xref: /dragonfly/sys/net/if.c (revision a68e0df0)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 #include "opt_ifpoll.h"
43 
44 #include <sys/param.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/protosw.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/thread2.h>
63 #include <sys/serialize.h>
64 #include <sys/msgport2.h>
65 #include <sys/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_types.h>
71 #include <net/if_var.h>
72 #include <net/ifq_var.h>
73 #include <net/radix.h>
74 #include <net/route.h>
75 #include <net/if_clone.h>
76 #include <net/netisr.h>
77 #include <net/netmsg2.h>
78 
79 #include <machine/atomic.h>
80 #include <machine/stdarg.h>
81 #include <machine/smp.h>
82 
83 #if defined(INET) || defined(INET6)
84 /*XXX*/
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #ifdef INET6
89 #include <netinet6/in6_var.h>
90 #include <netinet6/in6_ifattach.h>
91 #endif
92 #endif
93 
94 #if defined(COMPAT_43)
95 #include <emulation/43bsd/43bsd_socket.h>
96 #endif /* COMPAT_43 */
97 
98 struct netmsg_ifaddr {
99 	struct netmsg	netmsg;
100 	struct ifaddr	*ifa;
101 	struct ifnet	*ifp;
102 	int		tail;
103 };
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 #ifdef INET6
118 /*
119  * XXX: declare here to avoid to include many inet6 related files..
120  * should be more generalized?
121  */
122 extern void	nd6_setmtu(struct ifnet *);
123 #endif
124 
125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
127 
128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
129 /* Must be after netisr_init */
130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
131 
132 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
133 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
134 
135 int			ifqmaxlen = IFQ_MAXLEN;
136 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
137 
138 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
139 static int		ifq_dispatch_schedonly = 0;
140 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
141            &ifq_dispatch_schedonly, 0, "");
142 
143 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
144 static int		ifq_dispatch_schednochk = 0;
145 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
146            &ifq_dispatch_schednochk, 0, "");
147 
148 /* In if_devstart(), try to do direct ifnet.if_start first */
149 static int		if_devstart_schedonly = 0;
150 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
151            &if_devstart_schedonly, 0, "");
152 
153 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
154 static int		if_devstart_schednochk = 0;
155 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
156            &if_devstart_schednochk, 0, "");
157 
158 #ifdef SMP
159 /* Schedule ifnet.if_start on the current CPU */
160 static int		if_start_oncpu_sched = 0;
161 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
162            &if_start_oncpu_sched, 0, "");
163 #endif
164 
165 struct callout		if_slowtimo_timer;
166 
167 int			if_index = 0;
168 struct ifnet		**ifindex2ifnet = NULL;
169 static struct thread	ifnet_threads[MAXCPU];
170 static int		ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE;
171 
172 #define IFQ_KTR_STRING		"ifq=%p"
173 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
174 #ifndef KTR_IFQ
175 #define KTR_IFQ			KTR_ALL
176 #endif
177 KTR_INFO_MASTER(ifq);
178 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
179 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
180 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
181 
182 #define IF_START_KTR_STRING	"ifp=%p"
183 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
184 #ifndef KTR_IF_START
185 #define KTR_IF_START		KTR_ALL
186 #endif
187 KTR_INFO_MASTER(if_start);
188 KTR_INFO(KTR_IF_START, if_start, run, 0,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
190 KTR_INFO(KTR_IF_START, if_start, sched, 1,
191 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
192 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
194 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
195 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
196 #ifdef SMP
197 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
198 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
199 #endif
200 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
201 
202 /*
203  * Network interface utility routines.
204  *
205  * Routines with ifa_ifwith* names take sockaddr *'s as
206  * parameters.
207  */
208 /* ARGSUSED*/
209 void
210 ifinit(void *dummy)
211 {
212 	struct ifnet *ifp;
213 
214 	callout_init(&if_slowtimo_timer);
215 
216 	crit_enter();
217 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
218 		if (ifp->if_snd.ifq_maxlen == 0) {
219 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
220 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
221 		}
222 	}
223 	crit_exit();
224 
225 	if_slowtimo(0);
226 }
227 
228 static int
229 if_start_cpuid(struct ifnet *ifp)
230 {
231 	return ifp->if_cpuid;
232 }
233 
234 #ifdef DEVICE_POLLING
235 static int
236 if_start_cpuid_poll(struct ifnet *ifp)
237 {
238 	int poll_cpuid = ifp->if_poll_cpuid;
239 
240 	if (poll_cpuid >= 0)
241 		return poll_cpuid;
242 	else
243 		return ifp->if_cpuid;
244 }
245 #endif
246 
247 static void
248 if_start_ipifunc(void *arg)
249 {
250 	struct ifnet *ifp = arg;
251 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
252 
253 	crit_enter();
254 	if (lmsg->ms_flags & MSGF_DONE)
255 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
256 	crit_exit();
257 }
258 
259 /*
260  * Schedule ifnet.if_start on ifnet's CPU
261  */
262 static void
263 if_start_schedule(struct ifnet *ifp)
264 {
265 #ifdef SMP
266 	int cpu;
267 
268 	if (if_start_oncpu_sched)
269 		cpu = mycpuid;
270 	else
271 		cpu = ifp->if_start_cpuid(ifp);
272 
273 	if (cpu != mycpuid)
274 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
275 	else
276 #endif
277 	if_start_ipifunc(ifp);
278 }
279 
280 /*
281  * NOTE:
282  * This function will release ifnet.if_start interlock,
283  * if ifnet.if_start does not need to be scheduled
284  */
285 static __inline int
286 if_start_need_schedule(struct ifaltq *ifq, int running)
287 {
288 	if (!running || ifq_is_empty(ifq)
289 #ifdef ALTQ
290 	    || ifq->altq_tbr != NULL
291 #endif
292 	) {
293 		ALTQ_LOCK(ifq);
294 		/*
295 		 * ifnet.if_start interlock is released, if:
296 		 * 1) Hardware can not take any packets, due to
297 		 *    o  interface is marked down
298 		 *    o  hardware queue is full (IFF_OACTIVE)
299 		 *    Under the second situation, hardware interrupt
300 		 *    or polling(4) will call/schedule ifnet.if_start
301 		 *    when hardware queue is ready
302 		 * 2) There is not packet in the ifnet.if_snd.
303 		 *    Further ifq_dispatch or ifq_handoff will call/
304 		 *    schedule ifnet.if_start
305 		 * 3) TBR is used and it does not allow further
306 		 *    dequeueing.
307 		 *    TBR callout will call ifnet.if_start
308 		 */
309 		if (!running || !ifq_data_ready(ifq)) {
310 			ifq->altq_started = 0;
311 			ALTQ_UNLOCK(ifq);
312 			return 0;
313 		}
314 		ALTQ_UNLOCK(ifq);
315 	}
316 	return 1;
317 }
318 
319 static void
320 if_start_dispatch(struct netmsg *nmsg)
321 {
322 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
323 	struct ifnet *ifp = lmsg->u.ms_resultp;
324 	struct ifaltq *ifq = &ifp->if_snd;
325 	int running = 0;
326 
327 	crit_enter();
328 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
329 	crit_exit();
330 
331 #ifdef SMP
332 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
333 		/*
334 		 * If the ifnet is still up, we need to
335 		 * chase its CPU change.
336 		 */
337 		if (ifp->if_flags & IFF_UP) {
338 			logifstart(chase_sched, ifp);
339 			if_start_schedule(ifp);
340 			return;
341 		} else {
342 			goto check;
343 		}
344 	}
345 #endif
346 
347 	if (ifp->if_flags & IFF_UP) {
348 		ifnet_serialize_tx(ifp); /* XXX try? */
349 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
350 			logifstart(run, ifp);
351 			ifp->if_start(ifp);
352 			if ((ifp->if_flags &
353 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
354 				running = 1;
355 		}
356 		ifnet_deserialize_tx(ifp);
357 	}
358 #ifdef SMP
359 check:
360 #endif
361 	if (if_start_need_schedule(ifq, running)) {
362 		crit_enter();
363 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
364 			logifstart(sched, ifp);
365 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
366 		}
367 		crit_exit();
368 	}
369 }
370 
371 /* Device driver ifnet.if_start helper function */
372 void
373 if_devstart(struct ifnet *ifp)
374 {
375 	struct ifaltq *ifq = &ifp->if_snd;
376 	int running = 0;
377 
378 	ASSERT_IFNET_SERIALIZED_TX(ifp);
379 
380 	ALTQ_LOCK(ifq);
381 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
382 		logifstart(avoid, ifp);
383 		ALTQ_UNLOCK(ifq);
384 		return;
385 	}
386 	ifq->altq_started = 1;
387 	ALTQ_UNLOCK(ifq);
388 
389 	if (if_devstart_schedonly) {
390 		/*
391 		 * Always schedule ifnet.if_start on ifnet's CPU,
392 		 * short circuit the rest of this function.
