xref: /dragonfly/sys/kern/vfs_subr.c (revision 1de703da)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.2 2003/06/17 04:28:42 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/namei.h>
62 #include <sys/proc.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 #include <vm/vnode_pager.h>
81 #include <vm/vm_zone.h>
82 
83 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
84 
85 static void	insmntque __P((struct vnode *vp, struct mount *mp));
86 static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
87 static unsigned long	numvnodes;
88 static void	vlruvp(struct vnode *vp);
89 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
90 
91 enum vtype iftovt_tab[16] = {
92 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
93 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
94 };
95 int vttoif_tab[9] = {
96 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
97 	S_IFSOCK, S_IFIFO, S_IFMT,
98 };
99 
100 static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
101 
102 static u_long wantfreevnodes = 25;
103 SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
104 static u_long freevnodes = 0;
105 SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
109 static int reassignbufloops;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
111 static int reassignbufsortgood;
112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
113 static int reassignbufsortbad;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
115 static int reassignbufmethod = 1;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
117 static int nameileafonly = 0;
118 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
119 
120 #ifdef ENABLE_VFS_IOOPT
121 int vfs_ioopt = 0;
122 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
123 #endif
124 
125 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
126 struct simplelock mountlist_slock;
127 struct simplelock mntvnode_slock;
128 int	nfs_mount_type = -1;
129 #ifndef NULL_SIMPLELOCKS
130 static struct simplelock mntid_slock;
131 static struct simplelock vnode_free_list_slock;
132 static struct simplelock spechash_slock;
133 #endif
134 struct nfs_public nfs_pub;	/* publicly exported FS */
135 static vm_zone_t vnode_zone;
136 
137 /*
138  * The workitem queue.
139  */
140 #define SYNCER_MAXDELAY		32
141 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
142 time_t syncdelay = 30;		/* max time to delay syncing data */
143 time_t filedelay = 30;		/* time to delay syncing files */
144 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
145 time_t dirdelay = 29;		/* time to delay syncing directories */
146 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
147 time_t metadelay = 28;		/* time to delay syncing metadata */
148 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
149 static int rushjob;			/* number of slots to run ASAP */
150 static int stat_rush_requests;	/* number of times I/O speeded up */
151 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
152 
153 static int syncer_delayno = 0;
154 static long syncer_mask;
155 LIST_HEAD(synclist, vnode);
156 static struct synclist *syncer_workitem_pending;
157 
158 int desiredvnodes;
159 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
160     &desiredvnodes, 0, "Maximum number of vnodes");
161 static int minvnodes;
162 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
163     &minvnodes, 0, "Minimum number of vnodes");
164 static int vnlru_nowhere = 0;
165 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
166     "Number of times the vnlru process ran without success");
167 
168 static void	vfs_free_addrlist __P((struct netexport *nep));
169 static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
170 static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
171 				       struct export_args *argp));
172 
173 /*
174  * Initialize the vnode management data structures.
175  */
176 void
177 vntblinit()
178 {
179 
180 	desiredvnodes = maxproc + cnt.v_page_count / 4;
181 	minvnodes = desiredvnodes / 4;
182 	simple_lock_init(&mntvnode_slock);
183 	simple_lock_init(&mntid_slock);
184 	simple_lock_init(&spechash_slock);
185 	TAILQ_INIT(&vnode_free_list);
186 	simple_lock_init(&vnode_free_list_slock);
187 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
188 	/*
189 	 * Initialize the filesystem syncer.
190 	 */
191 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
192 		&syncer_mask);
193 	syncer_maxdelay = syncer_mask + 1;
194 }
195 
196 /*
197  * Mark a mount point as busy. Used to synchronize access and to delay
198  * unmounting. Interlock is not released on failure.
199  */
200 int
201 vfs_busy(mp, flags, interlkp, p)
202 	struct mount *mp;
203 	int flags;
204 	struct simplelock *interlkp;
205 	struct proc *p;
206 {
207 	int lkflags;
208 
209 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
210 		if (flags & LK_NOWAIT)
211 			return (ENOENT);
212 		mp->mnt_kern_flag |= MNTK_MWAIT;
213 		if (interlkp) {
214 			simple_unlock(interlkp);
215 		}
216 		/*
217 		 * Since all busy locks are shared except the exclusive
218 		 * lock granted when unmounting, the only place that a
219 		 * wakeup needs to be done is at the release of the
220 		 * exclusive lock at the end of dounmount.
221 		 */
222 		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
223 		if (interlkp) {
224 			simple_lock(interlkp);
225 		}
226 		return (ENOENT);
227 	}
228 	lkflags = LK_SHARED | LK_NOPAUSE;
229 	if (interlkp)
230 		lkflags |= LK_INTERLOCK;
231 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
232 		panic("vfs_busy: unexpected lock failure");
233 	return (0);
234 }
235 
236 /*
237  * Free a busy filesystem.
238  */
239 void
240 vfs_unbusy(mp, p)
241 	struct mount *mp;
242 	struct proc *p;
243 {
244 
245 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
246 }
247 
248 /*
249  * Lookup a filesystem type, and if found allocate and initialize
250  * a mount structure for it.
251  *
252  * Devname is usually updated by mount(8) after booting.
253  */
254 int
255 vfs_rootmountalloc(fstypename, devname, mpp)
256 	char *fstypename;
257 	char *devname;
258 	struct mount **mpp;
259 {
260 	struct proc *p = curproc;	/* XXX */
261 	struct vfsconf *vfsp;
262 	struct mount *mp;
263 
264 	if (fstypename == NULL)
265 		return (ENODEV);
266 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
267 		if (!strcmp(vfsp->vfc_name, fstypename))
268 			break;
269 	if (vfsp == NULL)
270 		return (ENODEV);
271 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
272 	bzero((char *)mp, (u_long)sizeof(struct mount));
273 	lockinit(&mp->mnt_lock, PVFS, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
274 	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
275 	TAILQ_INIT(&mp->mnt_nvnodelist);
276 	TAILQ_INIT(&mp->mnt_reservedvnlist);
277 	mp->mnt_nvnodelistsize = 0;
278 	mp->mnt_vfc = vfsp;
279 	mp->mnt_op = vfsp->vfc_vfsops;
280 	mp->mnt_flag = MNT_RDONLY;
281 	mp->mnt_vnodecovered = NULLVP;
282 	vfsp->vfc_refcount++;
283 	mp->mnt_iosize_max = DFLTPHYS;
284 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
285 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
286 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
287 	mp->mnt_stat.f_mntonname[0] = '/';
288 	mp->mnt_stat.f_mntonname[1] = 0;
289 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
290 	*mpp = mp;
291 	return (0);
292 }
293 
294 /*
295  * Find an appropriate filesystem to use for the root. If a filesystem
296  * has not been preselected, walk through the list of known filesystems
297  * trying those that have mountroot routines, and try them until one
298  * works or we have tried them all.
299  */
300 #ifdef notdef	/* XXX JH */
301 int
302 lite2_vfs_mountroot()
303 {
304 	struct vfsconf *vfsp;
305 	extern int (*lite2_mountroot) __P((void));
306 	int error;
307 
308 	if (lite2_mountroot != NULL)
309 		return ((*lite2_mountroot)());
310 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
311 		if (vfsp->vfc_mountroot == NULL)
312 			continue;
313 		if ((error = (*vfsp->vfc_mountroot)()) == 0)
314 			return (0);
315 		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
316 	}
317 	return (ENODEV);
318 }
319 #endif
320 
321 /*
322  * Lookup a mount point by filesystem identifier.
323  */
324 struct mount *
325 vfs_getvfs(fsid)
326 	fsid_t *fsid;
327 {
328 	register struct mount *mp;
329 
330 	simple_lock(&mountlist_slock);
331 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
332 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
333 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
334 			simple_unlock(&mountlist_slock);
335 			return (mp);
336 	    }
337 	}
338 	simple_unlock(&mountlist_slock);
339 	return ((struct mount *) 0);
340 }
341 
342 /*
343  * Get a new unique fsid.  Try to make its val[0] unique, since this value
344  * will be used to create fake device numbers for stat().  Also try (but
345  * not so hard) make its val[0] unique mod 2^16, since some emulators only
346  * support 16-bit device numbers.  We end up with unique val[0]'s for the
347  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
348  *
349  * Keep in mind that several mounts may be running in parallel.  Starting
350  * the search one past where the previous search terminated is both a
351  * micro-optimization and a defense against returning the same fsid to
352  * different mounts.
353  */
354 void
355 vfs_getnewfsid(mp)
356 	struct mount *mp;
357 {
358 	static u_int16_t mntid_base;
359 	fsid_t tfsid;
360 	int mtype;
361 
362 	simple_lock(&mntid_slock);
363 	mtype = mp->mnt_vfc->vfc_typenum;
364 	tfsid.val[1] = mtype;
365 	mtype = (mtype & 0xFF) << 24;
366 	for (;;) {
367 		tfsid.val[0] = makeudev(255,
368 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
369 		mntid_base++;
370 		if (vfs_getvfs(&tfsid) == NULL)
371 			break;
372 	}
373 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
374 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
375 	simple_unlock(&mntid_slock);
376 }
377 
378 /*
379  * Knob to control the precision of file timestamps:
380  *
381  *   0 = seconds only; nanoseconds zeroed.
382  *   1 = seconds and nanoseconds, accurate within 1/HZ.
383  *   2 = seconds and nanoseconds, truncated to microseconds.
384  * >=3 = seconds and nanoseconds, maximum precision.
385  */
386 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
387 
388 static int timestamp_precision = TSP_SEC;
389 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
390     &timestamp_precision, 0, "");
391 
392 /*
393  * Get a current timestamp.
394  */
395 void
396 vfs_timestamp(tsp)
397 	struct timespec *tsp;
398 {
399 	struct timeval tv;
400 
401 	switch (timestamp_precision) {
402 	case TSP_SEC:
403 		tsp->tv_sec = time_second;
404 		tsp->tv_nsec = 0;
405 		break;
406 	case TSP_HZ:
407 		getnanotime(tsp);
408 		break;
409 	case TSP_USEC:
410 		microtime(&tv);
411 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
412 		break;
413 	case TSP_NSEC:
414 	default:
415 		nanotime(tsp);
416 		break;
417 	}
418 }
419 
420 /*
421  * Set vnode attributes to VNOVAL
422  */
423 void
424 vattr_null(vap)
425 	register struct vattr *vap;
426 {
427 
428 	vap->va_type = VNON;
429 	vap->va_size = VNOVAL;
430 	vap->va_bytes = VNOVAL;
431 	vap->va_mode = VNOVAL;
432 	vap->va_nlink = VNOVAL;
433 	vap->va_uid = VNOVAL;
434 	vap->va_gid = VNOVAL;
435 	vap->va_fsid = VNOVAL;
436 	vap->va_fileid = VNOVAL;
437 	vap->va_blocksize = VNOVAL;
438 	vap->va_rdev = VNOVAL;
439 	vap->va_atime.tv_sec = VNOVAL;
440 	vap->va_atime.tv_nsec = VNOVAL;
441 	vap->va_mtime.tv_sec = VNOVAL;
442 	vap->va_mtime.tv_nsec = VNOVAL;
443 	vap->va_ctime.tv_sec = VNOVAL;
444 	vap->va_ctime.tv_nsec = VNOVAL;
445 	vap->va_flags = VNOVAL;
446 	vap->va_gen = VNOVAL;
447 	vap->va_vaflags = 0;
448 }
449 
450 /*
451  * This routine is called when we have too many vnodes.  It attempts
452  * to free <count> vnodes and will potentially free vnodes that still
453  * have VM backing store (VM backing store is typically the cause
454  * of a vnode blowout so we want to do this).  Therefore, this operation
455  * is not considered cheap.
