xref: /dragonfly/sys/net/if.c (revision b4f25088)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 /* Helper functions */
118 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
119 
120 #ifdef INET6
121 /*
122  * XXX: declare here to avoid to include many inet6 related files..
123  * should be more generalized?
124  */
125 extern void	nd6_setmtu(struct ifnet *);
126 #endif
127 
128 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
129 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
130 
131 static int ifsq_stage_cntmax = 4;
132 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
133 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
134     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
135 
136 static int if_stats_compat = 0;
137 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
138     &if_stats_compat, 0, "Compat the old ifnet stats");
139 
140 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
141 /* Must be after netisr_init */
142 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
143 
144 static  if_com_alloc_t *if_com_alloc[256];
145 static  if_com_free_t *if_com_free[256];
146 
147 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
148 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
149 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
150 
151 int			ifqmaxlen = IFQ_MAXLEN;
152 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
153 
154 struct callout		if_slowtimo_timer;
155 
156 int			if_index = 0;
157 struct ifnet		**ifindex2ifnet = NULL;
158 static struct thread	ifnet_threads[MAXCPU];
159 
160 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
161 
162 #ifdef notyet
163 #define IFQ_KTR_STRING		"ifq=%p"
164 #define IFQ_KTR_ARGS	struct ifaltq *ifq
165 #ifndef KTR_IFQ
166 #define KTR_IFQ			KTR_ALL
167 #endif
168 KTR_INFO_MASTER(ifq);
169 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
170 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
171 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
172 
173 #define IF_START_KTR_STRING	"ifp=%p"
174 #define IF_START_KTR_ARGS	struct ifnet *ifp
175 #ifndef KTR_IF_START
176 #define KTR_IF_START		KTR_ALL
177 #endif
178 KTR_INFO_MASTER(if_start);
179 KTR_INFO(KTR_IF_START, if_start, run, 0,
180 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
181 KTR_INFO(KTR_IF_START, if_start, sched, 1,
182 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
183 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
184 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
185 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
186 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
187 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
188 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
189 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
190 #endif
191 
192 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
193 
194 /*
195  * Network interface utility routines.
196  *
197  * Routines with ifa_ifwith* names take sockaddr *'s as
198  * parameters.
199  */
200 /* ARGSUSED*/
201 void
202 ifinit(void *dummy)
203 {
204 	struct ifnet *ifp;
205 
206 	callout_init(&if_slowtimo_timer);
207 
208 	crit_enter();
209 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
210 		if (ifp->if_snd.altq_maxlen == 0) {
211 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
212 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
213 		}
214 	}
215 	crit_exit();
216 
217 	if_slowtimo(0);
218 }
219 
220 static void
221 ifsq_ifstart_ipifunc(void *arg)
222 {
223 	struct ifaltq_subque *ifsq = arg;
224 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
225 
226 	crit_enter();
227 	if (lmsg->ms_flags & MSGF_DONE)
228 		lwkt_sendmsg(netisr_cpuport(mycpuid), lmsg);
229 	crit_exit();
230 }
231 
232 static __inline void
233 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
234 {
235 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
236 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
237 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
238 	stage->stg_cnt = 0;
239 	stage->stg_len = 0;
240 }
241 
242 static __inline void
243 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
244 {
245 	KKASSERT((stage->stg_flags &
246 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
247 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
248 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
249 }
250 
251 /*
252  * Schedule ifnet.if_start on the subqueue owner CPU
253  */
254 static void
255 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
256 {
257 	int cpu;
258 
259 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
260 	    ifsq_stage_cntmax > 0) {
261 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
262 
263 		stage->stg_cnt = 0;
264 		stage->stg_len = 0;
265 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
266 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
267 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
268 		return;
269 	}
270 
271 	cpu = ifsq_get_cpuid(ifsq);
272 	if (cpu != mycpuid)
273 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
274 	else
275 		ifsq_ifstart_ipifunc(ifsq);
276 }
277 
278 /*
279  * NOTE:
280  * This function will release ifnet.if_start subqueue interlock,
281  * if ifnet.if_start for the subqueue does not need to be scheduled
282  */
283 static __inline int
284 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
285 {
286 	if (!running || ifsq_is_empty(ifsq)
287 #ifdef ALTQ
288 	    || ifsq->ifsq_altq->altq_tbr != NULL
289 #endif
290 	) {
291 		ALTQ_SQ_LOCK(ifsq);
292 		/*
293 		 * ifnet.if_start subqueue interlock is released, if:
294 		 * 1) Hardware can not take any packets, due to
295 		 *    o  interface is marked down
296 		 *    o  hardware queue is full (ifsq_is_oactive)
297 		 *    Under the second situation, hardware interrupt
298 		 *    or polling(4) will call/schedule ifnet.if_start
299 		 *    on the subqueue when hardware queue is ready
300 		 * 2) There is no packet in the subqueue.
301 		 *    Further ifq_dispatch or ifq_handoff will call/
302 		 *    schedule ifnet.if_start on the subqueue.
303 		 * 3) TBR is used and it does not allow further
304 		 *    dequeueing.
305 		 *    TBR callout will call ifnet.if_start on the
306 		 *    subqueue.
307 		 */
308 		if (!running || !ifsq_data_ready(ifsq)) {
309 			ifsq_clr_started(ifsq);
310 			ALTQ_SQ_UNLOCK(ifsq);
311 			return 0;
312 		}
313 		ALTQ_SQ_UNLOCK(ifsq);
314 	}
315 	return 1;
316 }
317 
318 static void
319 ifsq_ifstart_dispatch(netmsg_t msg)
320 {
321 	struct lwkt_msg *lmsg = &msg->base.lmsg;
322 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
323 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
324 	int running = 0, need_sched;
325 
326 	crit_enter();
327 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
328 	crit_exit();
329 
330 	if (mycpuid != ifsq_get_cpuid(ifsq)) {
331 		/*
332 		 * We need to chase the subqueue owner CPU change.
333 		 */
334 		ifsq_ifstart_schedule(ifsq, 1);
335 		return;
336 	}
337 
338 	ifsq_serialize_hw(ifsq);
339 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
340 		ifp->if_start(ifp, ifsq);
341 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
342 			running = 1;
343 	}
344 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
345 	ifsq_deserialize_hw(ifsq);
346 
347 	if (need_sched) {
348 		/*
349 		 * More data need to be transmitted, ifnet.if_start is
350 		 * scheduled on the subqueue owner CPU, and we keep going.
351 		 * NOTE: ifnet.if_start subqueue interlock is not released.
352 		 */
353 		ifsq_ifstart_schedule(ifsq, 0);
354 	}
355 }
356 
357 /* Device driver ifnet.if_start helper function */
358 void
359 ifsq_devstart(struct ifaltq_subque *ifsq)
360 {
361 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
362 	int running = 0;
363 
364 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
365 
366 	ALTQ_SQ_LOCK(ifsq);
367 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
368 		ALTQ_SQ_UNLOCK(ifsq);
369 		return;
370 	}
371 	ifsq_set_started(ifsq);
372 	ALTQ_SQ_UNLOCK(ifsq);
373 
374 	ifp->if_start(ifp, ifsq);
375 
376 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
377 		running = 1;
378 
379 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
380 		/*
381 		 * More data need to be transmitted, ifnet.if_start is
382 		 * scheduled on ifnet's CPU, and we keep going.
383 		 * NOTE: ifnet.if_start interlock is not released.
384 		 */
385 		ifsq_ifstart_schedule(ifsq, 0);
386 	}
387 }
388 
389 void
390 if_devstart(struct ifnet *ifp)
391 {
392 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
393 }
394 
395 /* Device driver ifnet.if_start schedule helper function */
396 void
397 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
398 {
399 	ifsq_ifstart_schedule(ifsq, 1);
400 }
401 
402 void
403 if_devstart_sched(struct ifnet *ifp)
404 {
405 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
406 }
407 
408 static void
409 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
410 {
411 	lwkt_serialize_enter(ifp->if_serializer);
412 }
413 
414 static void
415 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
416 {
417 	lwkt_serialize_exit(ifp->if_serializer);
418 }
419 
420 static int
421 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
422 {
423 	return lwkt_serialize_try(ifp->if_serializer);
424 }
425 
426 #ifdef INVARIANTS
427 static void
428 if_default_serialize_assert(struct ifnet *ifp,
429 			    enum ifnet_serialize slz __unused,
430 			    boolean_t serialized)
431 {
432 	if (serialized)
433 		ASSERT_SERIALIZED(ifp->if_serializer);
434 	else
435 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
436 }
437 #endif
438 
439 /*
440  * Attach an interface to the list of "active" interfaces.
441  *
442  * The serializer is optional.
443  */
444 void
445 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
446 {
447 	unsigned socksize, ifasize;
448 	int namelen, masklen;
449 	struct sockaddr_dl *sdl;
450 	struct ifaddr *ifa;
451 	struct ifaltq *ifq;
452 	int i, q;
453 
454 	static int if_indexlim = 8;
455 
456 	if (ifp->if_serialize != NULL) {
457 		KASSERT(ifp->if_deserialize != NULL &&
458 			ifp->if_tryserialize != NULL &&
459 			ifp->if_serialize_assert != NULL,
460 			("serialize functions are partially setup"));
461 
462 		/*
463 		 * If the device supplies serialize functions,
464 		 * then clear if_serializer to catch any invalid
465 		 * usage of this field.
466 		 */
467 		KASSERT(serializer == NULL,
468 			("both serialize functions and default serializer "
469 			 "are supplied"));
470 		ifp->if_serializer = NULL;
471 	} else {
472 		KASSERT(ifp->if_deserialize == NULL &&
473 			ifp->if_tryserialize == NULL &&
474 			ifp->if_serialize_assert == NULL,
475 			("serialize functions are partially setup"));
476 		ifp->if_serialize = if_default_serialize;
477 		ifp->if_deserialize = if_default_deserialize;
478 		ifp->if_tryserialize = if_default_tryserialize;
479 #ifdef INVARIANTS
480 		ifp->if_serialize_assert = if_default_serialize_assert;
481 #endif
482 
483 		/*
484 		 * The serializer can be passed in from the device,
485 		 * allowing the same serializer to be used for both
486 		 * the interrupt interlock and the device queue.
487 		 * If not specified, the netif structure will use an
488 		 * embedded serializer.
489 		 */
490 		if (serializer == NULL) {
491 			serializer = &ifp->if_default_serializer;
492 			lwkt_serialize_init(serializer);
493 		}
494 		ifp->if_serializer = serializer;
495 	}
496 
497 	mtx_init(&ifp->if_ioctl_mtx);
498 	mtx_lock(&ifp->if_ioctl_mtx);
499 
500 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
501 	ifp->if_index = ++if_index;
502 
503 	/*
504 	 * XXX -
505 	 * The old code would work if the interface passed a pre-existing
506 	 * chain of ifaddrs to this code.  We don't trust our callers to
507 	 * properly initialize the tailq, however, so we no longer allow
508 	 * this unlikely case.