393 		 */
394 		logifstart(sched, ifp);
395 		if_start_schedule(ifp);
396 		return;
397 	}
398 
399 	logifstart(run, ifp);
400 	ifp->if_start(ifp);
401 
402 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
403 		running = 1;
404 
405 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
406 		/*
407 		 * More data need to be transmitted, ifnet.if_start is
408 		 * scheduled on ifnet's CPU, and we keep going.
409 		 * NOTE: ifnet.if_start interlock is not released.
410 		 */
411 		logifstart(sched, ifp);
412 		if_start_schedule(ifp);
413 	}
414 }
415 
416 static void
417 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
418 {
419 	lwkt_serialize_enter(ifp->if_serializer);
420 }
421 
422 static void
423 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
424 {
425 	lwkt_serialize_exit(ifp->if_serializer);
426 }
427 
428 static int
429 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
430 {
431 	return lwkt_serialize_try(ifp->if_serializer);
432 }
433 
434 #ifdef INVARIANTS
435 static void
436 if_default_serialize_assert(struct ifnet *ifp,
437 			    enum ifnet_serialize slz __unused,
438 			    boolean_t serialized)
439 {
440 	if (serialized)
441 		ASSERT_SERIALIZED(ifp->if_serializer);
442 	else
443 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
444 }
445 #endif
446 
447 /*
448  * Attach an interface to the list of "active" interfaces.
449  *
450  * The serializer is optional.  If non-NULL access to the interface
451  * may be MPSAFE.
452  */
453 void
454 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
455 {
456 	unsigned socksize, ifasize;
457 	int namelen, masklen;
458 	struct sockaddr_dl *sdl;
459 	struct ifaddr *ifa;
460 	struct ifaltq *ifq;
461 	int i;
462 
463 	static int if_indexlim = 8;
464 
465 	if (ifp->if_serialize != NULL) {
466 		KASSERT(ifp->if_deserialize != NULL &&
467 			ifp->if_tryserialize != NULL &&
468 			ifp->if_serialize_assert != NULL,
469 			("serialize functions are partially setup\n"));
470 
471 		/*
472 		 * If the device supplies serialize functions,
473 		 * then clear if_serializer to catch any invalid
474 		 * usage of this field.
475 		 */
476 		KASSERT(serializer == NULL,
477 			("both serialize functions and default serializer "
478 			 "are supplied\n"));
479 		ifp->if_serializer = NULL;
480 	} else {
481 		KASSERT(ifp->if_deserialize == NULL &&
482 			ifp->if_tryserialize == NULL &&
483 			ifp->if_serialize_assert == NULL,
484 			("serialize functions are partially setup\n"));
485 		ifp->if_serialize = if_default_serialize;
486 		ifp->if_deserialize = if_default_deserialize;
487 		ifp->if_tryserialize = if_default_tryserialize;
488 #ifdef INVARIANTS
489 		ifp->if_serialize_assert = if_default_serialize_assert;
490 #endif
491 
492 		/*
493 		 * The serializer can be passed in from the device,
494 		 * allowing the same serializer to be used for both
495 		 * the interrupt interlock and the device queue.
496 		 * If not specified, the netif structure will use an
497 		 * embedded serializer.
498 		 */
499 		if (serializer == NULL) {
500 			serializer = &ifp->if_default_serializer;
501 			lwkt_serialize_init(serializer);
502 		}
503 		ifp->if_serializer = serializer;
504 	}
505 
506 	ifp->if_start_cpuid = if_start_cpuid;
507 	ifp->if_cpuid = 0;
508 
509 #ifdef DEVICE_POLLING
510 	/* Device is not in polling mode by default */
511 	ifp->if_poll_cpuid = -1;
512 	if (ifp->if_poll != NULL)
513 		ifp->if_start_cpuid = if_start_cpuid_poll;
514 #endif
515 
516 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
517 				     M_LWKTMSG, M_WAITOK);
518 	for (i = 0; i < ncpus; ++i) {
519 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
520 			    0, if_start_dispatch);
521 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
522 	}
523 
524 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
525 	ifp->if_index = ++if_index;
526 
527 	/*
528 	 * XXX -
529 	 * The old code would work if the interface passed a pre-existing
530 	 * chain of ifaddrs to this code.  We don't trust our callers to
531 	 * properly initialize the tailq, however, so we no longer allow
532 	 * this unlikely case.
533 	 */
534 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
535 				    M_IFADDR, M_WAITOK | M_ZERO);
536 	for (i = 0; i < ncpus; ++i)
537 		TAILQ_INIT(&ifp->if_addrheads[i]);
538 
539 	TAILQ_INIT(&ifp->if_prefixhead);
540 	LIST_INIT(&ifp->if_multiaddrs);
541 	getmicrotime(&ifp->if_lastchange);
542 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
543 		unsigned int n;
544 		struct ifnet **q;
545 
546 		if_indexlim <<= 1;
547 
548 		/* grow ifindex2ifnet */
549 		n = if_indexlim * sizeof(*q);
550 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
551 		if (ifindex2ifnet) {
552 			bcopy(ifindex2ifnet, q, n/2);
553 			kfree(ifindex2ifnet, M_IFADDR);
554 		}
555 		ifindex2ifnet = q;
556 	}
557 
558 	ifindex2ifnet[if_index] = ifp;
559 
560 	/*
561 	 * create a Link Level name for this device
562 	 */
563 	namelen = strlen(ifp->if_xname);
564 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
565 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
566 	socksize = masklen + ifp->if_addrlen;
567 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
568 	if (socksize < sizeof(*sdl))
569 		socksize = sizeof(*sdl);
570 	socksize = ROUNDUP(socksize);
571 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
572 	ifa = ifa_create(ifasize, M_WAITOK);
573 	sdl = (struct sockaddr_dl *)(ifa + 1);
574 	sdl->sdl_len = socksize;
575 	sdl->sdl_family = AF_LINK;
576 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
577 	sdl->sdl_nlen = namelen;
578 	sdl->sdl_index = ifp->if_index;
579 	sdl->sdl_type = ifp->if_type;
580 	ifp->if_lladdr = ifa;
581 	ifa->ifa_ifp = ifp;
582 	ifa->ifa_rtrequest = link_rtrequest;
583 	ifa->ifa_addr = (struct sockaddr *)sdl;
584 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
585 	ifa->ifa_netmask = (struct sockaddr *)sdl;
586 	sdl->sdl_len = masklen;
587 	while (namelen != 0)
588 		sdl->sdl_data[--namelen] = 0xff;
589 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
590 
591 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
592 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
593 
594 	ifq = &ifp->if_snd;
595 	ifq->altq_type = 0;
596 	ifq->altq_disc = NULL;
597 	ifq->altq_flags &= ALTQF_CANTCHANGE;
598 	ifq->altq_tbr = NULL;
599 	ifq->altq_ifp = ifp;
600 	ifq->altq_started = 0;
601 	ifq->altq_prepended = NULL;
602 	ALTQ_LOCK_INIT(ifq);
603 	ifq_set_classic(ifq);
604 
605 	if (!SLIST_EMPTY(&domains))
606 		if_attachdomain1(ifp);
607 
608 	/* Announce the interface. */
609 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
610 }
611 
612 static void
613 if_attachdomain(void *dummy)
614 {
615 	struct ifnet *ifp;
616 
617 	crit_enter();
618 	TAILQ_FOREACH(ifp, &ifnet, if_list)
619 		if_attachdomain1(ifp);
620 	crit_exit();
621 }
622 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
623 	if_attachdomain, NULL);
624 
625 static void
626 if_attachdomain1(struct ifnet *ifp)
627 {
628 	struct domain *dp;
629 
630 	crit_enter();
631 
632 	/* address family dependent data region */
633 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
634 	SLIST_FOREACH(dp, &domains, dom_next)
635 		if (dp->dom_ifattach)
636 			ifp->if_afdata[dp->dom_family] =
637 				(*dp->dom_ifattach)(ifp);
638 	crit_exit();
639 }
640 
641 /*
642  * Purge all addresses whose type is _not_ AF_LINK
643  */
644 void
645 if_purgeaddrs_nolink(struct ifnet *ifp)
646 {
647 	struct ifaddr_container *ifac, *next;
648 
649 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
650 			      ifa_link, next) {
651 		struct ifaddr *ifa = ifac->ifa;
652 
653 		/* Leave link ifaddr as it is */
654 		if (ifa->ifa_addr->sa_family == AF_LINK)
655 			continue;
656 #ifdef INET
657 		/* XXX: Ugly!! ad hoc just for INET */
658 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
659 			struct ifaliasreq ifr;
660 #ifdef IFADDR_DEBUG_VERBOSE
661 			int i;
662 
663 			kprintf("purge in4 addr %p: ", ifa);
664 			for (i = 0; i < ncpus; ++i)
665 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
666 			kprintf("\n");
667 #endif
668 
669 			bzero(&ifr, sizeof ifr);
670 			ifr.ifra_addr = *ifa->ifa_addr;
671 			if (ifa->ifa_dstaddr)
672 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
673 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
674 				       NULL) == 0)
675 				continue;
676 		}
677 #endif /* INET */
678 #ifdef INET6
679 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
680 #ifdef IFADDR_DEBUG_VERBOSE
681 			int i;
682 
683 			kprintf("purge in6 addr %p: ", ifa);
684 			for (i = 0; i < ncpus; ++i)
685 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
686 			kprintf("\n");
687 #endif
688 
689 			in6_purgeaddr(ifa);
690 			/* ifp_addrhead is already updated */
691 			continue;
692 		}
693 #endif /* INET6 */
694 		ifa_ifunlink(ifa, ifp);
695 		ifa_destroy(ifa);
696 	}
697 }
698 
699 /*
700  * Detach an interface, removing it from the
701  * list of "active" interfaces.
