xref: /dragonfly/sys/net/dummynet/ip_dummynet.c (revision 2d8a3be7)
1 /*
2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3  * Portions Copyright (c) 2000 Akamba Corp.
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.22 2003/05/13 09:31:06 maxim Exp $
28  * $DragonFly: src/sys/net/dummynet/ip_dummynet.c,v 1.3 2003/08/07 21:17:24 dillon Exp $
29  */
30 
31 #if !defined(KLD_MODULE)
32 #include "opt_ipfw.h"	/* for IPFW2 definition */
33 #endif
34 
35 #define DEB(x)
36 #define DDB(x)	x
37 
38 /*
39  * This module implements IP dummynet, a bandwidth limiter/delay emulator
40  * used in conjunction with the ipfw package.
41  * Description of the data structures used is in ip_dummynet.h
42  * Here you mainly find the following blocks of code:
43  *  + variable declarations;
44  *  + heap management functions;
45  *  + scheduler and dummynet functions;
46  *  + configuration and initialization.
47  *
48  * NOTA BENE: critical sections are protected by splimp()/splx()
49  *    pairs. One would think that splnet() is enough as for most of
50  *    the netinet code, but it is not so because when used with
51  *    bridging, dummynet is invoked at splimp().
52  *
53  * Most important Changes:
54  *
55  * 011004: KLDable
56  * 010124: Fixed WF2Q behaviour
57  * 010122: Fixed spl protection.
58  * 000601: WF2Q support
59  * 000106: large rewrite, use heaps to handle very many pipes.
60  * 980513:	initial release
61  *
62  * include files marked with XXX are probably not needed
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/kernel.h>
70 #include <sys/module.h>
71 #include <sys/proc.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/time.h>
75 #include <sys/sysctl.h>
76 #include <net/if.h>
77 #include <net/route.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <net/ipfw/ip_fw.h>
83 #include "ip_dummynet.h"
84 #include <netinet/ip_var.h>
85 
86 #include <netinet/if_ether.h> /* for struct arpcom */
87 #include <net/bridge/bridge.h>
88 
89 /*
90  * We keep a private variable for the simulation time, but we could
91  * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
92  */
93 static dn_key curr_time = 0 ; /* current simulation time */
94 
95 static int dn_hash_size = 64 ;	/* default hash size */
96 
97 /* statistics on number of queue searches and search steps */
98 static int searches, search_steps ;
99 static int pipe_expire = 1 ;   /* expire queue if empty */
100 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
101 
102 static int red_lookup_depth = 256;	/* RED - default lookup table depth */
103 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
104 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
105 
106 /*
107  * Three heaps contain queues and pipes that the scheduler handles:
108  *
109  * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
110  *
111  * wfq_ready_heap contains the pipes associated with WF2Q flows
112  *
113  * extract_heap contains pipes associated with delay lines.
114  *
115  */
116 
117 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
118 
119 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
120 
121 static int heap_init(struct dn_heap *h, int size) ;
122 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
123 static void heap_extract(struct dn_heap *h, void *obj);
124 
125 static void transmit_event(struct dn_pipe *pipe);
126 static void ready_event(struct dn_flow_queue *q);
127 
128 static struct dn_pipe *all_pipes = NULL ;	/* list of all pipes */
129 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
130 
131 static struct callout_handle dn_timeout;
132 
133 #ifdef SYSCTL_NODE
134 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
135 		CTLFLAG_RW, 0, "Dummynet");
136 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
137 	    CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
138 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
139 	    CTLFLAG_RD, &curr_time, 0, "Current tick");
140 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
141 	    CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
142 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
143 	    CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
144 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
145 	    CTLFLAG_RD, &searches, 0, "Number of queue searches");
146 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
147 	    CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
148 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
149 	    CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
150 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
151 	    CTLFLAG_RW, &dn_max_ratio, 0,
152 	"Max ratio between dynamic queues and buckets");
153 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
154 	CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
155 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
156 	CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
157 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
158 	CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
159 #endif
160 
161 static int config_pipe(struct dn_pipe *p);
162 static int ip_dn_ctl(struct sockopt *sopt);
163 
164 static void rt_unref(struct rtentry *);
165 static void dummynet(void *);
166 static void dummynet_flush(void);
167 void dummynet_drain(void);
168 static ip_dn_io_t dummynet_io;
169 static void dn_rule_delete(void *);
170 
171 int if_tx_rdy(struct ifnet *ifp);
172 
173 static void
174 rt_unref(struct rtentry *rt)
175 {
176     if (rt == NULL)
177 	return ;
178     if (rt->rt_refcnt <= 0)
179 	printf("-- warning, refcnt now %ld, decreasing\n", rt->rt_refcnt);
180     RTFREE(rt);
181 }
182 
183 /*
184  * Heap management functions.
185  *
186  * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
187  * Some macros help finding parent/children so we can optimize them.
188  *
189  * heap_init() is called to expand the heap when needed.
190  * Increment size in blocks of 16 entries.
191  * XXX failure to allocate a new element is a pretty bad failure
192  * as we basically stall a whole queue forever!!
193  * Returns 1 on error, 0 on success
194  */
195 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
196 #define HEAP_LEFT(x) ( 2*(x) + 1 )
197 #define HEAP_IS_LEFT(x) ( (x) & 1 )
198 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
199 #define	HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
200 #define HEAP_INCREMENT	15
201 
202 static int
203 heap_init(struct dn_heap *h, int new_size)
204 {
205     struct dn_heap_entry *p;
206 
207     if (h->size >= new_size ) {
208 	printf("heap_init, Bogus call, have %d want %d\n",
209 		h->size, new_size);
210 	return 0 ;
211     }
212     new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
213     p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT);
214     if (p == NULL) {
215 	printf(" heap_init, resize %d failed\n", new_size );
216 	return 1 ; /* error */
217     }
218     if (h->size > 0) {
219 	bcopy(h->p, p, h->size * sizeof(*p) );
220 	free(h->p, M_DUMMYNET);
221     }
222     h->p = p ;
223     h->size = new_size ;
224     return 0 ;
225 }
226 
227 /*
228  * Insert element in heap. Normally, p != NULL, we insert p in
229  * a new position and bubble up. If p == NULL, then the element is
230  * already in place, and key is the position where to start the
231  * bubble-up.
232  * Returns 1 on failure (cannot allocate new heap entry)
233  *
234  * If offset > 0 the position (index, int) of the element in the heap is
235  * also stored in the element itself at the given offset in bytes.
236  */
237 #define SET_OFFSET(heap, node) \
238     if (heap->offset > 0) \
239 	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
240 /*
241  * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
242  */
243 #define RESET_OFFSET(heap, node) \
244     if (heap->offset > 0) \
245 	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
246 static int
247 heap_insert(struct dn_heap *h, dn_key key1, void *p)
248 {
249     int son = h->elements ;
250 
251     if (p == NULL)	/* data already there, set starting point */
252 	son = key1 ;
253     else {		/* insert new element at the end, possibly resize */
254 	son = h->elements ;
255 	if (son == h->size) /* need resize... */
256 	    if (heap_init(h, h->elements+1) )
257 		return 1 ; /* failure... */
258 	h->p[son].object = p ;
259 	h->p[son].key = key1 ;
260 	h->elements++ ;
261     }
262     while (son > 0) {				/* bubble up */
263 	int father = HEAP_FATHER(son) ;
264 	struct dn_heap_entry tmp  ;
265 
266 	if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
267 	    break ; /* found right position */
268 	/* son smaller than father, swap and repeat */
269 	HEAP_SWAP(h->p[son], h->p[father], tmp) ;
270 	SET_OFFSET(h, son);
271 	son = father ;
272     }
273     SET_OFFSET(h, son);
274     return 0 ;
275 }
276 
277 /*
278  * remove top element from heap, or obj if obj != NULL
279  */
280 static void
281 heap_extract(struct dn_heap *h, void *obj)
282 {
283     int child, father, max = h->elements - 1 ;
284 
285     if (max < 0) {
286 	printf("warning, extract from empty heap 0x%p\n", h);
287 	return ;
288     }
289     father = 0 ; /* default: move up smallest child */
290     if (obj != NULL) { /* extract specific element, index is at offset */
291 	if (h->offset <= 0)
292 	    panic("*** heap_extract from middle not supported on this heap!!!\n");
293 	father = *((int *)((char *)obj + h->offset)) ;
294 	if (father < 0 || father >= h->elements) {
295 	    printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
296 		father, h->elements);
297 	    panic("heap_extract");
298 	}
299     }
300     RESET_OFFSET(h, father);
301     child = HEAP_LEFT(father) ;		/* left child */
302     while (child <= max) {		/* valid entry */
303 	if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
304 	    child = child+1 ;		/* take right child, otherwise left */
305 	h->p[father] = h->p[child] ;
306 	SET_OFFSET(h, father);
307 	father = child ;
308 	child = HEAP_LEFT(child) ;   /* left child for next loop */
309     }
310     h->elements-- ;
311     if (father != max) {
312 	/*
313 	 * Fill hole with last entry and bubble up, reusing the insert code
314 	 */
315 	h->p[father] = h->p[max] ;
316 	heap_insert(h, father, NULL); /* this one cannot fail */
317     }
318 }
319 
320 #if 0
321 /*
322  * change object position and update references
323  * XXX this one is never used!