509 	 */
510 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
511 				    M_IFADDR, M_WAITOK | M_ZERO);
512 	for (i = 0; i < ncpus; ++i)
513 		TAILQ_INIT(&ifp->if_addrheads[i]);
514 
515 	TAILQ_INIT(&ifp->if_prefixhead);
516 	TAILQ_INIT(&ifp->if_multiaddrs);
517 	TAILQ_INIT(&ifp->if_groups);
518 	getmicrotime(&ifp->if_lastchange);
519 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
520 		unsigned int n;
521 		struct ifnet **q;
522 
523 		if_indexlim <<= 1;
524 
525 		/* grow ifindex2ifnet */
526 		n = if_indexlim * sizeof(*q);
527 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
528 		if (ifindex2ifnet) {
529 			bcopy(ifindex2ifnet, q, n/2);
530 			kfree(ifindex2ifnet, M_IFADDR);
531 		}
532 		ifindex2ifnet = q;
533 	}
534 
535 	ifindex2ifnet[if_index] = ifp;
536 
537 	/*
538 	 * create a Link Level name for this device
539 	 */
540 	namelen = strlen(ifp->if_xname);
541 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
542 	socksize = masklen + ifp->if_addrlen;
543 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
544 	if (socksize < sizeof(*sdl))
545 		socksize = sizeof(*sdl);
546 	socksize = ROUNDUP(socksize);
547 #undef ROUNDUP
548 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
549 	ifa = ifa_create(ifasize, M_WAITOK);
550 	sdl = (struct sockaddr_dl *)(ifa + 1);
551 	sdl->sdl_len = socksize;
552 	sdl->sdl_family = AF_LINK;
553 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
554 	sdl->sdl_nlen = namelen;
555 	sdl->sdl_index = ifp->if_index;
556 	sdl->sdl_type = ifp->if_type;
557 	ifp->if_lladdr = ifa;
558 	ifa->ifa_ifp = ifp;
559 	ifa->ifa_rtrequest = link_rtrequest;
560 	ifa->ifa_addr = (struct sockaddr *)sdl;
561 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
562 	ifa->ifa_netmask = (struct sockaddr *)sdl;
563 	sdl->sdl_len = masklen;
564 	while (namelen != 0)
565 		sdl->sdl_data[--namelen] = 0xff;
566 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
567 
568 	ifp->if_data_pcpu = kmalloc_cachealign(
569 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
570 
571 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
572 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
573 
574 	if (ifp->if_mapsubq == NULL)
575 		ifp->if_mapsubq = ifq_mapsubq_default;
576 
577 	ifq = &ifp->if_snd;
578 	ifq->altq_type = 0;
579 	ifq->altq_disc = NULL;
580 	ifq->altq_flags &= ALTQF_CANTCHANGE;
581 	ifq->altq_tbr = NULL;
582 	ifq->altq_ifp = ifp;
583 
584 	if (ifq->altq_subq_cnt <= 0)
585 		ifq->altq_subq_cnt = 1;
586 	ifq->altq_subq = kmalloc_cachealign(
587 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
588 	    M_DEVBUF, M_WAITOK | M_ZERO);
589 
590 	if (ifq->altq_maxlen == 0) {
591 		if_printf(ifp, "driver didn't set altq_maxlen\n");
592 		ifq_set_maxlen(ifq, ifqmaxlen);
593 	}
594 
595 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
596 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
597 
598 		ALTQ_SQ_LOCK_INIT(ifsq);
599 		ifsq->ifsq_index = q;
600 
601 		ifsq->ifsq_altq = ifq;
602 		ifsq->ifsq_ifp = ifp;
603 
604 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
605 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
606 		ifsq->ifsq_prepended = NULL;
607 		ifsq->ifsq_started = 0;
608 		ifsq->ifsq_hw_oactive = 0;
609 		ifsq_set_cpuid(ifsq, 0);
610 		if (ifp->if_serializer != NULL)
611 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
612 
613 		ifsq->ifsq_stage =
614 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
615 		    M_DEVBUF, M_WAITOK | M_ZERO);
616 		for (i = 0; i < ncpus; ++i)
617 			ifsq->ifsq_stage[i].stg_subq = ifsq;
618 
619 		ifsq->ifsq_ifstart_nmsg =
620 		    kmalloc(ncpus * sizeof(struct netmsg_base),
621 		    M_LWKTMSG, M_WAITOK);
622 		for (i = 0; i < ncpus; ++i) {
623 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
624 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
625 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
626 		}
627 	}
628 	ifq_set_classic(ifq);
629 
630 	if (!SLIST_EMPTY(&domains))
631 		if_attachdomain1(ifp);
632 
633 	/* Announce the interface. */
634 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
635 
636 	mtx_unlock(&ifp->if_ioctl_mtx);
637 }
638 
639 static void
640 if_attachdomain(void *dummy)
641 {
642 	struct ifnet *ifp;
643 
644 	crit_enter();
645 	TAILQ_FOREACH(ifp, &ifnet, if_list)
646 		if_attachdomain1(ifp);
647 	crit_exit();
648 }
649 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
650 	if_attachdomain, NULL);
651 
652 static void
653 if_attachdomain1(struct ifnet *ifp)
654 {
655 	struct domain *dp;
656 
657 	crit_enter();
658 
659 	/* address family dependent data region */
660 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
661 	SLIST_FOREACH(dp, &domains, dom_next)
662 		if (dp->dom_ifattach)
663 			ifp->if_afdata[dp->dom_family] =
664 				(*dp->dom_ifattach)(ifp);
665 	crit_exit();
666 }
667 
668 /*
669  * Purge all addresses whose type is _not_ AF_LINK
670  */
671 void
672 if_purgeaddrs_nolink(struct ifnet *ifp)
673 {
674 	struct ifaddr_container *ifac, *next;
675 
676 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
677 			      ifa_link, next) {
678 		struct ifaddr *ifa = ifac->ifa;
679 
680 		/* Leave link ifaddr as it is */
681 		if (ifa->ifa_addr->sa_family == AF_LINK)
682 			continue;
683 #ifdef INET
684 		/* XXX: Ugly!! ad hoc just for INET */
685 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
686 			struct ifaliasreq ifr;
687 #ifdef IFADDR_DEBUG_VERBOSE
688 			int i;
689 
690 			kprintf("purge in4 addr %p: ", ifa);
691 			for (i = 0; i < ncpus; ++i)
692 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
693 			kprintf("\n");
694 #endif
695 
696 			bzero(&ifr, sizeof ifr);
697 			ifr.ifra_addr = *ifa->ifa_addr;
698 			if (ifa->ifa_dstaddr)
699 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
700 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
701 				       NULL) == 0)
702 				continue;
703 		}
704 #endif /* INET */
705 #ifdef INET6
706 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
707 #ifdef IFADDR_DEBUG_VERBOSE
708 			int i;
709 
710 			kprintf("purge in6 addr %p: ", ifa);
711 			for (i = 0; i < ncpus; ++i)
712 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
713 			kprintf("\n");
714 #endif
715 
716 			in6_purgeaddr(ifa);
717 			/* ifp_addrhead is already updated */
718 			continue;
719 		}
720 #endif /* INET6 */
721 		ifa_ifunlink(ifa, ifp);
722 		ifa_destroy(ifa);
723 	}
724 }
725 
726 static void
727 ifq_stage_detach_handler(netmsg_t nmsg)
728 {
729 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
730 	int q;
731 
732 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
733 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
734 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
735 
736 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
737 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
738 	}
739 	lwkt_replymsg(&nmsg->lmsg, 0);
740 }
741 
742 static void
743 ifq_stage_detach(struct ifaltq *ifq)
744 {
745 	struct netmsg_base base;
746 	int cpu;
747 
748 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
749 	    ifq_stage_detach_handler);
750 	base.lmsg.u.ms_resultp = ifq;
751 
752 	for (cpu = 0; cpu < ncpus; ++cpu)
753 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
754 }
755 
756 struct netmsg_if_rtdel {
757 	struct netmsg_base	base;
758 	struct ifnet		*ifp;
759 };
760 
761 static void
762 if_rtdel_dispatch(netmsg_t msg)
763 {
764 	struct netmsg_if_rtdel *rmsg = (void *)msg;
765 	int i, nextcpu, cpu;
766 
767 	cpu = mycpuid;
768 	for (i = 1; i <= AF_MAX; i++) {
769 		struct radix_node_head	*rnh;
770 
771 		if ((rnh = rt_tables[cpu][i]) == NULL)
772 			continue;
773 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
774 	}
775 
776 	nextcpu = cpu + 1;
777 	if (nextcpu < ncpus)
778 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
779 	else
780 		lwkt_replymsg(&rmsg->base.lmsg, 0);
781 }
782 
783 /*
784  * Detach an interface, removing it from the
785  * list of "active" interfaces.
786  */
787 void
788 if_detach(struct ifnet *ifp)
789 {
790 	struct netmsg_if_rtdel msg;
791 	struct domain *dp;
792 	int q;
793 
794 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
795 
796 	/*
797 	 * Remove routes and flush queues.
798 	 */
799 	crit_enter();
800 #ifdef IFPOLL_ENABLE
801 	if (ifp->if_flags & IFF_NPOLLING)
802 		ifpoll_deregister(ifp);
803 #endif
804 	if_down(ifp);
805 
806 #ifdef ALTQ
807 	if (ifq_is_enabled(&ifp->if_snd))
808 		altq_disable(&ifp->if_snd);
809 	if (ifq_is_attached(&ifp->if_snd))
810 		altq_detach(&ifp->if_snd);
811 #endif
812 
813 	/*
814 	 * Clean up all addresses.
815 	 */
816 	ifp->if_lladdr = NULL;
817 
818 	if_purgeaddrs_nolink(ifp);
819 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
820 		struct ifaddr *ifa;
821 
822 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
823 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
824 			("non-link ifaddr is left on if_addrheads"));
825 
826 		ifa_ifunlink(ifa, ifp);
827 		ifa_destroy(ifa);
828 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
829 			("there are still ifaddrs left on if_addrheads"));
830 	}
831 
832 #ifdef INET
833 	/*
834 	 * Remove all IPv4 kernel structures related to ifp.
835 	 */
836 	in_ifdetach(ifp);
837 #endif
838 
839 #ifdef INET6
840 	/*
841 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
842 	 * before removing routing entries below, since IPv6 interface direct
843 	 * routes are expected to be removed by the IPv6-specific kernel API.
844 	 * Otherwise, the kernel will detect some inconsistency and bark it.