702  */
703 void
704 if_detach(struct ifnet *ifp)
705 {
706 	struct radix_node_head	*rnh;
707 	int i;
708 	int cpu, origcpu;
709 	struct domain *dp;
710 
711 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
712 
713 	/*
714 	 * Remove routes and flush queues.
715 	 */
716 	crit_enter();
717 #ifdef DEVICE_POLLING
718 	if (ifp->if_flags & IFF_POLLING)
719 		ether_poll_deregister(ifp);
720 #endif
721 #ifdef IFPOLL_ENABLE
722 	if (ifp->if_flags & IFF_NPOLLING)
723 		ifpoll_deregister(ifp);
724 #endif
725 	if_down(ifp);
726 
727 	if (ifq_is_enabled(&ifp->if_snd))
728 		altq_disable(&ifp->if_snd);
729 	if (ifq_is_attached(&ifp->if_snd))
730 		altq_detach(&ifp->if_snd);
731 
732 	/*
733 	 * Clean up all addresses.
734 	 */
735 	ifp->if_lladdr = NULL;
736 
737 	if_purgeaddrs_nolink(ifp);
738 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
739 		struct ifaddr *ifa;
740 
741 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
742 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
743 			("non-link ifaddr is left on if_addrheads"));
744 
745 		ifa_ifunlink(ifa, ifp);
746 		ifa_destroy(ifa);
747 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
748 			("there are still ifaddrs left on if_addrheads"));
749 	}
750 
751 #ifdef INET
752 	/*
753 	 * Remove all IPv4 kernel structures related to ifp.
754 	 */
755 	in_ifdetach(ifp);
756 #endif
757 
758 #ifdef INET6
759 	/*
760 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
761 	 * before removing routing entries below, since IPv6 interface direct
762 	 * routes are expected to be removed by the IPv6-specific kernel API.
763 	 * Otherwise, the kernel will detect some inconsistency and bark it.
764 	 */
765 	in6_ifdetach(ifp);
766 #endif
767 
768 	/*
769 	 * Delete all remaining routes using this interface
770 	 * Unfortuneatly the only way to do this is to slog through
771 	 * the entire routing table looking for routes which point
772 	 * to this interface...oh well...
773 	 */
774 	origcpu = mycpuid;
775 	for (cpu = 0; cpu < ncpus2; cpu++) {
776 		lwkt_migratecpu(cpu);
777 		for (i = 1; i <= AF_MAX; i++) {
778 			if ((rnh = rt_tables[cpu][i]) == NULL)
779 				continue;
780 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
781 		}
782 	}
783 	lwkt_migratecpu(origcpu);
784 
785 	/* Announce that the interface is gone. */
786 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
787 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
788 
789 	SLIST_FOREACH(dp, &domains, dom_next)
790 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
791 			(*dp->dom_ifdetach)(ifp,
792 				ifp->if_afdata[dp->dom_family]);
793 
794 	/*
795 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
796 	 */
797 	ifindex2ifnet[ifp->if_index] = NULL;
798 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
799 		if_index--;
800 
801 	TAILQ_REMOVE(&ifnet, ifp, if_link);
802 	kfree(ifp->if_addrheads, M_IFADDR);
803 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
804 	crit_exit();
805 }
806 
807 /*
808  * Delete Routes for a Network Interface
809  *
810  * Called for each routing entry via the rnh->rnh_walktree() call above
811  * to delete all route entries referencing a detaching network interface.
812  *
813  * Arguments:
814  *	rn	pointer to node in the routing table
815  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
816  *
817  * Returns:
818  *	0	successful
819  *	errno	failed - reason indicated
820  *
821  */
822 static int
823 if_rtdel(struct radix_node *rn, void *arg)
824 {
825 	struct rtentry	*rt = (struct rtentry *)rn;
826 	struct ifnet	*ifp = arg;
827 	int		err;
828 
829 	if (rt->rt_ifp == ifp) {
830 
831 		/*
832 		 * Protect (sorta) against walktree recursion problems
833 		 * with cloned routes
834 		 */
835 		if (!(rt->rt_flags & RTF_UP))
836 			return (0);
837 
838 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
839 				rt_mask(rt), rt->rt_flags,
840 				NULL);
841 		if (err) {
842 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
843 		}
844 	}
845 
846 	return (0);
847 }
848 
849 /*
850  * Locate an interface based on a complete address.
851  */
852 struct ifaddr *
853 ifa_ifwithaddr(struct sockaddr *addr)
854 {
855 	struct ifnet *ifp;
856 
857 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
858 		struct ifaddr_container *ifac;
859 
860 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
861 			struct ifaddr *ifa = ifac->ifa;
862 
863 			if (ifa->ifa_addr->sa_family != addr->sa_family)
864 				continue;
865 			if (sa_equal(addr, ifa->ifa_addr))
866 				return (ifa);
867 			if ((ifp->if_flags & IFF_BROADCAST) &&
868 			    ifa->ifa_broadaddr &&
869 			    /* IPv6 doesn't have broadcast */
870 			    ifa->ifa_broadaddr->sa_len != 0 &&
871 			    sa_equal(ifa->ifa_broadaddr, addr))
872 				return (ifa);
873 		}
874 	}
875 	return (NULL);
876 }
877 /*
878  * Locate the point to point interface with a given destination address.
879  */
880 struct ifaddr *
881 ifa_ifwithdstaddr(struct sockaddr *addr)
882 {
883 	struct ifnet *ifp;
884 
885 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
886 		struct ifaddr_container *ifac;
887 
888 		if (!(ifp->if_flags & IFF_POINTOPOINT))
889 			continue;
890 
891 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
892 			struct ifaddr *ifa = ifac->ifa;
893 
894 			if (ifa->ifa_addr->sa_family != addr->sa_family)
895 				continue;
896 			if (ifa->ifa_dstaddr &&
897 			    sa_equal(addr, ifa->ifa_dstaddr))
898 				return (ifa);
899 		}
900 	}
901 	return (NULL);
902 }
903 
904 /*
905  * Find an interface on a specific network.  If many, choice
906  * is most specific found.
907  */
908 struct ifaddr *
909 ifa_ifwithnet(struct sockaddr *addr)
910 {
911 	struct ifnet *ifp;
912 	struct ifaddr *ifa_maybe = NULL;
913 	u_int af = addr->sa_family;
914 	char *addr_data = addr->sa_data, *cplim;
915 
916 	/*
917 	 * AF_LINK addresses can be looked up directly by their index number,
918 	 * so do that if we can.
919 	 */
920 	if (af == AF_LINK) {
921 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
922 
923 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
924 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
925 	}
926 
927 	/*
928 	 * Scan though each interface, looking for ones that have
929 	 * addresses in this address family.
930 	 */
931 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
932 		struct ifaddr_container *ifac;
933 
934 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
935 			struct ifaddr *ifa = ifac->ifa;
936 			char *cp, *cp2, *cp3;
937 
938 			if (ifa->ifa_addr->sa_family != af)
939 next:				continue;
940 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
941 				/*
942 				 * This is a bit broken as it doesn't
943 				 * take into account that the remote end may
944 				 * be a single node in the network we are
945 				 * looking for.
946 				 * The trouble is that we don't know the
947 				 * netmask for the remote end.
948 				 */
949 				if (ifa->ifa_dstaddr != NULL &&
950 				    sa_equal(addr, ifa->ifa_dstaddr))
951 					return (ifa);
952 			} else {
953 				/*
954 				 * if we have a special address handler,
955 				 * then use it instead of the generic one.
956 				 */
957 				if (ifa->ifa_claim_addr) {
958 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
959 						return (ifa);
960 					} else {
961 						continue;
962 					}
963 				}
964 
965 				/*
966 				 * Scan all the bits in the ifa's address.
967 				 * If a bit dissagrees with what we are
968 				 * looking for, mask it with the netmask
969 				 * to see if it really matters.
970 				 * (A byte at a time)
971 				 */
972 				if (ifa->ifa_netmask == 0)
973 					continue;
974 				cp = addr_data;
975 				cp2 = ifa->ifa_addr->sa_data;
976 				cp3 = ifa->ifa_netmask->sa_data;
977 				cplim = ifa->ifa_netmask->sa_len +
978 					(char *)ifa->ifa_netmask;
979 				while (cp3 < cplim)
980 					if ((*cp++ ^ *cp2++) & *cp3++)
981 						goto next; /* next address! */
982 				/*
983 				 * If the netmask of what we just found
984 				 * is more specific than what we had before
985 				 * (if we had one) then remember the new one
986 				 * before continuing to search
987 				 * for an even better one.
