 		 */
1225 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1226 			if ((flags & FORCECLOSE) == 0)
1227 				return (error);
1228 			rootrefs = 0;
1229 			/* continue anyway */
1230 		}
1231 		if (rootrefs)
1232 			vput(rootvp);
1233 	}
1234 
1235 	vflush_info.busy = 0;
1236 	vflush_info.flags = flags;
1237 	vflush_info.td = td;
1238 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1239 
1240 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1241 		/*
1242 		 * If just the root vnode is busy, and if its refcount
1243 		 * is equal to `rootrefs', then go ahead and kill it.
1244 		 */
1245 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1246 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1247 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1248 			vx_lock(rootvp);
1249 			vgone_vxlocked(rootvp);
1250 			vx_unlock(rootvp);
1251 			vflush_info.busy = 0;
1252 		}
1253 	}
1254 	if (vflush_info.busy)
1255 		return (EBUSY);
1256 	for (; rootrefs > 0; rootrefs--)
1257 		vrele(rootvp);
1258 	return (0);
1259 }
1260 
1261 /*
1262  * The scan callback is made with an VX locked vnode.
1263  */
1264 static int
1265 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1266 {
1267 	struct vflush_info *info = data;
1268 	struct vattr vattr;
1269 	int flags = info->flags;
1270 
1271 	/*
1272 	 * Skip over a vnodes marked VSYSTEM.
1273 	 */
1274 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1275 		return(0);
1276 	}
1277 
1278 	/*
1279 	 * Do not force-close VCHR or VBLK vnodes
1280 	 */
1281 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1282 		flags &= ~(WRITECLOSE|FORCECLOSE);
1283 
1284 	/*
1285 	 * If WRITECLOSE is set, flush out unlinked but still open
1286 	 * files (even if open only for reading) and regular file
1287 	 * vnodes open for writing.
1288 	 */
1289 	if ((flags & WRITECLOSE) &&
1290 	    (vp->v_type == VNON ||
1291 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1292 	    vattr.va_nlink > 0)) &&
1293 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1294 		return(0);
1295 	}
1296 
1297 	/*
1298 	 * If we are the only holder (refcnt of 1) or the vnode is in
1299 	 * termination (refcnt < 0), we can vgone the vnode.
1300 	 */
1301 	if (vp->v_sysref.refcnt <= 1) {
1302 		vgone_vxlocked(vp);
1303 		return(0);
1304 	}
1305 
1306 	/*
1307 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1308 	 * it to a dummymount structure so vop_*() functions don't deref
1309 	 * a NULL pointer.
1310 	 */
1311 	if (flags & FORCECLOSE) {
1312 		vhold(vp);
1313 		vgone_vxlocked(vp);
1314 		if (vp->v_mount == NULL)
1315 			insmntque(vp, &dummymount);
1316 		vdrop(vp);
1317 		return(0);
1318 	}
1319 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1320 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1321 #ifdef DIAGNOSTIC
1322 	if (busyprt)
1323 		vprint("vflush: busy vnode", vp);
1324 #endif
1325 	++info->busy;
1326 	return(0);
1327 }
1328 
1329 void
1330 add_bio_ops(struct bio_ops *ops)
1331 {
1332 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1333 }
1334 
1335 void
1336 rem_bio_ops(struct bio_ops *ops)
1337 {
1338 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1339 }
1340 
1341 /*
1342  * This calls the bio_ops io_sync function either for a mount point
1343  * or generally.
1344  *
1345  * WARNING: softdeps is weirdly coded and just isn't happy unless
1346  * io_sync is called with a NULL mount from the general syncing code.
1347  */
1348 void
1349 bio_ops_sync(struct mount *mp)
1350 {
1351 	struct bio_ops *ops;
1352 
1353 	if (mp) {
1354 		if ((ops = mp->mnt_bioops) != NULL)
1355 			ops->io_sync(mp);
1356 	} else {
1357 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1358 			ops->io_sync(NULL);
1359 		}
1360 	}
1361 }
1362 
1363 /*
1364  * Lookup a mount point by nch
1365  */
1366 struct mount *
1367 mount_get_by_nc(struct namecache *ncp)
1368 {
1369 	struct mount *mp = NULL;
1370 
1371 	lwkt_gettoken(&mountlist_token);
1372 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1373 		if (ncp == mp->mnt_ncmountpt.ncp)
1374 			break;
1375 	}
1376 	lwkt_reltoken(&mountlist_token);
1377 	return (mp);
1378 }
1379 
1380