xref: /dragonfly/sys/net/if.c (revision dc71b7ab)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/protosw.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/mutex.h>
52 #include <sys/sockio.h>
53 #include <sys/syslog.h>
54 #include <sys/sysctl.h>
55 #include <sys/domain.h>
56 #include <sys/thread.h>
57 #include <sys/serialize.h>
58 #include <sys/bus.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/msgport2.h>
62 #include <sys/mutex2.h>
63 
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/if_var.h>
69 #include <net/ifq_var.h>
70 #include <net/radix.h>
71 #include <net/route.h>
72 #include <net/if_clone.h>
73 #include <net/netisr2.h>
74 #include <net/netmsg2.h>
75 
76 #include <machine/atomic.h>
77 #include <machine/stdarg.h>
78 #include <machine/smp.h>
79 
80 #if defined(INET) || defined(INET6)
81 /*XXX*/
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #ifdef INET6
86 #include <netinet6/in6_var.h>
87 #include <netinet6/in6_ifattach.h>
88 #endif
89 #endif
90 
91 #if defined(COMPAT_43)
92 #include <emulation/43bsd/43bsd_socket.h>
93 #endif /* COMPAT_43 */
94 
95 struct netmsg_ifaddr {
96 	struct netmsg_base base;
97 	struct ifaddr	*ifa;
98 	struct ifnet	*ifp;
99 	int		tail;
100 };
101 
102 struct ifsubq_stage_head {
103 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
104 } __cachealign;
105 
106 /*
107  * System initialization
108  */
109 static void	if_attachdomain(void *);
110 static void	if_attachdomain1(struct ifnet *);
111 static int	ifconf(u_long, caddr_t, struct ucred *);
112 static void	ifinit(void *);
113 static void	ifnetinit(void *);
114 static void	if_slowtimo(void *);
115 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
116 static int	if_rtdel(struct radix_node *, void *);
117 
118 /* Helper functions */
119 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
120 
121 #ifdef INET6
122 /*
123  * XXX: declare here to avoid to include many inet6 related files..
124  * should be more generalized?
125  */
126 extern void	nd6_setmtu(struct ifnet *);
127 #endif
128 
129 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
130 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
131 
132 static int ifsq_stage_cntmax = 4;
133 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
134 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
135     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
136 
137 static int if_stats_compat = 0;
138 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
139     &if_stats_compat, 0, "Compat the old ifnet stats");
140 
141 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
142 /* Must be after netisr_init */
143 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
144 
145 static  if_com_alloc_t *if_com_alloc[256];
146 static  if_com_free_t *if_com_free[256];
147 
148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
150 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
151 
152 int			ifqmaxlen = IFQ_MAXLEN;
153 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
154 
155 struct callout		if_slowtimo_timer;
156 
157 int			if_index = 0;
158 struct ifnet		**ifindex2ifnet = NULL;
159 static struct thread	ifnet_threads[MAXCPU];
160 
161 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
162 
163 #ifdef notyet
164 #define IFQ_KTR_STRING		"ifq=%p"
165 #define IFQ_KTR_ARGS	struct ifaltq *ifq
166 #ifndef KTR_IFQ
167 #define KTR_IFQ			KTR_ALL
168 #endif
169 KTR_INFO_MASTER(ifq);
170 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
171 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
172 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
173 
174 #define IF_START_KTR_STRING	"ifp=%p"
175 #define IF_START_KTR_ARGS	struct ifnet *ifp
176 #ifndef KTR_IF_START
177 #define KTR_IF_START		KTR_ALL
178 #endif
179 KTR_INFO_MASTER(if_start);
180 KTR_INFO(KTR_IF_START, if_start, run, 0,
181 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
182 KTR_INFO(KTR_IF_START, if_start, sched, 1,
183 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
184 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
191 #endif
192 
193 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
194 
195 /*
196  * Network interface utility routines.
197  *
198  * Routines with ifa_ifwith* names take sockaddr *'s as
199  * parameters.