988 				 */
989 				if (ifa_maybe == 0 ||
990 				    rn_refines((char *)ifa->ifa_netmask,
991 					       (char *)ifa_maybe->ifa_netmask))
992 					ifa_maybe = ifa;
993 			}
994 		}
995 	}
996 	return (ifa_maybe);
997 }
998 
999 /*
1000  * Find an interface address specific to an interface best matching
1001  * a given address.
1002  */
1003 struct ifaddr *
1004 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1005 {
1006 	struct ifaddr_container *ifac;
1007 	char *cp, *cp2, *cp3;
1008 	char *cplim;
1009 	struct ifaddr *ifa_maybe = 0;
1010 	u_int af = addr->sa_family;
1011 
1012 	if (af >= AF_MAX)
1013 		return (0);
1014 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1015 		struct ifaddr *ifa = ifac->ifa;
1016 
1017 		if (ifa->ifa_addr->sa_family != af)
1018 			continue;
1019 		if (ifa_maybe == 0)
1020 			ifa_maybe = ifa;
1021 		if (ifa->ifa_netmask == NULL) {
1022 			if (sa_equal(addr, ifa->ifa_addr) ||
1023 			    (ifa->ifa_dstaddr != NULL &&
1024 			     sa_equal(addr, ifa->ifa_dstaddr)))
1025 				return (ifa);
1026 			continue;
1027 		}
1028 		if (ifp->if_flags & IFF_POINTOPOINT) {
1029 			if (sa_equal(addr, ifa->ifa_dstaddr))
1030 				return (ifa);
1031 		} else {
1032 			cp = addr->sa_data;
1033 			cp2 = ifa->ifa_addr->sa_data;
1034 			cp3 = ifa->ifa_netmask->sa_data;
1035 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1036 			for (; cp3 < cplim; cp3++)
1037 				if ((*cp++ ^ *cp2++) & *cp3)
1038 					break;
1039 			if (cp3 == cplim)
1040 				return (ifa);
1041 		}
1042 	}
1043 	return (ifa_maybe);
1044 }
1045 
1046 /*
1047  * Default action when installing a route with a Link Level gateway.
1048  * Lookup an appropriate real ifa to point to.
1049  * This should be moved to /sys/net/link.c eventually.
1050  */
1051 static void
1052 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1053 {
1054 	struct ifaddr *ifa;
1055 	struct sockaddr *dst;
1056 	struct ifnet *ifp;
1057 
1058 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1059 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1060 		return;
1061 	ifa = ifaof_ifpforaddr(dst, ifp);
1062 	if (ifa != NULL) {
1063 		IFAFREE(rt->rt_ifa);
1064 		IFAREF(ifa);
1065 		rt->rt_ifa = ifa;
1066 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1067 			ifa->ifa_rtrequest(cmd, rt, info);
1068 	}
1069 }
1070 
1071 /*
1072  * Mark an interface down and notify protocols of
1073  * the transition.
1074  * NOTE: must be called at splnet or eqivalent.
1075  */
1076 void
1077 if_unroute(struct ifnet *ifp, int flag, int fam)
1078 {
1079 	struct ifaddr_container *ifac;
1080 
1081 	ifp->if_flags &= ~flag;
1082 	getmicrotime(&ifp->if_lastchange);
1083 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1084 		struct ifaddr *ifa = ifac->ifa;
1085 
1086 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1087 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1088 	}
1089 	ifq_purge(&ifp->if_snd);
1090 	rt_ifmsg(ifp);
1091 }
1092 
1093 /*
1094  * Mark an interface up and notify protocols of
1095  * the transition.
1096  * NOTE: must be called at splnet or eqivalent.
1097  */
1098 void
1099 if_route(struct ifnet *ifp, int flag, int fam)
1100 {
1101 	struct ifaddr_container *ifac;
1102 
1103 	ifq_purge(&ifp->if_snd);
1104 	ifp->if_flags |= flag;
1105 	getmicrotime(&ifp->if_lastchange);
1106 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1107 		struct ifaddr *ifa = ifac->ifa;
1108 
1109 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1110 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1111 	}
1112 	rt_ifmsg(ifp);
1113 #ifdef INET6
1114 	in6_if_up(ifp);
1115 #endif
1116 }
1117 
1118 /*
1119  * Mark an interface down and notify protocols of the transition.  An
1120  * interface going down is also considered to be a synchronizing event.
1121  * We must ensure that all packet processing related to the interface
1122  * has completed before we return so e.g. the caller can free the ifnet
1123  * structure that the mbufs may be referencing.
1124  *
1125  * NOTE: must be called at splnet or eqivalent.
1126  */
1127 void
1128 if_down(struct ifnet *ifp)
1129 {
1130 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1131 	netmsg_service_sync();
1132 }
1133 
1134 /*
1135  * Mark an interface up and notify protocols of
1136  * the transition.
1137  * NOTE: must be called at splnet or eqivalent.
1138  */
1139 void
1140 if_up(struct ifnet *ifp)
1141 {
1142 	if_route(ifp, IFF_UP, AF_UNSPEC);
1143 }
1144 
1145 /*
1146  * Process a link state change.
1147  * NOTE: must be called at splsoftnet or equivalent.
1148  */
1149 void
1150 if_link_state_change(struct ifnet *ifp)
1151 {
1152 	int link_state = ifp->if_link_state;
1153 
1154 	rt_ifmsg(ifp);
1155 	devctl_notify("IFNET", ifp->if_xname,
1156 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1157 }
1158 
1159 /*
1160  * Handle interface watchdog timer routines.  Called
1161  * from softclock, we decrement timers (if set) and
1162  * call the appropriate interface routine on expiration.
1163  */
1164 static void
1165 if_slowtimo(void *arg)
1166 {
1167 	struct ifnet *ifp;
1168 
1169 	crit_enter();
1170 
1171 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1172 		if (ifp->if_timer == 0 || --ifp->if_timer)
1173 			continue;
1174 		if (ifp->if_watchdog) {
1175 			if (ifnet_tryserialize_all(ifp)) {
1176 				(*ifp->if_watchdog)(ifp);
1177 				ifnet_deserialize_all(ifp);
1178 			} else {
1179 				/* try again next timeout */
1180 				++ifp->if_timer;
1181 			}
1182 		}
1183 	}
1184 
1185 	crit_exit();
1186 
1187 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1188 }
1189 
1190 /*
1191  * Map interface name to
1192  * interface structure pointer.
1193  */
1194 struct ifnet *
1195 ifunit(const char *name)
1196 {
1197 	struct ifnet *ifp;
1198 
1199 	/*
1200 	 * Search all the interfaces for this name/number
1201 	 */
1202 
1203 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1204 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1205 			break;
1206 	}
1207 	return (ifp);
1208 }
1209 
1210 
1211 /*
1212  * Map interface name in a sockaddr_dl to
1213  * interface structure pointer.
1214  */
1215 struct ifnet *
1216 if_withname(struct sockaddr *sa)
1217 {
1218 	char ifname[IFNAMSIZ+1];
1219 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1220 
1221 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1222 	     (sdl->sdl_nlen > IFNAMSIZ) )
1223 		return NULL;
1224 
1225 	/*
1226 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1227 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1228 	 * and there might not be room to put the trailing null anyway, so we
1229 	 * make a local copy that we know we can null terminate safely.
1230 	 */
1231 
1232 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1233 	ifname[sdl->sdl_nlen] = '\0';
1234 	return ifunit(ifname);
1235 }
1236 
1237 
1238 /*
1239  * Interface ioctls.
1240  */
1241 int
1242 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1243 {
1244 	struct ifnet *ifp;
1245 	struct ifreq *ifr;
1246 	struct ifstat *ifs;
1247 	int error;
1248 	short oif_flags;
1249 	int new_flags;
1250 	size_t namelen, onamelen;
1251 	char new_name[IFNAMSIZ];
1252 	struct ifaddr *ifa;
1253 	struct sockaddr_dl *sdl;
1254 
1255 	switch (cmd) {
1256 
1257 	case SIOCGIFCONF:
1258 	case OSIOCGIFCONF:
1259 		return (ifconf(cmd, data, cred));
1260 	}
1261 	ifr = (struct ifreq *)data;
1262 
1263 	switch (cmd) {
1264 	case SIOCIFCREATE:
1265 	case SIOCIFDESTROY:
1266 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1267 			return (error);
1268 		return ((cmd == SIOCIFCREATE) ?
