xref: /dragonfly/sys/kern/vfs_mount.c (revision bcb3e04d)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 #include <sys/mplock2.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_object.h>
99 
100 struct mountscan_info {
101 	TAILQ_ENTRY(mountscan_info) msi_entry;
102 	int msi_how;
103 	struct mount *msi_node;
104 };
105 
106 struct vmntvnodescan_info {
107 	TAILQ_ENTRY(vmntvnodescan_info) entry;
108 	struct vnode *vp;
109 };
110 
111 struct vnlru_info {
112 	int	pass;
113 };
114 
115 static int vnlru_nowhere = 0;
116 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
117 	    &vnlru_nowhere, 0,
118 	    "Number of times the vnlru process ran without success");
119 
120 
121 static struct lwkt_token mntid_token;
122 static struct mount dummymount;
123 
124 /* note: mountlist exported to pstat */
125 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
126 static TAILQ_HEAD(,mountscan_info) mountscan_list;
127 static struct lwkt_token mountlist_token;
128 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
129 struct lwkt_token mntvnode_token;
130 
131 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
132 
133 /*
134  * Called from vfsinit()
135  */
136 void
137 vfs_mount_init(void)
138 {
139 	lwkt_token_init(&mountlist_token, 1, "mntlist");
140 	lwkt_token_init(&mntvnode_token, 1, "mntvnode");
141 	lwkt_token_init(&mntid_token, 1, "mntid");
142 	TAILQ_INIT(&mountscan_list);
143 	TAILQ_INIT(&mntvnodescan_list);
144 	mount_init(&dummymount);
145 	dummymount.mnt_flag |= MNT_RDONLY;
146 }
147 
148 /*
149  * Support function called with mntvnode_token held to remove a vnode
150  * from the mountlist.  We must update any list scans which are in progress.
151  */
152 static void
153 vremovevnodemnt(struct vnode *vp)
154 {
155         struct vmntvnodescan_info *info;
156 
157 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
158 		if (info->vp == vp)
159 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
160 	}
161 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
162 }
163 
164 /*
165  * Allocate a new vnode and associate it with a tag, mount point, and
166  * operations vector.
167  *
168  * A VX locked and refd vnode is returned.  The caller should setup the
169  * remaining fields and vx_put() or, if he wishes to leave a vref,
170  * vx_unlock() the vnode.
171  */
172 int
173 getnewvnode(enum vtagtype tag, struct mount *mp,
174 		struct vnode **vpp, int lktimeout, int lkflags)
175 {
176 	struct vnode *vp;
177 
178 	KKASSERT(mp != NULL);
179 
180 	vp = allocvnode(lktimeout, lkflags);
181 	vp->v_tag = tag;
182 	vp->v_data = NULL;
183 
184 	/*
185 	 * By default the vnode is assigned the mount point's normal
186 	 * operations vector.
187 	 */
188 	vp->v_ops = &mp->mnt_vn_use_ops;
189 
190 	/*
191 	 * Placing the vnode on the mount point's queue makes it visible.
192 	 * VNON prevents it from being messed with, however.
193 	 */
194 	insmntque(vp, mp);
195 
196 	/*
197 	 * A VX locked & refd vnode is returned.
198 	 */
199 	*vpp = vp;
200 	return (0);
201 }
202 
203 /*
204  * This function creates vnodes with special operations vectors.  The
205  * mount point is optional.
206  *
207  * This routine is being phased out but is still used by vfs_conf to
208  * create vnodes for devices prior to the root mount (with mp == NULL).
209  */
210 int
211 getspecialvnode(enum vtagtype tag, struct mount *mp,
212 		struct vop_ops **ops,
213 		struct vnode **vpp, int lktimeout, int lkflags)
214 {
215 	struct vnode *vp;
216 
217 	vp = allocvnode(lktimeout, lkflags);
218 	vp->v_tag = tag;
219 	vp->v_data = NULL;
220 	vp->v_ops = ops;
221 
222 	if (mp == NULL)
223 		mp = &dummymount;
224 
225 	/*
226 	 * Placing the vnode on the mount point's queue makes it visible.
227 	 * VNON prevents it from being messed with, however.
228 	 */
229 	insmntque(vp, mp);
230 
231 	/*
232 	 * A VX locked & refd vnode is returned.
233 	 */
234 	*vpp = vp;
235 	return (0);
236 }
237 
238 /*
239  * Interlock against an unmount, return 0 on success, non-zero on failure.
240  *
241  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
242  * is in-progress.
243  *
244  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
245  * are used.  A shared locked will be obtained and the filesystem will not
246  * be unmountable until the lock is released.