456  *
457  * A number of conditions may prevent a vnode from being reclaimed.
458  * the buffer cache may have references on the vnode, a directory
459  * vnode may still have references due to the namei cache representing
460  * underlying files, or the vnode may be in active use.   It is not
461  * desireable to reuse such vnodes.  These conditions may cause the
462  * number of vnodes to reach some minimum value regardless of what
463  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
464  */
465 static int
466 vlrureclaim(struct mount *mp)
467 {
468 	struct vnode *vp;
469 	int done;
470 	int trigger;
471 	int usevnodes;
472 	int count;
473 
474 	/*
475 	 * Calculate the trigger point, don't allow user
476 	 * screwups to blow us up.   This prevents us from
477 	 * recycling vnodes with lots of resident pages.  We
478 	 * aren't trying to free memory, we are trying to
479 	 * free vnodes.
480 	 */
481 	usevnodes = desiredvnodes;
482 	if (usevnodes <= 0)
483 		usevnodes = 1;
484 	trigger = cnt.v_page_count * 2 / usevnodes;
485 
486 	done = 0;
487 	simple_lock(&mntvnode_slock);
488 	count = mp->mnt_nvnodelistsize / 10 + 1;
489 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
490 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
491 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
492 
493 		if (vp->v_type != VNON &&
494 		    vp->v_type != VBAD &&
495 		    VMIGHTFREE(vp) &&		/* critical path opt */
496 		    (vp->v_object == NULL || vp->v_object->resident_page_count < trigger) &&
497 		    simple_lock_try(&vp->v_interlock)
498 		) {
499 			simple_unlock(&mntvnode_slock);
500 			if (VMIGHTFREE(vp)) {
501 				vgonel(vp, curproc);
502 				done++;
503 			} else {
504 				simple_unlock(&vp->v_interlock);
505 			}
506 			simple_lock(&mntvnode_slock);
507 		}
508 		--count;
509 	}
510 	simple_unlock(&mntvnode_slock);
511 	return done;
512 }
513 
514 /*
515  * Attempt to recycle vnodes in a context that is always safe to block.
516  * Calling vlrurecycle() from the bowels of file system code has some
517  * interesting deadlock problems.
518  */
519 static struct proc *vnlruproc;
520 static int vnlruproc_sig;
521 
522 static void
523 vnlru_proc(void)
524 {
525 	struct mount *mp, *nmp;
526 	int s;
527 	int done;
528 	struct proc *p = vnlruproc;
529 
530 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
531 	    SHUTDOWN_PRI_FIRST);
532 
533 	s = splbio();
534 	for (;;) {
535 		kproc_suspend_loop(p);
536 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
537 			vnlruproc_sig = 0;
538 			wakeup(&vnlruproc_sig);
539 			tsleep(vnlruproc, PVFS, "vlruwt", hz);
540 			continue;
541 		}
542 		done = 0;
543 		simple_lock(&mountlist_slock);
544 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
545 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
546 				nmp = TAILQ_NEXT(mp, mnt_list);
547 				continue;
548 			}
549 			done += vlrureclaim(mp);
550 			simple_lock(&mountlist_slock);
551 			nmp = TAILQ_NEXT(mp, mnt_list);
552 			vfs_unbusy(mp, p);
553 		}
554 		simple_unlock(&mountlist_slock);
555 		if (done == 0) {
556 			vnlru_nowhere++;
557 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
558 		}
559 	}
560 	splx(s);
561 }
562 
563 static struct kproc_desc vnlru_kp = {
564 	"vnlru",
565 	vnlru_proc,
566 	&vnlruproc
567 };
568 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
569 
570 /*
571  * Routines having to do with the management of the vnode table.
572  */
573 extern vop_t **dead_vnodeop_p;
574 
575 /*
576  * Return the next vnode from the free list.
577  */
578 int
579 getnewvnode(tag, mp, vops, vpp)
580 	enum vtagtype tag;
581 	struct mount *mp;
582 	vop_t **vops;
583 	struct vnode **vpp;
584 {
585 	int s;
586 	struct proc *p = curproc;	/* XXX */
587 	struct vnode *vp = NULL;
588 	vm_object_t object;
589 
590 	s = splbio();
591 
592 	/*
593 	 * Try to reuse vnodes if we hit the max.  This situation only
594 	 * occurs in certain large-memory (2G+) situations.  We cannot
595 	 * attempt to directly reclaim vnodes due to nasty recursion
596 	 * problems.
597 	 */
598 	while (numvnodes - freevnodes > desiredvnodes) {
599 		if (vnlruproc_sig == 0) {
600 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
601 			wakeup(vnlruproc);
602 		}
603 		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
604 	}
605 
606 
607 	/*
608 	 * Attempt to reuse a vnode already on the free list, allocating
609 	 * a new vnode if we can't find one or if we have not reached a
610 	 * good minimum for good LRU performance.
611 	 */
612 	simple_lock(&vnode_free_list_slock);
613 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
614 		int count;
615 
616 		for (count = 0; count < freevnodes; count++) {
617 			vp = TAILQ_FIRST(&vnode_free_list);
618 			if (vp == NULL || vp->v_usecount)
619 				panic("getnewvnode: free vnode isn't");
620 
621 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
622 			if ((VOP_GETVOBJECT(vp, &object) == 0 &&
623 			    (object->resident_page_count || object->ref_count)) ||
624 			    !simple_lock_try(&vp->v_interlock)) {
625 				TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
626 				vp = NULL;
627 				continue;
628 			}
629 			if (LIST_FIRST(&vp->v_cache_src)) {
630 				/*
631 				 * note: nameileafonly sysctl is temporary,
632 				 * for debugging only, and will eventually be
633 				 * removed.
634 				 */
635 				if (nameileafonly > 0) {
636 					/*
637 					 * Do not reuse namei-cached directory
638 					 * vnodes that have cached
639 					 * subdirectories.
640 					 */
641 					if (cache_leaf_test(vp) < 0) {
642 						simple_unlock(&vp->v_interlock);
643 						TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
644 						vp = NULL;
645 						continue;
646 					}
647 				} else if (nameileafonly < 0 ||
648 					    vmiodirenable == 0) {
649 					/*
650 					 * Do not reuse namei-cached directory
651 					 * vnodes if nameileafonly is -1 or
652 					 * if VMIO backing for directories is
653 					 * turned off (otherwise we reuse them
654 					 * too quickly).
655 					 */
656 					simple_unlock(&vp->v_interlock);
657 					TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
658 					vp = NULL;
659 					continue;
660 				}
661 			}
662 			break;
663 		}
664 	}
665 
666 	if (vp) {
667 		vp->v_flag |= VDOOMED;
668 		vp->v_flag &= ~VFREE;
669 		freevnodes--;
670 		simple_unlock(&vnode_free_list_slock);
671 		cache_purge(vp);
672 		vp->v_lease = NULL;
673 		if (vp->v_type != VBAD) {
674 			vgonel(vp, p);
675 		} else {
676 			simple_unlock(&vp->v_interlock);
677 		}
678 
679 #ifdef INVARIANTS
680 		{
681 			int s;
682 
683 			if (vp->v_data)
684 				panic("cleaned vnode isn't");
685 			s = splbio();
686 			if (vp->v_numoutput)
687 				panic("Clean vnode has pending I/O's");
688 			splx(s);
689 		}
690 #endif
691 		vp->v_flag = 0;
692 		vp->v_lastw = 0;
693 		vp->v_lasta = 0;
694 		vp->v_cstart = 0;
695 		vp->v_clen = 0;
696 		vp->v_socket = 0;
697 		vp->v_writecount = 0;	/* XXX */
698 	} else {
699 		simple_unlock(&vnode_free_list_slock);
700 		vp = (struct vnode *) zalloc(vnode_zone);
701 		bzero((char *) vp, sizeof *vp);
702 		simple_lock_init(&vp->v_interlock);
703 		vp->v_dd = vp;
704 		cache_purge(vp);
705 		LIST_INIT(&vp->v_cache_src);
706 		TAILQ_INIT(&vp->v_cache_dst);
707 		numvnodes++;
708 	}
709 
710 	TAILQ_INIT(&vp->v_cleanblkhd);
711 	TAILQ_INIT(&vp->v_dirtyblkhd);
712 	vp->v_type = VNON;
713 	vp->v_tag = tag;
714 	vp->v_op = vops;
715 	insmntque(vp, mp);
716 	*vpp = vp;
717 	vp->v_usecount = 1;
718 	vp->v_data = 0;
719 	splx(s);
720 
721 	vfs_object_create(vp, p, p->p_ucred);
722 	return (0);
723 }
724 
725 /*
726  * Move a vnode from one mount queue to another.
727  */
728 static void
729 insmntque(vp, mp)
730 	register struct vnode *vp;
731 	register struct mount *mp;
732 {
733 
734 	simple_lock(&mntvnode_slock);
735 	/*
736 	 * Delete from old mount point vnode list, if on one.
737 	 */
738 	if (vp->v_mount != NULL) {
739 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
740 			("bad mount point vnode list size"));
741 		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
742 		vp->v_mount->mnt_nvnodelistsize--;
743 	}
744 	/*
745 	 * Insert into list of vnodes for the new mount point, if available.
746 	 */
747 	if ((vp->v_mount = mp) == NULL) {
748 		simple_unlock(&mntvnode_slock);
749 		return;
750 	}
751 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
752 	mp->mnt_nvnodelistsize++;
753 	simple_unlock(&mntvnode_slock);
754 }
755 
756 /*
757  * Update outstanding I/O count and do wakeup if requested.
758  */
759 void
760 vwakeup(bp)
761 	register struct buf *bp;
762 {
763 	register struct vnode *vp;
764 
765 	bp->b_flags &= ~B_WRITEINPROG;
766 	if ((vp = bp->b_vp)) {
767 		vp->v_numoutput--;
768 		if (vp->v_numoutput < 0)
769 			panic("vwakeup: neg numoutput");
770 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
771 			vp->v_flag &= ~VBWAIT;
772 			wakeup((caddr_t) &vp->v_numoutput);
773 		}
774 	}
775 }
776 
777 /*
778  * Flush out and invalidate all buffers associated with a vnode.
779  * Called with the underlying object locked.
780  */
781 int
782 vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
783 	register struct vnode *vp;
784 	int flags;
785 	struct ucred *cred;
786 	struct proc *p;
787 	int slpflag, slptimeo;
788 {
789 	register struct buf *bp;
790 	struct buf *nbp, *blist;
791 	int s, error;
792 	vm_object_t object;
793 
794 	if (flags & V_SAVE) {
795 		s = splbio();
796 		while (vp->v_numoutput) {
797 			vp->v_flag |= VBWAIT;
798 			error = tsleep((caddr_t)&vp->v_numoutput,
799 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
800 			if (error) {
801 				splx(s);
802 				return (error);
803 			}
804 		}
805 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
806 			splx(s);
807 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
808 				return (error);
809 			s = splbio();
810 			if (vp->v_numoutput > 0 ||
811 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
812 				panic("vinvalbuf: dirty bufs");
813 		}
814 		splx(s);
815   	}
816 	s = splbio();
817 	for (;;) {
818 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
819 		if (!blist)
820 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
821 		if (!blist)
822 			break;
823 
824 		for (bp = blist; bp; bp = nbp) {
825 			nbp = TAILQ_NEXT(bp, b_vnbufs);
826 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
827 				error = BUF_TIMELOCK(bp,
828 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
829 				    "vinvalbuf", slpflag, slptimeo);
830 				if (error == ENOLCK)
831 					break;
832 				splx(s);
833 				return (error);
834 			}
835 			/*
836 			 * XXX Since there are no node locks for NFS, I
837 			 * believe there is a slight chance that a delayed
838 			 * write will occur while sleeping just above, so
839 			 * check for it.  Note that vfs_bio_awrite expects
840 			 * buffers to reside on a queue, while VOP_BWRITE and
841 			 * brelse do not.