200  */
201 /* ARGSUSED*/
202 void
203 ifinit(void *dummy)
204 {
205 	struct ifnet *ifp;
206 
207 	callout_init(&if_slowtimo_timer);
208 
209 	crit_enter();
210 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
211 		if (ifp->if_snd.altq_maxlen == 0) {
212 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
213 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
214 		}
215 	}
216 	crit_exit();
217 
218 	if_slowtimo(0);
219 }
220 
221 static void
222 ifsq_ifstart_ipifunc(void *arg)
223 {
224 	struct ifaltq_subque *ifsq = arg;
225 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
226 
227 	crit_enter();
228 	if (lmsg->ms_flags & MSGF_DONE)
229 		lwkt_sendmsg(netisr_cpuport(mycpuid), lmsg);
230 	crit_exit();
231 }
232 
233 static __inline void
234 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
235 {
236 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
237 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
238 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
239 	stage->stg_cnt = 0;
240 	stage->stg_len = 0;
241 }
242 
243 static __inline void
244 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
245 {
246 	KKASSERT((stage->stg_flags &
247 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
248 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
249 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
250 }
251 
252 /*
253  * Schedule ifnet.if_start on the subqueue owner CPU
254  */
255 static void
256 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
257 {
258 	int cpu;
259 
260 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
261 	    ifsq_stage_cntmax > 0) {
262 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
263 
264 		stage->stg_cnt = 0;
265 		stage->stg_len = 0;
266 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
267 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
268 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
269 		return;
270 	}
271 
272 	cpu = ifsq_get_cpuid(ifsq);
273 	if (cpu != mycpuid)
274 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
275 	else
276 		ifsq_ifstart_ipifunc(ifsq);
277 }
278 
279 /*
280  * NOTE:
281  * This function will release ifnet.if_start subqueue interlock,
282  * if ifnet.if_start for the subqueue does not need to be scheduled
283  */
284 static __inline int
285 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
286 {
287 	if (!running || ifsq_is_empty(ifsq)
288 #ifdef ALTQ
289 	    || ifsq->ifsq_altq->altq_tbr != NULL
290 #endif
291 	) {
292 		ALTQ_SQ_LOCK(ifsq);
293 		/*
294 		 * ifnet.if_start subqueue interlock is released, if:
295 		 * 1) Hardware can not take any packets, due to
296 		 *    o  interface is marked down
297 		 *    o  hardware queue is full (ifsq_is_oactive)
298 		 *    Under the second situation, hardware interrupt
299 		 *    or polling(4) will call/schedule ifnet.if_start
300 		 *    on the subqueue when hardware queue is ready
301 		 * 2) There is no packet in the subqueue.
302 		 *    Further ifq_dispatch or ifq_handoff will call/
303 		 *    schedule ifnet.if_start on the subqueue.
304 		 * 3) TBR is used and it does not allow further
305 		 *    dequeueing.
306 		 *    TBR callout will call ifnet.if_start on the
307 		 *    subqueue.
308 		 */
309 		if (!running || !ifsq_data_ready(ifsq)) {
310 			ifsq_clr_started(ifsq);
311 			ALTQ_SQ_UNLOCK(ifsq);
312 			return 0;
313 		}
314 		ALTQ_SQ_UNLOCK(ifsq);
315 	}
316 	return 1;
317 }
318 
319 static void
320 ifsq_ifstart_dispatch(netmsg_t msg)
321 {
322 	struct lwkt_msg *lmsg = &msg->base.lmsg;
323 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
324 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
325 	int running = 0, need_sched;
326 
327 	crit_enter();
328 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
329 	crit_exit();
330 
331 	if (mycpuid != ifsq_get_cpuid(ifsq)) {
332 		/*
333 		 * We need to chase the subqueue owner CPU change.
334 		 */
335 		ifsq_ifstart_schedule(ifsq, 1);
336 		return;
337 	}
338 
339 	ifsq_serialize_hw(ifsq);
340 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
341 		ifp->if_start(ifp, ifsq);
342 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
343 			running = 1;
344 	}
345 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
346 	ifsq_deserialize_hw(ifsq);
347 
348 	if (need_sched) {
349 		/*
350 		 * More data need to be transmitted, ifnet.if_start is
351 		 * scheduled on the subqueue owner CPU, and we keep going.
352 		 * NOTE: ifnet.if_start subqueue interlock is not released.
353 		 */
354 		ifsq_ifstart_schedule(ifsq, 0);
355 	}
356 }
357 
358 /* Device driver ifnet.if_start helper function */
359 void
360 ifsq_devstart(struct ifaltq_subque *ifsq)
361 {
362 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
363 	int running = 0;
364 
365 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
366 
367 	ALTQ_SQ_LOCK(ifsq);
368 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
369 		ALTQ_SQ_UNLOCK(ifsq);
370 		return;
371 	}
372 	ifsq_set_started(ifsq);
373 	ALTQ_SQ_UNLOCK(ifsq);
374 
375 	ifp->if_start(ifp, ifsq);
376 
377 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
378 		running = 1;
379 
380 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
381 		/*
382 		 * More data need to be transmitted, ifnet.if_start is
383 		 * scheduled on ifnet's CPU, and we keep going.
384 		 * NOTE: ifnet.if_start interlock is not released.
385 		 */
386 		ifsq_ifstart_schedule(ifsq, 0);
387 	}
388 }
389 
390 void
391 if_devstart(struct ifnet *ifp)
392 {
393 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
394 }
395 
396 /* Device driver ifnet.if_start schedule helper function */
397 void
398 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
399 {
400 	ifsq_ifstart_schedule(ifsq, 1);
401 }
402 
403 void
404 if_devstart_sched(struct ifnet *ifp)
405 {
406 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
407 }
408 
409 static void
410 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
411 {
412 	lwkt_serialize_enter(ifp->if_serializer);
413 }
414 
415 static void
416 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
417 {
418 	lwkt_serialize_exit(ifp->if_serializer);
419 }
420 
421 static int
422 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
423 {
424 	return lwkt_serialize_try(ifp->if_serializer);
425 }
426 
427 #ifdef INVARIANTS
428 static void
429 if_default_serialize_assert(struct ifnet *ifp,
430 			    enum ifnet_serialize slz __unused,
431 			    boolean_t serialized)
432 {
433 	if (serialized)
434 		ASSERT_SERIALIZED(ifp->if_serializer);
435 	else
436 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
437 }
438 #endif
439 
440 /*
441  * Attach an interface to the list of "active" interfaces.