324  */
325 static void
326 heap_move(struct dn_heap *h, dn_key new_key, void *object)
327 {
328     int temp;
329     int i ;
330     int max = h->elements-1 ;
331     struct dn_heap_entry buf ;
332 
333     if (h->offset <= 0)
334 	panic("cannot move items on this heap");
335 
336     i = *((int *)((char *)object + h->offset));
337     if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
338 	h->p[i].key = new_key ;
339 	for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
340 		 i = temp ) { /* bubble up */
341 	    HEAP_SWAP(h->p[i], h->p[temp], buf) ;
342 	    SET_OFFSET(h, i);
343 	}
344     } else {		/* must move down */
345 	h->p[i].key = new_key ;
346 	while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
347 	    if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
348 		temp++ ; /* select child with min key */
349 	    if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
350 		HEAP_SWAP(h->p[i], h->p[temp], buf) ;
351 		SET_OFFSET(h, i);
352 	    } else
353 		break ;
354 	    i = temp ;
355 	}
356     }
357     SET_OFFSET(h, i);
358 }
359 #endif /* heap_move, unused */
360 
361 /*
362  * heapify() will reorganize data inside an array to maintain the
363  * heap property. It is needed when we delete a bunch of entries.
364  */
365 static void
366 heapify(struct dn_heap *h)
367 {
368     int i ;
369 
370     for (i = 0 ; i < h->elements ; i++ )
371 	heap_insert(h, i , NULL) ;
372 }
373 
374 /*
375  * cleanup the heap and free data structure
376  */
377 static void
378 heap_free(struct dn_heap *h)
379 {
380     if (h->size >0 )
381 	free(h->p, M_DUMMYNET);
382     bzero(h, sizeof(*h) );
383 }
384 
385 /*
386  * --- end of heap management functions ---
387  */
388 
389 /*
390  * Scheduler functions:
391  *
392  * transmit_event() is called when the delay-line needs to enter
393  * the scheduler, either because of existing pkts getting ready,
394  * or new packets entering the queue. The event handled is the delivery
395  * time of the packet.
396  *
397  * ready_event() does something similar with fixed-rate queues, and the
398  * event handled is the finish time of the head pkt.
399  *
400  * wfq_ready_event() does something similar with WF2Q queues, and the
401  * event handled is the start time of the head pkt.
402  *
403  * In all cases, we make sure that the data structures are consistent
404  * before passing pkts out, because this might trigger recursive
405  * invocations of the procedures.
406  */
407 static void
408 transmit_event(struct dn_pipe *pipe)
409 {
410     struct dn_pkt *pkt ;
411 
412     while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
413 	/*
414 	 * first unlink, then call procedures, since ip_input() can invoke
415 	 * ip_output() and viceversa, thus causing nested calls
416 	 */
417 	pipe->head = DN_NEXT(pkt) ;
418 
419 	/*
420 	 * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
421 	 * (NOT A REAL one, just a small block of malloc'ed memory) with
422 	 *     m_type = MT_TAG, m_flags = PACKET_TAG_DUMMYNET
423 	 *     dn_m (m_next) = actual mbuf to be processed by ip_input/output
424 	 * and some other fields.
425 	 * The block IS FREED HERE because it contains parameters passed
426 	 * to the called routine.
427 	 */
428 	switch (pkt->dn_dir) {
429 	case DN_TO_IP_OUT:
430 	    (void)ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL, NULL);
431 	    rt_unref (pkt->ro.ro_rt) ;
432 	    break ;
433 
434 	case DN_TO_IP_IN :
435 	    ip_input((struct mbuf *)pkt) ;
436 	    break ;
437 
438 	case DN_TO_BDG_FWD :
439 	    if (!BDG_LOADED) {
440 		/* somebody unloaded the bridge module. Drop pkt */
441 		printf("-- dropping bridged packet trapped in pipe--\n");
442 		m_freem(pkt->dn_m);
443 		break;
444 	    } /* fallthrough */
445 	case DN_TO_ETH_DEMUX:
446 	    {
447 		struct mbuf *m = (struct mbuf *)pkt ;
448 		struct ether_header *eh;
449 
450 		if (pkt->dn_m->m_len < ETHER_HDR_LEN &&
451 		    (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) {
452 		    printf("dummynet/bridge: pullup fail, dropping pkt\n");
453 		    break;
454 		}
455 		/*
456 		 * same as ether_input, make eh be a pointer into the mbuf
457 		 */
458 		eh = mtod(pkt->dn_m, struct ether_header *);
459 		m_adj(pkt->dn_m, ETHER_HDR_LEN);
460 		/*
461 		 * bdg_forward() wants a pointer to the pseudo-mbuf-header, but
462 		 * on return it will supply the pointer to the actual packet
463 		 * (originally pkt->dn_m, but could be something else now) if
464 		 * it has not consumed it.
465 		 */
466 		if (pkt->dn_dir == DN_TO_BDG_FWD) {
467 		    m = bdg_forward_ptr(m, eh, pkt->ifp);
468 		    if (m)
469 			m_freem(m);
470 		} else
471 		    ether_demux(NULL, eh, m); /* which consumes the mbuf */
472 	    }
473 	    break ;
474 	case DN_TO_ETH_OUT:
475 	    ether_output_frame(pkt->ifp, (struct mbuf *)pkt);
476 	    break;
477 
478 	default:
479 	    printf("dummynet: bad switch %d!\n", pkt->dn_dir);
480 	    m_freem(pkt->dn_m);
481 	    break ;
482 	}
483 	free(pkt, M_DUMMYNET);
484     }
485     /* if there are leftover packets, put into the heap for next event */
486     if ( (pkt = pipe->head) )
487          heap_insert(&extract_heap, pkt->output_time, pipe ) ;
488     /* XXX should check errors on heap_insert, by draining the
489      * whole pipe p and hoping in the future we are more successful
490      */
491 }
492 
493 /*
494  * the following macro computes how many ticks we have to wait
495  * before being able to transmit a packet. The credit is taken from
496  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
497  */
498 #define SET_TICKS(pkt, q, p)	\
499     (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
500 	    p->bandwidth ;
501 
502 /*
503  * extract pkt from queue, compute output time (could be now)
504  * and put into delay line (p_queue)
505  */
506 static void
507 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
508 	struct dn_pipe *p, int len)
509 {
510     q->head = DN_NEXT(pkt) ;
511     q->len-- ;
512     q->len_bytes -= len ;
513 
514     pkt->output_time = curr_time + p->delay ;
515 
516     if (p->head == NULL)
517 	p->head = pkt;
518     else
519 	DN_NEXT(p->tail) = pkt;
520     p->tail = pkt;
521     DN_NEXT(p->tail) = NULL;
522 }
523 
524 /*
525  * ready_event() is invoked every time the queue must enter the
526  * scheduler, either because the first packet arrives, or because
527  * a previously scheduled event fired.
528  * On invokation, drain as many pkts as possible (could be 0) and then
529  * if there are leftover packets reinsert the pkt in the scheduler.
530  */
531 static void
532 ready_event(struct dn_flow_queue *q)
533 {
534     struct dn_pkt *pkt;
535     struct dn_pipe *p = q->fs->pipe ;
536     int p_was_empty ;
537 
538     if (p == NULL) {
539 	printf("ready_event- pipe is gone\n");
540 	return ;
541     }
542     p_was_empty = (p->head == NULL) ;
543 
544     /*
545      * schedule fixed-rate queues linked to this pipe:
546      * Account for the bw accumulated since last scheduling, then
547      * drain as many pkts as allowed by q->numbytes and move to
548      * the delay line (in p) computing output time.
549      * bandwidth==0 (no limit) means we can drain the whole queue,
550      * setting len_scaled = 0 does the job.