845 	 */
846 	in6_ifdetach(ifp);
847 #endif
848 
849 	/*
850 	 * Delete all remaining routes using this interface
851 	 */
852 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
853 	    if_rtdel_dispatch);
854 	msg.ifp = ifp;
855 	rt_domsg_global(&msg.base);
856 
857 	/* Announce that the interface is gone. */
858 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
859 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
860 
861 	SLIST_FOREACH(dp, &domains, dom_next)
862 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
863 			(*dp->dom_ifdetach)(ifp,
864 				ifp->if_afdata[dp->dom_family]);
865 
866 	/*
867 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
868 	 */
869 	ifindex2ifnet[ifp->if_index] = NULL;
870 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
871 		if_index--;
872 
873 	TAILQ_REMOVE(&ifnet, ifp, if_link);
874 	kfree(ifp->if_addrheads, M_IFADDR);
875 
876 	lwkt_synchronize_ipiqs("if_detach");
877 	ifq_stage_detach(&ifp->if_snd);
878 
879 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
880 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
881 
882 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
883 		kfree(ifsq->ifsq_stage, M_DEVBUF);
884 	}
885 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
886 
887 	kfree(ifp->if_data_pcpu, M_DEVBUF);
888 
889 	crit_exit();
890 }
891 
892 /*
893  * Create interface group without members
894  */
895 struct ifg_group *
896 if_creategroup(const char *groupname)
897 {
898         struct ifg_group        *ifg = NULL;
899 
900         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
901             M_TEMP, M_NOWAIT)) == NULL)
902                 return (NULL);
903 
904         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
905         ifg->ifg_refcnt = 0;
906         ifg->ifg_carp_demoted = 0;
907         TAILQ_INIT(&ifg->ifg_members);
908 #if NPF > 0
909         pfi_attach_ifgroup(ifg);
910 #endif
911         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
912 
913         return (ifg);
914 }
915 
916 /*
917  * Add a group to an interface
918  */
919 int
920 if_addgroup(struct ifnet *ifp, const char *groupname)
921 {
922 	struct ifg_list		*ifgl;
923 	struct ifg_group	*ifg = NULL;
924 	struct ifg_member	*ifgm;
925 
926 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
927 	    groupname[strlen(groupname) - 1] <= '9')
928 		return (EINVAL);
929 
930 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
931 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
932 			return (EEXIST);
933 
934 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
935 		return (ENOMEM);
936 
937 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
938 		kfree(ifgl, M_TEMP);
939 		return (ENOMEM);
940 	}
941 
942 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
943 		if (!strcmp(ifg->ifg_group, groupname))
944 			break;
945 
946 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
947 		kfree(ifgl, M_TEMP);
948 		kfree(ifgm, M_TEMP);
949 		return (ENOMEM);
950 	}
951 
952 	ifg->ifg_refcnt++;
953 	ifgl->ifgl_group = ifg;
954 	ifgm->ifgm_ifp = ifp;
955 
956 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
957 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
958 
959 #if NPF > 0
960 	pfi_group_change(groupname);
961 #endif
962 
963 	return (0);
964 }
965 
966 /*
967  * Remove a group from an interface
968  */
969 int
970 if_delgroup(struct ifnet *ifp, const char *groupname)
971 {
972 	struct ifg_list		*ifgl;
973 	struct ifg_member	*ifgm;
974 
975 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
976 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
977 			break;
978 	if (ifgl == NULL)
979 		return (ENOENT);
980 
981 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
982 
983 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
984 		if (ifgm->ifgm_ifp == ifp)
985 			break;
986 
987 	if (ifgm != NULL) {
988 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
989 		kfree(ifgm, M_TEMP);
990 	}
991 
992 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
993 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
994 #if NPF > 0
995 		pfi_detach_ifgroup(ifgl->ifgl_group);
996 #endif
997 		kfree(ifgl->ifgl_group, M_TEMP);
998 	}
999 
1000 	kfree(ifgl, M_TEMP);
1001 
1002 #if NPF > 0
1003 	pfi_group_change(groupname);
1004 #endif
1005 
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Stores all groups from an interface in memory pointed
1011  * to by data
1012  */
1013 int
1014 if_getgroup(caddr_t data, struct ifnet *ifp)
1015 {
1016 	int			 len, error;
1017 	struct ifg_list		*ifgl;
1018 	struct ifg_req		 ifgrq, *ifgp;
1019 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1020 
1021 	if (ifgr->ifgr_len == 0) {
1022 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1023 			ifgr->ifgr_len += sizeof(struct ifg_req);
1024 		return (0);
1025 	}
1026 
1027 	len = ifgr->ifgr_len;
1028 	ifgp = ifgr->ifgr_groups;
1029 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1030 		if (len < sizeof(ifgrq))
1031 			return (EINVAL);
1032 		bzero(&ifgrq, sizeof ifgrq);
1033 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1034 		    sizeof(ifgrq.ifgrq_group));
1035 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1036 		    sizeof(struct ifg_req))))
1037 			return (error);
1038 		len -= sizeof(ifgrq);
1039 		ifgp++;
1040 	}
1041 
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Stores all members of a group in memory pointed to by data
1047  */
1048 int
1049 if_getgroupmembers(caddr_t data)
1050 {
1051 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1052 	struct ifg_group	*ifg;
1053 	struct ifg_member	*ifgm;
1054 	struct ifg_req		 ifgrq, *ifgp;
1055 	int			 len, error;
1056 
1057 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1058 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1059 			break;
1060 	if (ifg == NULL)
1061 		return (ENOENT);
1062 
1063 	if (ifgr->ifgr_len == 0) {
1064 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1065 			ifgr->ifgr_len += sizeof(ifgrq);
1066 		return (0);
1067 	}
1068 
1069 	len = ifgr->ifgr_len;
1070 	ifgp = ifgr->ifgr_groups;
1071 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1072 		if (len < sizeof(ifgrq))
1073 			return (EINVAL);
1074 		bzero(&ifgrq, sizeof ifgrq);
1075 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1076 		    sizeof(ifgrq.ifgrq_member));
1077 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1078 		    sizeof(struct ifg_req))))
1079 			return (error);
1080 		len -= sizeof(ifgrq);
1081 		ifgp++;
1082 	}
1083 
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Delete Routes for a Network Interface
1089  *
1090  * Called for each routing entry via the rnh->rnh_walktree() call above
1091  * to delete all route entries referencing a detaching network interface.
1092  *
1093  * Arguments:
1094  *	rn	pointer to node in the routing table
1095  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1096  *
1097  * Returns:
1098  *	0	successful
1099  *	errno	failed - reason indicated
1100  *
1101  */
1102 static int
1103 if_rtdel(struct radix_node *rn, void *arg)
1104 {
1105 	struct rtentry	*rt = (struct rtentry *)rn;
1106 	struct ifnet	*ifp = arg;
1107 	int		err;
1108 
1109 	if (rt->rt_ifp == ifp) {
1110 
1111 		/*
1112 		 * Protect (sorta) against walktree recursion problems
1113 		 * with cloned routes
1114 		 */
1115 		if (!(rt->rt_flags & RTF_UP))
1116 			return (0);
1117 
1118 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1119 				rt_mask(rt), rt->rt_flags,
1120 				NULL);
1121 		if (err) {
1122 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1123 		}
1124 	}
1125 
1126 	return (0);
1127 }
1128 
1129 /*
1130  * Locate an interface based on a complete address.
1131  */
1132 struct ifaddr *
1133 ifa_ifwithaddr(struct sockaddr *addr)
1134 {
1135 	struct ifnet *ifp;
1136 
1137 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1138 		struct ifaddr_container *ifac;
1139 
1140 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1141 			struct ifaddr *ifa = ifac->ifa;
1142 
1143 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1144 				continue;
1145 			if (sa_equal(addr, ifa->ifa_addr))
1146 				return (ifa);
1147 			if ((ifp->if_flags & IFF_BROADCAST) &&
1148 			    ifa->ifa_broadaddr &&
1149 			    /* IPv6 doesn't have broadcast */
1150 			    ifa->ifa_broadaddr->sa_len != 0 &&
1151 			    sa_equal(ifa->ifa_broadaddr, addr))
1152 				return (ifa);
1153 		}
1154 	}
1155 	return (NULL);
1156 }
1157 /*
1158  * Locate the point to point interface with a given destination address.
1159  */
1160 struct ifaddr *
1161 ifa_ifwithdstaddr(struct sockaddr *addr)
1162 {
1163 	struct ifnet *ifp;
1164 
1165 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1166 		struct ifaddr_container *ifac;
1167 
1168 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1169 			continue;
1170 
1171 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1172 			struct ifaddr *ifa = ifac->ifa;
1173 
1174 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1175 				continue;
1176 			if (ifa->ifa_dstaddr &&
1177 			    sa_equal(addr, ifa->ifa_dstaddr))
1178 				return (ifa);
1179 		}
1180 	}
1181 	return (NULL);
1182 }
1183 
1184 /*
1185  * Find an interface on a specific network.  If many, choice
1186  * is most specific found.
1187  */
1188 struct ifaddr *
1189 ifa_ifwithnet(struct sockaddr *addr)
1190 {
1191 	struct ifnet *ifp;
1192 	struct ifaddr *ifa_maybe = NULL;
1193 	u_int af = addr->sa_family;
1194 	char *addr_data = addr->sa_data, *cplim;
1195 
1196 	/*
1197 	 * AF_LINK addresses can be looked up directly by their index number,
1198 	 * so do that if we can.
1199 	 */
1200 	if (af == AF_LINK) {
1201 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1202 
1203 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1204 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1205 	}
1206 
1207 	/*
1208 	 * Scan though each interface, looking for ones that have
1209 	 * addresses in this address family.
1210 	 */
1211 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1212 		struct ifaddr_container *ifac;
1213 
1214 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1215 			struct ifaddr *ifa = ifac->ifa;
1216 			char *cp, *cp2, *cp3;
1217 
1218 			if (ifa->ifa_addr->sa_family != af)
1219 next:				continue;
1220 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1221 				/*
1222 				 * This is a bit broken as it doesn't
1223 				 * take into account that the remote end may
1224 				 * be a single node in the network we are
1225 				 * looking for.
1226 				 * The trouble is that we don't know the
1227 				 * netmask for the remote end.
1228 				 */
1229 				if (ifa->ifa_dstaddr != NULL &&
1230 				    sa_equal(addr, ifa->ifa_dstaddr))
1231 					return (ifa);
1232 			} else {
1233 				/*
1234 				 * if we have a special address handler,
1235 				 * then use it instead of the generic one.
1236 				 */
1237 				if (ifa->ifa_claim_addr) {
1238 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1239 						return (ifa);
1240 					} else {
1241 						continue;
1242 					}
1243 				}
1244 
1245 				/*
1246 				 * Scan all the bits in the ifa's address.
1247 				 * If a bit dissagrees with what we are
1248 				 * looking for, mask it with the netmask
1249 				 * to see if it really matters.
1250 				 * (A byte at a time)
1251 				 */
1252 				if (ifa->ifa_netmask == 0)
1253 					continue;
1254 				cp = addr_data;
1255 				cp2 = ifa->ifa_addr->sa_data;
1256 				cp3 = ifa->ifa_netmask->sa_data;
1257 				cplim = ifa->ifa_netmask->sa_len +
1258 					(char *)ifa->ifa_netmask;
1259 				while (cp3 < cplim)
1260 					if ((*cp++ ^ *cp2++) & *cp3++)
1261 						goto next; /* next address! */
1262 				/*
1263 				 * If the netmask of what we just found
1264 				 * is more specific than what we had before
1265 				 * (if we had one) then remember the new one
1266 				 * before continuing to search
1267 				 * for an even better one.
1268 				 */
1269 				if (ifa_maybe == NULL ||
1270 				    rn_refines((char *)ifa->ifa_netmask,
1271 					       (char *)ifa_maybe->ifa_netmask))
1272 					ifa_maybe = ifa;
1273 			}
1274 		}
1275 	}
1276 	return (ifa_maybe);
1277 }
1278 
1279 /*
1280  * Find an interface address specific to an interface best matching
1281  * a given address.