442  *
443  * The serializer is optional.
444  */
445 void
446 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
447 {
448 	unsigned socksize, ifasize;
449 	int namelen, masklen;
450 	struct sockaddr_dl *sdl;
451 	struct ifaddr *ifa;
452 	struct ifaltq *ifq;
453 	int i, q;
454 
455 	static int if_indexlim = 8;
456 
457 	if (ifp->if_serialize != NULL) {
458 		KASSERT(ifp->if_deserialize != NULL &&
459 			ifp->if_tryserialize != NULL &&
460 			ifp->if_serialize_assert != NULL,
461 			("serialize functions are partially setup"));
462 
463 		/*
464 		 * If the device supplies serialize functions,
465 		 * then clear if_serializer to catch any invalid
466 		 * usage of this field.
467 		 */
468 		KASSERT(serializer == NULL,
469 			("both serialize functions and default serializer "
470 			 "are supplied"));
471 		ifp->if_serializer = NULL;
472 	} else {
473 		KASSERT(ifp->if_deserialize == NULL &&
474 			ifp->if_tryserialize == NULL &&
475 			ifp->if_serialize_assert == NULL,
476 			("serialize functions are partially setup"));
477 		ifp->if_serialize = if_default_serialize;
478 		ifp->if_deserialize = if_default_deserialize;
479 		ifp->if_tryserialize = if_default_tryserialize;
480 #ifdef INVARIANTS
481 		ifp->if_serialize_assert = if_default_serialize_assert;
482 #endif
483 
484 		/*
485 		 * The serializer can be passed in from the device,
486 		 * allowing the same serializer to be used for both
487 		 * the interrupt interlock and the device queue.
488 		 * If not specified, the netif structure will use an
489 		 * embedded serializer.
490 		 */
491 		if (serializer == NULL) {
492 			serializer = &ifp->if_default_serializer;
493 			lwkt_serialize_init(serializer);
494 		}
495 		ifp->if_serializer = serializer;
496 	}
497 
498 	mtx_init(&ifp->if_ioctl_mtx);
499 	mtx_lock(&ifp->if_ioctl_mtx);
500 
501 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
502 	ifp->if_index = ++if_index;
503 
504 	/*
505 	 * XXX -
506 	 * The old code would work if the interface passed a pre-existing
507 	 * chain of ifaddrs to this code.  We don't trust our callers to
508 	 * properly initialize the tailq, however, so we no longer allow
509 	 * this unlikely case.
510 	 */
511 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
512 				    M_IFADDR, M_WAITOK | M_ZERO);
513 	for (i = 0; i < ncpus; ++i)
514 		TAILQ_INIT(&ifp->if_addrheads[i]);
515 
516 	TAILQ_INIT(&ifp->if_prefixhead);
517 	TAILQ_INIT(&ifp->if_multiaddrs);
518 	TAILQ_INIT(&ifp->if_groups);
519 	getmicrotime(&ifp->if_lastchange);
520 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
521 		unsigned int n;
522 		struct ifnet **q;
523 
524 		if_indexlim <<= 1;
525 
526 		/* grow ifindex2ifnet */
527 		n = if_indexlim * sizeof(*q);
528 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
529 		if (ifindex2ifnet) {
530 			bcopy(ifindex2ifnet, q, n/2);
531 			kfree(ifindex2ifnet, M_IFADDR);
532 		}
533 		ifindex2ifnet = q;
534 	}
535 
536 	ifindex2ifnet[if_index] = ifp;
537 
538 	/*
539 	 * create a Link Level name for this device
540 	 */
541 	namelen = strlen(ifp->if_xname);
542 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
543 	socksize = masklen + ifp->if_addrlen;
544 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
545 	if (socksize < sizeof(*sdl))
546 		socksize = sizeof(*sdl);
547 	socksize = ROUNDUP(socksize);
548 #undef ROUNDUP
549 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
550 	ifa = ifa_create(ifasize, M_WAITOK);
551 	sdl = (struct sockaddr_dl *)(ifa + 1);
552 	sdl->sdl_len = socksize;
553 	sdl->sdl_family = AF_LINK;
554 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
555 	sdl->sdl_nlen = namelen;
556 	sdl->sdl_index = ifp->if_index;
557 	sdl->sdl_type = ifp->if_type;
558 	ifp->if_lladdr = ifa;
559 	ifa->ifa_ifp = ifp;
560 	ifa->ifa_rtrequest = link_rtrequest;
561 	ifa->ifa_addr = (struct sockaddr *)sdl;
562 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
563 	ifa->ifa_netmask = (struct sockaddr *)sdl;
564 	sdl->sdl_len = masklen;
565 	while (namelen != 0)
566 		sdl->sdl_data[--namelen] = 0xff;
567 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
568 
569 	ifp->if_data_pcpu = kmalloc_cachealign(
570 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
571 
572 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
573 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
574 
575 	if (ifp->if_mapsubq == NULL)
576 		ifp->if_mapsubq = ifq_mapsubq_default;
577 
578 	ifq = &ifp->if_snd;
579 	ifq->altq_type = 0;
580 	ifq->altq_disc = NULL;
581 	ifq->altq_flags &= ALTQF_CANTCHANGE;
582 	ifq->altq_tbr = NULL;
583 	ifq->altq_ifp = ifp;
584 
585 	if (ifq->altq_subq_cnt <= 0)
586 		ifq->altq_subq_cnt = 1;
587 	ifq->altq_subq = kmalloc_cachealign(