551      */
552     q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
553     while ( (pkt = q->head) != NULL ) {
554 	int len = pkt->dn_m->m_pkthdr.len;
555 	int len_scaled = p->bandwidth ? len*8*hz : 0 ;
556 	if (len_scaled > q->numbytes )
557 	    break ;
558 	q->numbytes -= len_scaled ;
559 	move_pkt(pkt, q, p, len);
560     }
561     /*
562      * If we have more packets queued, schedule next ready event
563      * (can only occur when bandwidth != 0, otherwise we would have
564      * flushed the whole queue in the previous loop).
565      * To this purpose we record the current time and compute how many
566      * ticks to go for the finish time of the packet.
567      */
568     if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
569 	dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
570 	q->sched_time = curr_time ;
571 	heap_insert(&ready_heap, curr_time + t, (void *)q );
572 	/* XXX should check errors on heap_insert, and drain the whole
573 	 * queue on error hoping next time we are luckier.
574 	 */
575     } else {	/* RED needs to know when the queue becomes empty */
576 	q->q_time = curr_time;
577 	q->numbytes = 0;
578     }
579     /*
580      * If the delay line was empty call transmit_event(p) now.
581      * Otherwise, the scheduler will take care of it.
582      */
583     if (p_was_empty)
584 	transmit_event(p);
585 }
586 
587 /*
588  * Called when we can transmit packets on WF2Q queues. Take pkts out of
589  * the queues at their start time, and enqueue into the delay line.
590  * Packets are drained until p->numbytes < 0. As long as
591  * len_scaled >= p->numbytes, the packet goes into the delay line
592  * with a deadline p->delay. For the last packet, if p->numbytes<0,
593  * there is an additional delay.
594  */
595 static void
596 ready_event_wfq(struct dn_pipe *p)
597 {
598     int p_was_empty = (p->head == NULL) ;
599     struct dn_heap *sch = &(p->scheduler_heap);
600     struct dn_heap *neh = &(p->not_eligible_heap) ;
601 
602     if (p->if_name[0] == 0) /* tx clock is simulated */
603 	p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
604     else { /* tx clock is for real, the ifq must be empty or this is a NOP */
605 	if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
606 	    return ;
607 	else {
608 	    DEB(printf("pipe %d ready from %s --\n",
609 		p->pipe_nr, p->if_name);)
610 	}
611     }
612 
613     /*
614      * While we have backlogged traffic AND credit, we need to do
615      * something on the queue.
616      */
617     while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
618 	if (sch->elements > 0) { /* have some eligible pkts to send out */
619 	    struct dn_flow_queue *q = sch->p[0].object ;
620 	    struct dn_pkt *pkt = q->head;
621 	    struct dn_flow_set *fs = q->fs;
622 	    u_int64_t len = pkt->dn_m->m_pkthdr.len;
623 	    int len_scaled = p->bandwidth ? len*8*hz : 0 ;
624 
625 	    heap_extract(sch, NULL); /* remove queue from heap */
626 	    p->numbytes -= len_scaled ;
627 	    move_pkt(pkt, q, p, len);
628 
629 	    p->V += (len<<MY_M) / p->sum ; /* update V */
630 	    q->S = q->F ; /* update start time */
631 	    if (q->len == 0) { /* Flow not backlogged any more */
632 		fs->backlogged-- ;
633 		heap_insert(&(p->idle_heap), q->F, q);
634 	    } else { /* still backlogged */
635 		/*
636 		 * update F and position in backlogged queue, then
637 		 * put flow in not_eligible_heap (we will fix this later).
638 		 */
639 		len = (q->head)->dn_m->m_pkthdr.len;
640 		q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
641 		if (DN_KEY_LEQ(q->S, p->V))
642 		    heap_insert(neh, q->S, q);
643 		else
644 		    heap_insert(sch, q->F, q);
645 	    }
646 	}
647 	/*
648 	 * now compute V = max(V, min(S_i)). Remember that all elements in sch
649 	 * have by definition S_i <= V so if sch is not empty, V is surely
650 	 * the max and we must not update it. Conversely, if sch is empty
651 	 * we only need to look at neh.
652 	 */
653 	if (sch->elements == 0 && neh->elements > 0)
654 	    p->V = MAX64 ( p->V, neh->p[0].key );
655 	/* move from neh to sch any packets that have become eligible */
656 	while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
657 	    struct dn_flow_queue *q = neh->p[0].object ;
658 	    heap_extract(neh, NULL);
659 	    heap_insert(sch, q->F, q);
660 	}
661 
662 	if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
663 	    p->numbytes = -1 ; /* mark not ready for I/O */
664 	    break ;
665 	}
666     }
667     if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
668 	    && p->idle_heap.elements > 0) {
669 	/*
670 	 * no traffic and no events scheduled. We can get rid of idle-heap.
671 	 */
672 	int i ;
673 
674 	for (i = 0 ; i < p->idle_heap.elements ; i++) {
675 	    struct dn_flow_queue *q = p->idle_heap.p[i].object ;
676 
677 	    q->F = 0 ;
678 	    q->S = q->F + 1 ;
679 	}
680 	p->sum = 0 ;
681 	p->V = 0 ;
682 	p->idle_heap.elements = 0 ;
683     }
684     /*
685      * If we are getting clocks from dummynet (not a real interface) and
686      * If we are under credit, schedule the next ready event.
687      * Also fix the delivery time of the last packet.
688      */
689     if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
690 	dn_key t=0 ; /* number of ticks i have to wait */
691 
692 	if (p->bandwidth > 0)
693 	    t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
694 	p->tail->output_time += t ;
695 	p->sched_time = curr_time ;
696 	heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
697 	/* XXX should check errors on heap_insert, and drain the whole
698 	 * queue on error hoping next time we are luckier.
699 	 */
700     }
701     /*
702      * If the delay line was empty call transmit_event(p) now.
703      * Otherwise, the scheduler will take care of it.
704      */
705     if (p_was_empty)
706 	transmit_event(p);
707 }
708 
709 /*
710  * This is called once per tick, or HZ times per second. It is used to
711  * increment the current tick counter and schedule expired events.
712  */
713 static void
714 dummynet(void * __unused unused)
715 {
716     void *p ; /* generic parameter to handler */
717     struct dn_heap *h ;
718     int s ;
719     struct dn_heap *heaps[3];
720     int i;
721     struct dn_pipe *pe ;
722 
723     heaps[0] = &ready_heap ;		/* fixed-rate queues */
724     heaps[1] = &wfq_ready_heap ;	/* wfq queues */
725     heaps[2] = &extract_heap ;		/* delay line */
726     s = splimp(); /* see note on top, splnet() is not enough */
727     curr_time++ ;
728     for (i=0; i < 3 ; i++) {
729 	h = heaps[i];
730 	while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
731 	    DDB(if (h->p[0].key > curr_time)
732 		printf("-- dummynet: warning, heap %d is %d ticks late\n",
733 		    i, (int)(curr_time - h->p[0].key));)
734 	    p = h->p[0].object ; /* store a copy before heap_extract */
735 	    heap_extract(h, NULL); /* need to extract before processing */
736 	    if (i == 0)
737 		ready_event(p) ;
738 	    else if (i == 1) {
739 		struct dn_pipe *pipe = p;
740 		if (pipe->if_name[0] != '\0')
741 		    printf("*** bad ready_event_wfq for pipe %s\n",
742 			pipe->if_name);
743 		else
744 		    ready_event_wfq(p) ;
745 	    } else
746 		transmit_event(p);
747 	}
748     }
749     /* sweep pipes trying to expire idle flow_queues */
750     for (pe = all_pipes; pe ; pe = pe->next )
751 	if (pe->idle_heap.elements > 0 &&
752 		DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
753 	    struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
754 
755 	    heap_extract(&(pe->idle_heap), NULL);
756 	    q->S = q->F + 1 ; /* mark timestamp as invalid */
757 	    pe->sum -= q->fs->weight ;
758 	}
759     splx(s);
760     dn_timeout = timeout(dummynet, NULL, 1);
761 }
762 
763 /*
764  * called by an interface when tx_rdy occurs.
765  */
766 int
767 if_tx_rdy(struct ifnet *ifp)
768 {
769     struct dn_pipe *p;
770 
771     for (p = all_pipes; p ; p = p->next )
772 	if (p->ifp == ifp)
773 	    break ;
774     if (p == NULL) {
775 	char buf[32];
776 	sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
777 	for (p = all_pipes; p ; p = p->next )
778 	    if (!strcmp(p->if_name, buf) ) {
779 		p->ifp = ifp ;
780 		DEB(printf("++ tx rdy from %s (now found)\n", buf);)
781 		break ;
782 	    }
783     }
784     if (p != NULL) {
785 	DEB(printf("++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
786 		ifp->if_unit, ifp->if_snd.ifq_len);)
787 	p->numbytes = 0 ; /* mark ready for I/O */
788 	ready_event_wfq(p);
789     }
790     return 0;
791 }
792 
793 /*
794  * Unconditionally expire empty queues in case of shortage.
