xref: /dragonfly/sys/net/dummynet/ip_dummynet.c (revision 5de36205)
1 /*
2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3  * Portions Copyright (c) 2000 Akamba Corp.
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.22 2003/05/13 09:31:06 maxim Exp $
28  * $DragonFly: src/sys/net/dummynet/ip_dummynet.c,v 1.13 2005/06/03 18:20:36 swildner Exp $
29  */
30 
31 #if !defined(KLD_MODULE)
32 #include "opt_ipfw.h"	/* for IPFW2 definition */
33 #endif
34 
35 #define DEB(x)
36 #define DDB(x)	x
37 
38 /*
39  * This module implements IP dummynet, a bandwidth limiter/delay emulator
40  * used in conjunction with the ipfw package.
41  * Description of the data structures used is in ip_dummynet.h
42  * Here you mainly find the following blocks of code:
43  *  + variable declarations;
44  *  + heap management functions;
45  *  + scheduler and dummynet functions;
46  *  + configuration and initialization.
47  *
48  * NOTA BENE: critical sections are protected by splimp()/splx()
49  *    pairs. One would think that splnet() is enough as for most of
50  *    the netinet code, but it is not so because when used with
51  *    bridging, dummynet is invoked at splimp().
52  *
53  * Most important Changes:
54  *
55  * 011004: KLDable
56  * 010124: Fixed WF2Q behaviour
57  * 010122: Fixed spl protection.
58  * 000601: WF2Q support
59  * 000106: large rewrite, use heaps to handle very many pipes.
60  * 980513:	initial release
61  *
62  * include files marked with XXX are probably not needed
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/kernel.h>
70 #include <sys/module.h>
71 #include <sys/proc.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/time.h>
75 #include <sys/sysctl.h>
76 #include <sys/thread2.h>
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <net/ipfw/ip_fw.h>
84 #include "ip_dummynet.h"
85 #include <netinet/ip_var.h>
86 
87 #include <netinet/if_ether.h> /* for struct arpcom */
88 #include <net/bridge/bridge.h>
89 
90 /*
91  * We keep a private variable for the simulation time, but we could
92  * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
93  */
94 static dn_key curr_time = 0 ; /* current simulation time */
95 
96 static int dn_hash_size = 64 ;	/* default hash size */
97 
98 /* statistics on number of queue searches and search steps */
99 static int searches, search_steps ;
100 static int pipe_expire = 1 ;   /* expire queue if empty */
101 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
102 
103 static int red_lookup_depth = 256;	/* RED - default lookup table depth */
104 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
105 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
106 
107 /*
108  * Three heaps contain queues and pipes that the scheduler handles:
109  *
110  * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
111  *
112  * wfq_ready_heap contains the pipes associated with WF2Q flows
113  *
114  * extract_heap contains pipes associated with delay lines.
115  *
116  */
117 
118 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
119 
120 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
121 
122 static int heap_init(struct dn_heap *h, int size) ;
123 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
124 static void heap_extract(struct dn_heap *h, void *obj);
125 
126 static void transmit_event(struct dn_pipe *pipe);
127 static void ready_event(struct dn_flow_queue *q);
128 
129 static struct dn_pipe *all_pipes = NULL ;	/* list of all pipes */
130 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
131 
132 static struct callout dn_timeout;
133 
134 #ifdef SYSCTL_NODE
135 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
136 		CTLFLAG_RW, 0, "Dummynet");
137 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
138 	    CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
139 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
140 	    CTLFLAG_RD, &curr_time, 0, "Current tick");
141 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
142 	    CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
143 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
144 	    CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
145 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
146 	    CTLFLAG_RD, &searches, 0, "Number of queue searches");
147 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
148 	    CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
149 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
150 	    CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
151 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
152 	    CTLFLAG_RW, &dn_max_ratio, 0,
153 	"Max ratio between dynamic queues and buckets");
154 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
155 	CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
156 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
157 	CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
158 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
159 	CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
160 #endif
161 
162 static int config_pipe(struct dn_pipe *p);
163 static int ip_dn_ctl(struct sockopt *sopt);
164 
165 static void rt_unref(struct rtentry *);
166 static void dummynet(void *);
167 static void dummynet_flush(void);
168 void dummynet_drain(void);
169 static ip_dn_io_t dummynet_io;
170 static void dn_rule_delete(void *);
171 
172 int if_tx_rdy(struct ifnet *ifp);
173 
174 static void
175 rt_unref(struct rtentry *rt)
176 {
177     if (rt == NULL)
178 	return ;
179     if (rt->rt_refcnt <= 0)
180 	printf("-- warning, refcnt now %ld, decreasing\n", rt->rt_refcnt);
181     RTFREE(rt);
182 }
183 
184 /*
185  * Heap management functions.
186  *
187  * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
188  * Some macros help finding parent/children so we can optimize them.
189  *
190  * heap_init() is called to expand the heap when needed.
191  * Increment size in blocks of 16 entries.
192  * XXX failure to allocate a new element is a pretty bad failure
193  * as we basically stall a whole queue forever!!
194  * Returns 1 on error, 0 on success
195  */
196 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
197 #define HEAP_LEFT(x) ( 2*(x) + 1 )
198 #define HEAP_IS_LEFT(x) ( (x) & 1 )
199 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
200 #define	HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
201 #define HEAP_INCREMENT	15
202 
203 static int
204 heap_init(struct dn_heap *h, int new_size)
205 {
206     struct dn_heap_entry *p;
207 
208     if (h->size >= new_size ) {
209 	printf("heap_init, Bogus call, have %d want %d\n",
210 		h->size, new_size);
211 	return 0 ;
212     }
213     new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
214     p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_WAITOK | M_ZERO);
215     if (h->size > 0) {
216 	bcopy(h->p, p, h->size * sizeof(*p) );
217 	free(h->p, M_DUMMYNET);
218     }
219     h->p = p ;
220     h->size = new_size ;
221     return 0 ;
222 }
223 
224 /*
225  * Insert element in heap. Normally, p != NULL, we insert p in
226  * a new position and bubble up. If p == NULL, then the element is
227  * already in place, and key is the position where to start the
228  * bubble-up.
229  * Returns 1 on failure (cannot allocate new heap entry)
230  *
231  * If offset > 0 the position (index, int) of the element in the heap is
232  * also stored in the element itself at the given offset in bytes.
233  */
234 #define SET_OFFSET(heap, node) \
235     if (heap->offset > 0) \
236 	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
237 /*
238  * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
239  */
240 #define RESET_OFFSET(heap, node) \
241     if (heap->offset > 0) \
242 	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
243 static int
244 heap_insert(struct dn_heap *h, dn_key key1, void *p)
245 {
246     int son = h->elements ;
247 
248     if (p == NULL)	/* data already there, set starting point */
249 	son = key1 ;
250     else {		/* insert new element at the end, possibly resize */
251 	son = h->elements ;
252 	if (son == h->size) /* need resize... */
253 	    if (heap_init(h, h->elements+1) )
254 		return 1 ; /* failure... */
255 	h->p[son].object = p ;
256 	h->p[son].key = key1 ;
257 	h->elements++ ;
258     }
259     while (son > 0) {				/* bubble up */
260 	int father = HEAP_FATHER(son) ;
261 	struct dn_heap_entry tmp  ;
262 
263 	if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
264 	    break ; /* found right position */
265 	/* son smaller than father, swap and repeat */
266 	HEAP_SWAP(h->p[son], h->p[father], tmp) ;
267 	SET_OFFSET(h, son);
268 	son = father ;
269     }
270     SET_OFFSET(h, son);
271     return 0 ;
272 }
273 
274 /*
275  * remove top element from heap, or obj if obj != NULL
276  */
277 static void
278 heap_extract(struct dn_heap *h, void *obj)
279 {
280     int child, father, max = h->elements - 1 ;
281 
282     if (max < 0) {
283 	printf("warning, extract from empty heap 0x%p\n", h);
284 	return ;
285     }
286     father = 0 ; /* default: move up smallest child */
287     if (obj != NULL) { /* extract specific element, index is at offset */
288 	if (h->offset <= 0)
289 	    panic("*** heap_extract from middle not supported on this heap!!!\n");
290 	father = *((int *)((char *)obj + h->offset)) ;
291 	if (father < 0 || father >= h->elements) {
292 	    printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
293 		father, h->elements);
294 	    panic("heap_extract");
295 	}
296     }
297     RESET_OFFSET(h, father);
298     child = HEAP_LEFT(father) ;		/* left child */
299     while (child <= max) {		/* valid entry */
300 	if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
301 	    child = child+1 ;		/* take right child, otherwise left */
302 	h->p[father] = h->p[child] ;
303 	SET_OFFSET(h, father);
304 	father = child ;
305 	child = HEAP_LEFT(child) ;   /* left child for next loop */
306     }
307     h->elements-- ;
308     if (father != max) {
309 	/*
310 	 * Fill hole with last entry and bubble up, reusing the insert code
311 	 */
312 	h->p[father] = h->p[max] ;
313 	heap_insert(h, father, NULL); /* this one cannot fail */
314     }
315 }
316 
317 #if 0
318 /*
319  * change object position and update references
320  * XXX this one is never used!