842 			 */
843 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
844 				(flags & V_SAVE)) {
845 
846 				if (bp->b_vp == vp) {
847 					if (bp->b_flags & B_CLUSTEROK) {
848 						BUF_UNLOCK(bp);
849 						vfs_bio_awrite(bp);
850 					} else {
851 						bremfree(bp);
852 						bp->b_flags |= B_ASYNC;
853 						VOP_BWRITE(bp->b_vp, bp);
854 					}
855 				} else {
856 					bremfree(bp);
857 					(void) VOP_BWRITE(bp->b_vp, bp);
858 				}
859 				break;
860 			}
861 			bremfree(bp);
862 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
863 			bp->b_flags &= ~B_ASYNC;
864 			brelse(bp);
865 		}
866 	}
867 
868 	/*
869 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
870 	 * have write I/O in-progress but if there is a VM object then the
871 	 * VM object can also have read-I/O in-progress.
872 	 */
873 	do {
874 		while (vp->v_numoutput > 0) {
875 			vp->v_flag |= VBWAIT;
876 			tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
877 		}
878 		if (VOP_GETVOBJECT(vp, &object) == 0) {
879 			while (object->paging_in_progress)
880 				vm_object_pip_sleep(object, "vnvlbx");
881 		}
882 	} while (vp->v_numoutput > 0);
883 
884 	splx(s);
885 
886 	/*
887 	 * Destroy the copy in the VM cache, too.
888 	 */
889 	simple_lock(&vp->v_interlock);
890 	if (VOP_GETVOBJECT(vp, &object) == 0) {
891 		vm_object_page_remove(object, 0, 0,
892 			(flags & V_SAVE) ? TRUE : FALSE);
893 	}
894 	simple_unlock(&vp->v_interlock);
895 
896 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
897 		panic("vinvalbuf: flush failed");
898 	return (0);
899 }
900 
901 /*
902  * Truncate a file's buffer and pages to a specified length.  This
903  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
904  * sync activity.
905  */
906 int
907 vtruncbuf(vp, cred, p, length, blksize)
908 	register struct vnode *vp;
909 	struct ucred *cred;
910 	struct proc *p;
911 	off_t length;
912 	int blksize;
913 {
914 	register struct buf *bp;
915 	struct buf *nbp;
916 	int s, anyfreed;
917 	int trunclbn;
918 
919 	/*
920 	 * Round up to the *next* lbn.
921 	 */
922 	trunclbn = (length + blksize - 1) / blksize;
923 
924 	s = splbio();
925 restart:
926 	anyfreed = 1;
927 	for (;anyfreed;) {
928 		anyfreed = 0;
929 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
930 			nbp = TAILQ_NEXT(bp, b_vnbufs);
931 			if (bp->b_lblkno >= trunclbn) {
932 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
933 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
934 					goto restart;
935 				} else {
936 					bremfree(bp);
937 					bp->b_flags |= (B_INVAL | B_RELBUF);
938 					bp->b_flags &= ~B_ASYNC;
939 					brelse(bp);
940 					anyfreed = 1;
941 				}
942 				if (nbp &&
943 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
944 				    (nbp->b_vp != vp) ||
945 				    (nbp->b_flags & B_DELWRI))) {
946 					goto restart;
947 				}
948 			}
949 		}
950 
951 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
952 			nbp = TAILQ_NEXT(bp, b_vnbufs);
953 			if (bp->b_lblkno >= trunclbn) {
954 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
955 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
956 					goto restart;
957 				} else {
958 					bremfree(bp);
959 					bp->b_flags |= (B_INVAL | B_RELBUF);
960 					bp->b_flags &= ~B_ASYNC;
961 					brelse(bp);
962 					anyfreed = 1;
963 				}
964 				if (nbp &&
965 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
966 				    (nbp->b_vp != vp) ||
967 				    (nbp->b_flags & B_DELWRI) == 0)) {
968 					goto restart;
969 				}
970 			}
971 		}
972 	}
973 
974 	if (length > 0) {
975 restartsync:
976 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
977 			nbp = TAILQ_NEXT(bp, b_vnbufs);
978 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
979 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
980 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
981 					goto restart;
982 				} else {
983 					bremfree(bp);
984 					if (bp->b_vp == vp) {
985 						bp->b_flags |= B_ASYNC;
986 					} else {
987 						bp->b_flags &= ~B_ASYNC;
988 					}
989 					VOP_BWRITE(bp->b_vp, bp);
990 				}
991 				goto restartsync;
992 			}
993 
994 		}
995 	}
996 
997 	while (vp->v_numoutput > 0) {
998 		vp->v_flag |= VBWAIT;
999 		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
1000 	}
1001 
1002 	splx(s);
1003 
1004 	vnode_pager_setsize(vp, length);
1005 
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Associate a buffer with a vnode.
1011  */
1012 void
1013 bgetvp(vp, bp)
1014 	register struct vnode *vp;
1015 	register struct buf *bp;
1016 {
1017 	int s;
1018 
1019 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1020 
1021 	vhold(vp);
1022 	bp->b_vp = vp;
1023 	bp->b_dev = vn_todev(vp);
1024 	/*
1025 	 * Insert onto list for new vnode.
1026 	 */
1027 	s = splbio();
1028 	bp->b_xflags |= BX_VNCLEAN;
1029 	bp->b_xflags &= ~BX_VNDIRTY;
1030 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1031 	splx(s);
1032 }
1033 
1034 /*
1035  * Disassociate a buffer from a vnode.
1036  */
1037 void
1038 brelvp(bp)
1039 	register struct buf *bp;
1040 {
1041 	struct vnode *vp;
1042 	struct buflists *listheadp;
1043 	int s;
1044 
1045 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1046 
1047 	/*
1048 	 * Delete from old vnode list, if on one.
1049 	 */
1050 	vp = bp->b_vp;
1051 	s = splbio();
1052 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1053 		if (bp->b_xflags & BX_VNDIRTY)
1054 			listheadp = &vp->v_dirtyblkhd;
1055 		else
1056 			listheadp = &vp->v_cleanblkhd;
1057 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1058 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1059 	}
1060 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1061 		vp->v_flag &= ~VONWORKLST;
1062 		LIST_REMOVE(vp, v_synclist);
1063 	}
1064 	splx(s);
1065 	bp->b_vp = (struct vnode *) 0;
1066 	vdrop(vp);
1067 }
1068 
1069 /*
1070  * The workitem queue.
1071  *
1072  * It is useful to delay writes of file data and filesystem metadata
1073  * for tens of seconds so that quickly created and deleted files need
1074  * not waste disk bandwidth being created and removed. To realize this,
1075  * we append vnodes to a "workitem" queue. When running with a soft
1076  * updates implementation, most pending metadata dependencies should
1077  * not wait for more than a few seconds. Thus, mounted on block devices
1078  * are delayed only about a half the time that file data is delayed.
1079  * Similarly, directory updates are more critical, so are only delayed
1080  * about a third the time that file data is delayed. Thus, there are
1081  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1082  * one each second (driven off the filesystem syncer process). The
1083  * syncer_delayno variable indicates the next queue that is to be processed.
1084  * Items that need to be processed soon are placed in this queue:
1085  *
1086  *	syncer_workitem_pending[syncer_delayno]
1087  *
1088  * A delay of fifteen seconds is done by placing the request fifteen
1089  * entries later in the queue:
1090  *
1091  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1092  *
1093  */
1094 
1095 /*
1096  * Add an item to the syncer work queue.
1097  */
1098 static void
1099 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1100 {
1101 	int s, slot;
1102 
1103 	s = splbio();
1104 
1105 	if (vp->v_flag & VONWORKLST) {
1106 		LIST_REMOVE(vp, v_synclist);
1107 	}
1108 
1109 	if (delay > syncer_maxdelay - 2)
1110 		delay = syncer_maxdelay - 2;
1111 	slot = (syncer_delayno + delay) & syncer_mask;
1112 
1113 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1114 	vp->v_flag |= VONWORKLST;
1115 	splx(s);
1116 }
1117 
1118 struct  proc *updateproc;
1119 static void sched_sync __P((void));
1120 static struct kproc_desc up_kp = {
1121 	"syncer",
1122 	sched_sync,
1123 	&updateproc
1124 };
1125 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1126 
1127 /*
1128  * System filesystem synchronizer daemon.
1129  */
1130 void
1131 sched_sync(void)
1132 {
1133 	struct synclist *slp;
1134 	struct vnode *vp;
1135 	long starttime;
1136 	int s;
1137 	struct proc *p = updateproc;
1138 
1139 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
1140 	    SHUTDOWN_PRI_LAST);
1141 
1142 	for (;;) {
1143 		kproc_suspend_loop(p);
1144 
1145 		starttime = time_second;
1146 
1147 		/*
1148 		 * Push files whose dirty time has expired.  Be careful
1149 		 * of interrupt race on slp queue.
1150 		 */
1151 		s = splbio();
1152 		slp = &syncer_workitem_pending[syncer_delayno];
1153 		syncer_delayno += 1;
1154 		if (syncer_delayno == syncer_maxdelay)
1155 			syncer_delayno = 0;
1156 		splx(s);
1157 
1158 		while ((vp = LIST_FIRST(slp)) != NULL) {
1159 			if (VOP_ISLOCKED(vp, NULL) == 0) {
1160 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1161 				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1162 				VOP_UNLOCK(vp, 0, p);
1163 			}
1164 			s = splbio();
1165 			if (LIST_FIRST(slp) == vp) {
1166 				/*
1167 				 * Note: v_tag VT_VFS vps can remain on the
1168 				 * worklist too with no dirty blocks, but
1169 				 * since sync_fsync() moves it to a different
1170 				 * slot we are safe.
1171 				 */
1172 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1173 				    !vn_isdisk(vp, NULL))
1174 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1175 				/*
1176 				 * Put us back on the worklist.  The worklist
1177 				 * routine will remove us from our current
1178 				 * position and then add us back in at a later
1179 				 * position.
1180 				 */
1181 				vn_syncer_add_to_worklist(vp, syncdelay);
1182 			}
1183 			splx(s);
1184 		}
1185 
1186 		/*
1187 		 * Do soft update processing.
1188 		 */
1189 		if (bioops.io_sync)
1190 			(*bioops.io_sync)(NULL);
1191 
1192 		/*
1193 		 * The variable rushjob allows the kernel to speed up the
1194 		 * processing of the filesystem syncer process. A rushjob
1195 		 * value of N tells the filesystem syncer to process the next
1196 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1197 		 * is used by the soft update code to speed up the filesystem
1198 		 * syncer process when the incore state is getting so far
1199 		 * ahead of the disk that the kernel memory pool is being
1200 		 * threatened with exhaustion.
1201 		 */
1202 		if (rushjob > 0) {
1203 			rushjob -= 1;
1204 			continue;
1205 		}
1206 		/*
1207 		 * If it has taken us less than a second to process the
1208 		 * current work, then wait. Otherwise start right over
1209 		 * again. We can still lose time if any single round
1210 		 * takes more than two seconds, but it does not really
1211 		 * matter as we are just trying to generally pace the
1212 		 * filesystem activity.
1213 		 */
1214 		if (time_second == starttime)
1215 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1216 	}
1217 }
1218 
1219 /*
1220  * Request the syncer daemon to speed up its work.
1221  * We never push it to speed up more than half of its
1222  * normal turn time, otherwise it could take over the cpu.