247  */
248 int
249 vfs_busy(struct mount *mp, int flags)
250 {
251 	int lkflags;
252 
253 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
254 		if (flags & LK_NOWAIT)
255 			return (ENOENT);
256 		/* XXX not MP safe */
257 		mp->mnt_kern_flag |= MNTK_MWAIT;
258 		/*
259 		 * Since all busy locks are shared except the exclusive
260 		 * lock granted when unmounting, the only place that a
261 		 * wakeup needs to be done is at the release of the
262 		 * exclusive lock at the end of dounmount.
263 		 */
264 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
265 		return (ENOENT);
266 	}
267 	lkflags = LK_SHARED;
268 	if (lockmgr(&mp->mnt_lock, lkflags))
269 		panic("vfs_busy: unexpected lock failure");
270 	return (0);
271 }
272 
273 /*
274  * Free a busy filesystem.
275  */
276 void
277 vfs_unbusy(struct mount *mp)
278 {
279 	lockmgr(&mp->mnt_lock, LK_RELEASE);
280 }
281 
282 /*
283  * Lookup a filesystem type, and if found allocate and initialize
284  * a mount structure for it.
285  *
286  * Devname is usually updated by mount(8) after booting.
287  */
288 int
289 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
290 {
291 	struct vfsconf *vfsp;
292 	struct mount *mp;
293 
294 	if (fstypename == NULL)
295 		return (ENODEV);
296 
297 	vfsp = vfsconf_find_by_name(fstypename);
298 	if (vfsp == NULL)
299 		return (ENODEV);
300 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
301 	mount_init(mp);
302 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
303 
304 	vfs_busy(mp, LK_NOWAIT);
305 	mp->mnt_vfc = vfsp;
306 	mp->mnt_op = vfsp->vfc_vfsops;
307 	vfsp->vfc_refcount++;
308 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
309 	mp->mnt_flag |= MNT_RDONLY;
310 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
311 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
312 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
313 	*mpp = mp;
314 	return (0);
315 }
316 
317 /*
318  * Basic mount structure initialization
319  */
320 void
321 mount_init(struct mount *mp)
322 {
323 	lockinit(&mp->mnt_lock, "vfslock", 0, 0);
324 	lwkt_token_init(&mp->mnt_token, 1, "permnt");
325 
326 	TAILQ_INIT(&mp->mnt_nvnodelist);
327 	TAILQ_INIT(&mp->mnt_reservedvnlist);
328 	TAILQ_INIT(&mp->mnt_jlist);
329 	mp->mnt_nvnodelistsize = 0;
330 	mp->mnt_flag = 0;
331 	mp->mnt_iosize_max = DFLTPHYS;
332 }
333 
334 /*
335  * Lookup a mount point by filesystem identifier.
336  */
337 struct mount *
338 vfs_getvfs(fsid_t *fsid)
339 {
340 	struct mount *mp;
341 
342 	lwkt_gettoken(&mountlist_token);
343 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
344 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
345 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
346 			break;
347 		}
348 	}
349 	lwkt_reltoken(&mountlist_token);
350 	return (mp);
351 }
352 
353 /*
354  * Get a new unique fsid.  Try to make its val[0] unique, since this value
355  * will be used to create fake device numbers for stat().  Also try (but
356  * not so hard) make its val[0] unique mod 2^16, since some emulators only
357  * support 16-bit device numbers.  We end up with unique val[0]'s for the
358  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
359  *
360  * Keep in mind that several mounts may be running in parallel.  Starting
361  * the search one past where the previous search terminated is both a
362  * micro-optimization and a defense against returning the same fsid to
363  * different mounts.
364  */
365 void
366 vfs_getnewfsid(struct mount *mp)
367 {
368 	static u_int16_t mntid_base;
369 	fsid_t tfsid;
370 	int mtype;
371 
372 	lwkt_gettoken(&mntid_token);
373 	mtype = mp->mnt_vfc->vfc_typenum;
374 	tfsid.val[1] = mtype;
375 	mtype = (mtype & 0xFF) << 24;
376 	for (;;) {
377 		tfsid.val[0] = makeudev(255,
378 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
379 		mntid_base++;
380 		if (vfs_getvfs(&tfsid) == NULL)
381 			break;
382 	}
383 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
384 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
385 	lwkt_reltoken(&mntid_token);
386 }
387 
388 /*
389  * Set the FSID for a new mount point to the template.  Adjust
390  * the FSID to avoid collisions.
391  */
392 int
393 vfs_setfsid(struct mount *mp, fsid_t *template)
394 {
395 	int didmunge = 0;
396 
397 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
398 	for (;;) {
399 		if (vfs_getvfs(template) == NULL)
400 			break;
401 		didmunge = 1;
402 		++template->val[1];
403 	}
404 	mp->mnt_stat.f_fsid = *template;
405 	return(didmunge);
406 }
407 
408 /*
409  * This routine is called when we have too many vnodes.  It attempts
410  * to free <count> vnodes and will potentially free vnodes that still
411  * have VM backing store (VM backing store is typically the cause
412  * of a vnode blowout so we want to do this).  Therefore, this operation
413  * is not considered cheap.