1269 			if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name)) :
1270 			if_clone_destroy(ifr->ifr_name));
1271 
1272 	case SIOCIFGCLONERS:
1273 		return (if_clone_list((struct if_clonereq *)data));
1274 	}
1275 
1276 	ifp = ifunit(ifr->ifr_name);
1277 	if (ifp == 0)
1278 		return (ENXIO);
1279 	switch (cmd) {
1280 
1281 	case SIOCGIFINDEX:
1282 		ifr->ifr_index = ifp->if_index;
1283 		break;
1284 
1285 	case SIOCGIFFLAGS:
1286 		ifr->ifr_flags = ifp->if_flags;
1287 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1288 		break;
1289 
1290 	case SIOCGIFCAP:
1291 		ifr->ifr_reqcap = ifp->if_capabilities;
1292 		ifr->ifr_curcap = ifp->if_capenable;
1293 		break;
1294 
1295 	case SIOCGIFMETRIC:
1296 		ifr->ifr_metric = ifp->if_metric;
1297 		break;
1298 
1299 	case SIOCGIFMTU:
1300 		ifr->ifr_mtu = ifp->if_mtu;
1301 		break;
1302 
1303 	case SIOCGIFPHYS:
1304 		ifr->ifr_phys = ifp->if_physical;
1305 		break;
1306 
1307 	case SIOCGIFPOLLCPU:
1308 #ifdef DEVICE_POLLING
1309 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1310 #else
1311 		ifr->ifr_pollcpu = -1;
1312 #endif
1313 		break;
1314 
1315 	case SIOCSIFPOLLCPU:
1316 #ifdef DEVICE_POLLING
1317 		if ((ifp->if_flags & IFF_POLLING) == 0)
1318 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1319 #endif
1320 		break;
1321 
1322 	case SIOCSIFFLAGS:
1323 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1324 		if (error)
1325 			return (error);
1326 		new_flags = (ifr->ifr_flags & 0xffff) |
1327 		    (ifr->ifr_flagshigh << 16);
1328 		if (ifp->if_flags & IFF_SMART) {
1329 			/* Smart drivers twiddle their own routes */
1330 		} else if (ifp->if_flags & IFF_UP &&
1331 		    (new_flags & IFF_UP) == 0) {
1332 			crit_enter();
1333 			if_down(ifp);
1334 			crit_exit();
1335 		} else if (new_flags & IFF_UP &&
1336 		    (ifp->if_flags & IFF_UP) == 0) {
1337 			crit_enter();
1338 			if_up(ifp);
1339 			crit_exit();
1340 		}
1341 
1342 #ifdef DEVICE_POLLING
1343 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1344 			if (new_flags & IFF_POLLING) {
1345 				ether_poll_register(ifp);
1346 			} else {
1347 				ether_poll_deregister(ifp);
1348 			}
1349 		}
1350 #endif
1351 #ifdef IFPOLL_ENABLE
1352 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1353 			if (new_flags & IFF_NPOLLING)
1354 				ifpoll_register(ifp);
1355 			else
1356 				ifpoll_deregister(ifp);
1357 		}
1358 #endif
1359 
1360 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1361 			(new_flags &~ IFF_CANTCHANGE);
1362 		if (new_flags & IFF_PPROMISC) {
1363 			/* Permanently promiscuous mode requested */
1364 			ifp->if_flags |= IFF_PROMISC;
1365 		} else if (ifp->if_pcount == 0) {
1366 			ifp->if_flags &= ~IFF_PROMISC;
1367 		}
1368 		if (ifp->if_ioctl) {
1369 			ifnet_serialize_all(ifp);
1370 			ifp->if_ioctl(ifp, cmd, data, cred);
1371 			ifnet_deserialize_all(ifp);
1372 		}
1373 		getmicrotime(&ifp->if_lastchange);
1374 		break;
1375 
1376 	case SIOCSIFCAP:
1377 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1378 		if (error)
1379 			return (error);
1380 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1381 			return (EINVAL);
1382 		ifnet_serialize_all(ifp);
1383 		ifp->if_ioctl(ifp, cmd, data, cred);
1384 		ifnet_deserialize_all(ifp);
1385 		break;
1386 
1387 	case SIOCSIFNAME:
1388 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1389 		if (error != 0)
1390 			return (error);
1391 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1392 		if (error != 0)
1393 			return (error);
1394 		if (new_name[0] == '\0')
1395 			return (EINVAL);
1396 		if (ifunit(new_name) != NULL)
1397 			return (EEXIST);
1398 
1399 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1400 
1401 		/* Announce the departure of the interface. */
1402 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1403 
1404 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1405 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1406 		/* XXX IFA_LOCK(ifa); */
1407 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1408 		namelen = strlen(new_name);
1409 		onamelen = sdl->sdl_nlen;
1410 		/*
1411 		 * Move the address if needed.  This is safe because we
1412 		 * allocate space for a name of length IFNAMSIZ when we
1413 		 * create this in if_attach().
1414 		 */
1415 		if (namelen != onamelen) {
1416 			bcopy(sdl->sdl_data + onamelen,
1417 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1418 		}
1419 		bcopy(new_name, sdl->sdl_data, namelen);
1420 		sdl->sdl_nlen = namelen;
1421 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1422 		bzero(sdl->sdl_data, onamelen);
1423 		while (namelen != 0)
1424 			sdl->sdl_data[--namelen] = 0xff;
1425 		/* XXX IFA_UNLOCK(ifa) */
1426 
1427 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1428 
1429 		/* Announce the return of the interface. */
1430 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1431 		break;
1432 
1433 	case SIOCSIFMETRIC:
1434 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1435 		if (error)
1436 			return (error);
1437 		ifp->if_metric = ifr->ifr_metric;
1438 		getmicrotime(&ifp->if_lastchange);
1439 		break;
1440 
1441 	case SIOCSIFPHYS:
1442 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1443 		if (error)
1444 			return error;
1445 		if (!ifp->if_ioctl)
1446 		        return EOPNOTSUPP;
1447 		ifnet_serialize_all(ifp);
1448 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1449 		ifnet_deserialize_all(ifp);
1450 		if (error == 0)
1451 			getmicrotime(&ifp->if_lastchange);
1452 		return (error);
1453 
1454 	case SIOCSIFMTU:
1455 	{
1456 		u_long oldmtu = ifp->if_mtu;
1457 
1458 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1459 		if (error)
1460 			return (error);
1461 		if (ifp->if_ioctl == NULL)
1462 			return (EOPNOTSUPP);
1463 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1464 			return (EINVAL);
1465 		ifnet_serialize_all(ifp);
1466 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1467 		ifnet_deserialize_all(ifp);
1468 		if (error == 0) {
1469 			getmicrotime(&ifp->if_lastchange);
1470 			rt_ifmsg(ifp);
1471 		}
1472 		/*
1473 		 * If the link MTU changed, do network layer specific procedure.
1474 		 */
1475 		if (ifp->if_mtu != oldmtu) {
1476 #ifdef INET6
1477 			nd6_setmtu(ifp);
1478 #endif
1479 		}
1480 		return (error);
1481 	}
1482 
1483 	case SIOCADDMULTI:
1484 	case SIOCDELMULTI:
1485 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1486 		if (error)
1487 			return (error);
1488 
1489 		/* Don't allow group membership on non-multicast interfaces. */
1490 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1491 			return EOPNOTSUPP;
1492 
1493 		/* Don't let users screw up protocols' entries. */
1494 		if (ifr->ifr_addr.sa_family != AF_LINK)
1495 			return EINVAL;
1496 
1497 		if (cmd == SIOCADDMULTI) {
1498 			struct ifmultiaddr *ifma;
1499 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1500 		} else {
1501 			error = if_delmulti(ifp, &ifr->ifr_addr);
1502 		}
1503 		if (error == 0)
1504 			getmicrotime(&ifp->if_lastchange);
1505 		return error;
1506 
1507 	case SIOCSIFPHYADDR:
1508 	case SIOCDIFPHYADDR:
1509 #ifdef INET6
1510 	case SIOCSIFPHYADDR_IN6:
1511 #endif
1512 	case SIOCSLIFPHYADDR:
1513         case SIOCSIFMEDIA:
1514 	case SIOCSIFGENERIC:
1515 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1516 		if (error)
1517 			return (error);
1518 		if (ifp->if_ioctl == 0)
1519 			return (EOPNOTSUPP);
1520 		ifnet_serialize_all(ifp);
1521 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1522 		ifnet_deserialize_all(ifp);
1523 		if (error == 0)
1524 			getmicrotime(&ifp->if_lastchange);
1525 		return error;
1526 
1527 	case SIOCGIFSTATUS:
1528 		ifs = (struct ifstat *)data;
1529 		ifs->ascii[0] = '\0';
1530 
1531 	case SIOCGIFPSRCADDR:
1532 	case SIOCGIFPDSTADDR:
1533 	case SIOCGLIFPHYADDR:
1534 	case SIOCGIFMEDIA:
1535 	case SIOCGIFGENERIC:
1536 		if (ifp->if_ioctl == NULL)
1537 			return (EOPNOTSUPP);
1538 		ifnet_serialize_all(ifp);
1539 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1540 		ifnet_deserialize_all(ifp);
1541 		return (error);
1542 
1543 	case SIOCSIFLLADDR:
1544 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1545 		if (error)
1546 			return (error);
1547 		return if_setlladdr(ifp,
1548 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1549 
1550 	default:
1551 		oif_flags = ifp->if_flags;
1552 		if (so->so_proto == 0)
1553 			return (EOPNOTSUPP);
1554 #ifndef COMPAT_43
1555 		error = so_pru_control(so, cmd, data, ifp);
1556 #else
1557 	    {
1558 		int ocmd = cmd;
1559 
1560 		switch (cmd) {
1561 
1562 		case SIOCSIFDSTADDR:
1563 		case SIOCSIFADDR:
1564 		case SIOCSIFBRDADDR:
1565 		case SIOCSIFNETMASK:
1566 #if BYTE_ORDER != BIG_ENDIAN
1567 			if (ifr->ifr_addr.sa_family == 0 &&
1568 			    ifr->ifr_addr.sa_len < 16) {
1569 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1570 				ifr->ifr_addr.sa_len = 16;
1571 			}
1572 #else
1573 			if (ifr->ifr_addr.sa_len == 0)
1574 				ifr->ifr_addr.sa_len = 16;
1575 #endif
1576 			break;
1577 
1578 		case OSIOCGIFADDR:
1579 			cmd = SIOCGIFADDR;
1580 			break;
1581 
1582 		case OSIOCGIFDSTADDR:
1583 			cmd = SIOCGIFDSTADDR;
1584 			break;
1585 
1586 		case OSIOCGIFBRDADDR:
1587 			cmd = SIOCGIFBRDADDR;
1588 			break;
1589 
1590 		case OSIOCGIFNETMASK:
1591 			cmd = SIOCGIFNETMASK;
1592 		}
1593 		error =  so_pru_control(so, cmd, data, ifp);
1594 		switch (ocmd) {
1595 
1596 		case OSIOCGIFADDR:
1597 		case OSIOCGIFDSTADDR:
1598 		case OSIOCGIFBRDADDR:
1599 		case OSIOCGIFNETMASK:
1600 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1601 
1602 		}
1603 	    }
1604 #endif /* COMPAT_43 */
1605 
1606 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1607 #ifdef INET6
1608 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1609 			if (ifp->if_flags & IFF_UP) {
1610 				crit_enter();
1611 				in6_if_up(ifp);
1612 				crit_exit();
1613 			}
1614 #endif
1615 		}
1616 		return (error);
1617 
1618 	}
1619 	return (0);
1620 }
1621 
1622 /*
1623  * Set/clear promiscuous mode on interface ifp based on the truth value
1624  * of pswitch.  The calls are reference counted so that only the first
1625  * "on" request actually has an effect, as does the final "off" request.