321  */
322 static void
323 heap_move(struct dn_heap *h, dn_key new_key, void *object)
324 {
325     int temp;
326     int i ;
327     int max = h->elements-1 ;
328     struct dn_heap_entry buf ;
329 
330     if (h->offset <= 0)
331 	panic("cannot move items on this heap");
332 
333     i = *((int *)((char *)object + h->offset));
334     if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
335 	h->p[i].key = new_key ;
336 	for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
337 		 i = temp ) { /* bubble up */
338 	    HEAP_SWAP(h->p[i], h->p[temp], buf) ;
339 	    SET_OFFSET(h, i);
340 	}
341     } else {		/* must move down */
342 	h->p[i].key = new_key ;
343 	while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
344 	    if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
345 		temp++ ; /* select child with min key */
346 	    if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
347 		HEAP_SWAP(h->p[i], h->p[temp], buf) ;
348 		SET_OFFSET(h, i);
349 	    } else
350 		break ;
351 	    i = temp ;
352 	}
353     }
354     SET_OFFSET(h, i);
355 }
356 #endif /* heap_move, unused */
357 
358 /*
359  * heapify() will reorganize data inside an array to maintain the
360  * heap property. It is needed when we delete a bunch of entries.
361  */
362 static void
363 heapify(struct dn_heap *h)
364 {
365     int i ;
366 
367     for (i = 0 ; i < h->elements ; i++ )
368 	heap_insert(h, i , NULL) ;
369 }
370 
371 /*
372  * cleanup the heap and free data structure
373  */
374 static void
375 heap_free(struct dn_heap *h)
376 {
377     if (h->size >0 )
378 	free(h->p, M_DUMMYNET);
379     bzero(h, sizeof(*h) );
380 }
381 
382 /*
383  * --- end of heap management functions ---
384  */
385 
386 /*
387  * Scheduler functions:
388  *
389  * transmit_event() is called when the delay-line needs to enter
390  * the scheduler, either because of existing pkts getting ready,
391  * or new packets entering the queue. The event handled is the delivery
392  * time of the packet.
393  *
394  * ready_event() does something similar with fixed-rate queues, and the
395  * event handled is the finish time of the head pkt.
396  *
397  * wfq_ready_event() does something similar with WF2Q queues, and the
398  * event handled is the start time of the head pkt.
399  *
400  * In all cases, we make sure that the data structures are consistent
401  * before passing pkts out, because this might trigger recursive
402  * invocations of the procedures.
403  */
404 static void
405 transmit_event(struct dn_pipe *pipe)
406 {
407     struct dn_pkt *pkt ;
408 
409     while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
410 	/*
411 	 * first unlink, then call procedures, since ip_input() can invoke
412 	 * ip_output() and viceversa, thus causing nested calls
413 	 */
414 	pipe->head = DN_NEXT(pkt) ;
415 
416 	/*
417 	 * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
418 	 * (NOT A REAL one, just a small block of malloc'ed memory) with
419 	 *     m_type = MT_TAG, m_flags = PACKET_TAG_DUMMYNET
420 	 *     dn_m (m_next) = actual mbuf to be processed by ip_input/output
421 	 * and some other fields.
422 	 * The block IS FREED HERE because it contains parameters passed
423 	 * to the called routine.
424 	 */
425 	switch (pkt->dn_dir) {
426 	case DN_TO_IP_OUT:
427 	    (void)ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL, NULL);
428 	    rt_unref (pkt->ro.ro_rt) ;
429 	    break ;
430 
431 	case DN_TO_IP_IN :
432 	    ip_input((struct mbuf *)pkt) ;
433 	    break ;
434 
435 	case DN_TO_BDG_FWD :
436 	    if (!BDG_LOADED) {
437 		/* somebody unloaded the bridge module. Drop pkt */
438 		printf("-- dropping bridged packet trapped in pipe--\n");
439 		m_freem(pkt->dn_m);
440 		break;
441 	    } /* fallthrough */
442 	case DN_TO_ETH_DEMUX:
443 	    {
444 		struct mbuf *m = (struct mbuf *)pkt ;
445 		struct ether_header *eh;
446 
447 		if (pkt->dn_m->m_len < ETHER_HDR_LEN &&
448 		    (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) {
449 		    printf("dummynet/bridge: pullup fail, dropping pkt\n");
450 		    break;
451 		}
452 		/*
453 		 * same as ether_input, make eh be a pointer into the mbuf
454 		 */
455 		eh = mtod(pkt->dn_m, struct ether_header *);
456 		m_adj(pkt->dn_m, ETHER_HDR_LEN);
457 		/*
458 		 * bdg_forward() wants a pointer to the pseudo-mbuf-header, but
459 		 * on return it will supply the pointer to the actual packet
460 		 * (originally pkt->dn_m, but could be something else now) if
461 		 * it has not consumed it.
462 		 */
463 		if (pkt->dn_dir == DN_TO_BDG_FWD) {
464 		    m = bdg_forward_ptr(m, eh, pkt->ifp);
465 		    if (m)
466 			m_freem(m);
467 		} else
468 		    ether_demux(NULL, eh, m); /* which consumes the mbuf */
469 	    }
470 	    break ;
471 	case DN_TO_ETH_OUT:
472 	    ether_output_frame(pkt->ifp, (struct mbuf *)pkt);
473 	    break;
474 
475 	default:
476 	    printf("dummynet: bad switch %d!\n", pkt->dn_dir);
477 	    m_freem(pkt->dn_m);
478 	    break ;
479 	}
480 	free(pkt, M_DUMMYNET);
481     }
482     /* if there are leftover packets, put into the heap for next event */
483     if ( (pkt = pipe->head) )
484          heap_insert(&extract_heap, pkt->output_time, pipe ) ;
485     /* XXX should check errors on heap_insert, by draining the
486      * whole pipe p and hoping in the future we are more successful
487      */
488 }
489 
490 /*
491  * the following macro computes how many ticks we have to wait
492  * before being able to transmit a packet. The credit is taken from
493  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
494  */
495 #define SET_TICKS(pkt, q, p)	\
496     (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
497 	    p->bandwidth ;
498 
499 /*
500  * extract pkt from queue, compute output time (could be now)
501  * and put into delay line (p_queue)
502  */
503 static void
504 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
505 	struct dn_pipe *p, int len)
506 {
507     q->head = DN_NEXT(pkt) ;
508     q->len-- ;
509     q->len_bytes -= len ;
510 
511     pkt->output_time = curr_time + p->delay ;
512 
513     if (p->head == NULL)
514 	p->head = pkt;
515     else
516 	DN_NEXT_NC(p->tail) = (struct mbuf *)pkt;
517     p->tail = pkt;
518     DN_NEXT_NC(p->tail) = NULL;
519 }
520 
521 /*
522  * ready_event() is invoked every time the queue must enter the
523  * scheduler, either because the first packet arrives, or because
524  * a previously scheduled event fired.
525  * On invokation, drain as many pkts as possible (could be 0) and then
526  * if there are leftover packets reinsert the pkt in the scheduler.
527  */
528 static void
529 ready_event(struct dn_flow_queue *q)
530 {
531     struct dn_pkt *pkt;
532     struct dn_pipe *p = q->fs->pipe ;
533     int p_was_empty ;
534 
535     if (p == NULL) {
536 	printf("ready_event- pipe is gone\n");
537 	return ;
538     }
539     p_was_empty = (p->head == NULL) ;
540 
541     /*
542      * schedule fixed-rate queues linked to this pipe:
543      * Account for the bw accumulated since last scheduling, then
544      * drain as many pkts as allowed by q->numbytes and move to
545      * the delay line (in p) computing output time.
546      * bandwidth==0 (no limit) means we can drain the whole queue,
547      * setting len_scaled = 0 does the job.