414  *
415  * A number of conditions may prevent a vnode from being reclaimed.
416  * the buffer cache may have references on the vnode, a directory
417  * vnode may still have references due to the namei cache representing
418  * underlying files, or the vnode may be in active use.   It is not
419  * desireable to reuse such vnodes.  These conditions may cause the
420  * number of vnodes to reach some minimum value regardless of what
421  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
422  */
423 
424 /*
425  * This is a quick non-blocking check to determine if the vnode is a good
426  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
427  * not a good candidate, 1 if it is.
428  */
429 static __inline int
430 vmightfree(struct vnode *vp, int page_count, int pass)
431 {
432 	if (vp->v_flag & VRECLAIMED)
433 		return (0);
434 #if 0
435 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
436 		return (0);
437 #endif
438 	if (sysref_isactive(&vp->v_sysref))
439 		return (0);
440 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
441 		return (0);
442 
443 	/*
444 	 * XXX horrible hack.  Up to four passes will be taken.  Each pass
445 	 * makes a larger set of vnodes eligible.  For now what this really
446 	 * means is that we try to recycle files opened only once before
447 	 * recycling files opened multiple times.
448 	 */
449 	switch(vp->v_flag & (VAGE0 | VAGE1)) {
450 	case 0:
451 		if (pass < 3)
452 			return(0);
453 		break;
454 	case VAGE0:
455 		if (pass < 2)
456 			return(0);
457 		break;
458 	case VAGE1:
459 		if (pass < 1)
460 			return(0);
461 		break;
462 	case VAGE0 | VAGE1:
463 		break;
464 	}
465 	return (1);
466 }
467 
468 /*
469  * The vnode was found to be possibly vgone()able and the caller has locked it
470  * (thus the usecount should be 1 now).  Determine if the vnode is actually
471  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
472  * can be vgone()'d, 0 otherwise.
473  *
474  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
475  * in the namecache topology and (B) this vnode has buffer cache bufs.
476  * We cannot remove vnodes with non-leaf namecache associations.  We do a
477  * tentitive leaf check prior to attempting to flush out any buffers but the
478  * 'real' test when all is said in done is that v_auxrefs must become 0 for
479  * the vnode to be freeable.
480  *
481  * We could theoretically just unconditionally flush when v_auxrefs != 0,
482  * but flushing data associated with non-leaf nodes (which are always
483  * directories), just throws it away for no benefit.  It is the buffer
484  * cache's responsibility to choose buffers to recycle from the cached
485  * data point of view.
486  */
487 static int
488 visleaf(struct vnode *vp)
489 {
490 	struct namecache *ncp;
491 
492 	spin_lock(&vp->v_spinlock);
493 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
494 		if (!TAILQ_EMPTY(&ncp->nc_list)) {
495 			spin_unlock(&vp->v_spinlock);
496 			return(0);
497 		}
498 	}
499 	spin_unlock(&vp->v_spinlock);
500 	return(1);
501 }
502 
503 /*
504  * Try to clean up the vnode to the point where it can be vgone()'d, returning
505  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
506  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
507  * VFREE are still candidates for vgone()ing because they may hold namecache
508  * resources and could be blocking the namecache directory hierarchy (and
509  * related vnodes) from being freed.
510  */
511 static int
512 vtrytomakegoneable(struct vnode *vp, int page_count)
513 {
514 	if (vp->v_flag & VRECLAIMED)
515 		return (0);
516 	if (vp->v_sysref.refcnt > 1)
517 		return (0);
518 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
519 		return (0);
520 	if (vp->v_auxrefs && visleaf(vp)) {
521 		vinvalbuf(vp, V_SAVE, 0, 0);
522 #if 0	/* DEBUG */
523 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
524 			"vrecycle: vp %p succeeded: %s\n"), vp,
525 			(TAILQ_FIRST(&vp->v_namecache) ?
526 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
527 #endif
528 	}
529 
530 	/*
531 	 * This sequence may seem a little strange, but we need to optimize
532 	 * the critical path a bit.  We can't recycle vnodes with other
533 	 * references and because we are trying to recycle an otherwise
534 	 * perfectly fine vnode we have to invalidate the namecache in a
535 	 * way that avoids possible deadlocks (since the vnode lock is being
536 	 * held here).  Finally, we have to check for other references one
537 	 * last time in case something snuck in during the inval.
538 	 */
539 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
540 		return (0);
541 	if (cache_inval_vp_nonblock(vp))
542 		return (0);
543 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
544 }
545 
546 /*
547  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
548  * to avoid vnodes which have lots of resident pages (we are trying to free
549  * vnodes, not memory).