1223  */
1224 int
1225 speedup_syncer()
1226 {
1227 	int s;
1228 
1229 	s = splhigh();
1230 	if (updateproc->p_wchan == &lbolt)
1231 		setrunnable(updateproc);
1232 	splx(s);
1233 	if (rushjob < syncdelay / 2) {
1234 		rushjob += 1;
1235 		stat_rush_requests += 1;
1236 		return (1);
1237 	}
1238 	return(0);
1239 }
1240 
1241 /*
1242  * Associate a p-buffer with a vnode.
1243  *
1244  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1245  * with the buffer.  i.e. the bp has not been linked into the vnode or
1246  * ref-counted.
1247  */
1248 void
1249 pbgetvp(vp, bp)
1250 	register struct vnode *vp;
1251 	register struct buf *bp;
1252 {
1253 
1254 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1255 
1256 	bp->b_vp = vp;
1257 	bp->b_flags |= B_PAGING;
1258 	bp->b_dev = vn_todev(vp);
1259 }
1260 
1261 /*
1262  * Disassociate a p-buffer from a vnode.
1263  */
1264 void
1265 pbrelvp(bp)
1266 	register struct buf *bp;
1267 {
1268 
1269 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1270 
1271 	/* XXX REMOVE ME */
1272 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1273 		panic(
1274 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1275 		    bp,
1276 		    (int)bp->b_flags
1277 		);
1278 	}
1279 	bp->b_vp = (struct vnode *) 0;
1280 	bp->b_flags &= ~B_PAGING;
1281 }
1282 
1283 void
1284 pbreassignbuf(bp, newvp)
1285 	struct buf *bp;
1286 	struct vnode *newvp;
1287 {
1288 	if ((bp->b_flags & B_PAGING) == 0) {
1289 		panic(
1290 		    "pbreassignbuf() on non phys bp %p",
1291 		    bp
1292 		);
1293 	}
1294 	bp->b_vp = newvp;
1295 }
1296 
1297 /*
1298  * Reassign a buffer from one vnode to another.
1299  * Used to assign file specific control information
1300  * (indirect blocks) to the vnode to which they belong.
1301  */
1302 void
1303 reassignbuf(bp, newvp)
1304 	register struct buf *bp;
1305 	register struct vnode *newvp;
1306 {
1307 	struct buflists *listheadp;
1308 	int delay;
1309 	int s;
1310 
1311 	if (newvp == NULL) {
1312 		printf("reassignbuf: NULL");
1313 		return;
1314 	}
1315 	++reassignbufcalls;
1316 
1317 	/*
1318 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1319 	 * is not fully linked in.
1320 	 */
1321 	if (bp->b_flags & B_PAGING)
1322 		panic("cannot reassign paging buffer");
1323 
1324 	s = splbio();
1325 	/*
1326 	 * Delete from old vnode list, if on one.
1327 	 */
1328 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1329 		if (bp->b_xflags & BX_VNDIRTY)
1330 			listheadp = &bp->b_vp->v_dirtyblkhd;
1331 		else
1332 			listheadp = &bp->b_vp->v_cleanblkhd;
1333 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1334 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1335 		if (bp->b_vp != newvp) {
1336 			vdrop(bp->b_vp);
1337 			bp->b_vp = NULL;	/* for clarification */
1338 		}
1339 	}
1340 	/*
1341 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1342 	 * of clean buffers.
1343 	 */
1344 	if (bp->b_flags & B_DELWRI) {
1345 		struct buf *tbp;
1346 
1347 		listheadp = &newvp->v_dirtyblkhd;
1348 		if ((newvp->v_flag & VONWORKLST) == 0) {
1349 			switch (newvp->v_type) {
1350 			case VDIR:
1351 				delay = dirdelay;
1352 				break;
1353 			case VCHR:
1354 			case VBLK:
1355 				if (newvp->v_specmountpoint != NULL) {
1356 					delay = metadelay;
1357 					break;
1358 				}
1359 				/* fall through */
1360 			default:
1361 				delay = filedelay;
1362 			}
1363 			vn_syncer_add_to_worklist(newvp, delay);
1364 		}
1365 		bp->b_xflags |= BX_VNDIRTY;
1366 		tbp = TAILQ_FIRST(listheadp);
1367 		if (tbp == NULL ||
1368 		    bp->b_lblkno == 0 ||
1369 		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1370 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1371 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1372 			++reassignbufsortgood;
1373 		} else if (bp->b_lblkno < 0) {
1374 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1375 			++reassignbufsortgood;
1376 		} else if (reassignbufmethod == 1) {
1377 			/*
1378 			 * New sorting algorithm, only handle sequential case,
1379 			 * otherwise append to end (but before metadata)
1380 			 */
1381 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1382 			    (tbp->b_xflags & BX_VNDIRTY)) {
1383 				/*
1384 				 * Found the best place to insert the buffer
1385 				 */
1386 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1387 				++reassignbufsortgood;
1388 			} else {
1389 				/*
1390 				 * Missed, append to end, but before meta-data.
1391 				 * We know that the head buffer in the list is
1392 				 * not meta-data due to prior conditionals.
1393 				 *
1394 				 * Indirect effects:  NFS second stage write
1395 				 * tends to wind up here, giving maximum
1396 				 * distance between the unstable write and the
1397 				 * commit rpc.
1398 				 */
1399 				tbp = TAILQ_LAST(listheadp, buflists);
1400 				while (tbp && tbp->b_lblkno < 0)
1401 					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1402 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1403 				++reassignbufsortbad;
1404 			}
1405 		} else {
1406 			/*
1407 			 * Old sorting algorithm, scan queue and insert
1408 			 */
1409 			struct buf *ttbp;
1410 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1411 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1412 				++reassignbufloops;
1413 				tbp = ttbp;
1414 			}
1415 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1416 		}
1417 	} else {
1418 		bp->b_xflags |= BX_VNCLEAN;
1419 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1420 		if ((newvp->v_flag & VONWORKLST) &&
1421 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1422 			newvp->v_flag &= ~VONWORKLST;
1423 			LIST_REMOVE(newvp, v_synclist);
1424 		}
1425 	}
1426 	if (bp->b_vp != newvp) {
1427 		bp->b_vp = newvp;
1428 		vhold(bp->b_vp);
1429 	}
1430 	splx(s);
1431 }
1432 
1433 /*
1434  * Create a vnode for a block device.
1435  * Used for mounting the root file system.
1436  */
1437 int
1438 bdevvp(dev, vpp)
1439 	dev_t dev;
1440 	struct vnode **vpp;
1441 {
1442 	register struct vnode *vp;
1443 	struct vnode *nvp;
1444 	int error;
1445 
1446 	if (dev == NODEV) {
1447 		*vpp = NULLVP;
1448 		return (ENXIO);
1449 	}
1450 	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1451 	if (error) {
1452 		*vpp = NULLVP;
1453 		return (error);
1454 	}
1455 	vp = nvp;
1456 	vp->v_type = VBLK;
1457 	addalias(vp, dev);
1458 	*vpp = vp;
1459 	return (0);
1460 }
1461 
1462 /*
1463  * Add vnode to the alias list hung off the dev_t.
1464  *
1465  * The reason for this gunk is that multiple vnodes can reference
1466  * the same physical device, so checking vp->v_usecount to see
1467  * how many users there are is inadequate; the v_usecount for
1468  * the vnodes need to be accumulated.  vcount() does that.
1469  */
1470 void
1471 addaliasu(nvp, nvp_rdev)
1472 	struct vnode *nvp;
1473 	udev_t nvp_rdev;
1474 {
1475 
1476 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1477 		panic("addaliasu on non-special vnode");
1478 	addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1479 }
1480 
1481 void
1482 addalias(nvp, dev)
1483 	struct vnode *nvp;
1484 	dev_t dev;
1485 {
1486 
1487 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1488 		panic("addalias on non-special vnode");
1489 
1490 	nvp->v_rdev = dev;
1491 	simple_lock(&spechash_slock);
1492 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1493 	simple_unlock(&spechash_slock);
1494 }
1495 
1496 /*
1497  * Grab a particular vnode from the free list, increment its
1498  * reference count and lock it. The vnode lock bit is set if the
1499  * vnode is being eliminated in vgone. The process is awakened
1500  * when the transition is completed, and an error returned to
1501  * indicate that the vnode is no longer usable (possibly having
1502  * been changed to a new file system type).
1503  */
1504 int
1505 vget(vp, flags, p)
1506 	register struct vnode *vp;
1507 	int flags;
1508 	struct proc *p;
1509 {
1510 	int error;
1511 
1512 	/*
1513 	 * If the vnode is in the process of being cleaned out for
1514 	 * another use, we wait for the cleaning to finish and then
1515 	 * return failure. Cleaning is determined by checking that
1516 	 * the VXLOCK flag is set.
1517 	 */
1518 	if ((flags & LK_INTERLOCK) == 0) {
1519 		simple_lock(&vp->v_interlock);
1520 	}
1521 	if (vp->v_flag & VXLOCK) {
1522 		if (vp->v_vxproc == curproc) {
1523 #if 0
1524 			/* this can now occur in normal operation */
1525 			log(LOG_INFO, "VXLOCK interlock avoided\n");
1526 #endif
1527 		} else {
1528 			vp->v_flag |= VXWANT;
1529 			simple_unlock(&vp->v_interlock);
1530 			tsleep((caddr_t)vp, PINOD, "vget", 0);
1531 			return (ENOENT);
1532 		}
1533 	}
1534 
1535 	vp->v_usecount++;
1536 
1537 	if (VSHOULDBUSY(vp))
1538 		vbusy(vp);
1539 	if (flags & LK_TYPE_MASK) {
1540 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1541 			/*
1542 			 * must expand vrele here because we do not want
1543 			 * to call VOP_INACTIVE if the reference count
1544 			 * drops back to zero since it was never really
1545 			 * active. We must remove it from the free list
1546 			 * before sleeping so that multiple processes do
1547 			 * not try to recycle it.
1548 			 */
1549 			simple_lock(&vp->v_interlock);
1550 			vp->v_usecount--;
1551 			if (VSHOULDFREE(vp))
1552 				vfree(vp);
1553 			else
1554 				vlruvp(vp);
1555 			simple_unlock(&vp->v_interlock);
1556 		}
1557 		return (error);
1558 	}
1559 	simple_unlock(&vp->v_interlock);
1560 	return (0);
1561 }
1562 
1563 void
1564 vref(struct vnode *vp)
1565 {
1566 	simple_lock(&vp->v_interlock);
1567 	vp->v_usecount++;
1568 	simple_unlock(&vp->v_interlock);
1569 }
1570 
1571 /*
1572  * Vnode put/release.
1573  * If count drops to zero, call inactive routine and return to freelist.
1574  */
1575 void
1576 vrele(vp)
1577 	struct vnode *vp;
1578 {
1579 	struct proc *p = curproc;	/* XXX */
1580 
1581 	KASSERT(vp != NULL, ("vrele: null vp"));
1582 
1583 	simple_lock(&vp->v_interlock);
1584 
1585 	if (vp->v_usecount > 1) {
1586 
1587 		vp->v_usecount--;
1588 		simple_unlock(&vp->v_interlock);
1589 
1590 		return;
1591 	}
1592 
1593 	if (vp->v_usecount == 1) {
1594 		vp->v_usecount--;
1595 		/*
1596 		 * We must call VOP_INACTIVE with the node locked.