1626  * Results are undefined if the "off" and "on" requests are not matched.
1627  */
1628 int
1629 ifpromisc(struct ifnet *ifp, int pswitch)
1630 {
1631 	struct ifreq ifr;
1632 	int error;
1633 	int oldflags;
1634 
1635 	oldflags = ifp->if_flags;
1636 	if (ifp->if_flags & IFF_PPROMISC) {
1637 		/* Do nothing if device is in permanently promiscuous mode */
1638 		ifp->if_pcount += pswitch ? 1 : -1;
1639 		return (0);
1640 	}
1641 	if (pswitch) {
1642 		/*
1643 		 * If the device is not configured up, we cannot put it in
1644 		 * promiscuous mode.
1645 		 */
1646 		if ((ifp->if_flags & IFF_UP) == 0)
1647 			return (ENETDOWN);
1648 		if (ifp->if_pcount++ != 0)
1649 			return (0);
1650 		ifp->if_flags |= IFF_PROMISC;
1651 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1652 		    ifp->if_xname);
1653 	} else {
1654 		if (--ifp->if_pcount > 0)
1655 			return (0);
1656 		ifp->if_flags &= ~IFF_PROMISC;
1657 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1658 		    ifp->if_xname);
1659 	}
1660 	ifr.ifr_flags = ifp->if_flags;
1661 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1662 	ifnet_serialize_all(ifp);
1663 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1664 	ifnet_deserialize_all(ifp);
1665 	if (error == 0)
1666 		rt_ifmsg(ifp);
1667 	else
1668 		ifp->if_flags = oldflags;
1669 	return error;
1670 }
1671 
1672 /*
1673  * Return interface configuration
1674  * of system.  List may be used
1675  * in later ioctl's (above) to get
1676  * other information.
1677  */
1678 static int
1679 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1680 {
1681 	struct ifconf *ifc = (struct ifconf *)data;
1682 	struct ifnet *ifp;
1683 	struct sockaddr *sa;
1684 	struct ifreq ifr, *ifrp;
1685 	int space = ifc->ifc_len, error = 0;
1686 
1687 	ifrp = ifc->ifc_req;
1688 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1689 		struct ifaddr_container *ifac;
1690 		int addrs;
1691 
1692 		if (space <= sizeof ifr)
1693 			break;
1694 
1695 		/*
1696 		 * Zero the stack declared structure first to prevent
1697 		 * memory disclosure.
1698 		 */
1699 		bzero(&ifr, sizeof(ifr));
1700 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1701 		    >= sizeof(ifr.ifr_name)) {
1702 			error = ENAMETOOLONG;
1703 			break;
1704 		}
1705 
1706 		addrs = 0;
1707 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1708 			struct ifaddr *ifa = ifac->ifa;
1709 
1710 			if (space <= sizeof ifr)
1711 				break;
1712 			sa = ifa->ifa_addr;
1713 			if (cred->cr_prison &&
1714 			    prison_if(cred, sa))
1715 				continue;
1716 			addrs++;
1717 #ifdef COMPAT_43
1718 			if (cmd == OSIOCGIFCONF) {
1719 				struct osockaddr *osa =
1720 					 (struct osockaddr *)&ifr.ifr_addr;
1721 				ifr.ifr_addr = *sa;
1722 				osa->sa_family = sa->sa_family;
1723 				error = copyout(&ifr, ifrp, sizeof ifr);
1724 				ifrp++;
1725 			} else
1726 #endif
1727 			if (sa->sa_len <= sizeof(*sa)) {
1728 				ifr.ifr_addr = *sa;
1729 				error = copyout(&ifr, ifrp, sizeof ifr);
1730 				ifrp++;
1731 			} else {
1732 				if (space < (sizeof ifr) + sa->sa_len -
1733 					    sizeof(*sa))
1734 					break;
1735 				space -= sa->sa_len - sizeof(*sa);
1736 				error = copyout(&ifr, ifrp,
1737 						sizeof ifr.ifr_name);
1738 				if (error == 0)
1739 					error = copyout(sa, &ifrp->ifr_addr,
1740 							sa->sa_len);
1741 				ifrp = (struct ifreq *)
1742 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1743 			}
1744 			if (error)
1745 				break;
1746 			space -= sizeof ifr;
1747 		}
1748 		if (error)
1749 			break;
1750 		if (!addrs) {
1751 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1752 			error = copyout(&ifr, ifrp, sizeof ifr);
1753 			if (error)
1754 				break;
1755 			space -= sizeof ifr;
1756 			ifrp++;
1757 		}
1758 	}
1759 	ifc->ifc_len -= space;
1760 	return (error);
1761 }
1762 
1763 /*
1764  * Just like if_promisc(), but for all-multicast-reception mode.
1765  */
1766 int
1767 if_allmulti(struct ifnet *ifp, int onswitch)
1768 {
1769 	int error = 0;
1770 	struct ifreq ifr;
1771 
1772 	crit_enter();
1773 
1774 	if (onswitch) {
1775 		if (ifp->if_amcount++ == 0) {
1776 			ifp->if_flags |= IFF_ALLMULTI;
1777 			ifr.ifr_flags = ifp->if_flags;
1778 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1779 			ifnet_serialize_all(ifp);
1780 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1781 					      NULL);
1782 			ifnet_deserialize_all(ifp);
1783 		}
1784 	} else {
1785 		if (ifp->if_amcount > 1) {
1786 			ifp->if_amcount--;
1787 		} else {
1788 			ifp->if_amcount = 0;
1789 			ifp->if_flags &= ~IFF_ALLMULTI;
1790 			ifr.ifr_flags = ifp->if_flags;
1791 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1792 			ifnet_serialize_all(ifp);
1793 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1794 					      NULL);
1795 			ifnet_deserialize_all(ifp);
1796 		}
1797 	}
1798 
1799 	crit_exit();
1800 
1801 	if (error == 0)
1802 		rt_ifmsg(ifp);
1803 	return error;
1804 }
1805 
1806 /*
1807  * Add a multicast listenership to the interface in question.
1808  * The link layer provides a routine which converts
1809  */
1810 int
1811 if_addmulti(
1812 	struct ifnet *ifp,	/* interface to manipulate */
1813 	struct sockaddr *sa,	/* address to add */
1814 	struct ifmultiaddr **retifma)
1815 {
1816 	struct sockaddr *llsa, *dupsa;
1817 	int error;
1818 	struct ifmultiaddr *ifma;
1819 
1820 	/*
1821 	 * If the matching multicast address already exists
1822 	 * then don't add a new one, just add a reference
1823 	 */
1824 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1825 		if (sa_equal(sa, ifma->ifma_addr)) {
1826 			ifma->ifma_refcount++;
1827 			if (retifma)
1828 				*retifma = ifma;
1829 			return 0;
1830 		}
1831 	}
1832 
1833 	/*
1834 	 * Give the link layer a chance to accept/reject it, and also
1835 	 * find out which AF_LINK address this maps to, if it isn't one
1836 	 * already.