550  *
551  * This routine is a callback from the mountlist scan.  The mount point
552  * in question will be busied.
553  *
554  * NOTE: The 1/10 reclamation also ensures that the inactive data set
555  *	 (the vnodes being recycled by the one-time use) does not degenerate
556  *	 into too-small a set.  This is important because once a vnode is
557  *	 marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
558  *	 will not be destroyed EXCEPT by this mechanism.  VM pages can still
559  *	 be cleaned/freed by the pageout daemon.
560  */
561 static int
562 vlrureclaim(struct mount *mp, void *data)
563 {
564 	struct vnlru_info *info = data;
565 	struct vnode *vp;
566 	int done;
567 	int trigger;
568 	int usevnodes;
569 	int count;
570 	int trigger_mult = vnlru_nowhere;
571 
572 	/*
573 	 * Calculate the trigger point for the resident pages check.  The
574 	 * minimum trigger value is approximately the number of pages in
575 	 * the system divded by the number of vnodes.  However, due to
576 	 * various other system memory overheads unrelated to data caching
577 	 * it is a good idea to double the trigger (at least).
578 	 *
579 	 * trigger_mult starts at 0.  If the recycler is having problems
580 	 * finding enough freeable vnodes it will increase trigger_mult.
581 	 * This should not happen in normal operation, even on machines with
582 	 * low amounts of memory, but extraordinary memory use by the system
583 	 * verses the amount of cached data can trigger it.
584 	 */
585 	usevnodes = desiredvnodes;
586 	if (usevnodes <= 0)
587 		usevnodes = 1;
588 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
589 
590 	done = 0;
591 	lwkt_gettoken(&mntvnode_token);
592 	count = mp->mnt_nvnodelistsize / 10 + 1;
593 
594 	while (count && mp->mnt_syncer) {
595 		/*
596 		 * Next vnode.  Use the special syncer vnode to placemark
597 		 * the LRU.  This way the LRU code does not interfere with
598 		 * vmntvnodescan().
599 		 */
600 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
601 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
602 		if (vp) {
603 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
604 					   mp->mnt_syncer, v_nmntvnodes);
605 		} else {
606 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
607 					  v_nmntvnodes);
608 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
609 			if (vp == NULL)
610 				break;
611 		}
612 
613 		/*
614 		 * __VNODESCAN__
615 		 *
616 		 * The VP will stick around while we hold mntvnode_token,
617 		 * at least until we block, so we can safely do an initial
618 		 * check, and then must check again after we lock the vnode.
619 		 */
620 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
621 		    !vmightfree(vp, trigger, info->pass) /* critical path opt */
622 		) {
623 			--count;
624 			continue;
625 		}
626 
627 		/*
628 		 * VX get the candidate vnode.  If the VX get fails the
629 		 * vnode might still be on the mountlist.  Our loop depends
630 		 * on us at least cycling the vnode to the end of the
631 		 * mountlist.
632 		 */
633 		if (vx_get_nonblock(vp) != 0) {
634 			--count;
635 			continue;
636 		}
637 
638 		/*
639 		 * Since we blocked locking the vp, make sure it is still
640 		 * a candidate for reclamation.  That is, it has not already
641 		 * been reclaimed and only has our VX reference associated
642 		 * with it.
643 		 */
644 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
645 		    (vp->v_flag & VRECLAIMED) ||
646 		    vp->v_mount != mp ||
647 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
648 		) {
649 			--count;
650 			vx_put(vp);
651 			continue;
652 		}
653 
654 		/*
655 		 * All right, we are good, move the vp to the end of the
656 		 * mountlist and clean it out.  The vget will have returned
657 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
658 		 * do not have to check again.  The vput() will move the
659 		 * vnode to the free list if the vgone() was successful.
660 		 */
661 		KKASSERT(vp->v_mount == mp);
662 		vgone_vxlocked(vp);
663 		vx_put(vp);
664 		++done;
665 		--count;
666 	}
667 	lwkt_reltoken(&mntvnode_token);
668 	return (done);
669 }
670 
671 /*
672  * Attempt to recycle vnodes in a context that is always safe to block.
673  * Calling vlrurecycle() from the bowels of file system code has some
674  * interesting deadlock problems.
675  */
676 static struct thread *vnlruthread;
677 static int vnlruproc_sig;
678 
679 void
680 vnlru_proc_wait(void)
681 {
682 	if (vnlruproc_sig == 0) {
683 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
684 		wakeup(vnlruthread);
685 	}
686 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
687 }
688 
689 static void
690 vnlru_proc(void)
691 {
692 	struct thread *td = curthread;
693 	struct vnlru_info info;
694 	int done;
695 
696 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
697 			      SHUTDOWN_PRI_FIRST);
698 
699 	get_mplock();
700 	crit_enter();
701 
702 	for (;;) {
703 		kproc_suspend_loop();
704 
705 		/*
706 		 * Try to free some vnodes if we have too many
707 		 */
708 		if (numvnodes > desiredvnodes &&
709 		    freevnodes > desiredvnodes * 2 / 10) {
710 			int count = numvnodes - desiredvnodes;
711 
712 			if (count > freevnodes / 100)
713 				count = freevnodes / 100;
714 			if (count < 5)
715 				count = 5;
716 			freesomevnodes(count);
717 		}
718 
719 		/*
720 		 * Nothing to do if most of our vnodes are already on
721 		 * the free list.