1282  */
1283 struct ifaddr *
1284 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1285 {
1286 	struct ifaddr_container *ifac;
1287 	char *cp, *cp2, *cp3;
1288 	char *cplim;
1289 	struct ifaddr *ifa_maybe = NULL;
1290 	u_int af = addr->sa_family;
1291 
1292 	if (af >= AF_MAX)
1293 		return (0);
1294 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1295 		struct ifaddr *ifa = ifac->ifa;
1296 
1297 		if (ifa->ifa_addr->sa_family != af)
1298 			continue;
1299 		if (ifa_maybe == NULL)
1300 			ifa_maybe = ifa;
1301 		if (ifa->ifa_netmask == NULL) {
1302 			if (sa_equal(addr, ifa->ifa_addr) ||
1303 			    (ifa->ifa_dstaddr != NULL &&
1304 			     sa_equal(addr, ifa->ifa_dstaddr)))
1305 				return (ifa);
1306 			continue;
1307 		}
1308 		if (ifp->if_flags & IFF_POINTOPOINT) {
1309 			if (sa_equal(addr, ifa->ifa_dstaddr))
1310 				return (ifa);
1311 		} else {
1312 			cp = addr->sa_data;
1313 			cp2 = ifa->ifa_addr->sa_data;
1314 			cp3 = ifa->ifa_netmask->sa_data;
1315 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1316 			for (; cp3 < cplim; cp3++)
1317 				if ((*cp++ ^ *cp2++) & *cp3)
1318 					break;
1319 			if (cp3 == cplim)
1320 				return (ifa);
1321 		}
1322 	}
1323 	return (ifa_maybe);
1324 }
1325 
1326 /*
1327  * Default action when installing a route with a Link Level gateway.
1328  * Lookup an appropriate real ifa to point to.
1329  * This should be moved to /sys/net/link.c eventually.
1330  */
1331 static void
1332 link_rtrequest(int cmd, struct rtentry *rt)
1333 {
1334 	struct ifaddr *ifa;
1335 	struct sockaddr *dst;
1336 	struct ifnet *ifp;
1337 
1338 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1339 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1340 		return;
1341 	ifa = ifaof_ifpforaddr(dst, ifp);
1342 	if (ifa != NULL) {
1343 		IFAFREE(rt->rt_ifa);
1344 		IFAREF(ifa);
1345 		rt->rt_ifa = ifa;
1346 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1347 			ifa->ifa_rtrequest(cmd, rt);
1348 	}
1349 }
1350 
1351 /*
1352  * Mark an interface down and notify protocols of
1353  * the transition.
1354  * NOTE: must be called at splnet or eqivalent.
1355  */
1356 void
1357 if_unroute(struct ifnet *ifp, int flag, int fam)
1358 {
1359 	struct ifaddr_container *ifac;
1360 
1361 	ifp->if_flags &= ~flag;
1362 	getmicrotime(&ifp->if_lastchange);
1363 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1364 		struct ifaddr *ifa = ifac->ifa;
1365 
1366 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1367 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1368 	}
1369 	ifq_purge_all(&ifp->if_snd);
1370 	rt_ifmsg(ifp);
1371 }
1372 
1373 /*
1374  * Mark an interface up and notify protocols of
1375  * the transition.
1376  * NOTE: must be called at splnet or eqivalent.
1377  */
1378 void
1379 if_route(struct ifnet *ifp, int flag, int fam)
1380 {
1381 	struct ifaddr_container *ifac;
1382 
1383 	ifq_purge_all(&ifp->if_snd);
1384 	ifp->if_flags |= flag;
1385 	getmicrotime(&ifp->if_lastchange);
1386 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1387 		struct ifaddr *ifa = ifac->ifa;
1388 
1389 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1390 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1391 	}
1392 	rt_ifmsg(ifp);
1393 #ifdef INET6
1394 	in6_if_up(ifp);
1395 #endif
1396 }
1397 
1398 /*
1399  * Mark an interface down and notify protocols of the transition.  An
1400  * interface going down is also considered to be a synchronizing event.
1401  * We must ensure that all packet processing related to the interface
1402  * has completed before we return so e.g. the caller can free the ifnet
1403  * structure that the mbufs may be referencing.
1404  *
1405  * NOTE: must be called at splnet or eqivalent.
1406  */
1407 void
1408 if_down(struct ifnet *ifp)
1409 {
1410 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1411 	netmsg_service_sync();
1412 }
1413 
1414 /*
1415  * Mark an interface up and notify protocols of
1416  * the transition.
1417  * NOTE: must be called at splnet or eqivalent.
1418  */
1419 void
1420 if_up(struct ifnet *ifp)
1421 {
1422 	if_route(ifp, IFF_UP, AF_UNSPEC);
1423 }
1424 
1425 /*
1426  * Process a link state change.
1427  * NOTE: must be called at splsoftnet or equivalent.
1428  */
1429 void
1430 if_link_state_change(struct ifnet *ifp)
1431 {
1432 	int link_state = ifp->if_link_state;
1433 
1434 	rt_ifmsg(ifp);
1435 	devctl_notify("IFNET", ifp->if_xname,
1436 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1437 }
1438 
1439 /*
1440  * Handle interface watchdog timer routines.  Called
1441  * from softclock, we decrement timers (if set) and
1442  * call the appropriate interface routine on expiration.
1443  */
1444 static void
1445 if_slowtimo(void *arg)
1446 {
1447 	struct ifnet *ifp;
1448 
1449 	crit_enter();
1450 
1451 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1452 		if (if_stats_compat) {
1453 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1454 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1455 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1456 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1457 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1458 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1459 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1460 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1461 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1462 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1463 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1464 		}
1465 
1466 		if (ifp->if_timer == 0 || --ifp->if_timer)
1467 			continue;
1468 		if (ifp->if_watchdog) {
1469 			if (ifnet_tryserialize_all(ifp)) {
1470 				(*ifp->if_watchdog)(ifp);
1471 				ifnet_deserialize_all(ifp);
1472 			} else {
1473 				/* try again next timeout */
1474 				++ifp->if_timer;
1475 			}
1476 		}
1477 	}
1478 
1479 	crit_exit();
1480 
1481 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1482 }
1483 
1484 /*
1485  * Map interface name to
1486  * interface structure pointer.
1487  */
1488 struct ifnet *
1489 ifunit(const char *name)
1490 {
1491 	struct ifnet *ifp;
1492 
1493 	/*
1494 	 * Search all the interfaces for this name/number
1495 	 */
1496 
1497 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1498 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1499 			break;
1500 	}
1501 	return (ifp);
1502 }
1503 
1504 
1505 /*
1506  * Map interface name in a sockaddr_dl to
1507  * interface structure pointer.
1508  */
1509 struct ifnet *
1510 if_withname(struct sockaddr *sa)
1511 {
1512 	char ifname[IFNAMSIZ+1];
1513 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1514 
1515 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1516 	     (sdl->sdl_nlen > IFNAMSIZ) )
1517 		return NULL;
1518 
1519 	/*
1520 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1521 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1522 	 * and there might not be room to put the trailing null anyway, so we
1523 	 * make a local copy that we know we can null terminate safely.
1524 	 */
1525 
1526 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1527 	ifname[sdl->sdl_nlen] = '\0';
1528 	return ifunit(ifname);
1529 }
1530 
1531 
1532 /*
1533  * Interface ioctls.
1534  */
1535 int
1536 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1537 {
1538 	struct ifnet *ifp;
1539 	struct ifreq *ifr;
1540 	struct ifstat *ifs;
1541 	int error;
1542 	short oif_flags;
1543 	int new_flags;
1544 #ifdef COMPAT_43
1545 	int ocmd;
1546 #endif
1547 	size_t namelen, onamelen;
1548 	char new_name[IFNAMSIZ];
1549 	struct ifaddr *ifa;
1550 	struct sockaddr_dl *sdl;
1551 
1552 	switch (cmd) {
1553 	case SIOCGIFCONF:
1554 	case OSIOCGIFCONF:
1555 		return (ifconf(cmd, data, cred));
1556 	default:
1557 		break;
1558 	}
1559 
1560 	ifr = (struct ifreq *)data;
1561 
1562 	switch (cmd) {
1563 	case SIOCIFCREATE:
1564 	case SIOCIFCREATE2:
1565 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1566 			return (error);
1567 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1568 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1569 	case SIOCIFDESTROY:
1570 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1571 			return (error);
1572 		return (if_clone_destroy(ifr->ifr_name));
1573 	case SIOCIFGCLONERS:
1574 		return (if_clone_list((struct if_clonereq *)data));
1575 	default:
1576 		break;
1577 	}
1578 
1579 	/*
1580 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1581 	 * lock to serialize the ifconfig ioctl operation.
1582 	 */
1583 	ifp = ifunit(ifr->ifr_name);
1584 	if (ifp == NULL)
1585 		return (ENXIO);
1586 	error = 0;
1587 	mtx_lock(&ifp->if_ioctl_mtx);
1588 
1589 	switch (cmd) {
1590 	case SIOCGIFINDEX:
1591 		ifr->ifr_index = ifp->if_index;
1592 		break;
1593 
1594 	case SIOCGIFFLAGS:
1595 		ifr->ifr_flags = ifp->if_flags;
1596 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1597 		break;
1598 
1599 	case SIOCGIFCAP:
1600 		ifr->ifr_reqcap = ifp->if_capabilities;
1601 		ifr->ifr_curcap = ifp->if_capenable;
1602 		break;
1603 
1604 	case SIOCGIFMETRIC:
1605 		ifr->ifr_metric = ifp->if_metric;
1606 		break;
1607 
1608 	case SIOCGIFMTU:
1609 		ifr->ifr_mtu = ifp->if_mtu;
1610 		break;
1611 
1612 	case SIOCGIFTSOLEN:
1613 		ifr->ifr_tsolen = ifp->if_tsolen;
1614 		break;
1615 
1616 	case SIOCGIFDATA:
1617 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1618 				sizeof(ifp->if_data));
1619 		break;
1620 
1621 	case SIOCGIFPHYS:
1622 		ifr->ifr_phys = ifp->if_physical;
1623 		break;
1624 
1625 	case SIOCGIFPOLLCPU:
1626 		ifr->ifr_pollcpu = -1;
1627 		break;
1628 
1629 	case SIOCSIFPOLLCPU:
1630 		break;
1631 
1632 	case SIOCSIFFLAGS:
1633 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1634 		if (error)
1635 			break;
1636 		new_flags = (ifr->ifr_flags & 0xffff) |
1637 		    (ifr->ifr_flagshigh << 16);
1638 		if (ifp->if_flags & IFF_SMART) {
1639 			/* Smart drivers twiddle their own routes */
1640 		} else if (ifp->if_flags & IFF_UP &&
1641 		    (new_flags & IFF_UP) == 0) {
1642 			crit_enter();
1643 			if_down(ifp);
1644 			crit_exit();
1645 		} else if (new_flags & IFF_UP &&
1646 		    (ifp->if_flags & IFF_UP) == 0) {
1647 			crit_enter();
1648 			if_up(ifp);
1649 			crit_exit();
1650 		}
1651 
1652 #ifdef IFPOLL_ENABLE
1653 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1654 			if (new_flags & IFF_NPOLLING)
1655 				ifpoll_register(ifp);
1656 			else
1657 				ifpoll_deregister(ifp);
1658 		}
1659 #endif
1660 
1661 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1662 			(new_flags &~ IFF_CANTCHANGE);
1663 		if (new_flags & IFF_PPROMISC) {
1664 			/* Permanently promiscuous mode requested */
1665 			ifp->if_flags |= IFF_PROMISC;
1666 		} else if (ifp->if_pcount == 0) {
1667 			ifp->if_flags &= ~IFF_PROMISC;
1668 		}
1669 		if (ifp->if_ioctl) {
1670 			ifnet_serialize_all(ifp);
1671 			ifp->if_ioctl(ifp, cmd, data, cred);
1672 			ifnet_deserialize_all(ifp);
1673 		}
1674 		getmicrotime(&ifp->if_lastchange);
1675 		break;
1676 
1677 	case SIOCSIFCAP:
1678 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1679 		if (error)
1680 			break;
1681 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1682 			error = EINVAL;
1683 			break;
1684 		}
1685 		ifnet_serialize_all(ifp);
1686 		ifp->if_ioctl(ifp, cmd, data, cred);
1687 		ifnet_deserialize_all(ifp);
1688 		break;
1689 
1690 	case SIOCSIFNAME:
1691 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1692 		if (error)
1693 			break;
1694 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1695 		if (error)
1696 			break;
1697 		if (new_name[0] == '\0') {
1698 			error = EINVAL;
1699 			break;
1700 		}
1701 		if (ifunit(new_name) != NULL) {
1702 			error = EEXIST;
1703 			break;
1704 		}
1705 
1706 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1707 
1708 		/* Announce the departure of the interface. */
1709 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1710 
1711 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1712 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1713 		/* XXX IFA_LOCK(ifa); */
1714 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1715 		namelen = strlen(new_name);
1716 		onamelen = sdl->sdl_nlen;
1717 		/*
1718 		 * Move the address if needed.  This is safe because we
1719 		 * allocate space for a name of length IFNAMSIZ when we
1720 		 * create this in if_attach().