1837 	 */
1838 	if (ifp->if_resolvemulti) {
1839 		ifnet_serialize_all(ifp);
1840 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
1841 		ifnet_deserialize_all(ifp);
1842 		if (error)
1843 			return error;
1844 	} else {
1845 		llsa = 0;
1846 	}
1847 
1848 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1849 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1850 	bcopy(sa, dupsa, sa->sa_len);
1851 
1852 	ifma->ifma_addr = dupsa;
1853 	ifma->ifma_lladdr = llsa;
1854 	ifma->ifma_ifp = ifp;
1855 	ifma->ifma_refcount = 1;
1856 	ifma->ifma_protospec = 0;
1857 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1858 
1859 	/*
1860 	 * Some network interfaces can scan the address list at
1861 	 * interrupt time; lock them out.
1862 	 */
1863 	crit_enter();
1864 	LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1865 	crit_exit();
1866 	*retifma = ifma;
1867 
1868 	if (llsa != 0) {
1869 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1870 			if (sa_equal(ifma->ifma_addr, llsa))
1871 				break;
1872 		}
1873 		if (ifma) {
1874 			ifma->ifma_refcount++;
1875 		} else {
1876 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1877 			       M_IFMADDR, M_WAITOK);
1878 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1879 			       M_IFMADDR, M_WAITOK);
1880 			bcopy(llsa, dupsa, llsa->sa_len);
1881 			ifma->ifma_addr = dupsa;
1882 			ifma->ifma_ifp = ifp;
1883 			ifma->ifma_refcount = 1;
1884 			crit_enter();
1885 			LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1886 			crit_exit();
1887 		}
1888 	}
1889 	/*
1890 	 * We are certain we have added something, so call down to the
1891 	 * interface to let them know about it.
1892 	 */
1893 	crit_enter();
1894 	ifnet_serialize_all(ifp);
1895 	ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
1896 	ifnet_deserialize_all(ifp);
1897 	crit_exit();
1898 
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Remove a reference to a multicast address on this interface.  Yell
1904  * if the request does not match an existing membership.
1905  */
1906 int
1907 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1908 {
1909 	struct ifmultiaddr *ifma;
1910 
1911 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1912 		if (sa_equal(sa, ifma->ifma_addr))
1913 			break;
1914 	if (ifma == 0)
1915 		return ENOENT;
1916 
1917 	if (ifma->ifma_refcount > 1) {
1918 		ifma->ifma_refcount--;
1919 		return 0;
1920 	}
1921 
1922 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
1923 	sa = ifma->ifma_lladdr;
1924 	crit_enter();
1925 	LIST_REMOVE(ifma, ifma_link);
1926 	/*
1927 	 * Make sure the interface driver is notified
1928 	 * in the case of a link layer mcast group being left.
1929 	 */
1930 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1931 		ifnet_serialize_all(ifp);
1932 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1933 		ifnet_deserialize_all(ifp);
1934 	}
1935 	crit_exit();
1936 	kfree(ifma->ifma_addr, M_IFMADDR);
1937 	kfree(ifma, M_IFMADDR);
1938 	if (sa == 0)
1939 		return 0;
1940 
1941 	/*
1942 	 * Now look for the link-layer address which corresponds to
1943 	 * this network address.  It had been squirreled away in
1944 	 * ifma->ifma_lladdr for this purpose (so we don't have
1945 	 * to call ifp->if_resolvemulti() again), and we saved that
1946 	 * value in sa above.  If some nasty deleted the
1947 	 * link-layer address out from underneath us, we can deal because
1948 	 * the address we stored was is not the same as the one which was
1949 	 * in the record for the link-layer address.  (So we don't complain
1950 	 * in that case.)
1951 	 */
1952 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1953 		if (sa_equal(sa, ifma->ifma_addr))
1954 			break;
1955 	if (ifma == 0)
1956 		return 0;
1957 
1958 	if (ifma->ifma_refcount > 1) {
1959 		ifma->ifma_refcount--;
1960 		return 0;
1961 	}
1962 
1963 	crit_enter();
1964 	ifnet_serialize_all(ifp);
1965 	LIST_REMOVE(ifma, ifma_link);
1966 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1967 	ifnet_deserialize_all(ifp);
1968 	crit_exit();
1969 	kfree(ifma->ifma_addr, M_IFMADDR);
1970 	kfree(sa, M_IFMADDR);
1971 	kfree(ifma, M_IFMADDR);
1972 
1973 	return 0;
1974 }
1975 
1976 /*
1977  * Set the link layer address on an interface.
1978  *
1979  * At this time we only support certain types of interfaces,
1980  * and we don't allow the length of the address to change.
1981  */
1982 int
1983 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
1984 {
1985 	struct sockaddr_dl *sdl;
1986 	struct ifreq ifr;
1987 
1988 	sdl = IF_LLSOCKADDR(ifp);
1989 	if (sdl == NULL)
1990 		return (EINVAL);
1991 	if (len != sdl->sdl_alen)	/* don't allow length to change */
1992 		return (EINVAL);
1993 	switch (ifp->if_type) {
1994 	case IFT_ETHER:			/* these types use struct arpcom */
1995 	case IFT_XETHER:
1996 	case IFT_L2VLAN:
1997 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
1998 		bcopy(lladdr, LLADDR(sdl), len);
1999 		break;
2000 	default:
2001 		return (ENODEV);
2002 	}
2003 	/*
2004 	 * If the interface is already up, we need
2005 	 * to re-init it in order to reprogram its
2006 	 * address filter.
2007 	 */
2008 	ifnet_serialize_all(ifp);
2009 	if ((ifp->if_flags & IFF_UP) != 0) {
2010 		struct ifaddr_container *ifac;
2011 
2012 		ifp->if_flags &= ~IFF_UP;
2013 		ifr.ifr_flags = ifp->if_flags;
2014 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2015 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2016 			      NULL);
2017 		ifp->if_flags |= IFF_UP;
2018 		ifr.ifr_flags = ifp->if_flags;
2019 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2020 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2021 				 NULL);
2022 #ifdef INET
2023 		/*
2024 		 * Also send gratuitous ARPs to notify other nodes about
2025 		 * the address change.
2026 		 */
2027 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2028 			struct ifaddr *ifa = ifac->ifa;
2029 
2030 			if (ifa->ifa_addr != NULL &&
2031 			    ifa->ifa_addr->sa_family == AF_INET)
2032 				arp_ifinit(ifp, ifa);
2033 		}
2034 #endif
2035 	}
2036 	ifnet_deserialize_all(ifp);
2037 	return (0);
2038 }
2039 
2040 struct ifmultiaddr *
2041 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2042 {
2043 	struct ifmultiaddr *ifma;
2044 
2045 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2046 		if (sa_equal(ifma->ifma_addr, sa))
2047 			break;
2048 
2049 	return ifma;
2050 }
2051 
2052 /*
2053  * This function locates the first real ethernet MAC from a network
2054  * card and loads it into node, returning 0 on success or ENOENT if
2055  * no suitable interfaces were found.  It is used by the uuid code to
2056  * generate a unique 6-byte number.
2057  */
2058 int
2059 if_getanyethermac(uint16_t *node, int minlen)
2060 {
2061 	struct ifnet *ifp;
2062 	struct sockaddr_dl *sdl;
2063 
2064 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2065 		if (ifp->if_type != IFT_ETHER)
2066 			continue;
2067 		sdl = IF_LLSOCKADDR(ifp);
2068 		if (sdl->sdl_alen < minlen)
2069 			continue;
2070 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2071 		      minlen);
2072 		return(0);
2073 	}
2074 	return (ENOENT);
2075 }
2076 
2077 /*
2078  * The name argument must be a pointer to storage which will last as
2079  * long as the interface does.  For physical devices, the result of
2080  * device_get_name(dev) is a good choice and for pseudo-devices a
2081  * static string works well.
2082  */
2083 void
2084 if_initname(struct ifnet *ifp, const char *name, int unit)
2085 {
2086 	ifp->if_dname = name;
2087 	ifp->if_dunit = unit;
2088 	if (unit != IF_DUNIT_NONE)
2089 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2090 	else
2091 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2092 }
2093 
2094 int
2095 if_printf(struct ifnet *ifp, const char *fmt, ...)