722 		 */
723 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
724 			vnlruproc_sig = 0;
725 			wakeup(&vnlruproc_sig);
726 			tsleep(td, 0, "vlruwt", hz);
727 			continue;
728 		}
729 		cache_hysteresis();
730 
731 		/*
732 		 * The pass iterates through the four combinations of
733 		 * VAGE0/VAGE1.  We want to get rid of aged small files
734 		 * first.
735 		 */
736 		info.pass = 0;
737 		done = 0;
738 		while (done == 0 && info.pass < 4) {
739 			done = mountlist_scan(vlrureclaim, &info,
740 					      MNTSCAN_FORWARD);
741 			++info.pass;
742 		}
743 
744 		/*
745 		 * The vlrureclaim() call only processes 1/10 of the vnodes
746 		 * on each mount.  If we couldn't find any repeat the loop
747 		 * at least enough times to cover all available vnodes before
748 		 * we start sleeping.  Complain if the failure extends past
749 		 * 30 second, every 30 seconds.
750 		 */
751 		if (done == 0) {
752 			++vnlru_nowhere;
753 			if (vnlru_nowhere % 10 == 0)
754 				tsleep(td, 0, "vlrup", hz * 3);
755 			if (vnlru_nowhere % 100 == 0)
756 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
757 			if (vnlru_nowhere == 1000)
758 				vnlru_nowhere = 900;
759 		} else {
760 			vnlru_nowhere = 0;
761 		}
762 	}
763 
764 	crit_exit();
765 	rel_mplock();
766 }
767 
768 /*
769  * MOUNTLIST FUNCTIONS
770  */
771 
772 /*
773  * mountlist_insert (MP SAFE)
774  *
775  * Add a new mount point to the mount list.
776  */
777 void
778 mountlist_insert(struct mount *mp, int how)
779 {
780 	lwkt_gettoken(&mountlist_token);
781 	if (how == MNTINS_FIRST)
782 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
783 	else
784 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
785 	lwkt_reltoken(&mountlist_token);
786 }
787 
788 /*
789  * mountlist_interlock (MP SAFE)
790  *
791  * Execute the specified interlock function with the mountlist token
792  * held.  The function will be called in a serialized fashion verses
793  * other functions called through this mechanism.
794  */
795 int
796 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
797 {
798 	int error;
799 
800 	lwkt_gettoken(&mountlist_token);
801 	error = callback(mp);
802 	lwkt_reltoken(&mountlist_token);
803 	return (error);
804 }
805 
806 /*
807  * mountlist_boot_getfirst (DURING BOOT ONLY)
808  *
809  * This function returns the first mount on the mountlist, which is
810  * expected to be the root mount.  Since no interlocks are obtained
811  * this function is only safe to use during booting.
812  */
813 
814 struct mount *
815 mountlist_boot_getfirst(void)
816 {
817 	return(TAILQ_FIRST(&mountlist));
818 }
819 
820 /*
821  * mountlist_remove (MP SAFE)
822  *
823  * Remove a node from the mountlist.  If this node is the next scan node
824  * for any active mountlist scans, the active mountlist scan will be
825  * adjusted to skip the node, thus allowing removals during mountlist
826  * scans.
827  */
828 void
829 mountlist_remove(struct mount *mp)
830 {
831 	struct mountscan_info *msi;
832 
833 	lwkt_gettoken(&mountlist_token);
834 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
835 		if (msi->msi_node == mp) {
836 			if (msi->msi_how & MNTSCAN_FORWARD)
837 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
838 			else
839 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
840 		}
841 	}
842 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
843 	lwkt_reltoken(&mountlist_token);
844 }
845 
846 /*
847  * mountlist_scan (MP SAFE)
848  *
849  * Safely scan the mount points on the mount list.  Unless otherwise
850  * specified each mount point will be busied prior to the callback and
851  * unbusied afterwords.  The callback may safely remove any mount point
852  * without interfering with the scan.  If the current callback
853  * mount is removed the scanner will not attempt to unbusy it.
854  *
855  * If a mount node cannot be busied it is silently skipped.
856  *
857  * The callback return value is aggregated and a total is returned.  A return
858  * value of < 0 is not aggregated and will terminate the scan.
859  *
860  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
861  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
862  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
863  *			  the mount node.