795  * Returns the number of queues freed.
796  */
797 static int
798 expire_queues(struct dn_flow_set *fs)
799 {
800     struct dn_flow_queue *q, *prev ;
801     int i, initial_elements = fs->rq_elements ;
802 
803     if (fs->last_expired == time_second)
804 	return 0 ;
805     fs->last_expired = time_second ;
806     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
807 	for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
808 	    if (q->head != NULL || q->S != q->F+1) {
809   		prev = q ;
810   	        q = q->next ;
811   	    } else { /* entry is idle, expire it */
812 		struct dn_flow_queue *old_q = q ;
813 
814 		if (prev != NULL)
815 		    prev->next = q = q->next ;
816 		else
817 		    fs->rq[i] = q = q->next ;
818 		fs->rq_elements-- ;
819 		free(old_q, M_DUMMYNET);
820 	    }
821     return initial_elements - fs->rq_elements ;
822 }
823 
824 /*
825  * If room, create a new queue and put at head of slot i;
826  * otherwise, create or use the default queue.
827  */
828 static struct dn_flow_queue *
829 create_queue(struct dn_flow_set *fs, int i)
830 {
831     struct dn_flow_queue *q ;
832 
833     if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
834 	    expire_queues(fs) == 0) {
835 	/*
836 	 * No way to get room, use or create overflow queue.
837 	 */
838 	i = fs->rq_size ;
839 	if ( fs->rq[i] != NULL )
840 	    return fs->rq[i] ;
841     }
842     q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO);
843     if (q == NULL) {
844 	printf("sorry, cannot allocate queue for new flow\n");
845 	return NULL ;
846     }
847     q->fs = fs ;
848     q->hash_slot = i ;
849     q->next = fs->rq[i] ;
850     q->S = q->F + 1;   /* hack - mark timestamp as invalid */
851     fs->rq[i] = q ;
852     fs->rq_elements++ ;
853     return q ;
854 }
855 
856 /*
857  * Given a flow_set and a pkt in last_pkt, find a matching queue
858  * after appropriate masking. The queue is moved to front
859  * so that further searches take less time.
860  */
861 static struct dn_flow_queue *
862 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
863 {
864     int i = 0 ; /* we need i and q for new allocations */
865     struct dn_flow_queue *q, *prev;
866 
867     if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
868 	q = fs->rq[0] ;
869     else {
870 	/* first, do the masking */
871 	id->dst_ip &= fs->flow_mask.dst_ip ;
872 	id->src_ip &= fs->flow_mask.src_ip ;
873 	id->dst_port &= fs->flow_mask.dst_port ;
874 	id->src_port &= fs->flow_mask.src_port ;
875 	id->proto &= fs->flow_mask.proto ;
876 	id->flags = 0 ; /* we don't care about this one */
877 	/* then, hash function */
878 	i = ( (id->dst_ip) & 0xffff ) ^
879 	    ( (id->dst_ip >> 15) & 0xffff ) ^
880 	    ( (id->src_ip << 1) & 0xffff ) ^
881 	    ( (id->src_ip >> 16 ) & 0xffff ) ^
882 	    (id->dst_port << 1) ^ (id->src_port) ^
883 	    (id->proto );
884 	i = i % fs->rq_size ;
885 	/* finally, scan the current list for a match */
886 	searches++ ;
887 	for (prev=NULL, q = fs->rq[i] ; q ; ) {
888 	    search_steps++;
889 	    if (id->dst_ip == q->id.dst_ip &&
890 		    id->src_ip == q->id.src_ip &&
891 		    id->dst_port == q->id.dst_port &&
892 		    id->src_port == q->id.src_port &&
893 		    id->proto == q->id.proto &&
894 		    id->flags == q->id.flags)
895 		break ; /* found */
896 	    else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
897 		/* entry is idle and not in any heap, expire it */
898 		struct dn_flow_queue *old_q = q ;
899 
900 		if (prev != NULL)
901 		    prev->next = q = q->next ;
902 		else
903 		    fs->rq[i] = q = q->next ;
904 		fs->rq_elements-- ;
905 		free(old_q, M_DUMMYNET);
906 		continue ;
907 	    }
908 	    prev = q ;
909 	    q = q->next ;
910 	}
911 	if (q && prev != NULL) { /* found and not in front */
912 	    prev->next = q->next ;
913 	    q->next = fs->rq[i] ;
914 	    fs->rq[i] = q ;
915 	}
916     }
917     if (q == NULL) { /* no match, need to allocate a new entry */
918 	q = create_queue(fs, i);
919 	if (q != NULL)
920 	q->id = *id ;
921     }
922     return q ;
923 }
924 
925 static int
926 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
927 {
928     /*
929      * RED algorithm
930      *
931      * RED calculates the average queue size (avg) using a low-pass filter
932      * with an exponential weighted (w_q) moving average:
933      * 	avg  <-  (1-w_q) * avg + w_q * q_size
934      * where q_size is the queue length (measured in bytes or * packets).
935      *
936      * If q_size == 0, we compute the idle time for the link, and set
937      *	avg = (1 - w_q)^(idle/s)
938      * where s is the time needed for transmitting a medium-sized packet.
939      *
940      * Now, if avg < min_th the packet is enqueued.
941      * If avg > max_th the packet is dropped. Otherwise, the packet is
942      * dropped with probability P function of avg.
943      *
944      */
945 
946     int64_t p_b = 0;
947     /* queue in bytes or packets ? */
948     u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
949 
950     DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);)
951 
952     /* average queue size estimation */
953     if (q_size != 0) {
954 	/*
955 	 * queue is not empty, avg <- avg + (q_size - avg) * w_q
956 	 */
957 	int diff = SCALE(q_size) - q->avg;
958 	int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
959 
960 	q->avg += (int) v;
961     } else {
962 	/*
963 	 * queue is empty, find for how long the queue has been
964 	 * empty and use a lookup table for computing
965 	 * (1 - * w_q)^(idle_time/s) where s is the time to send a
966 	 * (small) packet.
967 	 * XXX check wraps...
968 	 */
969 	if (q->avg) {
970 	    u_int t = (curr_time - q->q_time) / fs->lookup_step;
971 
972 	    q->avg = (t < fs->lookup_depth) ?
973 		    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
974 	}
975     }
976     DEB(printf("avg: %u ", SCALE_VAL(q->avg));)
977 
978     /* should i drop ? */
979 
980     if (q->avg < fs->min_th) {
981 	q->count = -1;
982 	return 0; /* accept packet ; */
983     }
984     if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
985 	if (fs->flags_fs & DN_IS_GENTLE_RED) {
986 	    /*
987 	     * According to Gentle-RED, if avg is greater than max_th the
988 	     * packet is dropped with a probability
989 	     *	p_b = c_3 * avg - c_4
990 	     * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
991 	     */
992 	    p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
993 	} else {
994 	    q->count = -1;
995 	    printf("- drop");
996 	    return 1 ;
997 	}
998     } else if (q->avg > fs->min_th) {
999 	/*
1000 	 * we compute p_b using the linear dropping function p_b = c_1 *
1001 	 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1002 	 * max_p * min_th / (max_th - min_th)
1003 	 */
1004 	p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1005     }
1006     if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1007 	p_b = (p_b * len) / fs->max_pkt_size;
1008     if (++q->count == 0)
1009 	q->random = random() & 0xffff;
1010     else {
1011 	/*
1012 	 * q->count counts packets arrived since last drop, so a greater
1013 	 * value of q->count means a greater packet drop probability.
1014 	 */
1015 	if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1016 	    q->count = 0;
1017 	    DEB(printf("- red drop");)
1018 	    /* after a drop we calculate a new random value */
1019 	    q->random = random() & 0xffff;
1020 	    return 1;    /* drop */
1021 	}
1022     }
1023     /* end of RED algorithm */
1024     return 0 ; /* accept */
1025 }
1026 
1027 static __inline
1028 struct dn_flow_set *
1029 locate_flowset(int pipe_nr, struct ip_fw *rule)
1030 {
1031 #if IPFW2
1032     struct dn_flow_set *fs;
1033     ipfw_insn *cmd = rule->cmd + rule->act_ofs;
1034 
1035     if (cmd->opcode == O_LOG)
1036 	cmd += F_LEN(cmd);
1037     fs = ((ipfw_insn_pipe *)cmd)->pipe_ptr;
1038 
1039     if (fs != NULL)
1040 	return fs;
1041 
1042     if (cmd->opcode == O_QUEUE)
1043 #else /* !IPFW2 */
1044     struct dn_flow_set *fs = NULL ;
1045 
1046     if ( (rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
1047 #endif /* !IPFW2 */
1048 	for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
1049 	    ;
1050     else {
1051 	struct dn_pipe *p1;
1052 	for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
1053 	    ;
1054 	if (p1 != NULL)
1055 	    fs = &(p1->fs) ;
1056     }
1057     /* record for the future */
1058 #if IPFW2
1059     ((ipfw_insn_pipe *)cmd)->pipe_ptr = fs;
1060 #else
1061     if (fs != NULL)
1062 	rule->pipe_ptr = fs;
1063 #endif
1064     return fs ;
1065 }
1066 
1067 /*
1068  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1069  * depending on whether WF2Q or fixed bw is used.