1721 		 */
1722 		if (namelen != onamelen) {
1723 			bcopy(sdl->sdl_data + onamelen,
1724 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1725 		}
1726 		bcopy(new_name, sdl->sdl_data, namelen);
1727 		sdl->sdl_nlen = namelen;
1728 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1729 		bzero(sdl->sdl_data, onamelen);
1730 		while (namelen != 0)
1731 			sdl->sdl_data[--namelen] = 0xff;
1732 		/* XXX IFA_UNLOCK(ifa) */
1733 
1734 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1735 
1736 		/* Announce the return of the interface. */
1737 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1738 		break;
1739 
1740 	case SIOCSIFMETRIC:
1741 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1742 		if (error)
1743 			break;
1744 		ifp->if_metric = ifr->ifr_metric;
1745 		getmicrotime(&ifp->if_lastchange);
1746 		break;
1747 
1748 	case SIOCSIFPHYS:
1749 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1750 		if (error)
1751 			break;
1752 		if (ifp->if_ioctl == NULL) {
1753 		        error = EOPNOTSUPP;
1754 			break;
1755 		}
1756 		ifnet_serialize_all(ifp);
1757 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1758 		ifnet_deserialize_all(ifp);
1759 		if (error == 0)
1760 			getmicrotime(&ifp->if_lastchange);
1761 		break;
1762 
1763 	case SIOCSIFMTU:
1764 	{
1765 		u_long oldmtu = ifp->if_mtu;
1766 
1767 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1768 		if (error)
1769 			break;
1770 		if (ifp->if_ioctl == NULL) {
1771 			error = EOPNOTSUPP;
1772 			break;
1773 		}
1774 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1775 			error = EINVAL;
1776 			break;
1777 		}
1778 		ifnet_serialize_all(ifp);
1779 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1780 		ifnet_deserialize_all(ifp);
1781 		if (error == 0) {
1782 			getmicrotime(&ifp->if_lastchange);
1783 			rt_ifmsg(ifp);
1784 		}
1785 		/*
1786 		 * If the link MTU changed, do network layer specific procedure.
1787 		 */
1788 		if (ifp->if_mtu != oldmtu) {
1789 #ifdef INET6
1790 			nd6_setmtu(ifp);
1791 #endif
1792 		}
1793 		break;
1794 	}
1795 
1796 	case SIOCSIFTSOLEN:
1797 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1798 		if (error)
1799 			break;
1800 
1801 		/* XXX need driver supplied upper limit */
1802 		if (ifr->ifr_tsolen <= 0) {
1803 			error = EINVAL;
1804 			break;
1805 		}
1806 		ifp->if_tsolen = ifr->ifr_tsolen;
1807 		break;
1808 
1809 	case SIOCADDMULTI:
1810 	case SIOCDELMULTI:
1811 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1812 		if (error)
1813 			break;
1814 
1815 		/* Don't allow group membership on non-multicast interfaces. */
1816 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1817 			error = EOPNOTSUPP;
1818 			break;
1819 		}
1820 
1821 		/* Don't let users screw up protocols' entries. */
1822 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1823 			error = EINVAL;
1824 			break;
1825 		}
1826 
1827 		if (cmd == SIOCADDMULTI) {
1828 			struct ifmultiaddr *ifma;
1829 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1830 		} else {
1831 			error = if_delmulti(ifp, &ifr->ifr_addr);
1832 		}
1833 		if (error == 0)
1834 			getmicrotime(&ifp->if_lastchange);
1835 		break;
1836 
1837 	case SIOCSIFPHYADDR:
1838 	case SIOCDIFPHYADDR:
1839 #ifdef INET6
1840 	case SIOCSIFPHYADDR_IN6:
1841 #endif
1842 	case SIOCSLIFPHYADDR:
1843         case SIOCSIFMEDIA:
1844 	case SIOCSIFGENERIC:
1845 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1846 		if (error)
1847 			break;
1848 		if (ifp->if_ioctl == 0) {
1849 			error = EOPNOTSUPP;
1850 			break;
1851 		}
1852 		ifnet_serialize_all(ifp);
1853 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1854 		ifnet_deserialize_all(ifp);
1855 		if (error == 0)
1856 			getmicrotime(&ifp->if_lastchange);
1857 		break;
1858 
1859 	case SIOCGIFSTATUS:
1860 		ifs = (struct ifstat *)data;
1861 		ifs->ascii[0] = '\0';
1862 		/* fall through */
1863 	case SIOCGIFPSRCADDR:
1864 	case SIOCGIFPDSTADDR:
1865 	case SIOCGLIFPHYADDR:
1866 	case SIOCGIFMEDIA:
1867 	case SIOCGIFGENERIC:
1868 		if (ifp->if_ioctl == NULL) {
1869 			error = EOPNOTSUPP;
1870 			break;
1871 		}
1872 		ifnet_serialize_all(ifp);
1873 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1874 		ifnet_deserialize_all(ifp);
1875 		break;
1876 
1877 	case SIOCSIFLLADDR:
1878 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1879 		if (error)
1880 			break;
1881 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1882 				     ifr->ifr_addr.sa_len);
1883 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1884 		break;
1885 
1886 	default:
1887 		oif_flags = ifp->if_flags;
1888 		if (so->so_proto == 0) {
1889 			error = EOPNOTSUPP;
1890 			break;
1891 		}
1892 #ifndef COMPAT_43
1893 		error = so_pru_control_direct(so, cmd, data, ifp);
1894 #else
1895 		ocmd = cmd;
1896 
1897 		switch (cmd) {
1898 		case SIOCSIFDSTADDR:
1899 		case SIOCSIFADDR:
1900 		case SIOCSIFBRDADDR:
1901 		case SIOCSIFNETMASK:
1902 #if BYTE_ORDER != BIG_ENDIAN
1903 			if (ifr->ifr_addr.sa_family == 0 &&
1904 			    ifr->ifr_addr.sa_len < 16) {
1905 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1906 				ifr->ifr_addr.sa_len = 16;
1907 			}
1908 #else
1909 			if (ifr->ifr_addr.sa_len == 0)
1910 				ifr->ifr_addr.sa_len = 16;
1911 #endif
1912 			break;
1913 		case OSIOCGIFADDR:
1914 			cmd = SIOCGIFADDR;
1915 			break;
1916 		case OSIOCGIFDSTADDR:
1917 			cmd = SIOCGIFDSTADDR;
1918 			break;
1919 		case OSIOCGIFBRDADDR:
1920 			cmd = SIOCGIFBRDADDR;
1921 			break;
1922 		case OSIOCGIFNETMASK:
1923 			cmd = SIOCGIFNETMASK;
1924 			break;
1925 		default:
1926 			break;
1927 		}
1928 
1929 		error = so_pru_control_direct(so, cmd, data, ifp);
1930 
1931 		switch (ocmd) {
1932 		case OSIOCGIFADDR:
1933 		case OSIOCGIFDSTADDR:
1934 		case OSIOCGIFBRDADDR:
1935 		case OSIOCGIFNETMASK:
1936 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1937 			break;
1938 		}
1939 #endif /* COMPAT_43 */
1940 
1941 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1942 #ifdef INET6
1943 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1944 			if (ifp->if_flags & IFF_UP) {
1945 				crit_enter();
1946 				in6_if_up(ifp);
1947 				crit_exit();
1948 			}
1949 #endif
1950 		}
1951 		break;
1952 	}
1953 
1954 	mtx_unlock(&ifp->if_ioctl_mtx);
1955 	return (error);
1956 }
1957 
1958 /*
1959  * Set/clear promiscuous mode on interface ifp based on the truth value
1960  * of pswitch.  The calls are reference counted so that only the first
1961  * "on" request actually has an effect, as does the final "off" request.
1962  * Results are undefined if the "off" and "on" requests are not matched.
1963  */
1964 int
1965 ifpromisc(struct ifnet *ifp, int pswitch)
1966 {
1967 	struct ifreq ifr;
1968 	int error;
1969 	int oldflags;
1970 
1971 	oldflags = ifp->if_flags;
1972 	if (ifp->if_flags & IFF_PPROMISC) {
1973 		/* Do nothing if device is in permanently promiscuous mode */
1974 		ifp->if_pcount += pswitch ? 1 : -1;
1975 		return (0);
1976 	}
1977 	if (pswitch) {
1978 		/*
1979 		 * If the device is not configured up, we cannot put it in
1980 		 * promiscuous mode.
1981 		 */
1982 		if ((ifp->if_flags & IFF_UP) == 0)
1983 			return (ENETDOWN);
1984 		if (ifp->if_pcount++ != 0)
1985 			return (0);
1986 		ifp->if_flags |= IFF_PROMISC;
1987 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1988 		    ifp->if_xname);
1989 	} else {
1990 		if (--ifp->if_pcount > 0)
1991 			return (0);
1992 		ifp->if_flags &= ~IFF_PROMISC;
1993 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1994 		    ifp->if_xname);
1995 	}
1996 	ifr.ifr_flags = ifp->if_flags;
1997 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1998 	ifnet_serialize_all(ifp);
1999 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2000 	ifnet_deserialize_all(ifp);
2001 	if (error == 0)
2002 		rt_ifmsg(ifp);
2003 	else
2004 		ifp->if_flags = oldflags;
2005 	return error;
2006 }
2007 
2008 /*
2009  * Return interface configuration
2010  * of system.  List may be used
2011  * in later ioctl's (above) to get
2012  * other information.
2013  */
2014 static int
2015 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2016 {
2017 	struct ifconf *ifc = (struct ifconf *)data;
2018 	struct ifnet *ifp;
2019 	struct sockaddr *sa;
2020 	struct ifreq ifr, *ifrp;
2021 	int space = ifc->ifc_len, error = 0;
2022 
2023 	ifrp = ifc->ifc_req;
2024 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2025 		struct ifaddr_container *ifac;
2026 		int addrs;
2027 
2028 		if (space <= sizeof ifr)
2029 			break;
2030 
2031 		/*
2032 		 * Zero the stack declared structure first to prevent
2033 		 * memory disclosure.