1597 		 * If we are doing a vpu, the node is already locked,
1598 		 * but, in the case of vrele, we must explicitly lock
1599 		 * the vnode before calling VOP_INACTIVE
1600 		 */
1601 
1602 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0)
1603 			VOP_INACTIVE(vp, p);
1604 		if (VSHOULDFREE(vp))
1605 			vfree(vp);
1606 		else
1607 			vlruvp(vp);
1608 	} else {
1609 #ifdef DIAGNOSTIC
1610 		vprint("vrele: negative ref count", vp);
1611 		simple_unlock(&vp->v_interlock);
1612 #endif
1613 		panic("vrele: negative ref cnt");
1614 	}
1615 }
1616 
1617 void
1618 vput(vp)
1619 	struct vnode *vp;
1620 {
1621 	struct proc *p = curproc;	/* XXX */
1622 
1623 	KASSERT(vp != NULL, ("vput: null vp"));
1624 
1625 	simple_lock(&vp->v_interlock);
1626 
1627 	if (vp->v_usecount > 1) {
1628 		vp->v_usecount--;
1629 		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1630 		return;
1631 	}
1632 
1633 	if (vp->v_usecount == 1) {
1634 		vp->v_usecount--;
1635 		/*
1636 		 * We must call VOP_INACTIVE with the node locked.
1637 		 * If we are doing a vpu, the node is already locked,
1638 		 * so we just need to release the vnode mutex.
1639 		 */
1640 		simple_unlock(&vp->v_interlock);
1641 		VOP_INACTIVE(vp, p);
1642 		if (VSHOULDFREE(vp))
1643 			vfree(vp);
1644 		else
1645 			vlruvp(vp);
1646 	} else {
1647 #ifdef DIAGNOSTIC
1648 		vprint("vput: negative ref count", vp);
1649 #endif
1650 		panic("vput: negative ref cnt");
1651 	}
1652 }
1653 
1654 /*
1655  * Somebody doesn't want the vnode recycled.
1656  */
1657 void
1658 vhold(vp)
1659 	register struct vnode *vp;
1660 {
1661 	int s;
1662 
1663   	s = splbio();
1664 	vp->v_holdcnt++;
1665 	if (VSHOULDBUSY(vp))
1666 		vbusy(vp);
1667 	splx(s);
1668 }
1669 
1670 /*
1671  * One less who cares about this vnode.
1672  */
1673 void
1674 vdrop(vp)
1675 	register struct vnode *vp;
1676 {
1677 	int s;
1678 
1679 	s = splbio();
1680 	if (vp->v_holdcnt <= 0)
1681 		panic("vdrop: holdcnt");
1682 	vp->v_holdcnt--;
1683 	if (VSHOULDFREE(vp))
1684 		vfree(vp);
1685 	splx(s);
1686 }
1687 
1688 /*
1689  * Remove any vnodes in the vnode table belonging to mount point mp.
1690  *
1691  * If FORCECLOSE is not specified, there should not be any active ones,
1692  * return error if any are found (nb: this is a user error, not a
1693  * system error). If FORCECLOSE is specified, detach any active vnodes
1694  * that are found.
1695  *
1696  * If WRITECLOSE is set, only flush out regular file vnodes open for
1697  * writing.
1698  *
1699  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1700  *
1701  * `rootrefs' specifies the base reference count for the root vnode
1702  * of this filesystem. The root vnode is considered busy if its
1703  * v_usecount exceeds this value. On a successful return, vflush()
1704  * will call vrele() on the root vnode exactly rootrefs times.
1705  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1706  * be zero.
1707  */
1708 #ifdef DIAGNOSTIC
1709 static int busyprt = 0;		/* print out busy vnodes */
1710 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1711 #endif
1712 
1713 int
1714 vflush(mp, rootrefs, flags)
1715 	struct mount *mp;
1716 	int rootrefs;
1717 	int flags;
1718 {
1719 	struct proc *p = curproc;	/* XXX */
1720 	struct vnode *vp, *nvp, *rootvp = NULL;
1721 	struct vattr vattr;
1722 	int busy = 0, error;
1723 
1724 	if (rootrefs > 0) {
1725 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1726 		    ("vflush: bad args"));
1727 		/*
1728 		 * Get the filesystem root vnode. We can vput() it
1729 		 * immediately, since with rootrefs > 0, it won't go away.
1730 		 */
1731 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1732 			return (error);
1733 		vput(rootvp);
1734 	}
1735 	simple_lock(&mntvnode_slock);
1736 loop:
1737 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
1738 		/*
1739 		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1740 		 * Start over if it has (it won't be on the list anymore).
1741 		 */
1742 		if (vp->v_mount != mp)
1743 			goto loop;
1744 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1745 
1746 		simple_lock(&vp->v_interlock);
1747 		/*
1748 		 * Skip over a vnodes marked VSYSTEM.
1749 		 */
1750 		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1751 			simple_unlock(&vp->v_interlock);
1752 			continue;
1753 		}
1754 		/*
1755 		 * If WRITECLOSE is set, flush out unlinked but still open
1756 		 * files (even if open only for reading) and regular file
1757 		 * vnodes open for writing.
1758 		 */
1759 		if ((flags & WRITECLOSE) &&
1760 		    (vp->v_type == VNON ||
1761 		    (VOP_GETATTR(vp, &vattr, p->p_ucred, p) == 0 &&
1762 		    vattr.va_nlink > 0)) &&
1763 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1764 			simple_unlock(&vp->v_interlock);
1765 			continue;
1766 		}
1767 
1768 		/*
1769 		 * With v_usecount == 0, all we need to do is clear out the
1770 		 * vnode data structures and we are done.
1771 		 */
1772 		if (vp->v_usecount == 0) {
1773 			simple_unlock(&mntvnode_slock);
1774 			vgonel(vp, p);
1775 			simple_lock(&mntvnode_slock);
1776 			continue;
1777 		}
1778 
1779 		/*
1780 		 * If FORCECLOSE is set, forcibly close the vnode. For block
1781 		 * or character devices, revert to an anonymous device. For
1782 		 * all other files, just kill them.
1783 		 */
1784 		if (flags & FORCECLOSE) {
1785 			simple_unlock(&mntvnode_slock);
1786 			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1787 				vgonel(vp, p);
1788 			} else {
1789 				vclean(vp, 0, p);
1790 				vp->v_op = spec_vnodeop_p;
1791 				insmntque(vp, (struct mount *) 0);
1792 			}
1793 			simple_lock(&mntvnode_slock);
1794 			continue;
1795 		}
1796 #ifdef DIAGNOSTIC
1797 		if (busyprt)
1798 			vprint("vflush: busy vnode", vp);
1799 #endif
1800 		simple_unlock(&vp->v_interlock);
1801 		busy++;
1802 	}
1803 	simple_unlock(&mntvnode_slock);
1804 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1805 		/*
1806 		 * If just the root vnode is busy, and if its refcount
1807 		 * is equal to `rootrefs', then go ahead and kill it.
1808 		 */
1809 		simple_lock(&rootvp->v_interlock);
1810 		KASSERT(busy > 0, ("vflush: not busy"));
1811 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1812 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
1813 			vgonel(rootvp, p);
1814 			busy = 0;
1815 		} else
1816 			simple_unlock(&rootvp->v_interlock);
1817 	}
1818 	if (busy)
1819 		return (EBUSY);
1820 	for (; rootrefs > 0; rootrefs--)
1821 		vrele(rootvp);
1822 	return (0);
1823 }
1824 
1825 /*
1826  * We do not want to recycle the vnode too quickly.
1827  *
1828  * XXX we can't move vp's around the nvnodelist without really screwing
1829  * up the efficiency of filesystem SYNC and friends.  This code is
1830  * disabled until we fix the syncing code's scanning algorithm.
1831  */
1832 static void
1833 vlruvp(struct vnode *vp)
1834 {
1835 #if 0
1836 	struct mount *mp;
1837 
1838 	if ((mp = vp->v_mount) != NULL) {
1839 		simple_lock(&mntvnode_slock);
1840 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1841 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1842 		simple_unlock(&mntvnode_slock);
1843 	}
1844 #endif
1845 }
1846 
1847 /*
1848  * Disassociate the underlying file system from a vnode.
1849  */
1850 static void
1851 vclean(vp, flags, p)
1852 	struct vnode *vp;
1853 	int flags;
1854 	struct proc *p;
1855 {
1856 	int active;
1857 
1858 	/*
1859 	 * Check to see if the vnode is in use. If so we have to reference it
1860 	 * before we clean it out so that its count cannot fall to zero and
1861 	 * generate a race against ourselves to recycle it.
1862 	 */
1863 	if ((active = vp->v_usecount))
1864 		vp->v_usecount++;
1865 
1866 	/*
1867 	 * Prevent the vnode from being recycled or brought into use while we
1868 	 * clean it out.
1869 	 */
1870 	if (vp->v_flag & VXLOCK)
1871 		panic("vclean: deadlock");
1872 	vp->v_flag |= VXLOCK;
1873 	vp->v_vxproc = curproc;
1874 	/*
1875 	 * Even if the count is zero, the VOP_INACTIVE routine may still
1876 	 * have the object locked while it cleans it out. The VOP_LOCK
1877 	 * ensures that the VOP_INACTIVE routine is done with its work.
1878 	 * For active vnodes, it ensures that no other activity can
1879 	 * occur while the underlying object is being cleaned out.
1880 	 */
1881 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1882 
1883 	/*
1884 	 * Clean out any buffers associated with the vnode.
1885 	 */
1886 	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1887 
1888 	VOP_DESTROYVOBJECT(vp);
1889 
1890 	/*
1891 	 * If purging an active vnode, it must be closed and
1892 	 * deactivated before being reclaimed. Note that the
1893 	 * VOP_INACTIVE will unlock the vnode.
1894 	 */
1895 	if (active) {
1896 		if (flags & DOCLOSE)
1897 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1898 		VOP_INACTIVE(vp, p);
1899 	} else {
1900 		/*
1901 		 * Any other processes trying to obtain this lock must first
1902 		 * wait for VXLOCK to clear, then call the new lock operation.
1903 		 */
1904 		VOP_UNLOCK(vp, 0, p);
1905 	}
1906 	/*
1907 	 * Reclaim the vnode.
1908 	 */
1909 	if (VOP_RECLAIM(vp, p))
1910 		panic("vclean: cannot reclaim");
1911 
1912 	if (active) {
1913 		/*
1914 		 * Inline copy of vrele() since VOP_INACTIVE
1915 		 * has already been called.
1916 		 */
1917 		simple_lock(&vp->v_interlock);
1918 		if (--vp->v_usecount <= 0) {
1919 #ifdef DIAGNOSTIC
1920 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1921 				vprint("vclean: bad ref count", vp);
1922 				panic("vclean: ref cnt");
1923 			}
1924 #endif
1925 			vfree(vp);
1926 		}
1927 		simple_unlock(&vp->v_interlock);
1928 	}
1929 
1930 	cache_purge(vp);
1931 	vp->v_vnlock = NULL;
1932 
1933 	if (VSHOULDFREE(vp))
1934 		vfree(vp);
1935 
1936 	/*
1937 	 * Done with purge, notify sleepers of the grim news.
1938 	 */
1939 	vp->v_op = dead_vnodeop_p;
1940 	vn_pollgone(vp);
1941 	vp->v_tag = VT_NON;
1942 	vp->v_flag &= ~VXLOCK;
1943 	vp->v_vxproc = NULL;
1944 	if (vp->v_flag & VXWANT) {
1945 		vp->v_flag &= ~VXWANT;
1946 		wakeup((caddr_t) vp);
1947 	}
1948 }
1949 
1950 /*
1951  * Eliminate all activity associated with the requested vnode
1952  * and with all vnodes aliased to the requested vnode.
1953  */
1954 int
1955 vop_revoke(ap)
1956 	struct vop_revoke_args /* {
1957 		struct vnode *a_vp;
1958 		int a_flags;
1959 	} */ *ap;
1960 {
1961 	struct vnode *vp, *vq;
1962 	dev_t dev;
1963 
1964 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1965 
1966 	vp = ap->a_vp;
1967 	/*
1968 	 * If a vgone (or vclean) is already in progress,
1969 	 * wait until it is done and return.