1070  *
1071  * pipe_nr	pipe or queue the packet is destined for.
1072  * dir		where shall we send the packet after dummynet.
1073  * m		the mbuf with the packet
1074  * ifp		the 'ifp' parameter from the caller.
1075  *		NULL in ip_input, destination interface in ip_output,
1076  *		real_dst in bdg_forward
1077  * ro		route parameter (only used in ip_output, NULL otherwise)
1078  * dst		destination address, only used by ip_output
1079  * rule		matching rule, in case of multiple passes
1080  * flags	flags from the caller, only used in ip_output
1081  *
1082  */
1083 static int
1084 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1085 {
1086     struct dn_pkt *pkt;
1087     struct dn_flow_set *fs;
1088     struct dn_pipe *pipe ;
1089     u_int64_t len = m->m_pkthdr.len ;
1090     struct dn_flow_queue *q = NULL ;
1091     int s = splimp();
1092     int is_pipe;
1093 #if IPFW2
1094     ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
1095 
1096     if (cmd->opcode == O_LOG)
1097 	cmd += F_LEN(cmd);
1098     is_pipe = (cmd->opcode == O_PIPE);
1099 #else
1100     is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1101 #endif
1102 
1103     pipe_nr &= 0xffff ;
1104 
1105     /*
1106      * this is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
1107      */
1108     fs = locate_flowset(pipe_nr, fwa->rule);
1109     if (fs == NULL)
1110 	goto dropit ;	/* this queue/pipe does not exist! */
1111     pipe = fs->pipe ;
1112     if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1113 	for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
1114 		 pipe = pipe->next)
1115 	    ;
1116 	if (pipe != NULL)
1117 	    fs->pipe = pipe ;
1118 	else {
1119 	    printf("No pipe %d for queue %d, drop pkt\n",
1120 		fs->parent_nr, fs->fs_nr);
1121 	    goto dropit ;
1122 	}
1123     }
1124     q = find_queue(fs, &(fwa->f_id));
1125     if ( q == NULL )
1126 	goto dropit ;		/* cannot allocate queue		*/
1127     /*
1128      * update statistics, then check reasons to drop pkt
1129      */
1130     q->tot_bytes += len ;
1131     q->tot_pkts++ ;
1132     if ( fs->plr && random() < fs->plr )
1133 	goto dropit ;		/* random pkt drop			*/
1134     if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1135     	if (q->len_bytes > fs->qsize)
1136 	    goto dropit ;	/* queue size overflow			*/
1137     } else {
1138 	if (q->len >= fs->qsize)
1139 	    goto dropit ;	/* queue count overflow			*/
1140     }
1141     if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1142 	goto dropit ;
1143 
1144     /* XXX expensive to zero, see if we can remove it*/
1145     pkt = (struct dn_pkt *)malloc(sizeof (*pkt), M_DUMMYNET, M_NOWAIT|M_ZERO);
1146     if ( pkt == NULL )
1147 	goto dropit ;		/* cannot allocate packet header	*/
1148     /* ok, i can handle the pkt now... */
1149     /* build and enqueue packet + parameters */
1150     pkt->hdr.mh_type = MT_TAG;
1151     pkt->hdr.mh_flags = PACKET_TAG_DUMMYNET;
1152     pkt->rule = fwa->rule ;
1153     DN_NEXT(pkt) = NULL;
1154     pkt->dn_m = m;
1155     pkt->dn_dir = dir ;
1156 
1157     pkt->ifp = fwa->oif;
1158     if (dir == DN_TO_IP_OUT) {
1159 	/*
1160 	 * We need to copy *ro because for ICMP pkts (and maybe others)
1161 	 * the caller passed a pointer into the stack; dst might also be
1162 	 * a pointer into *ro so it needs to be updated.
1163 	 */
1164 	pkt->ro = *(fwa->ro);
1165 	if (fwa->ro->ro_rt)
1166 	    fwa->ro->ro_rt->rt_refcnt++ ;
1167 	if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
1168 	    fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
1169 
1170 	pkt->dn_dst = fwa->dst;
1171 	pkt->flags = fwa->flags;
1172     }
1173     if (q->head == NULL)
1174 	q->head = pkt;
1175     else
1176 	DN_NEXT(q->tail) = pkt;
1177     q->tail = pkt;
1178     q->len++;
1179     q->len_bytes += len ;
1180 
1181     if ( q->head != pkt )	/* flow was not idle, we are done */
1182 	goto done;
1183     /*
1184      * If we reach this point the flow was previously idle, so we need
1185      * to schedule it. This involves different actions for fixed-rate or
1186      * WF2Q queues.
1187      */
1188     if (is_pipe) {
1189 	/*
1190 	 * Fixed-rate queue: just insert into the ready_heap.
1191 	 */
1192 	dn_key t = 0 ;
1193 	if (pipe->bandwidth)
1194 	    t = SET_TICKS(pkt, q, pipe);
1195 	q->sched_time = curr_time ;
1196 	if (t == 0)	/* must process it now */
1197 	    ready_event( q );
1198 	else
1199 	    heap_insert(&ready_heap, curr_time + t , q );
1200     } else {
1201 	/*
1202 	 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1203 	 * set S to the virtual time V for the controlling pipe, and update
1204 	 * the sum of weights for the pipe; otherwise, remove flow from
1205 	 * idle_heap and set S to max(F,V).
1206 	 * Second, compute finish time F = S + len/weight.
1207 	 * Third, if pipe was idle, update V=max(S, V).
1208 	 * Fourth, count one more backlogged flow.
1209 	 */
1210 	if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1211 	    q->S = pipe->V ;
1212 	    pipe->sum += fs->weight ; /* add weight of new queue */
1213 	} else {
1214 	    heap_extract(&(pipe->idle_heap), q);
1215 	    q->S = MAX64(q->F, pipe->V ) ;
1216 	}
1217 	q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1218 
1219 	if (pipe->not_eligible_heap.elements == 0 &&
1220 		pipe->scheduler_heap.elements == 0)
1221 	    pipe->V = MAX64 ( q->S, pipe->V );
1222 	fs->backlogged++ ;
1223 	/*
1224 	 * Look at eligibility. A flow is not eligibile if S>V (when
1225 	 * this happens, it means that there is some other flow already
1226 	 * scheduled for the same pipe, so the scheduler_heap cannot be
1227 	 * empty). If the flow is not eligible we just store it in the
1228 	 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1229 	 * and possibly invoke ready_event_wfq() right now if there is
1230 	 * leftover credit.
1231 	 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1232 	 * and for all flows in not_eligible_heap (NEH), S_i > V .
1233 	 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1234 	 * we only need to look into NEH.
1235 	 */
1236 	if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1237 	    if (pipe->scheduler_heap.elements == 0)
1238 		printf("++ ouch! not eligible but empty scheduler!\n");
1239 	    heap_insert(&(pipe->not_eligible_heap), q->S, q);
1240 	} else {
1241 	    heap_insert(&(pipe->scheduler_heap), q->F, q);
1242 	    if (pipe->numbytes >= 0) { /* pipe is idle */
1243 		if (pipe->scheduler_heap.elements != 1)
1244 		    printf("*** OUCH! pipe should have been idle!\n");
1245 		DEB(printf("Waking up pipe %d at %d\n",
1246 			pipe->pipe_nr, (int)(q->F >> MY_M)); )
1247 		pipe->sched_time = curr_time ;
1248 		ready_event_wfq(pipe);
1249 	    }
1250 	}
1251     }
1252 done:
1253     splx(s);
1254     return 0;
1255 
1256 dropit:
1257     splx(s);
1258     if (q)
1259 	q->drops++ ;
1260     m_freem(m);
1261     return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1262 }
1263 
1264 /*
1265  * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1266  * Doing this would probably save us the initial bzero of dn_pkt
1267  */
1268 #define DN_FREE_PKT(pkt)	{		\
1269 	struct dn_pkt *n = pkt ;		\
1270 	rt_unref ( n->ro.ro_rt ) ;		\
1271 	m_freem(n->dn_m);			\
1272 	pkt = DN_NEXT(n) ;			\
1273 	free(n, M_DUMMYNET) ;	}
1274 
1275 /*
1276  * Dispose all packets and flow_queues on a flow_set.