2034 		 */
2035 		bzero(&ifr, sizeof(ifr));
2036 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2037 		    >= sizeof(ifr.ifr_name)) {
2038 			error = ENAMETOOLONG;
2039 			break;
2040 		}
2041 
2042 		addrs = 0;
2043 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2044 			struct ifaddr *ifa = ifac->ifa;
2045 
2046 			if (space <= sizeof ifr)
2047 				break;
2048 			sa = ifa->ifa_addr;
2049 			if (cred->cr_prison &&
2050 			    prison_if(cred, sa))
2051 				continue;
2052 			addrs++;
2053 #ifdef COMPAT_43
2054 			if (cmd == OSIOCGIFCONF) {
2055 				struct osockaddr *osa =
2056 					 (struct osockaddr *)&ifr.ifr_addr;
2057 				ifr.ifr_addr = *sa;
2058 				osa->sa_family = sa->sa_family;
2059 				error = copyout(&ifr, ifrp, sizeof ifr);
2060 				ifrp++;
2061 			} else
2062 #endif
2063 			if (sa->sa_len <= sizeof(*sa)) {
2064 				ifr.ifr_addr = *sa;
2065 				error = copyout(&ifr, ifrp, sizeof ifr);
2066 				ifrp++;
2067 			} else {
2068 				if (space < (sizeof ifr) + sa->sa_len -
2069 					    sizeof(*sa))
2070 					break;
2071 				space -= sa->sa_len - sizeof(*sa);
2072 				error = copyout(&ifr, ifrp,
2073 						sizeof ifr.ifr_name);
2074 				if (error == 0)
2075 					error = copyout(sa, &ifrp->ifr_addr,
2076 							sa->sa_len);
2077 				ifrp = (struct ifreq *)
2078 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2079 			}
2080 			if (error)
2081 				break;
2082 			space -= sizeof ifr;
2083 		}
2084 		if (error)
2085 			break;
2086 		if (!addrs) {
2087 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2088 			error = copyout(&ifr, ifrp, sizeof ifr);
2089 			if (error)
2090 				break;
2091 			space -= sizeof ifr;
2092 			ifrp++;
2093 		}
2094 	}
2095 	ifc->ifc_len -= space;
2096 	return (error);
2097 }
2098 
2099 /*
2100  * Just like if_promisc(), but for all-multicast-reception mode.
2101  */
2102 int
2103 if_allmulti(struct ifnet *ifp, int onswitch)
2104 {
2105 	int error = 0;
2106 	struct ifreq ifr;
2107 
2108 	crit_enter();
2109 
2110 	if (onswitch) {
2111 		if (ifp->if_amcount++ == 0) {
2112 			ifp->if_flags |= IFF_ALLMULTI;
2113 			ifr.ifr_flags = ifp->if_flags;
2114 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2115 			ifnet_serialize_all(ifp);
2116 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2117 					      NULL);
2118 			ifnet_deserialize_all(ifp);
2119 		}
2120 	} else {
2121 		if (ifp->if_amcount > 1) {
2122 			ifp->if_amcount--;
2123 		} else {
2124 			ifp->if_amcount = 0;
2125 			ifp->if_flags &= ~IFF_ALLMULTI;
2126 			ifr.ifr_flags = ifp->if_flags;
2127 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2128 			ifnet_serialize_all(ifp);
2129 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2130 					      NULL);
2131 			ifnet_deserialize_all(ifp);
2132 		}
2133 	}
2134 
2135 	crit_exit();
2136 
2137 	if (error == 0)
2138 		rt_ifmsg(ifp);
2139 	return error;
2140 }
2141 
2142 /*
2143  * Add a multicast listenership to the interface in question.
2144  * The link layer provides a routine which converts
2145  */
2146 int
2147 if_addmulti(
2148 	struct ifnet *ifp,	/* interface to manipulate */
2149 	struct sockaddr *sa,	/* address to add */
2150 	struct ifmultiaddr **retifma)
2151 {
2152 	struct sockaddr *llsa, *dupsa;
2153 	int error;
2154 	struct ifmultiaddr *ifma;
2155 
2156 	/*
2157 	 * If the matching multicast address already exists
2158 	 * then don't add a new one, just add a reference
2159 	 */
2160 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2161 		if (sa_equal(sa, ifma->ifma_addr)) {
2162 			ifma->ifma_refcount++;
2163 			if (retifma)
2164 				*retifma = ifma;
2165 			return 0;
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * Give the link layer a chance to accept/reject it, and also
2171 	 * find out which AF_LINK address this maps to, if it isn't one
2172 	 * already.
2173 	 */
2174 	if (ifp->if_resolvemulti) {
2175 		ifnet_serialize_all(ifp);
2176 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2177 		ifnet_deserialize_all(ifp);
2178 		if (error)
2179 			return error;
2180 	} else {
2181 		llsa = NULL;
2182 	}
2183 
2184 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2185 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2186 	bcopy(sa, dupsa, sa->sa_len);
2187 
2188 	ifma->ifma_addr = dupsa;
2189 	ifma->ifma_lladdr = llsa;
2190 	ifma->ifma_ifp = ifp;
2191 	ifma->ifma_refcount = 1;
2192 	ifma->ifma_protospec = 0;
2193 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2194 
2195 	/*
2196 	 * Some network interfaces can scan the address list at
2197 	 * interrupt time; lock them out.
2198 	 */
2199 	crit_enter();
2200 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2201 	crit_exit();
2202 	if (retifma)
2203 		*retifma = ifma;
2204 
2205 	if (llsa != NULL) {
2206 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2207 			if (sa_equal(ifma->ifma_addr, llsa))
2208 				break;
2209 		}
2210 		if (ifma) {
2211 			ifma->ifma_refcount++;
2212 		} else {
2213 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2214 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2215 			bcopy(llsa, dupsa, llsa->sa_len);
2216 			ifma->ifma_addr = dupsa;
2217 			ifma->ifma_ifp = ifp;
2218 			ifma->ifma_refcount = 1;
2219 			crit_enter();
2220 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2221 			crit_exit();
2222 		}
2223 	}
2224 	/*
2225 	 * We are certain we have added something, so call down to the
2226 	 * interface to let them know about it.
2227 	 */
2228 	crit_enter();
2229 	ifnet_serialize_all(ifp);
2230 	if (ifp->if_ioctl)
2231 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2232 	ifnet_deserialize_all(ifp);
2233 	crit_exit();
2234 
2235 	return 0;
2236 }
2237 
2238 /*
2239  * Remove a reference to a multicast address on this interface.  Yell
2240  * if the request does not match an existing membership.
2241  */
2242 int
2243 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2244 {
2245 	struct ifmultiaddr *ifma;
2246 
2247 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2248 		if (sa_equal(sa, ifma->ifma_addr))
2249 			break;
2250 	if (ifma == NULL)
2251 		return ENOENT;
2252 
2253 	if (ifma->ifma_refcount > 1) {
2254 		ifma->ifma_refcount--;
2255 		return 0;
2256 	}
2257 
2258 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2259 	sa = ifma->ifma_lladdr;
2260 	crit_enter();
2261 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2262 	/*
2263 	 * Make sure the interface driver is notified
2264 	 * in the case of a link layer mcast group being left.
2265 	 */
2266 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2267 		ifnet_serialize_all(ifp);
2268 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2269 		ifnet_deserialize_all(ifp);
2270 	}
2271 	crit_exit();
2272 	kfree(ifma->ifma_addr, M_IFMADDR);
2273 	kfree(ifma, M_IFMADDR);
2274 	if (sa == NULL)
2275 		return 0;
2276 
2277 	/*
2278 	 * Now look for the link-layer address which corresponds to
2279 	 * this network address.  It had been squirreled away in
2280 	 * ifma->ifma_lladdr for this purpose (so we don't have
2281 	 * to call ifp->if_resolvemulti() again), and we saved that
2282 	 * value in sa above.  If some nasty deleted the
2283 	 * link-layer address out from underneath us, we can deal because
2284 	 * the address we stored was is not the same as the one which was
2285 	 * in the record for the link-layer address.  (So we don't complain
2286 	 * in that case.)
2287 	 */
2288 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2289 		if (sa_equal(sa, ifma->ifma_addr))
2290 			break;
2291 	if (ifma == NULL)
2292 		return 0;
2293 
2294 	if (ifma->ifma_refcount > 1) {
2295 		ifma->ifma_refcount--;
2296 		return 0;
2297 	}
2298 
2299 	crit_enter();
2300 	ifnet_serialize_all(ifp);
2301 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2302 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2303 	ifnet_deserialize_all(ifp);
2304 	crit_exit();
2305 	kfree(ifma->ifma_addr, M_IFMADDR);
2306 	kfree(sa, M_IFMADDR);
2307 	kfree(ifma, M_IFMADDR);
2308 
2309 	return 0;
2310 }
2311 
2312 /*
2313  * Delete all multicast group membership for an interface.
2314  * Should be used to quickly flush all multicast filters.
2315  */
2316 void
2317 if_delallmulti(struct ifnet *ifp)
2318 {
2319 	struct ifmultiaddr *ifma;
2320 	struct ifmultiaddr *next;
2321 
2322 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2323 		if_delmulti(ifp, ifma->ifma_addr);
2324 }
2325 
2326 
2327 /*
2328  * Set the link layer address on an interface.
2329  *
2330  * At this time we only support certain types of interfaces,
2331  * and we don't allow the length of the address to change.
2332  */
2333 int
2334 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2335 {
2336 	struct sockaddr_dl *sdl;
2337 	struct ifreq ifr;
2338 
2339 	sdl = IF_LLSOCKADDR(ifp);
2340 	if (sdl == NULL)
2341 		return (EINVAL);
2342 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2343 		return (EINVAL);
2344 	switch (ifp->if_type) {
2345 	case IFT_ETHER:			/* these types use struct arpcom */
2346 	case IFT_XETHER:
2347 	case IFT_L2VLAN:
2348 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2349 		bcopy(lladdr, LLADDR(sdl), len);
2350 		break;
2351 	default:
2352 		return (ENODEV);
2353 	}
2354 	/*
2355 	 * If the interface is already up, we need
2356 	 * to re-init it in order to reprogram its
2357 	 * address filter.
2358 	 */
2359 	ifnet_serialize_all(ifp);
2360 	if ((ifp->if_flags & IFF_UP) != 0) {
2361 #ifdef INET
2362 		struct ifaddr_container *ifac;
2363 #endif
2364 
2365 		ifp->if_flags &= ~IFF_UP;
2366 		ifr.ifr_flags = ifp->if_flags;
2367 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2368 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2369 			      NULL);
2370 		ifp->if_flags |= IFF_UP;
2371 		ifr.ifr_flags = ifp->if_flags;
2372 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2373 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2374 				 NULL);
2375 #ifdef INET
2376 		/*
2377 		 * Also send gratuitous ARPs to notify other nodes about
2378 		 * the address change.
2379 		 */
2380 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2381 			struct ifaddr *ifa = ifac->ifa;
2382 
2383 			if (ifa->ifa_addr != NULL &&
2384 			    ifa->ifa_addr->sa_family == AF_INET)
2385 				arp_gratuitous(ifp, ifa);
2386 		}
2387 #endif
2388 	}
2389 	ifnet_deserialize_all(ifp);
2390 	return (0);
2391 }
2392 
2393 struct ifmultiaddr *
2394 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2395 {
2396 	struct ifmultiaddr *ifma;
2397 
2398 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2399 		if (sa_equal(ifma->ifma_addr, sa))
2400 			break;
2401 
2402 	return ifma;
2403 }
2404 
2405 /*
2406  * This function locates the first real ethernet MAC from a network
2407  * card and loads it into node, returning 0 on success or ENOENT if
2408  * no suitable interfaces were found.  It is used by the uuid code to
2409  * generate a unique 6-byte number.