588 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
589 	    M_DEVBUF, M_WAITOK | M_ZERO);
590 
591 	if (ifq->altq_maxlen == 0) {
592 		if_printf(ifp, "driver didn't set ifq_maxlen\n");
593 		ifq_set_maxlen(ifq, ifqmaxlen);
594 	}
595 
596 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
597 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
598 
599 		ALTQ_SQ_LOCK_INIT(ifsq);
600 		ifsq->ifsq_index = q;
601 
602 		ifsq->ifsq_altq = ifq;
603 		ifsq->ifsq_ifp = ifp;
604 
605 		ifsq->ifq_maxlen = ifq->altq_maxlen;
606 		ifsq->ifsq_prepended = NULL;
607 		ifsq->ifsq_started = 0;
608 		ifsq->ifsq_hw_oactive = 0;
609 		ifsq_set_cpuid(ifsq, 0);
610 		if (ifp->if_serializer != NULL)
611 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
612 
613 		ifsq->ifsq_stage =
614 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
615 		    M_DEVBUF, M_WAITOK | M_ZERO);
616 		for (i = 0; i < ncpus; ++i)
617 			ifsq->ifsq_stage[i].stg_subq = ifsq;
618 
619 		ifsq->ifsq_ifstart_nmsg =
620 		    kmalloc(ncpus * sizeof(struct netmsg_base),
621 		    M_LWKTMSG, M_WAITOK);
622 		for (i = 0; i < ncpus; ++i) {
623 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
624 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
625 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
626 		}
627 	}
628 	ifq_set_classic(ifq);
629 
630 	if (!SLIST_EMPTY(&domains))
631 		if_attachdomain1(ifp);
632 
633 	/* Announce the interface. */
634 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
635 
636 	mtx_unlock(&ifp->if_ioctl_mtx);
637 }
638 
639 static void
640 if_attachdomain(void *dummy)
641 {
642 	struct ifnet *ifp;
643 
644 	crit_enter();
645 	TAILQ_FOREACH(ifp, &ifnet, if_list)
646 		if_attachdomain1(ifp);
647 	crit_exit();
648 }
649 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
650 	if_attachdomain, NULL);
651 
652 static void
653 if_attachdomain1(struct ifnet *ifp)
654 {
655 	struct domain *dp;
656 
657 	crit_enter();
658 
659 	/* address family dependent data region */
660 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
661 	SLIST_FOREACH(dp, &domains, dom_next)
662 		if (dp->dom_ifattach)
663 			ifp->if_afdata[dp->dom_family] =
664 				(*dp->dom_ifattach)(ifp);
665 	crit_exit();
666 }
667 
668 /*
669  * Purge all addresses whose type is _not_ AF_LINK
670  */
671 void
672 if_purgeaddrs_nolink(struct ifnet *ifp)
673 {
674 	struct ifaddr_container *ifac, *next;
675 
676 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
677 			      ifa_link, next) {
678 		struct ifaddr *ifa = ifac->ifa;
679 
680 		/* Leave link ifaddr as it is */
681 		if (ifa->ifa_addr->sa_family == AF_LINK)
682 			continue;
683 #ifdef INET
684 		/* XXX: Ugly!! ad hoc just for INET */
685 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
686 			struct ifaliasreq ifr;
687 #ifdef IFADDR_DEBUG_VERBOSE
688 			int i;
689 
690 			kprintf("purge in4 addr %p: ", ifa);
691 			for (i = 0; i < ncpus; ++i)
692 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
693 			kprintf("\n");
694 #endif
695 
696 			bzero(&ifr, sizeof ifr);
697 			ifr.ifra_addr = *ifa->ifa_addr;
698 			if (ifa->ifa_dstaddr)
699 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
700 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
701 				       NULL) == 0)
702 				continue;
703 		}
704 #endif /* INET */
705 #ifdef INET6
706 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
707 #ifdef IFADDR_DEBUG_VERBOSE
708 			int i;
709 
710 			kprintf("purge in6 addr %p: ", ifa);
711 			for (i = 0; i < ncpus; ++i)
712 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
713 			kprintf("\n");
714 #endif
715 
716 			in6_purgeaddr(ifa);
717 			/* ifp_addrhead is already updated */
718 			continue;
719 		}
720 #endif /* INET6 */
721 		ifa_ifunlink(ifa, ifp);
722 		ifa_destroy(ifa);
723 	}
724 }
725 
726 static void
727 ifq_stage_detach_handler(netmsg_t nmsg)
728 {
729 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
730 	int q;
731 
732 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
733 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
734 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
735 
736 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
737 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
738 	}
739 	lwkt_replymsg(&nmsg->lmsg, 0);
740 }
741 
742 static void
743 ifq_stage_detach(struct ifaltq *ifq)
744 {
745 	struct netmsg_base base;
746 	int cpu;
747 
748 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
749 	    ifq_stage_detach_handler);
750 	base.lmsg.u.ms_resultp = ifq;
751 
752 	for (cpu = 0; cpu < ncpus; ++cpu)
753 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
754 }
755 
756 /*
757  * Detach an interface, removing it from the
758  * list of "active" interfaces.