548      */
549     q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
550     while ( (pkt = q->head) != NULL ) {
551 	int len = pkt->dn_m->m_pkthdr.len;
552 	int len_scaled = p->bandwidth ? len*8*hz : 0 ;
553 	if (len_scaled > q->numbytes )
554 	    break ;
555 	q->numbytes -= len_scaled ;
556 	move_pkt(pkt, q, p, len);
557     }
558     /*
559      * If we have more packets queued, schedule next ready event
560      * (can only occur when bandwidth != 0, otherwise we would have
561      * flushed the whole queue in the previous loop).
562      * To this purpose we record the current time and compute how many
563      * ticks to go for the finish time of the packet.
564      */
565     if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
566 	dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
567 	q->sched_time = curr_time ;
568 	heap_insert(&ready_heap, curr_time + t, (void *)q );
569 	/* XXX should check errors on heap_insert, and drain the whole
570 	 * queue on error hoping next time we are luckier.
571 	 */
572     } else {	/* RED needs to know when the queue becomes empty */
573 	q->q_time = curr_time;
574 	q->numbytes = 0;
575     }
576     /*
577      * If the delay line was empty call transmit_event(p) now.
578      * Otherwise, the scheduler will take care of it.
579      */
580     if (p_was_empty)
581 	transmit_event(p);
582 }
583 
584 /*
585  * Called when we can transmit packets on WF2Q queues. Take pkts out of
586  * the queues at their start time, and enqueue into the delay line.
587  * Packets are drained until p->numbytes < 0. As long as
588  * len_scaled >= p->numbytes, the packet goes into the delay line
589  * with a deadline p->delay. For the last packet, if p->numbytes<0,
590  * there is an additional delay.
591  */
592 static void
593 ready_event_wfq(struct dn_pipe *p)
594 {
595     int p_was_empty = (p->head == NULL) ;
596     struct dn_heap *sch = &(p->scheduler_heap);
597     struct dn_heap *neh = &(p->not_eligible_heap) ;
598 
599     if (p->if_name[0] == 0) /* tx clock is simulated */
600 	p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
601     else { /* tx clock is for real, the ifq must be empty or this is a NOP */
602 	if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
603 	    return ;
604 	else {
605 	    DEB(printf("pipe %d ready from %s --\n",
606 		p->pipe_nr, p->if_name);)
607 	}
608     }
609 
610     /*
611      * While we have backlogged traffic AND credit, we need to do
612      * something on the queue.
613      */
614     while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
615 	if (sch->elements > 0) { /* have some eligible pkts to send out */
616 	    struct dn_flow_queue *q = sch->p[0].object ;
617 	    struct dn_pkt *pkt = q->head;
618 	    struct dn_flow_set *fs = q->fs;
619 	    u_int64_t len = pkt->dn_m->m_pkthdr.len;
620 	    int len_scaled = p->bandwidth ? len*8*hz : 0 ;
621 
622 	    heap_extract(sch, NULL); /* remove queue from heap */
623 	    p->numbytes -= len_scaled ;
624 	    move_pkt(pkt, q, p, len);
625 
626 	    p->V += (len<<MY_M) / p->sum ; /* update V */
627 	    q->S = q->F ; /* update start time */
628 	    if (q->len == 0) { /* Flow not backlogged any more */
629 		fs->backlogged-- ;
630 		heap_insert(&(p->idle_heap), q->F, q);
631 	    } else { /* still backlogged */
632 		/*
633 		 * update F and position in backlogged queue, then
634 		 * put flow in not_eligible_heap (we will fix this later).
635 		 */
636 		len = (q->head)->dn_m->m_pkthdr.len;
637 		q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
638 		if (DN_KEY_LEQ(q->S, p->V))
639 		    heap_insert(neh, q->S, q);
640 		else
641 		    heap_insert(sch, q->F, q);
642 	    }
643 	}
644 	/*
645 	 * now compute V = max(V, min(S_i)). Remember that all elements in sch
646 	 * have by definition S_i <= V so if sch is not empty, V is surely
647 	 * the max and we must not update it. Conversely, if sch is empty
648 	 * we only need to look at neh.
649 	 */
650 	if (sch->elements == 0 && neh->elements > 0)
651 	    p->V = MAX64 ( p->V, neh->p[0].key );
652 	/* move from neh to sch any packets that have become eligible */
653 	while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
654 	    struct dn_flow_queue *q = neh->p[0].object ;
655 	    heap_extract(neh, NULL);
656 	    heap_insert(sch, q->F, q);
657 	}
658 
659 	if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
660 	    p->numbytes = -1 ; /* mark not ready for I/O */
661 	    break ;
662 	}
663     }
664     if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
665 	    && p->idle_heap.elements > 0) {
666 	/*
667 	 * no traffic and no events scheduled. We can get rid of idle-heap.
668 	 */
669 	int i ;
670 
671 	for (i = 0 ; i < p->idle_heap.elements ; i++) {
672 	    struct dn_flow_queue *q = p->idle_heap.p[i].object ;
673 
674 	    q->F = 0 ;
675 	    q->S = q->F + 1 ;
676 	}
677 	p->sum = 0 ;
678 	p->V = 0 ;
679 	p->idle_heap.elements = 0 ;
680     }
681     /*
682      * If we are getting clocks from dummynet (not a real interface) and
683      * If we are under credit, schedule the next ready event.
684      * Also fix the delivery time of the last packet.
685      */
686     if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
687 	dn_key t=0 ; /* number of ticks i have to wait */
688 
689 	if (p->bandwidth > 0)
690 	    t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
691 	p->tail->output_time += t ;
692 	p->sched_time = curr_time ;
693 	heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
694 	/* XXX should check errors on heap_insert, and drain the whole
695 	 * queue on error hoping next time we are luckier.
696 	 */
697     }
698     /*
699      * If the delay line was empty call transmit_event(p) now.
700      * Otherwise, the scheduler will take care of it.
701      */
702     if (p_was_empty)
703 	transmit_event(p);
704 }
705 
706 /*
707  * This is called once per tick, or HZ times per second. It is used to
708  * increment the current tick counter and schedule expired events.
709  */
710 static void
711 dummynet(void * __unused unused)
712 {
713     void *p ; /* generic parameter to handler */
714     struct dn_heap *h ;
715     struct dn_heap *heaps[3];
716     int i;
717     struct dn_pipe *pe ;
718 
719     heaps[0] = &ready_heap ;		/* fixed-rate queues */
720     heaps[1] = &wfq_ready_heap ;	/* wfq queues */
721     heaps[2] = &extract_heap ;		/* delay line */
722     crit_enter(); /* see note on top, splnet() is not enough */
723     curr_time++ ;
724     for (i=0; i < 3 ; i++) {
725 	h = heaps[i];
726 	while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
727 	    DDB(if (h->p[0].key > curr_time)
728 		printf("-- dummynet: warning, heap %d is %d ticks late\n",
729 		    i, (int)(curr_time - h->p[0].key));)
730 	    p = h->p[0].object ; /* store a copy before heap_extract */
731 	    heap_extract(h, NULL); /* need to extract before processing */
732 	    if (i == 0)
733 		ready_event(p) ;
734 	    else if (i == 1) {
735 		struct dn_pipe *pipe = p;
736 		if (pipe->if_name[0] != '\0')
737 		    printf("*** bad ready_event_wfq for pipe %s\n",
738 			pipe->if_name);
739 		else
740 		    ready_event_wfq(p) ;
741 	    } else
742 		transmit_event(p);
743 	}
744     }
745     /* sweep pipes trying to expire idle flow_queues */
746     for (pe = all_pipes; pe ; pe = pe->next )
747 	if (pe->idle_heap.elements > 0 &&
748 		DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
749 	    struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
750 
751 	    heap_extract(&(pe->idle_heap), NULL);
752 	    q->S = q->F + 1 ; /* mark timestamp as invalid */
753 	    pe->sum -= q->fs->weight ;
754 	}
755     crit_exit();
756     callout_reset(&dn_timeout, 1, dummynet, NULL);
757 }
758 
759 /*
760  * called by an interface when tx_rdy occurs.
761  */
762 int
763 if_tx_rdy(struct ifnet *ifp)
764 {
765     struct dn_pipe *p;
766 
767     for (p = all_pipes; p ; p = p->next )
768 	if (p->ifp == ifp)
769 	    break ;
770     if (p == NULL) {
771 	for (p = all_pipes; p ; p = p->next )
772 	    if (!strcmp(p->if_name, ifp->if_xname) ) {
773 		p->ifp = ifp ;
774 		DEB(printf("++ tx rdy from %s (now found)\n", ifp->if_xname);)
775 		break ;
776 	    }
777     }
778     if (p != NULL) {
779 	DEB(printf("++ tx rdy from %s - qlen %d\n", ifp->if_xname,
780 		ifp->if_snd.ifq_len);)
781 	p->numbytes = 0 ; /* mark ready for I/O */
782 	ready_event_wfq(p);
783     }
784     return 0;
785 }
786 
787 /*
788  * Unconditionally expire empty queues in case of shortage.