2410  */
2411 int
2412 if_getanyethermac(uint16_t *node, int minlen)
2413 {
2414 	struct ifnet *ifp;
2415 	struct sockaddr_dl *sdl;
2416 
2417 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2418 		if (ifp->if_type != IFT_ETHER)
2419 			continue;
2420 		sdl = IF_LLSOCKADDR(ifp);
2421 		if (sdl->sdl_alen < minlen)
2422 			continue;
2423 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2424 		      minlen);
2425 		return(0);
2426 	}
2427 	return (ENOENT);
2428 }
2429 
2430 /*
2431  * The name argument must be a pointer to storage which will last as
2432  * long as the interface does.  For physical devices, the result of
2433  * device_get_name(dev) is a good choice and for pseudo-devices a
2434  * static string works well.
2435  */
2436 void
2437 if_initname(struct ifnet *ifp, const char *name, int unit)
2438 {
2439 	ifp->if_dname = name;
2440 	ifp->if_dunit = unit;
2441 	if (unit != IF_DUNIT_NONE)
2442 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2443 	else
2444 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2445 }
2446 
2447 int
2448 if_printf(struct ifnet *ifp, const char *fmt, ...)
2449 {
2450 	__va_list ap;
2451 	int retval;
2452 
2453 	retval = kprintf("%s: ", ifp->if_xname);
2454 	__va_start(ap, fmt);
2455 	retval += kvprintf(fmt, ap);
2456 	__va_end(ap);
2457 	return (retval);
2458 }
2459 
2460 struct ifnet *
2461 if_alloc(uint8_t type)
2462 {
2463         struct ifnet *ifp;
2464 	size_t size;
2465 
2466 	/*
2467 	 * XXX temporary hack until arpcom is setup in if_l2com
2468 	 */
2469 	if (type == IFT_ETHER)
2470 		size = sizeof(struct arpcom);
2471 	else
2472 		size = sizeof(struct ifnet);
2473 
2474 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2475 
2476 	ifp->if_type = type;
2477 
2478 	if (if_com_alloc[type] != NULL) {
2479 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2480 		if (ifp->if_l2com == NULL) {
2481 			kfree(ifp, M_IFNET);
2482 			return (NULL);
2483 		}
2484 	}
2485 	return (ifp);
2486 }
2487 
2488 void
2489 if_free(struct ifnet *ifp)
2490 {
2491 	kfree(ifp, M_IFNET);
2492 }
2493 
2494 void
2495 ifq_set_classic(struct ifaltq *ifq)
2496 {
2497 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2498 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2499 }
2500 
2501 void
2502 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2503     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2504 {
2505 	int q;
2506 
2507 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2508 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2509 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2510 	KASSERT(request != NULL, ("request is not specified"));
2511 
2512 	ifq->altq_mapsubq = mapsubq;
2513 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2514 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2515 
2516 		ifsq->ifsq_enqueue = enqueue;
2517 		ifsq->ifsq_dequeue = dequeue;
2518 		ifsq->ifsq_request = request;
2519 	}
2520 }
2521 
2522 static void
2523 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2524 {
2525 	m->m_nextpkt = NULL;
2526 	if (ifsq->ifsq_norm_tail == NULL)
2527 		ifsq->ifsq_norm_head = m;
2528 	else
2529 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2530 	ifsq->ifsq_norm_tail = m;
2531 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2532 }
2533 
2534 static void
2535 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2536 {
2537 	m->m_nextpkt = NULL;
2538 	if (ifsq->ifsq_prio_tail == NULL)
2539 		ifsq->ifsq_prio_head = m;
2540 	else
2541 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2542 	ifsq->ifsq_prio_tail = m;
2543 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2544 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2545 }
2546 
2547 static struct mbuf *
2548 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2549 {
2550 	struct mbuf *m;
2551 
2552 	m = ifsq->ifsq_norm_head;
2553 	if (m != NULL) {
2554 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2555 			ifsq->ifsq_norm_tail = NULL;
2556 		m->m_nextpkt = NULL;
2557 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2558 	}
2559 	return m;
2560 }
2561 
2562 static struct mbuf *
2563 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2564 {
2565 	struct mbuf *m;
2566 
2567 	m = ifsq->ifsq_prio_head;
2568 	if (m != NULL) {
2569 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2570 			ifsq->ifsq_prio_tail = NULL;
2571 		m->m_nextpkt = NULL;
2572 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2573 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2574 	}
2575 	return m;
2576 }
2577 
2578 int
2579 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2580     struct altq_pktattr *pa __unused)
2581 {
2582 	M_ASSERTPKTHDR(m);
2583 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2584 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2585 		if ((m->m_flags & M_PRIO) &&
2586 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2587 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2588 			struct mbuf *m_drop;
2589 
2590 			/*
2591 			 * Perform drop-head on normal queue
2592 			 */
2593 			m_drop = ifsq_norm_dequeue(ifsq);
2594 			if (m_drop != NULL) {
2595 				m_freem(m_drop);
2596 				ifsq_prio_enqueue(ifsq, m);
2597 				return 0;
2598 			}
2599 			/* XXX nothing could be dropped? */
2600 		}
2601 		m_freem(m);
2602 		return ENOBUFS;
2603 	} else {
2604 		if (m->m_flags & M_PRIO)
2605 			ifsq_prio_enqueue(ifsq, m);
2606 		else
2607 			ifsq_norm_enqueue(ifsq, m);
2608 		return 0;
2609 	}
2610 }
2611 
2612 struct mbuf *
2613 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2614 {
2615 	struct mbuf *m;
2616 
2617 	switch (op) {
2618 	case ALTDQ_POLL:
2619 		m = ifsq->ifsq_prio_head;
2620 		if (m == NULL)
2621 			m = ifsq->ifsq_norm_head;
2622 		break;
2623 
2624 	case ALTDQ_REMOVE:
2625 		m = ifsq_prio_dequeue(ifsq);
2626 		if (m == NULL)
2627 			m = ifsq_norm_dequeue(ifsq);
2628 		break;
2629 
2630 	default:
2631 		panic("unsupported ALTQ dequeue op: %d", op);
2632 	}
2633 	return m;
2634 }
2635 
2636 int
2637 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2638 {
2639 	switch (req) {
2640 	case ALTRQ_PURGE:
2641 		for (;;) {
2642 			struct mbuf *m;
2643 
2644 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2645 			if (m == NULL)
2646 				break;
2647 			m_freem(m);
2648 		}
2649 		break;
2650 
2651 	default:
2652 		panic("unsupported ALTQ request: %d", req);
2653 	}
2654 	return 0;
2655 }
2656 
2657 static void
2658 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2659 {
2660 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2661 	int running = 0, need_sched;
2662 
2663 	/*
2664 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2665 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2666 	 * the subqueue will be scheduled on the subqueue owner CPU.
2667 	 */
2668 	if (!ifsq_tryserialize_hw(ifsq)) {
2669 		/*
2670 		 * Subqueue hardware serializer contention happened,
2671 		 * ifnet.if_start on the subqueue is scheduled on
2672 		 * the subqueue owner CPU, and we keep going.
2673 		 */
2674 		ifsq_ifstart_schedule(ifsq, 1);
2675 		return;
2676 	}
2677 
2678 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2679 		ifp->if_start(ifp, ifsq);
2680 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2681 			running = 1;
2682 	}
2683 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2684 
2685 	ifsq_deserialize_hw(ifsq);
2686 
2687 	if (need_sched) {
2688 		/*
2689 		 * More data need to be transmitted, ifnet.if_start on the
2690 		 * subqueue is scheduled on the subqueue owner CPU, and we
2691 		 * keep going.
2692 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2693 		 */
2694 		ifsq_ifstart_schedule(ifsq, force_sched);
2695 	}
2696 }
2697 
2698 /*
2699  * Subqeue packets staging mechanism:
2700  *
2701  * The packets enqueued into the subqueue are staged to a certain amount
2702  * before the ifnet.if_start on the subqueue is called.  In this way, the
2703  * driver could avoid writing to hardware registers upon every packet,
2704  * instead, hardware registers could be written when certain amount of
2705  * packets are put onto hardware TX ring.  The measurement on several modern
2706  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2707  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2708  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2709  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2710  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2711  *
2712  * Subqueue packets staging is performed for two entry points into drivers'
2713  * transmission function:
2714  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2715  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2716  *
2717  * Subqueue packets staging will be stopped upon any of the following
2718  * conditions:
2719  * - If the count of packets enqueued on the current CPU is great than or
2720  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2721  * - If the total length of packets enqueued on the current CPU is great
2722  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2723  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2724  *   is usually less than hardware's MTU.
2725  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2726  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2727  *   released.
2728  * - The if_start_rollup(), which is registered as low priority netisr
2729  *   rollup function, is called; probably because no more work is pending
2730  *   for netisr.
2731  *
2732  * NOTE:
2733  * Currently subqueue packet staging is only performed in netisr threads.