864  */
865 int
866 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
867 {
868 	struct mountscan_info info;
869 	struct mount *mp;
870 	thread_t td;
871 	int count;
872 	int res;
873 
874 	lwkt_gettoken(&mountlist_token);
875 
876 	info.msi_how = how;
877 	info.msi_node = NULL;	/* paranoia */
878 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
879 
880 	res = 0;
881 	td = curthread;
882 
883 	if (how & MNTSCAN_FORWARD) {
884 		info.msi_node = TAILQ_FIRST(&mountlist);
885 		while ((mp = info.msi_node) != NULL) {
886 			if (how & MNTSCAN_NOBUSY) {
887 				count = callback(mp, data);
888 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
889 				count = callback(mp, data);
890 				if (mp == info.msi_node)
891 					vfs_unbusy(mp);
892 			} else {
893 				count = 0;
894 			}
895 			if (count < 0)
896 				break;
897 			res += count;
898 			if (mp == info.msi_node)
899 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
900 		}
901 	} else if (how & MNTSCAN_REVERSE) {
902 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
903 		while ((mp = info.msi_node) != NULL) {
904 			if (how & MNTSCAN_NOBUSY) {
905 				count = callback(mp, data);
906 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
907 				count = callback(mp, data);
908 				if (mp == info.msi_node)
909 					vfs_unbusy(mp);
910 			} else {
911 				count = 0;
912 			}
913 			if (count < 0)
914 				break;
915 			res += count;
916 			if (mp == info.msi_node)
917 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
918 		}
919 	}
920 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
921 	lwkt_reltoken(&mountlist_token);
922 	return(res);
923 }
924 
925 /*
926  * MOUNT RELATED VNODE FUNCTIONS
927  */
928 
929 static struct kproc_desc vnlru_kp = {
930 	"vnlru",
931 	vnlru_proc,
932 	&vnlruthread
933 };
934 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
935 
936 /*
937  * Move a vnode from one mount queue to another.
938  *
939  * MPSAFE
940  */
941 void
942 insmntque(struct vnode *vp, struct mount *mp)
943 {
944 	lwkt_gettoken(&mntvnode_token);
945 	/*
946 	 * Delete from old mount point vnode list, if on one.
947 	 */
948 	if (vp->v_mount != NULL) {
949 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
950 			("bad mount point vnode list size"));
951 		vremovevnodemnt(vp);
952 		vp->v_mount->mnt_nvnodelistsize--;
953 	}
954 	/*
955 	 * Insert into list of vnodes for the new mount point, if available.
956 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
957 	 */
958 	if ((vp->v_mount = mp) == NULL) {
959 		lwkt_reltoken(&mntvnode_token);
960 		return;
961 	}
962 	if (mp->mnt_syncer) {
963 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
964 	} else {
965 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
966 	}
967 	mp->mnt_nvnodelistsize++;
968 	lwkt_reltoken(&mntvnode_token);
969 }
970 
971 
972 /*
973  * Scan the vnodes under a mount point and issue appropriate callbacks.
974  *
975  * The fastfunc() callback is called with just the mountlist token held
976  * (no vnode lock).  It may not block and the vnode may be undergoing
977  * modifications while the caller is processing it.  The vnode will
978  * not be entirely destroyed, however, due to the fact that the mountlist
979  * token is held.  A return value < 0 skips to the next vnode without calling
980  * the slowfunc(), a return value > 0 terminates the loop.
981  *
982  * The slowfunc() callback is called after the vnode has been successfully
983  * locked based on passed flags.  The vnode is skipped if it gets rearranged
984  * or destroyed while blocking on the lock.  A non-zero return value from
985  * the slow function terminates the loop.  The slow function is allowed to
986  * arbitrarily block.  The scanning code guarentees consistency of operation
987  * even if the slow function deletes or moves the node, or blocks and some
988  * other thread deletes or moves the node.
989  *
990  * NOTE: We hold vmobj_token to prevent a VM object from being destroyed
991  *	 out from under the fastfunc()'s vnode test.  It will not prevent
992  *	 v_object from getting NULL'd out but it will ensure that the
993  *	 pointer (if we race) will remain stable.
994  */
995 int
996 vmntvnodescan(
997     struct mount *mp,
998     int flags,
999     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1000     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1001     void *data
1002 ) {
1003 	struct vmntvnodescan_info info;
1004 	struct vnode *vp;
1005 	int r = 0;
1006 	int maxcount = 1000000;
1007 	int stopcount = 0;
1008 	int count = 0;
1009 
1010 	lwkt_gettoken(&mntvnode_token);
1011 	lwkt_gettoken(&vmobj_token);
1012 
1013 	/*
1014 	 * If asked to do one pass stop after iterating available vnodes.
1015 	 * Under heavy loads new vnodes can be added while we are scanning,
1016 	 * so this isn't perfect.  Create a slop factor of 2x.