1277  * If all=1, also remove red lookup table and other storage,
1278  * including the descriptor itself.
1279  * For the one in dn_pipe MUST also cleanup ready_heap...
1280  */
1281 static void
1282 purge_flow_set(struct dn_flow_set *fs, int all)
1283 {
1284     struct dn_pkt *pkt ;
1285     struct dn_flow_queue *q, *qn ;
1286     int i ;
1287 
1288     for (i = 0 ; i <= fs->rq_size ; i++ ) {
1289 	for (q = fs->rq[i] ; q ; q = qn ) {
1290 	    for (pkt = q->head ; pkt ; )
1291 		DN_FREE_PKT(pkt) ;
1292 	    qn = q->next ;
1293 	    free(q, M_DUMMYNET);
1294 	}
1295 	fs->rq[i] = NULL ;
1296     }
1297     fs->rq_elements = 0 ;
1298     if (all) {
1299 	/* RED - free lookup table */
1300 	if (fs->w_q_lookup)
1301 	    free(fs->w_q_lookup, M_DUMMYNET);
1302 	if (fs->rq)
1303 	    free(fs->rq, M_DUMMYNET);
1304 	/* if this fs is not part of a pipe, free it */
1305 	if (fs->pipe && fs != &(fs->pipe->fs) )
1306 	    free(fs, M_DUMMYNET);
1307     }
1308 }
1309 
1310 /*
1311  * Dispose all packets queued on a pipe (not a flow_set).
1312  * Also free all resources associated to a pipe, which is about
1313  * to be deleted.
1314  */
1315 static void
1316 purge_pipe(struct dn_pipe *pipe)
1317 {
1318     struct dn_pkt *pkt ;
1319 
1320     purge_flow_set( &(pipe->fs), 1 );
1321 
1322     for (pkt = pipe->head ; pkt ; )
1323 	DN_FREE_PKT(pkt) ;
1324 
1325     heap_free( &(pipe->scheduler_heap) );
1326     heap_free( &(pipe->not_eligible_heap) );
1327     heap_free( &(pipe->idle_heap) );
1328 }
1329 
1330 /*
1331  * Delete all pipes and heaps returning memory. Must also
1332  * remove references from all ipfw rules to all pipes.
1333  */
1334 static void
1335 dummynet_flush()
1336 {
1337     struct dn_pipe *curr_p, *p ;
1338     struct dn_flow_set *fs, *curr_fs;
1339     int s ;
1340 
1341     s = splimp() ;
1342 
1343     /* remove all references to pipes ...*/
1344     flush_pipe_ptrs(NULL);
1345     /* prevent future matches... */
1346     p = all_pipes ;
1347     all_pipes = NULL ;
1348     fs = all_flow_sets ;
1349     all_flow_sets = NULL ;
1350     /* and free heaps so we don't have unwanted events */
1351     heap_free(&ready_heap);
1352     heap_free(&wfq_ready_heap);
1353     heap_free(&extract_heap);
1354     splx(s) ;
1355     /*
1356      * Now purge all queued pkts and delete all pipes
1357      */
1358     /* scan and purge all flow_sets. */
1359     for ( ; fs ; ) {
1360 	curr_fs = fs ;
1361 	fs = fs->next ;
1362 	purge_flow_set(curr_fs, 1);
1363     }
1364     for ( ; p ; ) {
1365 	purge_pipe(p);
1366 	curr_p = p ;
1367 	p = p->next ;
1368 	free(curr_p, M_DUMMYNET);
1369     }
1370 }
1371 
1372 
1373 extern struct ip_fw *ip_fw_default_rule ;
1374 static void
1375 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
1376 {
1377     int i ;
1378     struct dn_flow_queue *q ;
1379     struct dn_pkt *pkt ;
1380 
1381     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1382 	for (q = fs->rq[i] ; q ; q = q->next )
1383 	    for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
1384 		if (pkt->rule == r)
1385 		    pkt->rule = ip_fw_default_rule ;
1386 }
1387 /*
1388  * when a firewall rule is deleted, scan all queues and remove the flow-id
1389  * from packets matching this rule.
1390  */
1391 void
1392 dn_rule_delete(void *r)
1393 {
1394     struct dn_pipe *p ;
1395     struct dn_pkt *pkt ;
1396     struct dn_flow_set *fs ;
1397 
1398     /*
1399      * If the rule references a queue (dn_flow_set), then scan
1400      * the flow set, otherwise scan pipes. Should do either, but doing
1401      * both does not harm.
1402      */
1403     for ( fs = all_flow_sets ; fs ; fs = fs->next )
1404 	dn_rule_delete_fs(fs, r);
1405     for ( p = all_pipes ; p ; p = p->next ) {
1406 	fs = &(p->fs) ;
1407 	dn_rule_delete_fs(fs, r);
1408 	for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
1409 	    if (pkt->rule == r)
1410 		pkt->rule = ip_fw_default_rule ;
1411     }
1412 }
1413 
1414 /*
1415  * setup RED parameters
1416  */
1417 static int
1418 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1419 {
1420     int i;
1421 
1422     x->w_q = p->w_q;
1423     x->min_th = SCALE(p->min_th);
1424     x->max_th = SCALE(p->max_th);
1425     x->max_p = p->max_p;
1426 
1427     x->c_1 = p->max_p / (p->max_th - p->min_th);
1428     x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1429     if (x->flags_fs & DN_IS_GENTLE_RED) {
1430 	x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1431 	x->c_4 = (SCALE(1) - 2 * p->max_p);
1432     }
1433 
1434     /* if the lookup table already exist, free and create it again */
1435     if (x->w_q_lookup) {
1436 	free(x->w_q_lookup, M_DUMMYNET);
1437 	x->w_q_lookup = NULL ;
1438     }
1439     if (red_lookup_depth == 0) {
1440 	printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0");
1441 	free(x, M_DUMMYNET);
1442 	return EINVAL;
1443     }
1444     x->lookup_depth = red_lookup_depth;
1445     x->w_q_lookup = (u_int *) malloc(x->lookup_depth * sizeof(int),
1446 	    M_DUMMYNET, M_NOWAIT);
1447     if (x->w_q_lookup == NULL) {
1448 	printf("sorry, cannot allocate red lookup table\n");
1449 	free(x, M_DUMMYNET);
1450 	return ENOSPC;
1451     }
1452 
1453     /* fill the lookup table with (1 - w_q)^x */
1454     x->lookup_step = p->lookup_step ;
1455     x->lookup_weight = p->lookup_weight ;
1456     x->w_q_lookup[0] = SCALE(1) - x->w_q;
1457     for (i = 1; i < x->lookup_depth; i++)
1458 	x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1459     if (red_avg_pkt_size < 1)
1460 	red_avg_pkt_size = 512 ;
1461     x->avg_pkt_size = red_avg_pkt_size ;
1462     if (red_max_pkt_size < 1)
1463 	red_max_pkt_size = 1500 ;
1464     x->max_pkt_size = red_max_pkt_size ;
1465     return 0 ;
1466 }
1467 
1468 static int
1469 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1470 {
1471     if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
1472 	int l = pfs->rq_size;
1473 
1474 	if (l == 0)
1475 	    l = dn_hash_size;
1476 	if (l < 4)
1477 	    l = 4;
1478 	else if (l > DN_MAX_HASH_SIZE)
1479 	    l = DN_MAX_HASH_SIZE;
1480 	x->rq_size = l;
1481     } else                  /* one is enough for null mask */
1482 	x->rq_size = 1;
1483     x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
1484 	    M_DUMMYNET, M_NOWAIT | M_ZERO);
1485     if (x->rq == NULL) {
1486 	printf("sorry, cannot allocate queue\n");
1487 	return ENOSPC;
1488     }
1489     x->rq_elements = 0;
1490     return 0 ;
1491 }
1492 
1493 static void
1494 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1495 {
1496     x->flags_fs = src->flags_fs;
1497     x->qsize = src->qsize;
1498     x->plr = src->plr;
1499     x->flow_mask = src->flow_mask;
1500     if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1501 	if (x->qsize > 1024*1024)
1502 	    x->qsize = 1024*1024 ;
1503     } else {
1504 	if (x->qsize == 0)
1505 	    x->qsize = 50 ;
1506 	if (x->qsize > 100)
1507 	    x->qsize = 50 ;
1508     }
1509     /* configuring RED */
1510     if ( x->flags_fs & DN_IS_RED )
1511 	config_red(src, x) ;    /* XXX should check errors */
1512 }
1513 
1514 /*
1515  * setup pipe or queue parameters.