759  */
760 void
761 if_detach(struct ifnet *ifp)
762 {
763 	struct radix_node_head	*rnh;
764 	int i, q;
765 	int cpu, origcpu;
766 	struct domain *dp;
767 
768 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
769 
770 	/*
771 	 * Remove routes and flush queues.
772 	 */
773 	crit_enter();
774 #ifdef IFPOLL_ENABLE
775 	if (ifp->if_flags & IFF_NPOLLING)
776 		ifpoll_deregister(ifp);
777 #endif
778 	if_down(ifp);
779 
780 #ifdef ALTQ
781 	if (ifq_is_enabled(&ifp->if_snd))
782 		altq_disable(&ifp->if_snd);
783 	if (ifq_is_attached(&ifp->if_snd))
784 		altq_detach(&ifp->if_snd);
785 #endif
786 
787 	/*
788 	 * Clean up all addresses.
789 	 */
790 	ifp->if_lladdr = NULL;
791 
792 	if_purgeaddrs_nolink(ifp);
793 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
794 		struct ifaddr *ifa;
795 
796 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
797 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
798 			("non-link ifaddr is left on if_addrheads"));
799 
800 		ifa_ifunlink(ifa, ifp);
801 		ifa_destroy(ifa);
802 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
803 			("there are still ifaddrs left on if_addrheads"));
804 	}
805 
806 #ifdef INET
807 	/*
808 	 * Remove all IPv4 kernel structures related to ifp.
809 	 */
810 	in_ifdetach(ifp);
811 #endif
812 
813 #ifdef INET6
814 	/*
815 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
816 	 * before removing routing entries below, since IPv6 interface direct
817 	 * routes are expected to be removed by the IPv6-specific kernel API.
818 	 * Otherwise, the kernel will detect some inconsistency and bark it.
819 	 */
820 	in6_ifdetach(ifp);
821 #endif
822 
823 	/*
824 	 * Delete all remaining routes using this interface
825 	 * Unfortuneatly the only way to do this is to slog through
826 	 * the entire routing table looking for routes which point
827 	 * to this interface...oh well...
828 	 */
829 	origcpu = mycpuid;
830 	for (cpu = 0; cpu < ncpus; cpu++) {
831 		lwkt_migratecpu(cpu);
832 		for (i = 1; i <= AF_MAX; i++) {
833 			if ((rnh = rt_tables[cpu][i]) == NULL)
834 				continue;
835 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
836 		}
837 	}
838 	lwkt_migratecpu(origcpu);
839 
840 	/* Announce that the interface is gone. */
841 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
842 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
843 
844 	SLIST_FOREACH(dp, &domains, dom_next)
845 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
846 			(*dp->dom_ifdetach)(ifp,
847 				ifp->if_afdata[dp->dom_family]);
848 
849 	/*
850 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
851 	 */
852 	ifindex2ifnet[ifp->if_index] = NULL;
853 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
854 		if_index--;
855 
856 	TAILQ_REMOVE(&ifnet, ifp, if_link);
857 	kfree(ifp->if_addrheads, M_IFADDR);
858 
859 	lwkt_synchronize_ipiqs("if_detach");
860 	ifq_stage_detach(&ifp->if_snd);
861 
862 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
863 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
864 
865 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
866 		kfree(ifsq->ifsq_stage, M_DEVBUF);
867 	}
868 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
869 
870 	kfree(ifp->if_data_pcpu, M_DEVBUF);
871 
872 	crit_exit();
873 }
874 
875 /*
876  * Create interface group without members
877  */
878 struct ifg_group *
879 if_creategroup(const char *groupname)
880 {
881         struct ifg_group        *ifg = NULL;
882 
883         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
884             M_TEMP, M_NOWAIT)) == NULL)
885                 return (NULL);
886 
887         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
888         ifg->ifg_refcnt = 0;
889         ifg->ifg_carp_demoted = 0;
890         TAILQ_INIT(&ifg->ifg_members);
891 #if NPF > 0
892         pfi_attach_ifgroup(ifg);
893 #endif
894         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
895 
896         return (ifg);
897 }
898 
899 /*
900  * Add a group to an interface
901  */
902 int
903 if_addgroup(struct ifnet *ifp, const char *groupname)
904 {
905 	struct ifg_list		*ifgl;
906 	struct ifg_group	*ifg = NULL;
907 	struct ifg_member	*ifgm;
908 
909 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
910 	    groupname[strlen(groupname) - 1] <= '9')
911 		return (EINVAL);
912 
913 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
914 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
915 			return (EEXIST);
916 
917 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
918 		return (ENOMEM);
919 
920 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
921 		kfree(ifgl, M_TEMP);
922 		return (ENOMEM);
923 	}
924 
925 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
926 		if (!strcmp(ifg->ifg_group, groupname))
927 			break;
928 