789  * Returns the number of queues freed.
790  */
791 static int
792 expire_queues(struct dn_flow_set *fs)
793 {
794     struct dn_flow_queue *q, *prev ;
795     int i, initial_elements = fs->rq_elements ;
796 
797     if (fs->last_expired == time_second)
798 	return 0 ;
799     fs->last_expired = time_second ;
800     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
801 	for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
802 	    if (q->head != NULL || q->S != q->F+1) {
803   		prev = q ;
804   	        q = q->next ;
805   	    } else { /* entry is idle, expire it */
806 		struct dn_flow_queue *old_q = q ;
807 
808 		if (prev != NULL)
809 		    prev->next = q = q->next ;
810 		else
811 		    fs->rq[i] = q = q->next ;
812 		fs->rq_elements-- ;
813 		free(old_q, M_DUMMYNET);
814 	    }
815     return initial_elements - fs->rq_elements ;
816 }
817 
818 /*
819  * If room, create a new queue and put at head of slot i;
820  * otherwise, create or use the default queue.
821  */
822 static struct dn_flow_queue *
823 create_queue(struct dn_flow_set *fs, int i)
824 {
825     struct dn_flow_queue *q ;
826 
827     if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
828 	    expire_queues(fs) == 0) {
829 	/*
830 	 * No way to get room, use or create overflow queue.
831 	 */
832 	i = fs->rq_size ;
833 	if ( fs->rq[i] != NULL )
834 	    return fs->rq[i] ;
835     }
836     q = malloc(sizeof(*q), M_DUMMYNET, M_WAITOK | M_ZERO);
837     q->fs = fs ;
838     q->hash_slot = i ;
839     q->next = fs->rq[i] ;
840     q->S = q->F + 1;   /* hack - mark timestamp as invalid */
841     fs->rq[i] = q ;
842     fs->rq_elements++ ;
843     return q ;
844 }
845 
846 /*
847  * Given a flow_set and a pkt in last_pkt, find a matching queue
848  * after appropriate masking. The queue is moved to front
849  * so that further searches take less time.
850  */
851 static struct dn_flow_queue *
852 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
853 {
854     int i = 0 ; /* we need i and q for new allocations */
855     struct dn_flow_queue *q, *prev;
856 
857     if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
858 	q = fs->rq[0] ;
859     else {
860 	/* first, do the masking */
861 	id->dst_ip &= fs->flow_mask.dst_ip ;
862 	id->src_ip &= fs->flow_mask.src_ip ;
863 	id->dst_port &= fs->flow_mask.dst_port ;
864 	id->src_port &= fs->flow_mask.src_port ;
865 	id->proto &= fs->flow_mask.proto ;
866 	id->flags = 0 ; /* we don't care about this one */
867 	/* then, hash function */
868 	i = ( (id->dst_ip) & 0xffff ) ^
869 	    ( (id->dst_ip >> 15) & 0xffff ) ^
870 	    ( (id->src_ip << 1) & 0xffff ) ^
871 	    ( (id->src_ip >> 16 ) & 0xffff ) ^
872 	    (id->dst_port << 1) ^ (id->src_port) ^
873 	    (id->proto );
874 	i = i % fs->rq_size ;
875 	/* finally, scan the current list for a match */
876 	searches++ ;
877 	for (prev=NULL, q = fs->rq[i] ; q ; ) {
878 	    search_steps++;
879 	    if (id->dst_ip == q->id.dst_ip &&
880 		    id->src_ip == q->id.src_ip &&
881 		    id->dst_port == q->id.dst_port &&
882 		    id->src_port == q->id.src_port &&
883 		    id->proto == q->id.proto &&
884 		    id->flags == q->id.flags)
885 		break ; /* found */
886 	    else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
887 		/* entry is idle and not in any heap, expire it */
888 		struct dn_flow_queue *old_q = q ;
889 
890 		if (prev != NULL)
891 		    prev->next = q = q->next ;
892 		else
893 		    fs->rq[i] = q = q->next ;
894 		fs->rq_elements-- ;
895 		free(old_q, M_DUMMYNET);
896 		continue ;
897 	    }
898 	    prev = q ;
899 	    q = q->next ;
900 	}
901 	if (q && prev != NULL) { /* found and not in front */
902 	    prev->next = q->next ;
903 	    q->next = fs->rq[i] ;
904 	    fs->rq[i] = q ;
905 	}
906     }
907     if (q == NULL) { /* no match, need to allocate a new entry */
908 	q = create_queue(fs, i);
909 	if (q != NULL)
910 	q->id = *id ;
911     }
912     return q ;
913 }
914 
915 static int
916 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
917 {
918     /*
919      * RED algorithm
920      *
921      * RED calculates the average queue size (avg) using a low-pass filter
922      * with an exponential weighted (w_q) moving average:
923      * 	avg  <-  (1-w_q) * avg + w_q * q_size
924      * where q_size is the queue length (measured in bytes or * packets).
925      *
926      * If q_size == 0, we compute the idle time for the link, and set
927      *	avg = (1 - w_q)^(idle/s)
928      * where s is the time needed for transmitting a medium-sized packet.
929      *
930      * Now, if avg < min_th the packet is enqueued.
931      * If avg > max_th the packet is dropped. Otherwise, the packet is
932      * dropped with probability P function of avg.
933      *
934      */
935 
936     int64_t p_b = 0;
937     /* queue in bytes or packets ? */
938     u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
939 
940     DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);)
941 
942     /* average queue size estimation */
943     if (q_size != 0) {
944 	/*
945 	 * queue is not empty, avg <- avg + (q_size - avg) * w_q
946 	 */
947 	int diff = SCALE(q_size) - q->avg;
948 	int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
949 
950 	q->avg += (int) v;
951     } else {
952 	/*
953 	 * queue is empty, find for how long the queue has been
954 	 * empty and use a lookup table for computing
955 	 * (1 - * w_q)^(idle_time/s) where s is the time to send a
956 	 * (small) packet.
957 	 * XXX check wraps...
958 	 */
959 	if (q->avg) {
960 	    u_int t = (curr_time - q->q_time) / fs->lookup_step;
961 
962 	    q->avg = (t < fs->lookup_depth) ?
963 		    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
964 	}
965     }
966     DEB(printf("avg: %u ", SCALE_VAL(q->avg));)
967 
968     /* should i drop ? */
969 
970     if (q->avg < fs->min_th) {
971 	q->count = -1;
972 	return 0; /* accept packet ; */
973     }
974     if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
975 	if (fs->flags_fs & DN_IS_GENTLE_RED) {
976 	    /*
977 	     * According to Gentle-RED, if avg is greater than max_th the
978 	     * packet is dropped with a probability
979 	     *	p_b = c_3 * avg - c_4
980 	     * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
981 	     */
982 	    p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
983 	} else {
984 	    q->count = -1;
985 	    printf("- drop");
986 	    return 1 ;
987 	}
988     } else if (q->avg > fs->min_th) {
989 	/*
990 	 * we compute p_b using the linear dropping function p_b = c_1 *
991 	 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
992 	 * max_p * min_th / (max_th - min_th)
993 	 */
994 	p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
995     }
996     if (fs->flags_fs & DN_QSIZE_IS_BYTES)
997 	p_b = (p_b * len) / fs->max_pkt_size;
998     if (++q->count == 0)
999 	q->random = random() & 0xffff;
1000     else {
1001 	/*
1002 	 * q->count counts packets arrived since last drop, so a greater
1003 	 * value of q->count means a greater packet drop probability.