1516  */
1517 
1518 static int
1519 config_pipe(struct dn_pipe *p)
1520 {
1521     int i, s;
1522     struct dn_flow_set *pfs = &(p->fs);
1523     struct dn_flow_queue *q;
1524 
1525     /*
1526      * The config program passes parameters as follows:
1527      * bw = bits/second (0 means no limits),
1528      * delay = ms, must be translated into ticks.
1529      * qsize = slots/bytes
1530      */
1531     p->delay = ( p->delay * hz ) / 1000 ;
1532     /* We need either a pipe number or a flow_set number */
1533     if (p->pipe_nr == 0 && pfs->fs_nr == 0)
1534 	return EINVAL ;
1535     if (p->pipe_nr != 0 && pfs->fs_nr != 0)
1536 	return EINVAL ;
1537     if (p->pipe_nr != 0) { /* this is a pipe */
1538 	struct dn_pipe *x, *a, *b;
1539 	/* locate pipe */
1540 	for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1541 		 a = b , b = b->next) ;
1542 
1543 	if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
1544 	    x = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_NOWAIT | M_ZERO);
1545 	    if (x == NULL) {
1546 		printf("ip_dummynet.c: no memory for new pipe\n");
1547 		return ENOSPC;
1548 	    }
1549 	    x->pipe_nr = p->pipe_nr;
1550 	    x->fs.pipe = x ;
1551 	    /* idle_heap is the only one from which we extract from the middle.
1552 	     */
1553 	    x->idle_heap.size = x->idle_heap.elements = 0 ;
1554 	    x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
1555 	} else {
1556 	    x = b;
1557 	    s = splimp();
1558 	    /* Flush accumulated credit for all queues */
1559 	    for (i = 0; i <= x->fs.rq_size; i++)
1560 		for (q = x->fs.rq[i]; q; q = q->next)
1561 		    q->numbytes = 0;
1562 	    splx(s);
1563 	}
1564 
1565 	s = splimp();
1566 	x->bandwidth = p->bandwidth ;
1567 	x->numbytes = 0; /* just in case... */
1568 	bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
1569 	x->ifp = NULL ; /* reset interface ptr */
1570 	x->delay = p->delay ;
1571 	set_fs_parms(&(x->fs), pfs);
1572 
1573 
1574 	if ( x->fs.rq == NULL ) { /* a new pipe */
1575 	    s = alloc_hash(&(x->fs), pfs) ;
1576 	    if (s) {
1577 		free(x, M_DUMMYNET);
1578 		return s ;
1579 	    }
1580 	    x->next = b ;
1581 	    if (a == NULL)
1582 		all_pipes = x ;
1583 	    else
1584 		a->next = x ;
1585 	}
1586 	splx(s);
1587     } else { /* config queue */
1588 	struct dn_flow_set *x, *a, *b ;
1589 
1590 	/* locate flow_set */
1591 	for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
1592 		 a = b , b = b->next) ;
1593 
1594 	if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
1595 	    if (pfs->parent_nr == 0)	/* need link to a pipe */
1596 		return EINVAL ;
1597 	    x = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, M_NOWAIT|M_ZERO);
1598 	    if (x == NULL) {
1599 		printf("ip_dummynet.c: no memory for new flow_set\n");
1600 		return ENOSPC;
1601 	    }
1602 	    x->fs_nr = pfs->fs_nr;
1603 	    x->parent_nr = pfs->parent_nr;
1604 	    x->weight = pfs->weight ;
1605 	    if (x->weight == 0)
1606 		x->weight = 1 ;
1607 	    else if (x->weight > 100)
1608 		x->weight = 100 ;
1609 	} else {
1610 	    /* Change parent pipe not allowed; must delete and recreate */
1611 	    if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
1612 		return EINVAL ;
1613 	    x = b;
1614 	}
1615 	s = splimp();
1616 	set_fs_parms(x, pfs);
1617 
1618 	if ( x->rq == NULL ) { /* a new flow_set */
1619 	    s = alloc_hash(x, pfs) ;
1620 	    if (s) {
1621 		free(x, M_DUMMYNET);
1622 		return s ;
1623 	    }
1624 	    x->next = b;
1625 	    if (a == NULL)
1626 		all_flow_sets = x;
1627 	    else
1628 		a->next = x;
1629 	}
1630 	splx(s);
1631     }
1632     return 0 ;
1633 }
1634 
1635 /*
1636  * Helper function to remove from a heap queues which are linked to
1637  * a flow_set about to be deleted.
1638  */
1639 static void
1640 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1641 {
1642     int i = 0, found = 0 ;
1643     for (; i < h->elements ;)
1644 	if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1645 	    h->elements-- ;
1646 	    h->p[i] = h->p[h->elements] ;
1647 	    found++ ;
1648 	} else
1649 	    i++ ;
1650     if (found)
1651 	heapify(h);
1652 }
1653 
1654 /*
1655  * helper function to remove a pipe from a heap (can be there at most once)
1656  */
1657 static void
1658 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1659 {
1660     if (h->elements > 0) {
1661 	int i = 0 ;
1662 	for (i=0; i < h->elements ; i++ ) {
1663 	    if (h->p[i].object == p) { /* found it */
1664 		h->elements-- ;
1665 		h->p[i] = h->p[h->elements] ;
1666 		heapify(h);
1667 		break ;
1668 	    }
1669 	}
1670     }
1671 }
1672 
1673 /*
1674  * drain all queues. Called in case of severe mbuf shortage.
1675  */
1676 void
1677 dummynet_drain()
1678 {
1679     struct dn_flow_set *fs;
1680     struct dn_pipe *p;
1681     struct dn_pkt *pkt;
1682 
1683     heap_free(&ready_heap);
1684     heap_free(&wfq_ready_heap);
1685     heap_free(&extract_heap);
1686     /* remove all references to this pipe from flow_sets */
1687     for (fs = all_flow_sets; fs; fs= fs->next )
1688 	purge_flow_set(fs, 0);
1689 
1690     for (p = all_pipes; p; p= p->next ) {
1691 	purge_flow_set(&(p->fs), 0);
1692 	for (pkt = p->head ; pkt ; )
1693 	    DN_FREE_PKT(pkt) ;
1694 	p->head = p->tail = NULL ;
1695     }
1696 }
1697 
1698 /*
1699  * Fully delete a pipe or a queue, cleaning up associated info.