929 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
930 		kfree(ifgl, M_TEMP);
931 		kfree(ifgm, M_TEMP);
932 		return (ENOMEM);
933 	}
934 
935 	ifg->ifg_refcnt++;
936 	ifgl->ifgl_group = ifg;
937 	ifgm->ifgm_ifp = ifp;
938 
939 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
940 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
941 
942 #if NPF > 0
943 	pfi_group_change(groupname);
944 #endif
945 
946 	return (0);
947 }
948 
949 /*
950  * Remove a group from an interface
951  */
952 int
953 if_delgroup(struct ifnet *ifp, const char *groupname)
954 {
955 	struct ifg_list		*ifgl;
956 	struct ifg_member	*ifgm;
957 
958 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
959 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
960 			break;
961 	if (ifgl == NULL)
962 		return (ENOENT);
963 
964 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
965 
966 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
967 		if (ifgm->ifgm_ifp == ifp)
968 			break;
969 
970 	if (ifgm != NULL) {
971 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
972 		kfree(ifgm, M_TEMP);
973 	}
974 
975 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
976 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
977 #if NPF > 0
978 		pfi_detach_ifgroup(ifgl->ifgl_group);
979 #endif
980 		kfree(ifgl->ifgl_group, M_TEMP);
981 	}
982 
983 	kfree(ifgl, M_TEMP);
984 
985 #if NPF > 0
986 	pfi_group_change(groupname);
987 #endif
988 
989 	return (0);
990 }
991 
992 /*
993  * Stores all groups from an interface in memory pointed
994  * to by data
995  */
996 int
997 if_getgroup(caddr_t data, struct ifnet *ifp)
998 {
999 	int			 len, error;
1000 	struct ifg_list		*ifgl;
1001 	struct ifg_req		 ifgrq, *ifgp;
1002 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1003 
1004 	if (ifgr->ifgr_len == 0) {
1005 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1006 			ifgr->ifgr_len += sizeof(struct ifg_req);
1007 		return (0);
1008 	}
1009 
1010 	len = ifgr->ifgr_len;
1011 	ifgp = ifgr->ifgr_groups;
1012 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1013 		if (len < sizeof(ifgrq))
1014 			return (EINVAL);
1015 		bzero(&ifgrq, sizeof ifgrq);
1016 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1017 		    sizeof(ifgrq.ifgrq_group));
1018 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1019 		    sizeof(struct ifg_req))))
1020 			return (error);
1021 		len -= sizeof(ifgrq);
1022 		ifgp++;
1023 	}
1024 
1025 	return (0);
1026 }
1027 
1028 /*
1029  * Stores all members of a group in memory pointed to by data
1030  */
1031 int
1032 if_getgroupmembers(caddr_t data)
1033 {
1034 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1035 	struct ifg_group	*ifg;
1036 	struct ifg_member	*ifgm;
1037 	struct ifg_req		 ifgrq, *ifgp;
1038 	int			 len, error;
1039 
1040 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1041 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1042 			break;
1043 	if (ifg == NULL)
1044 		return (ENOENT);
1045 
1046 	if (ifgr->ifgr_len == 0) {
1047 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1048 			ifgr->ifgr_len += sizeof(ifgrq);
1049 		return (0);
1050 	}
1051 
1052 	len = ifgr->ifgr_len;
1053 	ifgp = ifgr->ifgr_groups;
1054 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1055 		if (len < sizeof(ifgrq))
1056 			return (EINVAL);
1057 		bzero(&ifgrq, sizeof ifgrq);
1058 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1059 		    sizeof(ifgrq.ifgrq_member));
1060 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1061 		    sizeof(struct ifg_req))))
1062 			return (error);
1063 		len -= sizeof(ifgrq);
1064 		ifgp++;
1065 	}
1066 
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Delete Routes for a Network Interface
1072  *
1073  * Called for each routing entry via the rnh->rnh_walktree() call above
1074  * to delete all route entries referencing a detaching network interface.
1075  *
1076  * Arguments:
1077  *	rn	pointer to node in the routing table
1078  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1079  *
1080  * Returns:
1081  *	0	successful
1082  *	errno	failed - reason indicated
1083  *
1084  */
1085 static int
1086 if_rtdel(struct radix_node *rn, void *arg)
1087 {
1088 	struct rtentry	*rt = (struct rtentry *)rn;
1089 	struct ifnet	*ifp = arg;
1090 	int		err;
1091 
1092 	if (rt->rt_ifp == ifp) {
1093 
1094 		/*
1095 		 * Protect (sorta) against walktree recursion problems
1096 		 * with cloned routes
1097 		 */
1098 		if (!(rt->rt_flags & RTF_UP))
1099 			return (0);
1100 
1101 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1102 				rt_mask(rt), rt->rt_flags,
1103 				NULL);
1104 		if (err) {
1105 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1106 		}
1107 	}
1108 
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Locate an interface based on a complete address.