1970 	 */
1971 	if (vp->v_flag & VXLOCK) {
1972 		vp->v_flag |= VXWANT;
1973 		simple_unlock(&vp->v_interlock);
1974 		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1975 		return (0);
1976 	}
1977 	dev = vp->v_rdev;
1978 	for (;;) {
1979 		simple_lock(&spechash_slock);
1980 		vq = SLIST_FIRST(&dev->si_hlist);
1981 		simple_unlock(&spechash_slock);
1982 		if (!vq)
1983 			break;
1984 		vgone(vq);
1985 	}
1986 	return (0);
1987 }
1988 
1989 /*
1990  * Recycle an unused vnode to the front of the free list.
1991  * Release the passed interlock if the vnode will be recycled.
1992  */
1993 int
1994 vrecycle(vp, inter_lkp, p)
1995 	struct vnode *vp;
1996 	struct simplelock *inter_lkp;
1997 	struct proc *p;
1998 {
1999 
2000 	simple_lock(&vp->v_interlock);
2001 	if (vp->v_usecount == 0) {
2002 		if (inter_lkp) {
2003 			simple_unlock(inter_lkp);
2004 		}
2005 		vgonel(vp, p);
2006 		return (1);
2007 	}
2008 	simple_unlock(&vp->v_interlock);
2009 	return (0);
2010 }
2011 
2012 /*
2013  * Eliminate all activity associated with a vnode
2014  * in preparation for reuse.
2015  */
2016 void
2017 vgone(vp)
2018 	register struct vnode *vp;
2019 {
2020 	struct proc *p = curproc;	/* XXX */
2021 
2022 	simple_lock(&vp->v_interlock);
2023 	vgonel(vp, p);
2024 }
2025 
2026 /*
2027  * vgone, with the vp interlock held.
2028  */
2029 void
2030 vgonel(vp, p)
2031 	struct vnode *vp;
2032 	struct proc *p;
2033 {
2034 	int s;
2035 
2036 	/*
2037 	 * If a vgone (or vclean) is already in progress,
2038 	 * wait until it is done and return.
2039 	 */
2040 	if (vp->v_flag & VXLOCK) {
2041 		vp->v_flag |= VXWANT;
2042 		simple_unlock(&vp->v_interlock);
2043 		tsleep((caddr_t)vp, PINOD, "vgone", 0);
2044 		return;
2045 	}
2046 
2047 	/*
2048 	 * Clean out the filesystem specific data.
2049 	 */
2050 	vclean(vp, DOCLOSE, p);
2051 	simple_lock(&vp->v_interlock);
2052 
2053 	/*
2054 	 * Delete from old mount point vnode list, if on one.
2055 	 */
2056 	if (vp->v_mount != NULL)
2057 		insmntque(vp, (struct mount *)0);
2058 	/*
2059 	 * If special device, remove it from special device alias list
2060 	 * if it is on one.
2061 	 */
2062 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
2063 		simple_lock(&spechash_slock);
2064 		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
2065 		freedev(vp->v_rdev);
2066 		simple_unlock(&spechash_slock);
2067 		vp->v_rdev = NULL;
2068 	}
2069 
2070 	/*
2071 	 * If it is on the freelist and not already at the head,
2072 	 * move it to the head of the list. The test of the
2073 	 * VDOOMED flag and the reference count of zero is because
2074 	 * it will be removed from the free list by getnewvnode,
2075 	 * but will not have its reference count incremented until
2076 	 * after calling vgone. If the reference count were
2077 	 * incremented first, vgone would (incorrectly) try to
2078 	 * close the previous instance of the underlying object.
2079 	 */
2080 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2081 		s = splbio();
2082 		simple_lock(&vnode_free_list_slock);
2083 		if (vp->v_flag & VFREE)
2084 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2085 		else
2086 			freevnodes++;
2087 		vp->v_flag |= VFREE;
2088 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2089 		simple_unlock(&vnode_free_list_slock);
2090 		splx(s);
2091 	}
2092 
2093 	vp->v_type = VBAD;
2094 	simple_unlock(&vp->v_interlock);
2095 }
2096 
2097 /*
2098  * Lookup a vnode by device number.
2099  */
2100 int
2101 vfinddev(dev, type, vpp)
2102 	dev_t dev;
2103 	enum vtype type;
2104 	struct vnode **vpp;
2105 {
2106 	struct vnode *vp;
2107 
2108 	simple_lock(&spechash_slock);
2109 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2110 		if (type == vp->v_type) {
2111 			*vpp = vp;
2112 			simple_unlock(&spechash_slock);
2113 			return (1);
2114 		}
2115 	}
2116 	simple_unlock(&spechash_slock);
2117 	return (0);
2118 }
2119 
2120 /*
2121  * Calculate the total number of references to a special device.
2122  */
2123 int
2124 vcount(vp)
2125 	struct vnode *vp;
2126 {
2127 	struct vnode *vq;
2128 	int count;
2129 
2130 	count = 0;
2131 	simple_lock(&spechash_slock);
2132 	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
2133 		count += vq->v_usecount;
2134 	simple_unlock(&spechash_slock);
2135 	return (count);
2136 }
2137 
2138 /*
2139  * Same as above, but using the dev_t as argument
2140  */
2141 
2142 int
2143 count_dev(dev)
2144 	dev_t dev;
2145 {
2146 	struct vnode *vp;
2147 
2148 	vp = SLIST_FIRST(&dev->si_hlist);
2149 	if (vp == NULL)
2150 		return (0);
2151 	return(vcount(vp));
2152 }
2153 
2154 /*
2155  * Print out a description of a vnode.
2156  */
2157 static char *typename[] =
2158 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2159 
2160 void
2161 vprint(label, vp)
2162 	char *label;
2163 	struct vnode *vp;
2164 {
2165 	char buf[96];
2166 
2167 	if (label != NULL)
2168 		printf("%s: %p: ", label, (void *)vp);
2169 	else
2170 		printf("%p: ", (void *)vp);
2171 	printf("type %s, usecount %d, writecount %d, refcount %d,",
2172 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2173 	    vp->v_holdcnt);
2174 	buf[0] = '\0';
2175 	if (vp->v_flag & VROOT)
2176 		strcat(buf, "|VROOT");
2177 	if (vp->v_flag & VTEXT)
2178 		strcat(buf, "|VTEXT");
2179 	if (vp->v_flag & VSYSTEM)
2180 		strcat(buf, "|VSYSTEM");
2181 	if (vp->v_flag & VXLOCK)
2182 		strcat(buf, "|VXLOCK");
2183 	if (vp->v_flag & VXWANT)
2184 		strcat(buf, "|VXWANT");
2185 	if (vp->v_flag & VBWAIT)
2186 		strcat(buf, "|VBWAIT");
2187 	if (vp->v_flag & VDOOMED)
2188 		strcat(buf, "|VDOOMED");
2189 	if (vp->v_flag & VFREE)
2190 		strcat(buf, "|VFREE");
2191 	if (vp->v_flag & VOBJBUF)
2192 		strcat(buf, "|VOBJBUF");
2193 	if (buf[0] != '\0')
2194 		printf(" flags (%s)", &buf[1]);
2195 	if (vp->v_data == NULL) {
2196 		printf("\n");
2197 	} else {
2198 		printf("\n\t");
2199 		VOP_PRINT(vp);
2200 	}
2201 }
2202 
2203 #ifdef DDB
2204 #include <ddb/ddb.h>
2205 /*
2206  * List all of the locked vnodes in the system.
2207  * Called when debugging the kernel.
2208  */
2209 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2210 {
2211 	struct proc *p = curproc;	/* XXX */
2212 	struct mount *mp, *nmp;
2213 	struct vnode *vp;
2214 
2215 	printf("Locked vnodes\n");
2216 	simple_lock(&mountlist_slock);
2217 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2218 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2219 			nmp = TAILQ_NEXT(mp, mnt_list);
2220 			continue;
2221 		}
2222 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2223 			if (VOP_ISLOCKED(vp, NULL))
2224 				vprint((char *)0, vp);
2225 		}
2226 		simple_lock(&mountlist_slock);
2227 		nmp = TAILQ_NEXT(mp, mnt_list);
2228 		vfs_unbusy(mp, p);
2229 	}
2230 	simple_unlock(&mountlist_slock);
2231 }
2232 #endif
2233 
2234 /*
2235  * Top level filesystem related information gathering.
2236  */
2237 static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2238 
2239 static int
2240 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2241 {
2242 	int *name = (int *)arg1 - 1;	/* XXX */
2243 	u_int namelen = arg2 + 1;	/* XXX */
2244 	struct vfsconf *vfsp;
2245 
2246 #if 1 || defined(COMPAT_PRELITE2)
2247 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2248 	if (namelen == 1)
2249 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2250 #endif
2251 
2252 #ifdef notyet
2253 	/* all sysctl names at this level are at least name and field */
2254 	if (namelen < 2)
2255 		return (ENOTDIR);		/* overloaded */
2256 	if (name[0] != VFS_GENERIC) {
2257 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2258 			if (vfsp->vfc_typenum == name[0])
2259 				break;
2260 		if (vfsp == NULL)
2261 			return (EOPNOTSUPP);
2262 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2263 		    oldp, oldlenp, newp, newlen, p));
2264 	}
2265 #endif
2266 	switch (name[1]) {
2267 	case VFS_MAXTYPENUM:
2268 		if (namelen != 2)
2269 			return (ENOTDIR);
2270 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2271 	case VFS_CONF:
2272 		if (namelen != 3)
2273 			return (ENOTDIR);	/* overloaded */
2274 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2275 			if (vfsp->vfc_typenum == name[2])
2276 				break;
2277 		if (vfsp == NULL)
2278 			return (EOPNOTSUPP);
2279 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2280 	}
2281 	return (EOPNOTSUPP);
2282 }
2283 
2284 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2285 	"Generic filesystem");
2286 
2287 #if 1 || defined(COMPAT_PRELITE2)
2288 
2289 static int
2290 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2291 {
2292 	int error;
2293 	struct vfsconf *vfsp;
2294 	struct ovfsconf ovfs;
2295 
2296 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2297 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2298 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2299 		ovfs.vfc_index = vfsp->vfc_typenum;
2300 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2301 		ovfs.vfc_flags = vfsp->vfc_flags;
2302 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2303 		if (error)
2304 			return error;
2305 	}
2306 	return 0;
2307 }
2308 
2309 #endif /* 1 || COMPAT_PRELITE2 */
2310 
2311 #if 0
2312 #define KINFO_VNODESLOP	10
2313 /*
2314  * Dump vnode list (via sysctl).
2315  * Copyout address of vnode followed by vnode.
2316  */
2317 /* ARGSUSED */
2318 static int
2319 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2320 {
2321 	struct proc *p = curproc;	/* XXX */
2322 	struct mount *mp, *nmp;
2323 	struct vnode *nvp, *vp;
2324 	int error;
2325 
2326 #define VPTRSZ	sizeof (struct vnode *)
2327 #define VNODESZ	sizeof (struct vnode)
2328 
2329 	req->lock = 0;
2330 	if (!req->oldptr) /* Make an estimate */
2331 		return (SYSCTL_OUT(req, 0,
2332 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2333 
2334 	simple_lock(&mountlist_slock);
2335 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2336 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2337 			nmp = TAILQ_NEXT(mp, mnt_list);
2338 			continue;
2339 		}
2340 again:
2341 		simple_lock(&mntvnode_slock);
2342 		for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2343 		     vp != NULL;
2344 		     vp = nvp) {
2345 			/*
2346 			 * Check that the vp is still associated with
2347 			 * this filesystem.  RACE: could have been
2348 			 * recycled onto the same filesystem.