1004 	 */
1005 	if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1006 	    q->count = 0;
1007 	    DEB(printf("- red drop");)
1008 	    /* after a drop we calculate a new random value */
1009 	    q->random = random() & 0xffff;
1010 	    return 1;    /* drop */
1011 	}
1012     }
1013     /* end of RED algorithm */
1014     return 0 ; /* accept */
1015 }
1016 
1017 static __inline
1018 struct dn_flow_set *
1019 locate_flowset(int pipe_nr, struct ip_fw *rule)
1020 {
1021 #if IPFW2
1022     struct dn_flow_set *fs;
1023     ipfw_insn *cmd = rule->cmd + rule->act_ofs;
1024 
1025     if (cmd->opcode == O_LOG)
1026 	cmd += F_LEN(cmd);
1027     fs = ((ipfw_insn_pipe *)cmd)->pipe_ptr;
1028 
1029     if (fs != NULL)
1030 	return fs;
1031 
1032     if (cmd->opcode == O_QUEUE)
1033 #else /* !IPFW2 */
1034     struct dn_flow_set *fs = NULL ;
1035 
1036     if ( (rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
1037 #endif /* !IPFW2 */
1038 	for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
1039 	    ;
1040     else {
1041 	struct dn_pipe *p1;
1042 	for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
1043 	    ;
1044 	if (p1 != NULL)
1045 	    fs = &(p1->fs) ;
1046     }
1047     /* record for the future */
1048 #if IPFW2
1049     ((ipfw_insn_pipe *)cmd)->pipe_ptr = fs;
1050 #else
1051     if (fs != NULL)
1052 	rule->pipe_ptr = fs;
1053 #endif
1054     return fs ;
1055 }
1056 
1057 /*
1058  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1059  * depending on whether WF2Q or fixed bw is used.
1060  *
1061  * pipe_nr	pipe or queue the packet is destined for.
1062  * dir		where shall we send the packet after dummynet.
1063  * m		the mbuf with the packet
1064  * ifp		the 'ifp' parameter from the caller.
1065  *		NULL in ip_input, destination interface in ip_output,
1066  *		real_dst in bdg_forward
1067  * ro		route parameter (only used in ip_output, NULL otherwise)
1068  * dst		destination address, only used by ip_output
1069  * rule		matching rule, in case of multiple passes
1070  * flags	flags from the caller, only used in ip_output
1071  *
1072  */
1073 static int
1074 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1075 {
1076     struct dn_pkt *pkt;
1077     struct dn_flow_set *fs;
1078     struct dn_pipe *pipe ;
1079     u_int64_t len = m->m_pkthdr.len ;
1080     struct dn_flow_queue *q = NULL ;
1081     int is_pipe;
1082 
1083     crit_enter();
1084 #if IPFW2
1085     ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
1086 
1087     if (cmd->opcode == O_LOG)
1088 	cmd += F_LEN(cmd);
1089     is_pipe = (cmd->opcode == O_PIPE);
1090 #else
1091     is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1092 #endif
1093 
1094     pipe_nr &= 0xffff ;
1095 
1096     /*
1097      * this is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
1098      */
1099     fs = locate_flowset(pipe_nr, fwa->rule);
1100     if (fs == NULL)
1101 	goto dropit ;	/* this queue/pipe does not exist! */
1102     pipe = fs->pipe ;
1103     if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1104 	for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
1105 		 pipe = pipe->next)
1106 	    ;
1107 	if (pipe != NULL)
1108 	    fs->pipe = pipe ;
1109 	else {
1110 	    printf("No pipe %d for queue %d, drop pkt\n",
1111 		fs->parent_nr, fs->fs_nr);
1112 	    goto dropit ;
1113 	}
1114     }
1115     q = find_queue(fs, &(fwa->f_id));
1116     if ( q == NULL )
1117 	goto dropit ;		/* cannot allocate queue		*/
1118     /*
1119      * update statistics, then check reasons to drop pkt
1120      */
1121     q->tot_bytes += len ;
1122     q->tot_pkts++ ;
1123     if ( fs->plr && random() < fs->plr )
1124 	goto dropit ;		/* random pkt drop			*/
1125     if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1126     	if (q->len_bytes > fs->qsize)
1127 	    goto dropit ;	/* queue size overflow			*/
1128     } else {
1129 	if (q->len >= fs->qsize)
1130 	    goto dropit ;	/* queue count overflow			*/
1131     }
1132     if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1133 	goto dropit ;
1134 
1135     /* XXX expensive to zero, see if we can remove it*/
1136     pkt = malloc(sizeof (*pkt), M_DUMMYNET, M_INTWAIT | M_ZERO | M_NULLOK);
1137     if (pkt == NULL)
1138 	    goto dropit;	/* cannot allocate packet header        */
1139 
1140     /* ok, i can handle the pkt now... */
1141     /* build and enqueue packet + parameters */
1142     pkt->hdr.mh_type = MT_TAG;
1143     pkt->hdr.mh_flags = PACKET_TAG_DUMMYNET;
1144     pkt->rule = fwa->rule ;
1145     DN_NEXT_NC(pkt) = NULL;
1146     pkt->dn_m = m;
1147     pkt->dn_dir = dir ;
1148 
1149     pkt->ifp = fwa->oif;
1150     if (dir == DN_TO_IP_OUT) {
1151 	/*
1152 	 * We need to copy *ro because for ICMP pkts (and maybe others)
1153 	 * the caller passed a pointer into the stack; dst might also be
1154 	 * a pointer into *ro so it needs to be updated.
1155 	 */
1156 	pkt->ro = *(fwa->ro);
1157 	if (fwa->ro->ro_rt)
1158 	    fwa->ro->ro_rt->rt_refcnt++ ;
1159 	if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
1160 	    fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
1161 
1162 	pkt->dn_dst = fwa->dst;
1163 	pkt->flags = fwa->flags;
1164     }
1165     if (q->head == NULL)
1166 	q->head = pkt;
1167     else
1168 	DN_NEXT_NC(q->tail) = (struct mbuf *)pkt;
1169     q->tail = pkt;
1170     q->len++;
1171     q->len_bytes += len ;
1172 
1173     if ( q->head != pkt )	/* flow was not idle, we are done */
1174 	goto done;
1175     /*
1176      * If we reach this point the flow was previously idle, so we need
1177      * to schedule it. This involves different actions for fixed-rate or
1178      * WF2Q queues.
1179      */
1180     if (is_pipe) {
1181 	/*
1182 	 * Fixed-rate queue: just insert into the ready_heap.
1183 	 */
1184 	dn_key t = 0 ;
1185 	if (pipe->bandwidth)
1186 	    t = SET_TICKS(pkt, q, pipe);
1187 	q->sched_time = curr_time ;
1188 	if (t == 0)	/* must process it now */
1189 	    ready_event( q );
1190 	else
1191 	    heap_insert(&ready_heap, curr_time + t , q );
1192     } else {
1193 	/*
1194 	 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1195 	 * set S to the virtual time V for the controlling pipe, and update
1196 	 * the sum of weights for the pipe; otherwise, remove flow from
1197 	 * idle_heap and set S to max(F,V).
1198 	 * Second, compute finish time F = S + len/weight.
1199 	 * Third, if pipe was idle, update V=max(S, V).
1200 	 * Fourth, count one more backlogged flow.
1201 	 */
1202 	if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1203 	    q->S = pipe->V ;
1204 	    pipe->sum += fs->weight ; /* add weight of new queue */
1205 	} else {
1206 	    heap_extract(&(pipe->idle_heap), q);
1207 	    q->S = MAX64(q->F, pipe->V ) ;
1208 	}
1209 	q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1210 
1211 	if (pipe->not_eligible_heap.elements == 0 &&
1212 		pipe->scheduler_heap.elements == 0)
1213 	    pipe->V = MAX64 ( q->S, pipe->V );
1214 	fs->backlogged++ ;
1215 	/*
1216 	 * Look at eligibility. A flow is not eligibile if S>V (when
1217 	 * this happens, it means that there is some other flow already
1218 	 * scheduled for the same pipe, so the scheduler_heap cannot be
1219 	 * empty). If the flow is not eligible we just store it in the
1220 	 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1221 	 * and possibly invoke ready_event_wfq() right now if there is
1222 	 * leftover credit.
1223 	 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1224 	 * and for all flows in not_eligible_heap (NEH), S_i > V .
1225 	 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1226 	 * we only need to look into NEH.