1114  */
1115 struct ifaddr *
1116 ifa_ifwithaddr(struct sockaddr *addr)
1117 {
1118 	struct ifnet *ifp;
1119 
1120 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1121 		struct ifaddr_container *ifac;
1122 
1123 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1124 			struct ifaddr *ifa = ifac->ifa;
1125 
1126 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1127 				continue;
1128 			if (sa_equal(addr, ifa->ifa_addr))
1129 				return (ifa);
1130 			if ((ifp->if_flags & IFF_BROADCAST) &&
1131 			    ifa->ifa_broadaddr &&
1132 			    /* IPv6 doesn't have broadcast */
1133 			    ifa->ifa_broadaddr->sa_len != 0 &&
1134 			    sa_equal(ifa->ifa_broadaddr, addr))
1135 				return (ifa);
1136 		}
1137 	}
1138 	return (NULL);
1139 }
1140 /*
1141  * Locate the point to point interface with a given destination address.
1142  */
1143 struct ifaddr *
1144 ifa_ifwithdstaddr(struct sockaddr *addr)
1145 {
1146 	struct ifnet *ifp;
1147 
1148 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1149 		struct ifaddr_container *ifac;
1150 
1151 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1152 			continue;
1153 
1154 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1155 			struct ifaddr *ifa = ifac->ifa;
1156 
1157 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1158 				continue;
1159 			if (ifa->ifa_dstaddr &&
1160 			    sa_equal(addr, ifa->ifa_dstaddr))
1161 				return (ifa);
1162 		}
1163 	}
1164 	return (NULL);
1165 }
1166 
1167 /*
1168  * Find an interface on a specific network.  If many, choice
1169  * is most specific found.
1170  */
1171 struct ifaddr *
1172 ifa_ifwithnet(struct sockaddr *addr)
1173 {
1174 	struct ifnet *ifp;
1175 	struct ifaddr *ifa_maybe = NULL;
1176 	u_int af = addr->sa_family;
1177 	char *addr_data = addr->sa_data, *cplim;
1178 
1179 	/*
1180 	 * AF_LINK addresses can be looked up directly by their index number,
1181 	 * so do that if we can.
1182 	 */
1183 	if (af == AF_LINK) {
1184 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1185 
1186 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1187 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1188 	}
1189 
1190 	/*
1191 	 * Scan though each interface, looking for ones that have
1192 	 * addresses in this address family.
1193 	 */
1194 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1195 		struct ifaddr_container *ifac;
1196 
1197 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1198 			struct ifaddr *ifa = ifac->ifa;
1199 			char *cp, *cp2, *cp3;
1200 
1201 			if (ifa->ifa_addr->sa_family != af)
1202 next:				continue;
1203 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1204 				/*
1205 				 * This is a bit broken as it doesn't
1206 				 * take into account that the remote end may
1207 				 * be a single node in the network we are
1208 				 * looking for.
1209 				 * The trouble is that we don't know the
1210 				 * netmask for the remote end.
1211 				 */
1212 				if (ifa->ifa_dstaddr != NULL &&
1213 				    sa_equal(addr, ifa->ifa_dstaddr))
1214 					return (ifa);
1215 			} else {
1216 				/*
1217 				 * if we have a special address handler,
1218 				 * then use it instead of the generic one.
1219 				 */
1220 				if (ifa->ifa_claim_addr) {
1221 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1222 						return (ifa);
1223 					} else {
1224 						continue;
1225 					}
1226 				}
1227 
1228 				/*
1229 				 * Scan all the bits in the ifa's address.
1230 				 * If a bit dissagrees with what we are
1231 				 * looking for, mask it with the netmask
1232 				 * to see if it really matters.
1233 				 * (A byte at a time)
1234 				 */
1235 				if (ifa->ifa_netmask == 0)
1236 					continue;
1237 				cp = addr_data;
1238 				cp2 = ifa->ifa_addr->sa_data;
1239 				cp3 = ifa->ifa_netmask->sa_data;
1240 				cplim = ifa->ifa_netmask->sa_len +
1241 					(char *)ifa->ifa_netmask;
1242 				while (cp3 < cplim)
1243 					if ((*cp++ ^ *cp2++) & *cp3++)
1244 						goto next; /* next address! */
1245 				/*
1246 				 * If the netmask of what we just found
1247 				 * is more specific than what we had before
1248 				 * (if we had one) then remember the new one
1249 				 * before continuing to search
1250 				 * for an even better one.
1251 				 */
1252 				if (ifa_maybe == NULL ||
1253 				    rn_refines((char *)ifa->ifa_netmask,
1254 					       (char *)ifa_maybe->ifa_netmask))
1255 					ifa_maybe = ifa;
1256 			}
1257 		}
1258 	}
1259 	return (ifa_maybe);
1260 }
1261 
1262 /*
1263  * Find an interface address specific to an interface best matching
1264  * a given address.