2096 {
2097 	__va_list ap;
2098 	int retval;
2099 
2100 	retval = kprintf("%s: ", ifp->if_xname);
2101 	__va_start(ap, fmt);
2102 	retval += kvprintf(fmt, ap);
2103 	__va_end(ap);
2104 	return (retval);
2105 }
2106 
2107 void
2108 ifq_set_classic(struct ifaltq *ifq)
2109 {
2110 	ifq->altq_enqueue = ifq_classic_enqueue;
2111 	ifq->altq_dequeue = ifq_classic_dequeue;
2112 	ifq->altq_request = ifq_classic_request;
2113 }
2114 
2115 int
2116 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2117 		    struct altq_pktattr *pa __unused)
2118 {
2119 	logifq(enqueue, ifq);
2120 	if (IF_QFULL(ifq)) {
2121 		m_freem(m);
2122 		return(ENOBUFS);
2123 	} else {
2124 		IF_ENQUEUE(ifq, m);
2125 		return(0);
2126 	}
2127 }
2128 
2129 struct mbuf *
2130 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2131 {
2132 	struct mbuf *m;
2133 
2134 	switch (op) {
2135 	case ALTDQ_POLL:
2136 		IF_POLL(ifq, m);
2137 		break;
2138 	case ALTDQ_REMOVE:
2139 		logifq(dequeue, ifq);
2140 		IF_DEQUEUE(ifq, m);
2141 		break;
2142 	default:
2143 		panic("unsupported ALTQ dequeue op: %d", op);
2144 	}
2145 	KKASSERT(mpolled == NULL || mpolled == m);
2146 	return(m);
2147 }
2148 
2149 int
2150 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2151 {
2152 	switch (req) {
2153 	case ALTRQ_PURGE:
2154 		IF_DRAIN(ifq);
2155 		break;
2156 	default:
2157 		panic("unsupported ALTQ request: %d", req);
2158 	}
2159 	return(0);
2160 }
2161 
2162 int
2163 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2164 {
2165 	struct ifaltq *ifq = &ifp->if_snd;
2166 	int running = 0, error, start = 0;
2167 
2168 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2169 
2170 	ALTQ_LOCK(ifq);
2171 	error = ifq_enqueue_locked(ifq, m, pa);
2172 	if (error) {
2173 		ALTQ_UNLOCK(ifq);
2174 		return error;
2175 	}
2176 	if (!ifq->altq_started) {
2177 		/*
2178 		 * Hold the interlock of ifnet.if_start
2179 		 */
2180 		ifq->altq_started = 1;
2181 		start = 1;
2182 	}
2183 	ALTQ_UNLOCK(ifq);
2184 
2185 	ifp->if_obytes += m->m_pkthdr.len;
2186 	if (m->m_flags & M_MCAST)
2187 		ifp->if_omcasts++;
2188 
2189 	if (!start) {
2190 		logifstart(avoid, ifp);
2191 		return 0;
2192 	}
2193 
2194 	if (ifq_dispatch_schedonly) {
2195 		/*
2196 		 * Always schedule ifnet.if_start on ifnet's CPU,
2197 		 * short circuit the rest of this function.
2198 		 */
2199 		logifstart(sched, ifp);
2200 		if_start_schedule(ifp);
2201 		return 0;
2202 	}
2203 
2204 	/*
2205 	 * Try to do direct ifnet.if_start first, if there is
2206 	 * contention on ifnet's serializer, ifnet.if_start will
2207 	 * be scheduled on ifnet's CPU.
2208 	 */
2209 	if (!ifnet_tryserialize_tx(ifp)) {
2210 		/*
2211 		 * ifnet serializer contention happened,
2212 		 * ifnet.if_start is scheduled on ifnet's
2213 		 * CPU, and we keep going.
2214 		 */
2215 		logifstart(contend_sched, ifp);
2216 		if_start_schedule(ifp);
2217 		return 0;
2218 	}
2219 
2220 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2221 		logifstart(run, ifp);
2222 		ifp->if_start(ifp);
2223 		if ((ifp->if_flags &
2224 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2225 			running = 1;
2226 	}
2227 
2228 	ifnet_deserialize_tx(ifp);
2229 
2230 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2231 		/*
2232 		 * More data need to be transmitted, ifnet.if_start is
2233 		 * scheduled on ifnet's CPU, and we keep going.
2234 		 * NOTE: ifnet.if_start interlock is not released.
2235 		 */
2236 		logifstart(sched, ifp);
2237 		if_start_schedule(ifp);
2238 	}
2239 	return 0;
2240 }
2241 
2242 void *
2243 ifa_create(int size, int flags)
2244 {
2245 	struct ifaddr *ifa;
2246 	int i;
2247 
2248 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2249 
2250 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2251 	if (ifa == NULL)
2252 		return NULL;
2253 
2254 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2255 				      M_IFADDR, M_WAITOK | M_ZERO);
2256 	ifa->ifa_ncnt = ncpus;
2257 	for (i = 0; i < ncpus; ++i) {
2258 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2259 
2260 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2261 		ifac->ifa = ifa;
2262 		ifac->ifa_refcnt = 1;
2263 	}
2264 #ifdef IFADDR_DEBUG
2265 	kprintf("alloc ifa %p %d\n", ifa, size);
2266 #endif
2267 	return ifa;
2268 }
2269 
2270 void
2271 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2272 {
2273 	struct ifaddr *ifa = ifac->ifa;
2274 
2275 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2276 	KKASSERT(ifac->ifa_refcnt == 0);
2277 	KASSERT(ifac->ifa_listmask == 0,
2278 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2279 
2280 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2281 
2282 #ifdef IFADDR_DEBUG_VERBOSE
2283 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2284 #endif
2285 
2286 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2287 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2288 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2289 #ifdef IFADDR_DEBUG
2290 		kprintf("free ifa %p\n", ifa);
2291 #endif
2292 		kfree(ifa->ifa_containers, M_IFADDR);
2293 		kfree(ifa, M_IFADDR);
2294 	}
2295 }
2296 
2297 static void
2298 ifa_iflink_dispatch(struct netmsg *nmsg)
2299 {
2300 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2301 	struct ifaddr *ifa = msg->ifa;
2302 	struct ifnet *ifp = msg->ifp;
2303 	int cpu = mycpuid;
2304 	struct ifaddr_container *ifac;
2305 
2306 	crit_enter();
2307 
2308 	ifac = &ifa->ifa_containers[cpu];
2309 	ASSERT_IFAC_VALID(ifac);
2310 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2311 		("ifaddr is on if_addrheads\n"));
2312 
2313 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2314 	if (msg->tail)
2315 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2316 	else
2317 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2318 
2319 	crit_exit();
2320 
2321 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2322 }
2323 
2324 void
2325 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2326 {
2327 	struct netmsg_ifaddr msg;
2328 
2329 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2330 		    0, ifa_iflink_dispatch);
2331 	msg.ifa = ifa;
2332 	msg.ifp = ifp;
2333 	msg.tail = tail;
2334 
2335 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2336 }
2337 
2338 static void
2339 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2340 {
2341 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2342 	struct ifaddr *ifa = msg->ifa;
2343 	struct ifnet *ifp = msg->ifp;
2344 	int cpu = mycpuid;
2345 	struct ifaddr_container *ifac;
2346 
2347 	crit_enter();
2348 
2349 	ifac = &ifa->ifa_containers[cpu];
2350 	ASSERT_IFAC_VALID(ifac);
2351 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2352 		("ifaddr is not on if_addrhead\n"));
2353 
2354 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2355 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2356 
2357 	crit_exit();
2358 
2359 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2360 }
2361 
2362 void
2363 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2364 {
2365 	struct netmsg_ifaddr msg;
2366 
2367 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2368 		    0, ifa_ifunlink_dispatch);
2369 	msg.ifa = ifa;
2370 	msg.ifp = ifp;
2371 
2372 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2373 }
2374 
2375 static void
2376 ifa_destroy_dispatch(struct netmsg *nmsg)
2377 {
2378 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2379 
2380 	IFAFREE(msg->ifa);
2381 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2382 }
2383 
2384 void
2385 ifa_destroy(struct ifaddr *ifa)
2386 {
2387 	struct netmsg_ifaddr msg;
2388 
2389 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2390 		    0, ifa_destroy_dispatch);
2391 	msg.ifa = ifa;
2392 
2393 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2394 }
2395 
2396 struct lwkt_port *
2397 ifnet_portfn(int cpu)
2398 {
2399 	return &ifnet_threads[cpu].td_msgport;
2400 }
2401 
2402 void
2403 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2404 {
2405 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2406 
2407 	if (next_cpu < ncpus)
2408 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2409 	else
2410 		lwkt_replymsg(lmsg, 0);
2411 }
2412 
2413 int
2414 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2415 {
2416 	KKASSERT(cpu < ncpus);
2417 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2418 }
2419 
2420 void
2421 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2422 {
2423 	KKASSERT(cpu < ncpus);
2424 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2425 }
2426 
2427 static void
2428 ifnetinit(void *dummy __unused)
2429 {
2430 	int i;
2431 
2432 	for (i = 0; i < ncpus; ++i) {
2433 		struct thread *thr = &ifnet_threads[i];
2434 
2435 		lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL,
2436 			    thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i);
2437 		netmsg_service_port_init(&thr->td_msgport);
2438 	}
2439 }
2440