1227 	 */
1228 	if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1229 	    if (pipe->scheduler_heap.elements == 0)
1230 		printf("++ ouch! not eligible but empty scheduler!\n");
1231 	    heap_insert(&(pipe->not_eligible_heap), q->S, q);
1232 	} else {
1233 	    heap_insert(&(pipe->scheduler_heap), q->F, q);
1234 	    if (pipe->numbytes >= 0) { /* pipe is idle */
1235 		if (pipe->scheduler_heap.elements != 1)
1236 		    printf("*** OUCH! pipe should have been idle!\n");
1237 		DEB(printf("Waking up pipe %d at %d\n",
1238 			pipe->pipe_nr, (int)(q->F >> MY_M)); )
1239 		pipe->sched_time = curr_time ;
1240 		ready_event_wfq(pipe);
1241 	    }
1242 	}
1243     }
1244 done:
1245     crit_exit();
1246     return 0;
1247 
1248 dropit:
1249     crit_exit();
1250     if (q)
1251 	q->drops++ ;
1252     m_freem(m);
1253     return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1254 }
1255 
1256 /*
1257  * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1258  * Doing this would probably save us the initial bzero of dn_pkt
1259  */
1260 #define DN_FREE_PKT(pkt)	{		\
1261 	struct dn_pkt *n = pkt ;		\
1262 	rt_unref ( n->ro.ro_rt ) ;		\
1263 	m_freem(n->dn_m);			\
1264 	pkt = DN_NEXT(n) ;			\
1265 	free(n, M_DUMMYNET) ;	}
1266 
1267 /*
1268  * Dispose all packets and flow_queues on a flow_set.
1269  * If all=1, also remove red lookup table and other storage,
1270  * including the descriptor itself.
1271  * For the one in dn_pipe MUST also cleanup ready_heap...
1272  */
1273 static void
1274 purge_flow_set(struct dn_flow_set *fs, int all)
1275 {
1276     struct dn_pkt *pkt ;
1277     struct dn_flow_queue *q, *qn ;
1278     int i ;
1279 
1280     for (i = 0 ; i <= fs->rq_size ; i++ ) {
1281 	for (q = fs->rq[i] ; q ; q = qn ) {
1282 	    for (pkt = q->head ; pkt ; )
1283 		DN_FREE_PKT(pkt) ;
1284 	    qn = q->next ;
1285 	    free(q, M_DUMMYNET);
1286 	}
1287 	fs->rq[i] = NULL ;
1288     }
1289     fs->rq_elements = 0 ;
1290     if (all) {
1291 	/* RED - free lookup table */
1292 	if (fs->w_q_lookup)
1293 	    free(fs->w_q_lookup, M_DUMMYNET);
1294 	if (fs->rq)
1295 	    free(fs->rq, M_DUMMYNET);
1296 	/* if this fs is not part of a pipe, free it */
1297 	if (fs->pipe && fs != &(fs->pipe->fs) )
1298 	    free(fs, M_DUMMYNET);
1299     }
1300 }
1301 
1302 /*
1303  * Dispose all packets queued on a pipe (not a flow_set).
1304  * Also free all resources associated to a pipe, which is about
1305  * to be deleted.
1306  */
1307 static void
1308 purge_pipe(struct dn_pipe *pipe)
1309 {
1310     struct dn_pkt *pkt ;
1311 
1312     purge_flow_set( &(pipe->fs), 1 );
1313 
1314     for (pkt = pipe->head ; pkt ; )
1315 	DN_FREE_PKT(pkt) ;
1316 
1317     heap_free( &(pipe->scheduler_heap) );
1318     heap_free( &(pipe->not_eligible_heap) );
1319     heap_free( &(pipe->idle_heap) );
1320 }
1321 
1322 /*
1323  * Delete all pipes and heaps returning memory. Must also
1324  * remove references from all ipfw rules to all pipes.
1325  */
1326 static void
1327 dummynet_flush()
1328 {
1329     struct dn_pipe *curr_p, *p ;
1330     struct dn_flow_set *fs, *curr_fs;
1331 
1332     crit_enter();
1333 
1334     /* remove all references to pipes ...*/
1335     flush_pipe_ptrs(NULL);
1336     /* prevent future matches... */
1337     p = all_pipes ;
1338     all_pipes = NULL ;
1339     fs = all_flow_sets ;
1340     all_flow_sets = NULL ;
1341     /* and free heaps so we don't have unwanted events */
1342     heap_free(&ready_heap);
1343     heap_free(&wfq_ready_heap);
1344     heap_free(&extract_heap);
1345     crit_exit();
1346     /*
1347      * Now purge all queued pkts and delete all pipes
1348      */
1349     /* scan and purge all flow_sets. */
1350     for ( ; fs ; ) {
1351 	curr_fs = fs ;
1352 	fs = fs->next ;
1353 	purge_flow_set(curr_fs, 1);
1354     }
1355     for ( ; p ; ) {
1356 	purge_pipe(p);
1357 	curr_p = p ;
1358 	p = p->next ;
1359 	free(curr_p, M_DUMMYNET);
1360     }
1361 }
1362 
1363 
1364 extern struct ip_fw *ip_fw_default_rule ;
1365 static void
1366 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
1367 {
1368     int i ;
1369     struct dn_flow_queue *q ;
1370     struct dn_pkt *pkt ;
1371 
1372     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1373 	for (q = fs->rq[i] ; q ; q = q->next )
1374 	    for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
1375 		if (pkt->rule == r)
1376 		    pkt->rule = ip_fw_default_rule ;
1377 }
1378 /*
1379  * when a firewall rule is deleted, scan all queues and remove the flow-id
1380  * from packets matching this rule.
1381  */
1382 void
1383 dn_rule_delete(void *r)
1384 {
1385     struct dn_pipe *p ;
1386     struct dn_pkt *pkt ;
1387     struct dn_flow_set *fs ;
1388 
1389     /*
1390      * If the rule references a queue (dn_flow_set), then scan
1391      * the flow set, otherwise scan pipes. Should do either, but doing
1392      * both does not harm.
1393      */
1394     for ( fs = all_flow_sets ; fs ; fs = fs->next )
1395 	dn_rule_delete_fs(fs, r);
1396     for ( p = all_pipes ; p ; p = p->next ) {
1397 	fs = &(p->fs) ;
1398 	dn_rule_delete_fs(fs, r);
1399 	for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
1400 	    if (pkt->rule == r)
1401 		pkt->rule = ip_fw_default_rule ;
1402     }
1403 }
1404 
1405 /*
1406  * setup RED parameters
1407  */
1408 static int
1409 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1410 {
1411     int i;
1412 
1413     x->w_q = p->w_q;
1414     x->min_th = SCALE(p->min_th);
1415     x->max_th = SCALE(p->max_th);
1416     x->max_p = p->max_p;
1417 
1418     x->c_1 = p->max_p / (p->max_th - p->min_th);
1419     x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1420     if (x->flags_fs & DN_IS_GENTLE_RED) {
1421 	x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1422 	x->c_4 = (SCALE(1) - 2 * p->max_p);
1423     }
1424 
1425     /* if the lookup table already exist, free and create it again */
1426     if (x->w_q_lookup) {
1427 	free(x->w_q_lookup, M_DUMMYNET);
1428 	x->w_q_lookup = NULL ;
1429     }
1430     if (red_lookup_depth == 0) {
1431 	printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0");
1432 	free(x, M_DUMMYNET);
1433 	return EINVAL;
1434     }
1435     x->lookup_depth = red_lookup_depth;
1436     x->w_q_lookup = malloc(x->lookup_depth * sizeof(int),
1437 			M_DUMMYNET, M_WAITOK);
1438 
1439     /* fill the lookup table with (1 - w_q)^x */
1440     x->lookup_step = p->lookup_step ;
1441     x->lookup_weight = p->lookup_weight ;
1442     x->w_q_lookup[0] = SCALE(1) - x->w_q;
1443     for (i = 1; i < x->lookup_depth; i++)
1444 	x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1445     if (red_avg_pkt_size < 1)
1446 	red_avg_pkt_size = 512 ;
1447     x->avg_pkt_size = red_avg_pkt_size ;
1448     if (red_max_pkt_size < 1)
1449 	red_max_pkt_size = 1500 ;
1450     x->max_pkt_size = red_max_pkt_size ;
1451     return 0 ;
1452 }
1453 
1454 static int
1455 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1456 {
1457     if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
1458 	int l = pfs->rq_size;
1459 
1460 	if (l == 0)
1461 	    l = dn_hash_size;
1462 	if (l < 4)
1463 	    l = 4;
1464 	else if (l > DN_MAX_HASH_SIZE)
1465 	    l = DN_MAX_HASH_SIZE;
1466 	x->rq_size = l;
1467     } else                  /* one is enough for null mask */
1468 	x->rq_size = 1;
1469     x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
1470 		    M_DUMMYNET, M_WAITOK | M_ZERO);
1471     x->rq_elements = 0;
1472     return 0 ;
1473 }
1474 
1475 static void
1476 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1477 {
1478     x->flags_fs = src->flags_fs;
1479     x->qsize = src->qsize;
1480     x->plr = src->plr;
1481     x->flow_mask = src->flow_mask;
1482     if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1483 	if (x->qsize > 1024*1024)
1484 	    x->qsize = 1024*1024 ;
1485     } else {
1486 	if (x->qsize == 0)
1487 	    x->qsize = 50 ;
1488 	if (x->qsize > 100)
1489 	    x->qsize = 50 ;
1490     }
1491     /* configuring RED */
1492     if ( x->flags_fs & DN_IS_RED )
1493 	config_red(src, x) ;    /* XXX should check errors */
1494 }
1495 
1496 /*
1497  * setup pipe or queue parameters.