2734  */
2735 int
2736 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2737 {
2738 	struct ifaltq *ifq = &ifp->if_snd;
2739 	struct ifaltq_subque *ifsq;
2740 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2741 	struct ifsubq_stage_head *head = NULL;
2742 	struct ifsubq_stage *stage = NULL;
2743 
2744 	ifsq = ifq_map_subq(ifq, mycpuid);
2745 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2746 
2747 	len = m->m_pkthdr.len;
2748 	if (m->m_flags & M_MCAST)
2749 		mcast = 1;
2750 
2751 	if (curthread->td_type == TD_TYPE_NETISR) {
2752 		head = &ifsubq_stage_heads[mycpuid];
2753 		stage = ifsq_get_stage(ifsq, mycpuid);
2754 
2755 		stage->stg_cnt++;
2756 		stage->stg_len += len;
2757 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2758 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2759 			avoid_start = 1;
2760 	}
2761 
2762 	ALTQ_SQ_LOCK(ifsq);
2763 	error = ifsq_enqueue_locked(ifsq, m, pa);
2764 	if (error) {
2765 		if (!ifsq_data_ready(ifsq)) {
2766 			ALTQ_SQ_UNLOCK(ifsq);
2767 			return error;
2768 		}
2769 		avoid_start = 0;
2770 	}
2771 	if (!ifsq_is_started(ifsq)) {
2772 		if (avoid_start) {
2773 			ALTQ_SQ_UNLOCK(ifsq);
2774 
2775 			KKASSERT(!error);
2776 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2777 				ifsq_stage_insert(head, stage);
2778 
2779 			IFNET_STAT_INC(ifp, obytes, len);
2780 			if (mcast)
2781 				IFNET_STAT_INC(ifp, omcasts, 1);
2782 			return error;
2783 		}
2784 
2785 		/*
2786 		 * Hold the subqueue interlock of ifnet.if_start
2787 		 */
2788 		ifsq_set_started(ifsq);
2789 		start = 1;
2790 	}
2791 	ALTQ_SQ_UNLOCK(ifsq);
2792 
2793 	if (!error) {
2794 		IFNET_STAT_INC(ifp, obytes, len);
2795 		if (mcast)
2796 			IFNET_STAT_INC(ifp, omcasts, 1);
2797 	}
2798 
2799 	if (stage != NULL) {
2800 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2801 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2802 			if (!avoid_start) {
2803 				ifsq_stage_remove(head, stage);
2804 				ifsq_ifstart_schedule(ifsq, 1);
2805 			}
2806 			return error;
2807 		}
2808 
2809 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2810 			ifsq_stage_remove(head, stage);
2811 		} else {
2812 			stage->stg_cnt = 0;
2813 			stage->stg_len = 0;
2814 		}
2815 	}
2816 
2817 	if (!start)
2818 		return error;
2819 
2820 	ifsq_ifstart_try(ifsq, 0);
2821 	return error;
2822 }
2823 
2824 void *
2825 ifa_create(int size, int flags)
2826 {
2827 	struct ifaddr *ifa;
2828 	int i;
2829 
2830 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2831 
2832 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2833 	if (ifa == NULL)
2834 		return NULL;
2835 
2836 	ifa->ifa_containers =
2837 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2838 	        M_IFADDR, M_WAITOK | M_ZERO);
2839 	ifa->ifa_ncnt = ncpus;
2840 	for (i = 0; i < ncpus; ++i) {
2841 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2842 
2843 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2844 		ifac->ifa = ifa;
2845 		ifac->ifa_refcnt = 1;
2846 	}
2847 #ifdef IFADDR_DEBUG
2848 	kprintf("alloc ifa %p %d\n", ifa, size);
2849 #endif
2850 	return ifa;
2851 }
2852 
2853 void
2854 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2855 {
2856 	struct ifaddr *ifa = ifac->ifa;
2857 
2858 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2859 	KKASSERT(ifac->ifa_refcnt == 0);
2860 	KASSERT(ifac->ifa_listmask == 0,
2861 		("ifa is still on %#x lists", ifac->ifa_listmask));
2862 
2863 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2864 
2865 #ifdef IFADDR_DEBUG_VERBOSE
2866 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2867 #endif
2868 
2869 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2870 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2871 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2872 #ifdef IFADDR_DEBUG
2873 		kprintf("free ifa %p\n", ifa);
2874 #endif
2875 		kfree(ifa->ifa_containers, M_IFADDR);
2876 		kfree(ifa, M_IFADDR);
2877 	}
2878 }
2879 
2880 static void
2881 ifa_iflink_dispatch(netmsg_t nmsg)
2882 {
2883 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2884 	struct ifaddr *ifa = msg->ifa;
2885 	struct ifnet *ifp = msg->ifp;
2886 	int cpu = mycpuid;
2887 	struct ifaddr_container *ifac;
2888 
2889 	crit_enter();
2890 
2891 	ifac = &ifa->ifa_containers[cpu];
2892 	ASSERT_IFAC_VALID(ifac);
2893 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2894 		("ifaddr is on if_addrheads"));
2895 
2896 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2897 	if (msg->tail)
2898 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2899 	else
2900 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2901 
2902 	crit_exit();
2903 
2904 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2905 }
2906 
2907 void
2908 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2909 {
2910 	struct netmsg_ifaddr msg;
2911 
2912 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2913 		    0, ifa_iflink_dispatch);
2914 	msg.ifa = ifa;
2915 	msg.ifp = ifp;
2916 	msg.tail = tail;
2917 
2918 	ifa_domsg(&msg.base.lmsg, 0);
2919 }
2920 
2921 static void
2922 ifa_ifunlink_dispatch(netmsg_t nmsg)
2923 {
2924 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2925 	struct ifaddr *ifa = msg->ifa;
2926 	struct ifnet *ifp = msg->ifp;
2927 	int cpu = mycpuid;
2928 	struct ifaddr_container *ifac;
2929 
2930 	crit_enter();
2931 
2932 	ifac = &ifa->ifa_containers[cpu];
2933 	ASSERT_IFAC_VALID(ifac);
2934 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2935 		("ifaddr is not on if_addrhead"));
2936 
2937 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2938 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2939 
2940 	crit_exit();
2941 
2942 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2943 }
2944 
2945 void
2946 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2947 {
2948 	struct netmsg_ifaddr msg;
2949 
2950 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2951 		    0, ifa_ifunlink_dispatch);
2952 	msg.ifa = ifa;
2953 	msg.ifp = ifp;
2954 
2955 	ifa_domsg(&msg.base.lmsg, 0);
2956 }
2957 
2958 static void
2959 ifa_destroy_dispatch(netmsg_t nmsg)
2960 {
2961 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2962 
2963 	IFAFREE(msg->ifa);
2964 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2965 }
2966 
2967 void
2968 ifa_destroy(struct ifaddr *ifa)
2969 {
2970 	struct netmsg_ifaddr msg;
2971 
2972 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2973 		    0, ifa_destroy_dispatch);
2974 	msg.ifa = ifa;
2975 
2976 	ifa_domsg(&msg.base.lmsg, 0);
2977 }
2978 
2979 struct lwkt_port *
2980 ifnet_portfn(int cpu)
2981 {
2982 	return &ifnet_threads[cpu].td_msgport;
2983 }
2984 
2985 void
2986 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2987 {
2988 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2989 
2990 	if (next_cpu < ncpus)
2991 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2992 	else
2993 		lwkt_replymsg(lmsg, 0);
2994 }
2995 
2996 int
2997 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2998 {
2999 	KKASSERT(cpu < ncpus);
3000 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3001 }
3002 
3003 void
3004 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3005 {
3006 	KKASSERT(cpu < ncpus);
3007 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3008 }
3009 
3010 /*
3011  * Generic netmsg service loop.  Some protocols may roll their own but all
3012  * must do the basic command dispatch function call done here.
3013  */
3014 static void
3015 ifnet_service_loop(void *arg __unused)
3016 {
3017 	netmsg_t msg;
3018 
3019 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3020 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3021 		msg->base.nm_dispatch(msg);
3022 	}
3023 }
3024 
3025 static void
3026 if_start_rollup(void)
3027 {
3028 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3029 	struct ifsubq_stage *stage;
3030 
3031 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3032 		struct ifaltq_subque *ifsq = stage->stg_subq;
3033 		int is_sched = 0;
3034 
3035 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3036 			is_sched = 1;
3037 		ifsq_stage_remove(head, stage);
3038 
3039 		if (is_sched) {
3040 			ifsq_ifstart_schedule(ifsq, 1);
3041 		} else {
3042 			int start = 0;
3043 
3044 			ALTQ_SQ_LOCK(ifsq);
3045 			if (!ifsq_is_started(ifsq)) {
3046 				/*
3047 				 * Hold the subqueue interlock of
3048 				 * ifnet.if_start
3049 				 */
3050 				ifsq_set_started(ifsq);
3051 				start = 1;
3052 			}
3053 			ALTQ_SQ_UNLOCK(ifsq);
3054 
3055 			if (start)
3056 				ifsq_ifstart_try(ifsq, 1);
3057 		}
3058 		KKASSERT((stage->stg_flags &
3059 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3060 	}
3061 }
3062 
3063 static void
3064 ifnetinit(void *dummy __unused)
3065 {
3066 	int i;
3067 
3068 	for (i = 0; i < ncpus; ++i) {
3069 		struct thread *thr = &ifnet_threads[i];
3070 
3071 		lwkt_create(ifnet_service_loop, NULL, NULL,
3072 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
3073 			    i, "ifnet %d", i);
3074 		netmsg_service_port_init(&thr->td_msgport);
3075 		lwkt_schedule(thr);
3076 	}
3077 
3078 	for (i = 0; i < ncpus; ++i)
3079 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3080 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3081 }
3082 
3083 struct ifnet *
3084 ifnet_byindex(unsigned short idx)
3085 {
3086 	if (idx > if_index)
3087 		return NULL;
3088 	return ifindex2ifnet[idx];
3089 }
3090 
3091 struct ifaddr *
3092 ifaddr_byindex(unsigned short idx)
3093 {
3094 	struct ifnet *ifp;
3095 
3096 	ifp = ifnet_byindex(idx);
3097 	if (!ifp)
3098 		return NULL;
3099 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
3100 }
3101 
3102 void
3103 if_register_com_alloc(u_char type,
3104     if_com_alloc_t *a, if_com_free_t *f)
3105 {
3106 
3107         KASSERT(if_com_alloc[type] == NULL,
3108             ("if_register_com_alloc: %d already registered", type));
3109         KASSERT(if_com_free[type] == NULL,
3110             ("if_register_com_alloc: %d free already registered", type));
3111 
3112         if_com_alloc[type] = a;
3113         if_com_free[type] = f;
3114 }
3115 
3116 void
3117 if_deregister_com_alloc(u_char type)
3118 {
3119 
3120         KASSERT(if_com_alloc[type] != NULL,
3121             ("if_deregister_com_alloc: %d not registered", type));
3122         KASSERT(if_com_free[type] != NULL,
3123             ("if_deregister_com_alloc: %d free not registered", type));
3124         if_com_alloc[type] = NULL;
3125         if_com_free[type] = NULL;
3126 }
3127 
3128 int
3129 if_ring_count2(int cnt, int cnt_max)
3130 {
3131 	int shift = 0;
3132 
3133 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3134 	    ("invalid ring count max %d", cnt_max));
3135 
3136 	if (cnt <= 0)
3137 		cnt = cnt_max;
3138 	if (cnt > ncpus2)
3139 		cnt = ncpus2;
3140 	if (cnt > cnt_max)
3141 		cnt = cnt_max;
3142 
3143 	while ((1 << (shift + 1)) <= cnt)
3144 		++shift;
3145 	cnt = 1 << shift;
3146 
3147 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3148 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3149 	     cnt, ncpus2, cnt_max));
3150 	return cnt;
3151 }
3152 
3153 void
3154 ifq_set_maxlen(struct ifaltq *ifq, int len)
3155 {
3156 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3157 }
3158 
3159 int
3160 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3161 {
3162 	return ALTQ_SUBQ_INDEX_DEFAULT;
3163 }
3164 
3165 int
3166 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3167 {
3168 	return (cpuid & ifq->altq_subq_mask);
3169 }
3170 
3171 static void
3172 ifsq_watchdog(void *arg)
3173 {
3174 	struct ifsubq_watchdog *wd = arg;
3175 	struct ifnet *ifp;
3176 
3177 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3178 		goto done;
3179 
3180 	ifp = ifsq_get_ifp(wd->wd_subq);
3181 	if (ifnet_tryserialize_all(ifp)) {
3182 		wd->wd_watchdog(wd->wd_subq);
3183 		ifnet_deserialize_all(ifp);
3184 	} else {
3185 		/* try again next timeout */
3186 		wd->wd_timer = 1;
3187 	}
3188 done:
3189 	ifsq_watchdog_reset(wd);
3190 }
3191 
3192 static void
3193 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3194 {
3195 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3196 	    ifsq_get_cpuid(wd->wd_subq));
3197 }
3198 
3199 void
3200 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3201     ifsq_watchdog_t watchdog)
3202 {
3203 	callout_init_mp(&wd->wd_callout);
3204 	wd->wd_timer = 0;
3205 	wd->wd_subq = ifsq;
3206 	wd->wd_watchdog = watchdog;
3207 }
3208 
3209 void
3210 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3211 {
3212 	wd->wd_timer = 0;
3213 	ifsq_watchdog_reset(wd);
3214 }
3215 
3216 void
3217 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3218 {
3219 	wd->wd_timer = 0;
3220 	callout_stop(&wd->wd_callout);
3221 }
3222