2349 			 */
2350 			if (vp->v_mount != mp) {
2351 				simple_unlock(&mntvnode_slock);
2352 				goto again;
2353 			}
2354 			nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2355 			simple_unlock(&mntvnode_slock);
2356 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2357 			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2358 				return (error);
2359 			simple_lock(&mntvnode_slock);
2360 		}
2361 		simple_unlock(&mntvnode_slock);
2362 		simple_lock(&mountlist_slock);
2363 		nmp = TAILQ_NEXT(mp, mnt_list);
2364 		vfs_unbusy(mp, p);
2365 	}
2366 	simple_unlock(&mountlist_slock);
2367 
2368 	return (0);
2369 }
2370 #endif
2371 
2372 /*
2373  * XXX
2374  * Exporting the vnode list on large systems causes them to crash.
2375  * Exporting the vnode list on medium systems causes sysctl to coredump.
2376  */
2377 #if 0
2378 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2379 	0, 0, sysctl_vnode, "S,vnode", "");
2380 #endif
2381 
2382 /*
2383  * Check to see if a filesystem is mounted on a block device.
2384  */
2385 int
2386 vfs_mountedon(vp)
2387 	struct vnode *vp;
2388 {
2389 
2390 	if (vp->v_specmountpoint != NULL)
2391 		return (EBUSY);
2392 	return (0);
2393 }
2394 
2395 /*
2396  * Unmount all filesystems. The list is traversed in reverse order
2397  * of mounting to avoid dependencies.
2398  */
2399 void
2400 vfs_unmountall()
2401 {
2402 	struct mount *mp;
2403 	struct proc *p;
2404 	int error;
2405 
2406 	if (curproc != NULL)
2407 		p = curproc;
2408 	else
2409 		p = initproc;	/* XXX XXX should this be proc0? */
2410 	/*
2411 	 * Since this only runs when rebooting, it is not interlocked.
2412 	 */
2413 	while(!TAILQ_EMPTY(&mountlist)) {
2414 		mp = TAILQ_LAST(&mountlist, mntlist);
2415 		error = dounmount(mp, MNT_FORCE, p);
2416 		if (error) {
2417 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2418 			printf("unmount of %s failed (",
2419 			    mp->mnt_stat.f_mntonname);
2420 			if (error == EBUSY)
2421 				printf("BUSY)\n");
2422 			else
2423 				printf("%d)\n", error);
2424 		} else {
2425 			/* The unmount has removed mp from the mountlist */
2426 		}
2427 	}
2428 }
2429 
2430 /*
2431  * Build hash lists of net addresses and hang them off the mount point.
2432  * Called by ufs_mount() to set up the lists of export addresses.
2433  */
2434 static int
2435 vfs_hang_addrlist(mp, nep, argp)
2436 	struct mount *mp;
2437 	struct netexport *nep;
2438 	struct export_args *argp;
2439 {
2440 	register struct netcred *np;
2441 	register struct radix_node_head *rnh;
2442 	register int i;
2443 	struct radix_node *rn;
2444 	struct sockaddr *saddr, *smask = 0;
2445 	struct domain *dom;
2446 	int error;
2447 
2448 	if (argp->ex_addrlen == 0) {
2449 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2450 			return (EPERM);
2451 		np = &nep->ne_defexported;
2452 		np->netc_exflags = argp->ex_flags;
2453 		np->netc_anon = argp->ex_anon;
2454 		np->netc_anon.cr_ref = 1;
2455 		mp->mnt_flag |= MNT_DEFEXPORTED;
2456 		return (0);
2457 	}
2458 
2459 	if (argp->ex_addrlen > MLEN)
2460 		return (EINVAL);
2461 
2462 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2463 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2464 	bzero((caddr_t) np, i);
2465 	saddr = (struct sockaddr *) (np + 1);
2466 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2467 		goto out;
2468 	if (saddr->sa_len > argp->ex_addrlen)
2469 		saddr->sa_len = argp->ex_addrlen;
2470 	if (argp->ex_masklen) {
2471 		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2472 		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2473 		if (error)
2474 			goto out;
2475 		if (smask->sa_len > argp->ex_masklen)
2476 			smask->sa_len = argp->ex_masklen;
2477 	}
2478 	i = saddr->sa_family;
2479 	if ((rnh = nep->ne_rtable[i]) == 0) {
2480 		/*
2481 		 * Seems silly to initialize every AF when most are not used,
2482 		 * do so on demand here
2483 		 */
2484 		for (dom = domains; dom; dom = dom->dom_next)
2485 			if (dom->dom_family == i && dom->dom_rtattach) {
2486 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2487 				    dom->dom_rtoffset);
2488 				break;
2489 			}
2490 		if ((rnh = nep->ne_rtable[i]) == 0) {
2491 			error = ENOBUFS;
2492 			goto out;
2493 		}
2494 	}
2495 	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2496 	    np->netc_rnodes);
2497 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2498 		error = EPERM;
2499 		goto out;
2500 	}
2501 	np->netc_exflags = argp->ex_flags;
2502 	np->netc_anon = argp->ex_anon;
2503 	np->netc_anon.cr_ref = 1;
2504 	return (0);
2505 out:
2506 	free(np, M_NETADDR);
2507 	return (error);
2508 }
2509 
2510 /* ARGSUSED */
2511 static int
2512 vfs_free_netcred(rn, w)
2513 	struct radix_node *rn;
2514 	void *w;
2515 {
2516 	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2517 
2518 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2519 	free((caddr_t) rn, M_NETADDR);
2520 	return (0);
2521 }
2522 
2523 /*
2524  * Free the net address hash lists that are hanging off the mount points.
2525  */
2526 static void
2527 vfs_free_addrlist(nep)
2528 	struct netexport *nep;
2529 {
2530 	register int i;
2531 	register struct radix_node_head *rnh;
2532 
2533 	for (i = 0; i <= AF_MAX; i++)
2534 		if ((rnh = nep->ne_rtable[i])) {
2535 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2536 			    (caddr_t) rnh);
2537 			free((caddr_t) rnh, M_RTABLE);
2538 			nep->ne_rtable[i] = 0;
2539 		}
2540 }
2541 
2542 int
2543 vfs_export(mp, nep, argp)
2544 	struct mount *mp;
2545 	struct netexport *nep;
2546 	struct export_args *argp;
2547 {
2548 	int error;
2549 
2550 	if (argp->ex_flags & MNT_DELEXPORT) {
2551 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2552 			vfs_setpublicfs(NULL, NULL, NULL);
2553 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2554 		}
2555 		vfs_free_addrlist(nep);
2556 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2557 	}
2558 	if (argp->ex_flags & MNT_EXPORTED) {
2559 		if (argp->ex_flags & MNT_EXPUBLIC) {
2560 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2561 				return (error);
2562 			mp->mnt_flag |= MNT_EXPUBLIC;
2563 		}
2564 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2565 			return (error);
2566 		mp->mnt_flag |= MNT_EXPORTED;
2567 	}
2568 	return (0);
2569 }
2570 
2571 
2572 /*
2573  * Set the publicly exported filesystem (WebNFS). Currently, only
2574  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2575  */
2576 int
2577 vfs_setpublicfs(mp, nep, argp)
2578 	struct mount *mp;
2579 	struct netexport *nep;
2580 	struct export_args *argp;
2581 {
2582 	int error;
2583 	struct vnode *rvp;
2584 	char *cp;
2585 
2586 	/*
2587 	 * mp == NULL -> invalidate the current info, the FS is
2588 	 * no longer exported. May be called from either vfs_export
2589 	 * or unmount, so check if it hasn't already been done.
2590 	 */
2591 	if (mp == NULL) {
2592 		if (nfs_pub.np_valid) {
2593 			nfs_pub.np_valid = 0;
2594 			if (nfs_pub.np_index != NULL) {
2595 				FREE(nfs_pub.np_index, M_TEMP);
2596 				nfs_pub.np_index = NULL;
2597 			}
2598 		}
2599 		return (0);
2600 	}
2601 
2602 	/*
2603 	 * Only one allowed at a time.
2604 	 */
2605 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2606 		return (EBUSY);
2607 
2608 	/*
2609 	 * Get real filehandle for root of exported FS.
2610 	 */
2611 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2612 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2613 
2614 	if ((error = VFS_ROOT(mp, &rvp)))
2615 		return (error);
2616 
2617 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2618 		return (error);
2619 
2620 	vput(rvp);
2621 
2622 	/*
2623 	 * If an indexfile was specified, pull it in.
2624 	 */
2625 	if (argp->ex_indexfile != NULL) {
2626 		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2627 		    M_WAITOK);
2628 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2629 		    MAXNAMLEN, (size_t *)0);
2630 		if (!error) {
2631 			/*
2632 			 * Check for illegal filenames.
2633 			 */
2634 			for (cp = nfs_pub.np_index; *cp; cp++) {
2635 				if (*cp == '/') {
2636 					error = EINVAL;
2637 					break;
2638 				}
2639 			}
2640 		}
2641 		if (error) {
2642 			FREE(nfs_pub.np_index, M_TEMP);
2643 			return (error);
2644 		}
2645 	}
2646 
2647 	nfs_pub.np_mount = mp;
2648 	nfs_pub.np_valid = 1;
2649 	return (0);
2650 }
2651 
2652 struct netcred *
2653 vfs_export_lookup(mp, nep, nam)
2654 	register struct mount *mp;
2655 	struct netexport *nep;
2656 	struct sockaddr *nam;
2657 {
2658 	register struct netcred *np;
2659 	register struct radix_node_head *rnh;
2660 	struct sockaddr *saddr;
2661 
2662 	np = NULL;
2663 	if (mp->mnt_flag & MNT_EXPORTED) {
2664 		/*
2665 		 * Lookup in the export list first.
2666 		 */
2667 		if (nam != NULL) {
2668 			saddr = nam;
2669 			rnh = nep->ne_rtable[saddr->sa_family];
2670 			if (rnh != NULL) {
2671 				np = (struct netcred *)
2672 					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2673 							      rnh);
2674 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2675 					np = NULL;
2676 			}
2677 		}
2678 		/*
2679 		 * If no address match, use the default if it exists.
2680 		 */
2681 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2682 			np = &nep->ne_defexported;
2683 	}
2684 	return (np);
2685 }
2686 
2687 /*
2688  * perform msync on all vnodes under a mount point
2689  * the mount point must be locked.
2690  */
2691 void
2692 vfs_msync(struct mount *mp, int flags)
2693 {
2694 	struct vnode *vp, *nvp;
2695 	struct vm_object *obj;
2696 	int tries;
2697 
2698 	tries = 5;
2699 	simple_lock(&mntvnode_slock);
2700 loop:
2701 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2702 		if (vp->v_mount != mp) {
2703 			if (--tries > 0)
2704 				goto loop;
2705 			break;
2706 		}
2707 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2708 
2709 		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2710 			continue;
2711 
2712 		/*
2713 		 * There could be hundreds of thousands of vnodes, we cannot
2714 		 * afford to do anything heavy-weight until we have a fairly
2715 		 * good indication that there is something to do.
2716 		 */
2717 		if ((vp->v_flag & VOBJDIRTY) &&
2718 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2719 			simple_unlock(&mntvnode_slock);
2720 			if (!vget(vp,
2721 			    LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2722 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2723 					vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2724 				}
2725 				vput(vp);
2726 			}
2727 			simple_lock(&mntvnode_slock);
2728 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2729 				if (--tries > 0)
2730 					goto loop;
2731 				break;
2732 			}
2733 		}
2734 	}
2735 	simple_unlock(&mntvnode_slock);
2736 }
2737 
2738 /*
2739  * Create the VM object needed for VMIO and mmap support.  This
2740  * is done for all VREG files in the system.  Some filesystems might
2741  * afford the additional metadata buffering capability of the
2742  * VMIO code by making the device node be VMIO mode also.
2743  *
2744  * vp must be locked when vfs_object_create is called.