1017 	 */
1018 	if (flags & VMSC_ONEPASS)
1019 		stopcount = mp->mnt_nvnodelistsize * 2;
1020 
1021 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1022 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1023 	while ((vp = info.vp) != NULL) {
1024 		if (--maxcount == 0)
1025 			panic("maxcount reached during vmntvnodescan");
1026 
1027 		/*
1028 		 * Skip if visible but not ready, or special (e.g.
1029 		 * mp->mnt_syncer)
1030 		 */
1031 		if (vp->v_type == VNON)
1032 			goto next;
1033 		KKASSERT(vp->v_mount == mp);
1034 
1035 		/*
1036 		 * Quick test.  A negative return continues the loop without
1037 		 * calling the slow test.  0 continues onto the slow test.
1038 		 * A positive number aborts the loop.
1039 		 */
1040 		if (fastfunc) {
1041 			if ((r = fastfunc(mp, vp, data)) < 0) {
1042 				r = 0;
1043 				goto next;
1044 			}
1045 			if (r)
1046 				break;
1047 		}
1048 
1049 		/*
1050 		 * Get a vxlock on the vnode, retry if it has moved or isn't
1051 		 * in the mountlist where we expect it.
1052 		 */
1053 		if (slowfunc) {
1054 			int error;
1055 
1056 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1057 			case VMSC_GETVP:
1058 				error = vget(vp, LK_EXCLUSIVE);
1059 				break;
1060 			case VMSC_GETVP|VMSC_NOWAIT:
1061 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1062 				break;
1063 			case VMSC_GETVX:
1064 				vx_get(vp);
1065 				error = 0;
1066 				break;
1067 			default:
1068 				error = 0;
1069 				break;
1070 			}
1071 			if (error)
1072 				goto next;
1073 			/*
1074 			 * Do not call the slow function if the vnode is
1075 			 * invalid or if it was ripped out from under us
1076 			 * while we (potentially) blocked.
1077 			 */
1078 			if (info.vp == vp && vp->v_type != VNON)
1079 				r = slowfunc(mp, vp, data);
1080 
1081 			/*
1082 			 * Cleanup
1083 			 */
1084 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1085 			case VMSC_GETVP:
1086 			case VMSC_GETVP|VMSC_NOWAIT:
1087 				vput(vp);
1088 				break;
1089 			case VMSC_GETVX:
1090 				vx_put(vp);
1091 				break;
1092 			default:
1093 				break;
1094 			}
1095 			if (r != 0)
1096 				break;
1097 		}
1098 
1099 next:
1100 		/*
1101 		 * Yield after some processing.  Depending on the number
1102 		 * of vnodes, we might wind up running for a long time.
1103 		 * Because threads are not preemptable, time critical
1104 		 * userland processes might starve.  Give them a chance
1105 		 * now and then.
1106 		 */
1107 		if (++count == 10000) {
1108 			/* We really want to yield a bit, so we simply sleep a tick */
1109 			tsleep(mp, 0, "vnodescn", 1);
1110 			count = 0;
1111 		}
1112 
1113 		/*
1114 		 * If doing one pass this decrements to zero.  If it starts
1115 		 * at zero it is effectively unlimited for the purposes of
1116 		 * this loop.
1117 		 */
1118 		if (--stopcount == 0)
1119 			break;
1120 
1121 		/*
1122 		 * Iterate.  If the vnode was ripped out from under us
1123 		 * info.vp will already point to the next vnode, otherwise
1124 		 * we have to obtain the next valid vnode ourselves.
1125 		 */
1126 		if (info.vp == vp)
1127 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1128 	}
1129 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1130 	lwkt_reltoken(&vmobj_token);
1131 	lwkt_reltoken(&mntvnode_token);
1132 	return(r);
1133 }
1134 
1135 /*
1136  * Remove any vnodes in the vnode table belonging to mount point mp.
1137  *
1138  * If FORCECLOSE is not specified, there should not be any active ones,
1139  * return error if any are found (nb: this is a user error, not a
1140  * system error). If FORCECLOSE is specified, detach any active vnodes
1141  * that are found.
1142  *
1143  * If WRITECLOSE is set, only flush out regular file vnodes open for
1144  * writing.
1145  *
1146  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1147  *
1148  * `rootrefs' specifies the base reference count for the root vnode
1149  * of this filesystem. The root vnode is considered busy if its
1150  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1151  * will call vrele() on the root vnode exactly rootrefs times.
1152  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1153  * be zero.