1700  */
1701 static int
1702 delete_pipe(struct dn_pipe *p)
1703 {
1704     int s ;
1705 
1706     if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
1707 	return EINVAL ;
1708     if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
1709 	return EINVAL ;
1710     if (p->pipe_nr != 0) { /* this is an old-style pipe */
1711 	struct dn_pipe *a, *b;
1712 	struct dn_flow_set *fs;
1713 
1714 	/* locate pipe */
1715 	for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1716 		 a = b , b = b->next) ;
1717 	if (b == NULL || (b->pipe_nr != p->pipe_nr) )
1718 	    return EINVAL ; /* not found */
1719 
1720 	s = splimp() ;
1721 
1722 	/* unlink from list of pipes */
1723 	if (a == NULL)
1724 	    all_pipes = b->next ;
1725 	else
1726 	    a->next = b->next ;
1727 	/* remove references to this pipe from the ip_fw rules. */
1728 	flush_pipe_ptrs(&(b->fs));
1729 
1730 	/* remove all references to this pipe from flow_sets */
1731 	for (fs = all_flow_sets; fs; fs= fs->next )
1732 	    if (fs->pipe == b) {
1733 		printf("++ ref to pipe %d from fs %d\n",
1734 			p->pipe_nr, fs->fs_nr);
1735 		fs->pipe = NULL ;
1736 		purge_flow_set(fs, 0);
1737 	    }
1738 	fs_remove_from_heap(&ready_heap, &(b->fs));
1739 	purge_pipe(b);	/* remove all data associated to this pipe */
1740 	/* remove reference to here from extract_heap and wfq_ready_heap */
1741 	pipe_remove_from_heap(&extract_heap, b);
1742 	pipe_remove_from_heap(&wfq_ready_heap, b);
1743 	splx(s);
1744 	free(b, M_DUMMYNET);
1745     } else { /* this is a WF2Q queue (dn_flow_set) */
1746 	struct dn_flow_set *a, *b;
1747 
1748 	/* locate set */
1749 	for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
1750 		 a = b , b = b->next) ;
1751 	if (b == NULL || (b->fs_nr != p->fs.fs_nr) )
1752 	    return EINVAL ; /* not found */
1753 
1754 	s = splimp() ;
1755 	if (a == NULL)
1756 	    all_flow_sets = b->next ;
1757 	else
1758 	    a->next = b->next ;
1759 	/* remove references to this flow_set from the ip_fw rules. */
1760 	flush_pipe_ptrs(b);
1761 
1762 	if (b->pipe != NULL) {
1763 	    /* Update total weight on parent pipe and cleanup parent heaps */
1764 	    b->pipe->sum -= b->weight * b->backlogged ;
1765 	    fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
1766 	    fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
1767 #if 1	/* XXX should i remove from idle_heap as well ? */
1768 	    fs_remove_from_heap(&(b->pipe->idle_heap), b);
1769 #endif
1770 	}
1771 	purge_flow_set(b, 1);
1772 	splx(s);
1773     }
1774     return 0 ;
1775 }
1776 
1777 /*
1778  * helper function used to copy data from kernel in DUMMYNET_GET
1779  */
1780 static char *
1781 dn_copy_set(struct dn_flow_set *set, char *bp)
1782 {
1783     int i, copied = 0 ;
1784     struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
1785 
1786     for (i = 0 ; i <= set->rq_size ; i++)
1787 	for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
1788 	    if (q->hash_slot != i)
1789 		printf("++ at %d: wrong slot (have %d, "
1790 		    "should be %d)\n", copied, q->hash_slot, i);
1791 	    if (q->fs != set)
1792 		printf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
1793 			i, q->fs, set);
1794 	    copied++ ;
1795 	    bcopy(q, qp, sizeof( *q ) );
1796 	    /* cleanup pointers */
1797 	    qp->next = NULL ;
1798 	    qp->head = qp->tail = NULL ;
1799 	    qp->fs = NULL ;
1800 	}
1801     if (copied != set->rq_elements)
1802 	printf("++ wrong count, have %d should be %d\n",
1803 	    copied, set->rq_elements);
1804     return (char *)qp ;
1805 }
1806 
1807 static int
1808 dummynet_get(struct sockopt *sopt)
1809 {
1810     char *buf, *bp ; /* bp is the "copy-pointer" */
1811     size_t size ;
1812     struct dn_flow_set *set ;
1813     struct dn_pipe *p ;
1814     int s, error=0 ;
1815 
1816     s = splimp();
1817     /*
1818      * compute size of data structures: list of pipes and flow_sets.
1819      */
1820     for (p = all_pipes, size = 0 ; p ; p = p->next )
1821 	size += sizeof( *p ) +
1822 	    p->fs.rq_elements * sizeof(struct dn_flow_queue);
1823     for (set = all_flow_sets ; set ; set = set->next )
1824 	size += sizeof ( *set ) +
1825 	    set->rq_elements * sizeof(struct dn_flow_queue);
1826     buf = malloc(size, M_TEMP, M_NOWAIT);
1827     if (buf == 0) {
1828 	splx(s);
1829 	return ENOBUFS ;
1830     }
1831     for (p = all_pipes, bp = buf ; p ; p = p->next ) {
1832 	struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
1833 
1834 	/*
1835 	 * copy pipe descriptor into *bp, convert delay back to ms,
1836 	 * then copy the flow_set descriptor(s) one at a time.
1837 	 * After each flow_set, copy the queue descriptor it owns.
1838 	 */
1839 	bcopy(p, bp, sizeof( *p ) );
1840 	pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
1841 	/*
1842 	 * XXX the following is a hack based on ->next being the
1843 	 * first field in dn_pipe and dn_flow_set. The correct
1844 	 * solution would be to move the dn_flow_set to the beginning
1845 	 * of struct dn_pipe.
1846 	 */
1847 	pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
1848 	/* clean pointers */
1849 	pipe_bp->head = pipe_bp->tail = NULL ;
1850 	pipe_bp->fs.next = NULL ;
1851 	pipe_bp->fs.pipe = NULL ;
1852 	pipe_bp->fs.rq = NULL ;
1853 
1854 	bp += sizeof( *p ) ;
1855 	bp = dn_copy_set( &(p->fs), bp );
1856     }
1857     for (set = all_flow_sets ; set ; set = set->next ) {
1858 	struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
1859 	bcopy(set, bp, sizeof( *set ) );
1860 	/* XXX same hack as above */
1861 	fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
1862 	fs_bp->pipe = NULL ;
1863 	fs_bp->rq = NULL ;
1864 	bp += sizeof( *set ) ;
1865 	bp = dn_copy_set( set, bp );
1866     }
1867     splx(s);
1868     error = sooptcopyout(sopt, buf, size);
1869     free(buf, M_TEMP);
1870     return error ;
1871 }
1872 
1873 /*
1874  * Handler for the various dummynet socket options (get, flush, config, del)
1875  */
1876 static int
1877 ip_dn_ctl(struct sockopt *sopt)
1878 {
1879     int error = 0 ;
1880     struct dn_pipe *p, tmp_pipe;
1881 
1882     /* Disallow sets in really-really secure mode. */
1883     if (sopt->sopt_dir == SOPT_SET) {
1884 #if __FreeBSD_version >= 500034
1885 	error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
1886 	if (error)
1887 	    return (error);
1888 #else
1889 	if (securelevel >= 3)
1890 	    return (EPERM);
1891 #endif
1892     }
1893 
1894     switch (sopt->sopt_name) {
1895     default :
1896 	printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name);
1897 	return EINVAL ;
1898 
1899     case IP_DUMMYNET_GET :
1900 	error = dummynet_get(sopt);
1901 	break ;
1902 
1903     case IP_DUMMYNET_FLUSH :
1904 	dummynet_flush() ;
1905 	break ;
1906 
1907     case IP_DUMMYNET_CONFIGURE :
1908 	p = &tmp_pipe ;
1909 	error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
1910 	if (error)
1911 	    break ;
1912 	error = config_pipe(p);
1913 	break ;
1914 
1915     case IP_DUMMYNET_DEL :	/* remove a pipe or queue */
1916 	p = &tmp_pipe ;
1917 	error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
1918 	if (error)
1919 	    break ;
1920 
1921 	error = delete_pipe(p);
1922 	break ;
1923     }
1924     return error ;
1925 }
1926 
1927 static void
1928 ip_dn_init(void)
1929 {
1930     printf("DUMMYNET initialized (011031)\n");
1931     all_pipes = NULL ;
1932     all_flow_sets = NULL ;
1933     ready_heap.size = ready_heap.elements = 0 ;
1934     ready_heap.offset = 0 ;
1935 
1936     wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
1937     wfq_ready_heap.offset = 0 ;
1938 
1939     extract_heap.size = extract_heap.elements = 0 ;
1940     extract_heap.offset = 0 ;
1941     ip_dn_ctl_ptr = ip_dn_ctl;
1942     ip_dn_io_ptr = dummynet_io;
1943     ip_dn_ruledel_ptr = dn_rule_delete;
1944     bzero(&dn_timeout, sizeof(struct callout_handle));
1945     dn_timeout = timeout(dummynet, NULL, 1);
1946 }
1947 
1948 static int
1949 dummynet_modevent(module_t mod, int type, void *data)
1950 {
1951 	int s;
1952 	switch (type) {
1953 	case MOD_LOAD:
1954 		s = splimp();
1955 		if (DUMMYNET_LOADED) {
1956 		    splx(s);
1957 		    printf("DUMMYNET already loaded\n");
1958 		    return EEXIST ;
1959 		}
1960 		ip_dn_init();
1961 		splx(s);
1962 		break;
1963 
1964 	case MOD_UNLOAD:
1965 #if !defined(KLD_MODULE)
1966 		printf("dummynet statically compiled, cannot unload\n");
1967 		return EINVAL ;
1968 #else
1969 		s = splimp();
1970 		untimeout(dummynet, NULL, dn_timeout);
1971 		dummynet_flush();
1972 		ip_dn_ctl_ptr = NULL;
1973 		ip_dn_io_ptr = NULL;
1974 		ip_dn_ruledel_ptr = NULL;
1975 		splx(s);
1976 #endif
1977 		break ;
1978 	default:
1979 		break ;
1980 	}
1981 	return 0 ;
1982 }
1983 
1984 static moduledata_t dummynet_mod = {
1985 	"dummynet",
1986 	dummynet_modevent,
1987 	NULL
1988 };
1989 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
1990 MODULE_DEPEND(dummynet, ipfw, 1, 1, 1);
1991 MODULE_VERSION(dummynet, 1);
1992