2745  */
2746 int
2747 vfs_object_create(vp, p, cred)
2748 	struct vnode *vp;
2749 	struct proc *p;
2750 	struct ucred *cred;
2751 {
2752 	return (VOP_CREATEVOBJECT(vp, cred, p));
2753 }
2754 
2755 void
2756 vfree(vp)
2757 	struct vnode *vp;
2758 {
2759 	int s;
2760 
2761 	s = splbio();
2762 	simple_lock(&vnode_free_list_slock);
2763 	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2764 	if (vp->v_flag & VAGE) {
2765 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2766 	} else {
2767 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2768 	}
2769 	freevnodes++;
2770 	simple_unlock(&vnode_free_list_slock);
2771 	vp->v_flag &= ~VAGE;
2772 	vp->v_flag |= VFREE;
2773 	splx(s);
2774 }
2775 
2776 void
2777 vbusy(vp)
2778 	struct vnode *vp;
2779 {
2780 	int s;
2781 
2782 	s = splbio();
2783 	simple_lock(&vnode_free_list_slock);
2784 	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2785 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2786 	freevnodes--;
2787 	simple_unlock(&vnode_free_list_slock);
2788 	vp->v_flag &= ~(VFREE|VAGE);
2789 	splx(s);
2790 }
2791 
2792 /*
2793  * Record a process's interest in events which might happen to
2794  * a vnode.  Because poll uses the historic select-style interface
2795  * internally, this routine serves as both the ``check for any
2796  * pending events'' and the ``record my interest in future events''
2797  * functions.  (These are done together, while the lock is held,
2798  * to avoid race conditions.)
2799  */
2800 int
2801 vn_pollrecord(vp, p, events)
2802 	struct vnode *vp;
2803 	struct proc *p;
2804 	short events;
2805 {
2806 	simple_lock(&vp->v_pollinfo.vpi_lock);
2807 	if (vp->v_pollinfo.vpi_revents & events) {
2808 		/*
2809 		 * This leaves events we are not interested
2810 		 * in available for the other process which
2811 		 * which presumably had requested them
2812 		 * (otherwise they would never have been
2813 		 * recorded).
2814 		 */
2815 		events &= vp->v_pollinfo.vpi_revents;
2816 		vp->v_pollinfo.vpi_revents &= ~events;
2817 
2818 		simple_unlock(&vp->v_pollinfo.vpi_lock);
2819 		return events;
2820 	}
2821 	vp->v_pollinfo.vpi_events |= events;
2822 	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2823 	simple_unlock(&vp->v_pollinfo.vpi_lock);
2824 	return 0;
2825 }
2826 
2827 /*
2828  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2829  * it is possible for us to miss an event due to race conditions, but
2830  * that condition is expected to be rare, so for the moment it is the
2831  * preferred interface.
2832  */
2833 void
2834 vn_pollevent(vp, events)
2835 	struct vnode *vp;
2836 	short events;
2837 {
2838 	simple_lock(&vp->v_pollinfo.vpi_lock);
2839 	if (vp->v_pollinfo.vpi_events & events) {
2840 		/*
2841 		 * We clear vpi_events so that we don't
2842 		 * call selwakeup() twice if two events are
2843 		 * posted before the polling process(es) is
2844 		 * awakened.  This also ensures that we take at
2845 		 * most one selwakeup() if the polling process
2846 		 * is no longer interested.  However, it does
2847 		 * mean that only one event can be noticed at
2848 		 * a time.  (Perhaps we should only clear those
2849 		 * event bits which we note?) XXX
2850 		 */
2851 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2852 		vp->v_pollinfo.vpi_revents |= events;
2853 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2854 	}
2855 	simple_unlock(&vp->v_pollinfo.vpi_lock);
2856 }
2857 
2858 /*
2859  * Wake up anyone polling on vp because it is being revoked.
2860  * This depends on dead_poll() returning POLLHUP for correct
2861  * behavior.
2862  */
2863 void
2864 vn_pollgone(vp)
2865 	struct vnode *vp;
2866 {
2867 	simple_lock(&vp->v_pollinfo.vpi_lock);
2868 	if (vp->v_pollinfo.vpi_events) {
2869 		vp->v_pollinfo.vpi_events = 0;
2870 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2871 	}
2872 	simple_unlock(&vp->v_pollinfo.vpi_lock);
2873 }
2874 
2875 
2876 
2877 /*
2878  * Routine to create and manage a filesystem syncer vnode.
2879  */
2880 #define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2881 static int	sync_fsync __P((struct  vop_fsync_args *));
2882 static int	sync_inactive __P((struct  vop_inactive_args *));
2883 static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2884 #define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2885 #define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2886 static int	sync_print __P((struct vop_print_args *));
2887 #define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2888 
2889 static vop_t **sync_vnodeop_p;
2890 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2891 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2892 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2893 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2894 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2895 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2896 	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2897 	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2898 	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2899 	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2900 	{ NULL, NULL }
2901 };
2902 static struct vnodeopv_desc sync_vnodeop_opv_desc =
2903 	{ &sync_vnodeop_p, sync_vnodeop_entries };
2904 
2905 VNODEOP_SET(sync_vnodeop_opv_desc);
2906 
2907 /*
2908  * Create a new filesystem syncer vnode for the specified mount point.
2909  */
2910 int
2911 vfs_allocate_syncvnode(mp)
2912 	struct mount *mp;
2913 {
2914 	struct vnode *vp;
2915 	static long start, incr, next;
2916 	int error;
2917 
2918 	/* Allocate a new vnode */
2919 	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2920 		mp->mnt_syncer = NULL;
2921 		return (error);
2922 	}
2923 	vp->v_type = VNON;
2924 	/*
2925 	 * Place the vnode onto the syncer worklist. We attempt to
2926 	 * scatter them about on the list so that they will go off
2927 	 * at evenly distributed times even if all the filesystems
2928 	 * are mounted at once.
2929 	 */
2930 	next += incr;
2931 	if (next == 0 || next > syncer_maxdelay) {
2932 		start /= 2;
2933 		incr /= 2;
2934 		if (start == 0) {
2935 			start = syncer_maxdelay / 2;
2936 			incr = syncer_maxdelay;
2937 		}
2938 		next = start;
2939 	}
2940 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2941 	mp->mnt_syncer = vp;
2942 	return (0);
2943 }
2944 
2945 /*
2946  * Do a lazy sync of the filesystem.
2947  */
2948 static int
2949 sync_fsync(ap)
2950 	struct vop_fsync_args /* {
2951 		struct vnode *a_vp;
2952 		struct ucred *a_cred;
2953 		int a_waitfor;
2954 		struct proc *a_p;
2955 	} */ *ap;
2956 {
2957 	struct vnode *syncvp = ap->a_vp;
2958 	struct mount *mp = syncvp->v_mount;
2959 	struct proc *p = ap->a_p;
2960 	int asyncflag;
2961 
2962 	/*
2963 	 * We only need to do something if this is a lazy evaluation.
2964 	 */
2965 	if (ap->a_waitfor != MNT_LAZY)
2966 		return (0);
2967 
2968 	/*
2969 	 * Move ourselves to the back of the sync list.
2970 	 */
2971 	vn_syncer_add_to_worklist(syncvp, syncdelay);
2972 
2973 	/*
2974 	 * Walk the list of vnodes pushing all that are dirty and
2975 	 * not already on the sync list.
2976 	 */
2977 	simple_lock(&mountlist_slock);
2978 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2979 		simple_unlock(&mountlist_slock);
2980 		return (0);
2981 	}
2982 	asyncflag = mp->mnt_flag & MNT_ASYNC;
2983 	mp->mnt_flag &= ~MNT_ASYNC;
2984 	vfs_msync(mp, MNT_NOWAIT);
2985 	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2986 	if (asyncflag)
2987 		mp->mnt_flag |= MNT_ASYNC;
2988 	vfs_unbusy(mp, p);
2989 	return (0);
2990 }
2991 
2992 /*
2993  * The syncer vnode is no referenced.
2994  */
2995 static int
2996 sync_inactive(ap)
2997 	struct vop_inactive_args /* {
2998 		struct vnode *a_vp;
2999 		struct proc *a_p;
3000 	} */ *ap;
3001 {
3002 
3003 	vgone(ap->a_vp);
3004 	return (0);
3005 }
3006 
3007 /*
3008  * The syncer vnode is no longer needed and is being decommissioned.
3009  *
3010  * Modifications to the worklist must be protected at splbio().
3011  */
3012 static int
3013 sync_reclaim(ap)
3014 	struct vop_reclaim_args /* {
3015 		struct vnode *a_vp;
3016 	} */ *ap;
3017 {
3018 	struct vnode *vp = ap->a_vp;
3019 	int s;
3020 
3021 	s = splbio();
3022 	vp->v_mount->mnt_syncer = NULL;
3023 	if (vp->v_flag & VONWORKLST) {
3024 		LIST_REMOVE(vp, v_synclist);
3025 		vp->v_flag &= ~VONWORKLST;
3026 	}
3027 	splx(s);
3028 
3029 	return (0);
3030 }
3031 
3032 /*
3033  * Print out a syncer vnode.
3034  */
3035 static int
3036 sync_print(ap)
3037 	struct vop_print_args /* {
3038 		struct vnode *a_vp;
3039 	} */ *ap;
3040 {
3041 	struct vnode *vp = ap->a_vp;
3042 
3043 	printf("syncer vnode");
3044 	if (vp->v_vnlock != NULL)
3045 		lockmgr_printinfo(vp->v_vnlock);
3046 	printf("\n");
3047 	return (0);
3048 }
3049 
3050 /*
3051  * extract the dev_t from a VBLK or VCHR
3052  */
3053 dev_t
3054 vn_todev(vp)
3055 	struct vnode *vp;
3056 {
3057 	if (vp->v_type != VBLK && vp->v_type != VCHR)
3058 		return (NODEV);
3059 	return (vp->v_rdev);
3060 }
3061 
3062 /*
3063  * Check if vnode represents a disk device
3064  */
3065 int
3066 vn_isdisk(vp, errp)
3067 	struct vnode *vp;
3068 	int *errp;
3069 {
3070 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
3071 		if (errp != NULL)
3072 			*errp = ENOTBLK;
3073 		return (0);
3074 	}
3075 	if (vp->v_rdev == NULL) {
3076 		if (errp != NULL)
3077 			*errp = ENXIO;
3078 		return (0);
3079 	}
3080 	if (!devsw(vp->v_rdev)) {
3081 		if (errp != NULL)
3082 			*errp = ENXIO;
3083 		return (0);
3084 	}
3085 	if (!(devsw(vp->v_rdev)->d_flags & D_DISK)) {
3086 		if (errp != NULL)
3087 			*errp = ENOTBLK;
3088 		return (0);
3089 	}
3090 	if (errp != NULL)
3091 		*errp = 0;
3092 	return (1);
3093 }
3094 
3095 void
3096 NDFREE(ndp, flags)
3097      struct nameidata *ndp;
3098      const uint flags;
3099 {
3100 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3101 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3102 		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3103 		ndp->ni_cnd.cn_flags &= ~HASBUF;
3104 	}
3105 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3106 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3107 	    ndp->ni_dvp != ndp->ni_vp)
3108 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
3109 	if (!(flags & NDF_NO_DVP_RELE) &&
3110 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3111 		vrele(ndp->ni_dvp);
3112 		ndp->ni_dvp = NULL;
3113 	}
3114 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3115 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3116 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
3117 	if (!(flags & NDF_NO_VP_RELE) &&
3118 	    ndp->ni_vp) {
3119 		vrele(ndp->ni_vp);
3120 		ndp->ni_vp = NULL;
3121 	}
3122 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3123 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3124 		vrele(ndp->ni_startdir);
3125 		ndp->ni_startdir = NULL;
3126 	}
3127 }
3128