1154  */
1155 #ifdef DIAGNOSTIC
1156 static int busyprt = 0;		/* print out busy vnodes */
1157 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1158 #endif
1159 
1160 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1161 
1162 struct vflush_info {
1163 	int flags;
1164 	int busy;
1165 	thread_t td;
1166 };
1167 
1168 int
1169 vflush(struct mount *mp, int rootrefs, int flags)
1170 {
1171 	struct thread *td = curthread;	/* XXX */
1172 	struct vnode *rootvp = NULL;
1173 	int error;
1174 	struct vflush_info vflush_info;
1175 
1176 	if (rootrefs > 0) {
1177 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1178 		    ("vflush: bad args"));
1179 		/*
1180 		 * Get the filesystem root vnode. We can vput() it
1181 		 * immediately, since with rootrefs > 0, it won't go away.
1182 		 */
1183 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1184 			if ((flags & FORCECLOSE) == 0)
1185 				return (error);
1186 			rootrefs = 0;
1187 			/* continue anyway */
1188 		}
1189 		if (rootrefs)
1190 			vput(rootvp);
1191 	}
1192 
1193 	vflush_info.busy = 0;
1194 	vflush_info.flags = flags;
1195 	vflush_info.td = td;
1196 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1197 
1198 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1199 		/*
1200 		 * If just the root vnode is busy, and if its refcount
1201 		 * is equal to `rootrefs', then go ahead and kill it.
1202 		 */
1203 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1204 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1205 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1206 			vx_lock(rootvp);
1207 			vgone_vxlocked(rootvp);
1208 			vx_unlock(rootvp);
1209 			vflush_info.busy = 0;
1210 		}
1211 	}
1212 	if (vflush_info.busy)
1213 		return (EBUSY);
1214 	for (; rootrefs > 0; rootrefs--)
1215 		vrele(rootvp);
1216 	return (0);
1217 }
1218 
1219 /*
1220  * The scan callback is made with an VX locked vnode.
1221  */
1222 static int
1223 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1224 {
1225 	struct vflush_info *info = data;
1226 	struct vattr vattr;
1227 
1228 	/*
1229 	 * Skip over a vnodes marked VSYSTEM.
1230 	 */
1231 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1232 		return(0);
1233 	}
1234 
1235 	/*
1236 	 * If WRITECLOSE is set, flush out unlinked but still open
1237 	 * files (even if open only for reading) and regular file
1238 	 * vnodes open for writing.
1239 	 */
1240 	if ((info->flags & WRITECLOSE) &&
1241 	    (vp->v_type == VNON ||
1242 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1243 	    vattr.va_nlink > 0)) &&
1244 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1245 		return(0);
1246 	}
1247 
1248 	/*
1249 	 * If we are the only holder (refcnt of 1) or the vnode is in
1250 	 * termination (refcnt < 0), we can vgone the vnode.
1251 	 */
1252 	if (vp->v_sysref.refcnt <= 1) {
1253 		vgone_vxlocked(vp);
1254 		return(0);
1255 	}
1256 
1257 	/*
1258 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1259 	 * it to a dummymount structure so vop_*() functions don't deref
1260 	 * a NULL pointer.
1261 	 */
1262 	if (info->flags & FORCECLOSE) {
1263 		vhold(vp);
1264 		vgone_vxlocked(vp);
1265 		if (vp->v_mount == NULL)
1266 			insmntque(vp, &dummymount);
1267 		vdrop(vp);
1268 		return(0);
1269 	}
1270 #ifdef DIAGNOSTIC
1271 	if (busyprt)
1272 		vprint("vflush: busy vnode", vp);
1273 #endif
1274 	++info->busy;
1275 	return(0);
1276 }
1277 
1278 void
1279 add_bio_ops(struct bio_ops *ops)
1280 {
1281 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1282 }
1283 
1284 void
1285 rem_bio_ops(struct bio_ops *ops)
1286 {
1287 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1288 }
1289 
1290 /*
1291  * This calls the bio_ops io_sync function either for a mount point
1292  * or generally.
1293  *
1294  * WARNING: softdeps is weirdly coded and just isn't happy unless
1295  * io_sync is called with a NULL mount from the general syncing code.
1296  */
1297 void
1298 bio_ops_sync(struct mount *mp)
1299 {
1300 	struct bio_ops *ops;
1301 
1302 	if (mp) {
1303 		if ((ops = mp->mnt_bioops) != NULL)
1304 			ops->io_sync(mp);
1305 	} else {
1306 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1307 			ops->io_sync(NULL);
1308 		}
1309 	}
1310 }
1311 
1312 /*
1313  * Lookup a mount point by nch
1314  */
1315 struct mount *
1316 mount_get_by_nc(struct namecache *ncp)
1317 {
1318 	struct mount *mp = NULL;
1319 
1320 	lwkt_gettoken(&mountlist_token);
1321 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1322 		if (ncp == mp->mnt_ncmountpt.ncp)
1323 			break;
1324 	}
1325 	lwkt_reltoken(&mountlist_token);
1326 	return (mp);
1327 }
1328 
1329