1498  */
1499 
1500 static int
1501 config_pipe(struct dn_pipe *p)
1502 {
1503     int i, s;
1504     struct dn_flow_set *pfs = &(p->fs);
1505     struct dn_flow_queue *q;
1506 
1507     /*
1508      * The config program passes parameters as follows:
1509      * bw = bits/second (0 means no limits),
1510      * delay = ms, must be translated into ticks.
1511      * qsize = slots/bytes
1512      */
1513     p->delay = ( p->delay * hz ) / 1000 ;
1514     /* We need either a pipe number or a flow_set number */
1515     if (p->pipe_nr == 0 && pfs->fs_nr == 0)
1516 	return EINVAL ;
1517     if (p->pipe_nr != 0 && pfs->fs_nr != 0)
1518 	return EINVAL ;
1519     if (p->pipe_nr != 0) { /* this is a pipe */
1520 	struct dn_pipe *x, *a, *b;
1521 	/* locate pipe */
1522 	for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1523 		 a = b , b = b->next) ;
1524 
1525 	if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
1526 	    x = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_WAITOK | M_ZERO);
1527 	    x->pipe_nr = p->pipe_nr;
1528 	    x->fs.pipe = x ;
1529 	    /* idle_heap is the only one from which we extract from the middle.
1530 	     */
1531 	    x->idle_heap.size = x->idle_heap.elements = 0 ;
1532 	    x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
1533 	} else {
1534 	    x = b;
1535 	    crit_enter();
1536 	    /* Flush accumulated credit for all queues */
1537 	    for (i = 0; i <= x->fs.rq_size; i++)
1538 		for (q = x->fs.rq[i]; q; q = q->next)
1539 		    q->numbytes = 0;
1540 	    crit_exit();
1541 	}
1542 
1543 	crit_enter();
1544 	x->bandwidth = p->bandwidth ;
1545 	x->numbytes = 0; /* just in case... */
1546 	bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
1547 	x->ifp = NULL ; /* reset interface ptr */
1548 	x->delay = p->delay ;
1549 	set_fs_parms(&(x->fs), pfs);
1550 
1551 
1552 	if ( x->fs.rq == NULL ) { /* a new pipe */
1553 	    s = alloc_hash(&(x->fs), pfs) ;
1554 	    if (s) {
1555 		free(x, M_DUMMYNET);
1556 		return s ;
1557 	    }
1558 	    x->next = b ;
1559 	    if (a == NULL)
1560 		all_pipes = x ;
1561 	    else
1562 		a->next = x ;
1563 	}
1564 	crit_exit();
1565     } else { /* config queue */
1566 	struct dn_flow_set *x, *a, *b ;
1567 
1568 	/* locate flow_set */
1569 	for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
1570 		 a = b , b = b->next) ;
1571 
1572 	if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
1573 	    if (pfs->parent_nr == 0)	/* need link to a pipe */
1574 		return EINVAL ;
1575 	    x = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, M_WAITOK|M_ZERO);
1576 	    x->fs_nr = pfs->fs_nr;
1577 	    x->parent_nr = pfs->parent_nr;
1578 	    x->weight = pfs->weight ;
1579 	    if (x->weight == 0)
1580 		x->weight = 1 ;
1581 	    else if (x->weight > 100)
1582 		x->weight = 100 ;
1583 	} else {
1584 	    /* Change parent pipe not allowed; must delete and recreate */
1585 	    if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
1586 		return EINVAL ;
1587 	    x = b;
1588 	}
1589 	crit_enter();
1590 	set_fs_parms(x, pfs);
1591 
1592 	if ( x->rq == NULL ) { /* a new flow_set */
1593 	    s = alloc_hash(x, pfs) ;
1594 	    if (s) {
1595 		free(x, M_DUMMYNET);
1596 		return s ;
1597 	    }
1598 	    x->next = b;
1599 	    if (a == NULL)
1600 		all_flow_sets = x;
1601 	    else
1602 		a->next = x;
1603 	}
1604 	crit_exit();
1605     }
1606     return 0 ;
1607 }
1608 
1609 /*
1610  * Helper function to remove from a heap queues which are linked to
1611  * a flow_set about to be deleted.
1612  */
1613 static void
1614 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1615 {
1616     int i = 0, found = 0 ;
1617     for (; i < h->elements ;)
1618 	if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1619 	    h->elements-- ;
1620 	    h->p[i] = h->p[h->elements] ;
1621 	    found++ ;
1622 	} else
1623 	    i++ ;
1624     if (found)
1625 	heapify(h);
1626 }
1627 
1628 /*
1629  * helper function to remove a pipe from a heap (can be there at most once)
1630  */
1631 static void
1632 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1633 {
1634     if (h->elements > 0) {
1635 	int i = 0 ;
1636 	for (i=0; i < h->elements ; i++ ) {
1637 	    if (h->p[i].object == p) { /* found it */
1638 		h->elements-- ;
1639 		h->p[i] = h->p[h->elements] ;
1640 		heapify(h);
1641 		break ;
1642 	    }
1643 	}
1644     }
1645 }
1646 
1647 /*
1648  * drain all queues. Called in case of severe mbuf shortage.
1649  */
1650 void
1651 dummynet_drain()
1652 {
1653     struct dn_flow_set *fs;
1654     struct dn_pipe *p;
1655     struct dn_pkt *pkt;
1656 
1657     heap_free(&ready_heap);
1658     heap_free(&wfq_ready_heap);
1659     heap_free(&extract_heap);
1660     /* remove all references to this pipe from flow_sets */
1661     for (fs = all_flow_sets; fs; fs= fs->next )
1662 	purge_flow_set(fs, 0);
1663 
1664     for (p = all_pipes; p; p= p->next ) {
1665 	purge_flow_set(&(p->fs), 0);
1666 	for (pkt = p->head ; pkt ; )
1667 	    DN_FREE_PKT(pkt) ;
1668 	p->head = p->tail = NULL ;
1669     }
1670 }
1671 
1672 /*
1673  * Fully delete a pipe or a queue, cleaning up associated info.
1674  */
1675 static int
1676 delete_pipe(struct dn_pipe *p)
1677 {
1678     if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
1679 	return EINVAL ;
1680     if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
1681 	return EINVAL ;
1682     if (p->pipe_nr != 0) { /* this is an old-style pipe */
1683 	struct dn_pipe *a, *b;
1684 	struct dn_flow_set *fs;
1685 
1686 	/* locate pipe */
1687 	for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1688 		 a = b , b = b->next) ;
1689 	if (b == NULL || (b->pipe_nr != p->pipe_nr) )
1690 	    return EINVAL ; /* not found */
1691 
1692 	crit_enter();
1693 
1694 	/* unlink from list of pipes */
1695 	if (a == NULL)
1696 	    all_pipes = b->next ;
1697 	else
1698 	    a->next = b->next ;
1699 	/* remove references to this pipe from the ip_fw rules. */
1700 	flush_pipe_ptrs(&(b->fs));
1701 
1702 	/* remove all references to this pipe from flow_sets */
1703 	for (fs = all_flow_sets; fs; fs= fs->next )
1704 	    if (fs->pipe == b) {
1705 		printf("++ ref to pipe %d from fs %d\n",
1706 			p->pipe_nr, fs->fs_nr);
1707 		fs->pipe = NULL ;
1708 		purge_flow_set(fs, 0);
1709 	    }
1710 	fs_remove_from_heap(&ready_heap, &(b->fs));
1711 	purge_pipe(b);	/* remove all data associated to this pipe */
1712 	/* remove reference to here from extract_heap and wfq_ready_heap */
1713 	pipe_remove_from_heap(&extract_heap, b);
1714 	pipe_remove_from_heap(&wfq_ready_heap, b);
1715 	crit_exit();
1716 	free(b, M_DUMMYNET);
1717     } else { /* this is a WF2Q queue (dn_flow_set) */
1718 	struct dn_flow_set *a, *b;
1719 
1720 	/* locate set */
1721 	for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
1722 		 a = b , b = b->next) ;
1723 	if (b == NULL || (b->fs_nr != p->fs.fs_nr) )
1724 	    return EINVAL ; /* not found */
1725 
1726 	crit_enter();
1727 	if (a == NULL)
1728 	    all_flow_sets = b->next ;
1729 	else
1730 	    a->next = b->next ;
1731 	/* remove references to this flow_set from the ip_fw rules. */
1732 	flush_pipe_ptrs(b);
1733 
1734 	if (b->pipe != NULL) {
1735 	    /* Update total weight on parent pipe and cleanup parent heaps */
1736 	    b->pipe->sum -= b->weight * b->backlogged ;
1737 	    fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
1738 	    fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
1739 #if 1	/* XXX should i remove from idle_heap as well ? */
1740 	    fs_remove_from_heap(&(b->pipe->idle_heap), b);
1741 #endif
1742 	}
1743 	purge_flow_set(b, 1);
1744 	crit_exit();
1745     }
1746     return 0 ;
1747 }
1748 
1749 /*
1750  * helper function used to copy data from kernel in DUMMYNET_GET
1751  */
1752 static char *
1753 dn_copy_set(struct dn_flow_set *set, char *bp)
1754 {
1755     int i, copied = 0 ;
1756     struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
1757 
1758     for (i = 0 ; i <= set->rq_size ; i++)
1759 	for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
1760 	    if (q->hash_slot != i)
1761 		printf("++ at %d: wrong slot (have %d, "
1762 		    "should be %d)\n", copied, q->hash_slot, i);
1763 	    if (q->fs != set)
1764 		printf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
1765 			i, q->fs, set);
1766 	    copied++ ;
1767 	    bcopy(q, qp, sizeof( *q ) );
1768 	    /* cleanup pointers */
1769 	    qp->next = NULL ;
1770 	    qp->head = qp->tail = NULL ;
1771 	    qp->fs = NULL ;
1772 	}
1773     if (copied != set->rq_elements)
1774 	printf("++ wrong count, have %d should be %d\n",
1775 	    copied, set->rq_elements);
1776     return (char *)qp ;
1777 }
1778 
1779 static int
1780 dummynet_get(struct sockopt *sopt)
1781 {
1782     char *buf, *bp ; /* bp is the "copy-pointer" */
1783     size_t size ;
1784     struct dn_flow_set *set ;
1785     struct dn_pipe *p ;
1786     int error=0 ;
1787 
1788     crit_enter();
1789     /*
1790      * compute size of data structures: list of pipes and flow_sets.
1791      */
1792     for (p = all_pipes, size = 0 ; p ; p = p->next )
1793 	size += sizeof( *p ) +
1794 	    p->fs.rq_elements * sizeof(struct dn_flow_queue);
1795     for (set = all_flow_sets ; set ; set = set->next )
1796 	size += sizeof ( *set ) +
1797 	    set->rq_elements * sizeof(struct dn_flow_queue);
1798     buf = malloc(size, M_TEMP, M_WAITOK);
1799     for (p = all_pipes, bp = buf ; p ; p = p->next ) {
1800 	struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
1801 
1802 	/*
1803 	 * copy pipe descriptor into *bp, convert delay back to ms,
1804 	 * then copy the flow_set descriptor(s) one at a time.
1805 	 * After each flow_set, copy the queue descriptor it owns.
1806 	 */
1807 	bcopy(p, bp, sizeof( *p ) );
1808 	pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
1809 	/*
1810 	 * XXX the following is a hack based on ->next being the
1811 	 * first field in dn_pipe and dn_flow_set. The correct
1812 	 * solution would be to move the dn_flow_set to the beginning
1813 	 * of struct dn_pipe.
1814 	 */
1815 	pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
1816 	/* clean pointers */
1817 	pipe_bp->head = pipe_bp->tail = NULL ;
1818 	pipe_bp->fs.next = NULL ;
1819 	pipe_bp->fs.pipe = NULL ;
1820 	pipe_bp->fs.rq = NULL ;
1821 
1822 	bp += sizeof( *p ) ;
1823 	bp = dn_copy_set( &(p->fs), bp );
1824     }
1825     for (set = all_flow_sets ; set ; set = set->next ) {
1826 	struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
1827 	bcopy(set, bp, sizeof( *set ) );
1828 	/* XXX same hack as above */
1829 	fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
1830 	fs_bp->pipe = NULL ;
1831 	fs_bp->rq = NULL ;
1832 	bp += sizeof( *set ) ;
1833 	bp = dn_copy_set( set, bp );
1834     }
1835     crit_exit();
1836     error = sooptcopyout(sopt, buf, size);
1837     free(buf, M_TEMP);
1838     return error ;
1839 }
1840 
1841 /*
1842  * Handler for the various dummynet socket options (get, flush, config, del)
1843  */
1844 static int
1845 ip_dn_ctl(struct sockopt *sopt)
1846 {
1847     int error = 0 ;
1848     struct dn_pipe *p, tmp_pipe;
1849 
1850     /* Disallow sets in really-really secure mode. */
1851     if (sopt->sopt_dir == SOPT_SET) {
1852 #if defined(__FreeBSD__) && __FreeBSD_version >= 500034
1853 	error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
1854 	if (error)
1855 	    return (error);
1856 #else
1857 	if (securelevel >= 3)
1858 	    return (EPERM);
1859 #endif
1860     }
1861 
1862     switch (sopt->sopt_name) {
1863     default :
1864 	printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name);
1865 	return EINVAL ;
1866 
1867     case IP_DUMMYNET_GET :
1868 	error = dummynet_get(sopt);
1869 	break ;
1870 
1871     case IP_DUMMYNET_FLUSH :
1872 	dummynet_flush() ;
1873 	break ;
1874 
1875     case IP_DUMMYNET_CONFIGURE :
1876 	p = &tmp_pipe ;
1877 	error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
1878 	if (error)
1879 	    break ;
1880 	error = config_pipe(p);
1881 	break ;
1882 
1883     case IP_DUMMYNET_DEL :	/* remove a pipe or queue */
1884 	p = &tmp_pipe ;
1885 	error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
1886 	if (error)
1887 	    break ;
1888 
1889 	error = delete_pipe(p);
1890 	break ;
1891     }
1892     return error ;
1893 }
1894 
1895 static void
1896 ip_dn_init(void)
1897 {
1898     printf("DUMMYNET initialized (011031)\n");
1899     all_pipes = NULL ;
1900     all_flow_sets = NULL ;
1901     ready_heap.size = ready_heap.elements = 0 ;
1902     ready_heap.offset = 0 ;
1903 
1904     wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
1905     wfq_ready_heap.offset = 0 ;
1906 
1907     extract_heap.size = extract_heap.elements = 0 ;
1908     extract_heap.offset = 0 ;
1909     ip_dn_ctl_ptr = ip_dn_ctl;
1910     ip_dn_io_ptr = dummynet_io;
1911     ip_dn_ruledel_ptr = dn_rule_delete;
1912     callout_init(&dn_timeout);
1913     callout_reset(&dn_timeout, 1, dummynet, NULL);
1914 }
1915 
1916 static int
1917 dummynet_modevent(module_t mod, int type, void *data)
1918 {
1919 	switch (type) {
1920 	case MOD_LOAD:
1921 		crit_enter();
1922 		if (DUMMYNET_LOADED) {
1923 		    crit_exit();
1924 		    printf("DUMMYNET already loaded\n");
1925 		    return EEXIST ;
1926 		}
1927 		ip_dn_init();
1928 		crit_exit();
1929 		break;
1930 
1931 	case MOD_UNLOAD:
1932 #if !defined(KLD_MODULE)
1933 		printf("dummynet statically compiled, cannot unload\n");
1934 		return EINVAL ;
1935 #else
1936 		crit_enter();
1937 		callout_stop(&dn_timeout);
1938 		dummynet_flush();
1939 		ip_dn_ctl_ptr = NULL;
1940 		ip_dn_io_ptr = NULL;
1941 		ip_dn_ruledel_ptr = NULL;
1942 		crit_exit();
1943 #endif
1944 		break ;
1945 	default:
1946 		break ;
1947 	}
1948 	return 0 ;
1949 }
1950 
1951 static moduledata_t dummynet_mod = {
1952 	"dummynet",
1953 	dummynet_modevent,
1954 	NULL
1955 };
1956 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
1957 MODULE_DEPEND(dummynet, ipfw, 1, 1, 1);
1958 MODULE_VERSION(dummynet, 1);
1959