1265  */
1266 struct ifaddr *
1267 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1268 {
1269 	struct ifaddr_container *ifac;
1270 	char *cp, *cp2, *cp3;
1271 	char *cplim;
1272 	struct ifaddr *ifa_maybe = NULL;
1273 	u_int af = addr->sa_family;
1274 
1275 	if (af >= AF_MAX)
1276 		return (0);
1277 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1278 		struct ifaddr *ifa = ifac->ifa;
1279 
1280 		if (ifa->ifa_addr->sa_family != af)
1281 			continue;
1282 		if (ifa_maybe == NULL)
1283 			ifa_maybe = ifa;
1284 		if (ifa->ifa_netmask == NULL) {
1285 			if (sa_equal(addr, ifa->ifa_addr) ||
1286 			    (ifa->ifa_dstaddr != NULL &&
1287 			     sa_equal(addr, ifa->ifa_dstaddr)))
1288 				return (ifa);
1289 			continue;
1290 		}
1291 		if (ifp->if_flags & IFF_POINTOPOINT) {
1292 			if (sa_equal(addr, ifa->ifa_dstaddr))
1293 				return (ifa);
1294 		} else {
1295 			cp = addr->sa_data;
1296 			cp2 = ifa->ifa_addr->sa_data;
1297 			cp3 = ifa->ifa_netmask->sa_data;
1298 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1299 			for (; cp3 < cplim; cp3++)
1300 				if ((*cp++ ^ *cp2++) & *cp3)
1301 					break;
1302 			if (cp3 == cplim)
1303 				return (ifa);
1304 		}
1305 	}
1306 	return (ifa_maybe);
1307 }
1308 
1309 /*
1310  * Default action when installing a route with a Link Level gateway.
1311  * Lookup an appropriate real ifa to point to.
1312  * This should be moved to /sys/net/link.c eventually.
1313  */
1314 static void
1315 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1316 {
1317 	struct ifaddr *ifa;
1318 	struct sockaddr *dst;
1319 	struct ifnet *ifp;
1320 
1321 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1322 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1323 		return;
1324 	ifa = ifaof_ifpforaddr(dst, ifp);
1325 	if (ifa != NULL) {
1326 		IFAFREE(rt->rt_ifa);
1327 		IFAREF(ifa);
1328 		rt->rt_ifa = ifa;
1329 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1330 			ifa->ifa_rtrequest(cmd, rt, info);
1331 	}
1332 }
1333 
1334 /*
1335  * Mark an interface down and notify protocols of
1336  * the transition.
1337  * NOTE: must be called at splnet or eqivalent.
1338  */
1339 void
1340 if_unroute(struct ifnet *ifp, int flag, int fam)
1341 {
1342 	struct ifaddr_container *ifac;
1343 
1344 	ifp->if_flags &= ~flag;
1345 	getmicrotime(&ifp->if_lastchange);
1346 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1347 		struct ifaddr *ifa = ifac->ifa;
1348 
1349 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1350 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1351 	}
1352 	ifq_purge_all(&ifp->if_snd);
1353 	rt_ifmsg(ifp);
1354 }
1355 
1356 /*
1357  * Mark an interface up and notify protocols of
1358  * the transition.
1359  * NOTE: must be called at splnet or eqivalent.
1360  */
1361 void
1362 if_route(struct ifnet *ifp, int flag, int fam)
1363 {
1364 	struct ifaddr_container *ifac;
1365 
1366 	ifq_purge_all(&ifp->if_snd);
1367 	ifp->if_flags |= flag;
1368 	getmicrotime(&ifp->if_lastchange);
1369 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1370 		struct ifaddr *ifa = ifac->ifa;
1371 
1372 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1373 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1374 	}
1375 	rt_ifmsg(ifp);
1376 #ifdef INET6
1377 	in6_if_up(ifp);
1378 #endif
1379 }
1380 
1381 /*
1382  * Mark an interface down and notify protocols of the transition.  An
1383  * interface going down is also considered to be a synchronizing event.
1384  * We must ensure that all packet processing related to the interface
1385  * has completed before we return so e.g. the caller can free the ifnet
1386  * structure that the mbufs may be referencing.
1387  *
1388  * NOTE: must be called at splnet or eqivalent.
1389  */
1390 void
1391 if_down(struct ifnet *ifp)
1392 {
1393 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1394 	netmsg_service_sync();
1395 }
1396 
1397 /*
1398  * Mark an interface up and notify protocols of
1399  * the transition.
1400  * NOTE: must be called at splnet or eqivalent.
1401  */
1402 void
1403 if_up(struct ifnet *ifp)
1404 {
1405 	if_route(ifp, IFF_UP, AF_UNSPEC);
1406 }
1407 
1408 /*
1409  * Process a link state change.
1410  * NOTE: must be called at splsoftnet or equivalent.
1411  */
1412 void
1413 if_link_state_change(struct ifnet *ifp)
1414 {
1415 	int link_state = ifp->if_link_state;
1416 
1417 	rt_ifmsg(ifp);
1418 	devctl_notify("IFNET", ifp->if_xname,
1419 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1420 }
1421 
1422 /*
1423  * Handle interface watchdog timer routines.  Called
1424  * from softclock, we decrement timers (if set) and
1425  * call the appropriate interface routine on expiration.
1426  */
1427 static void
1428 if_slowtimo(void *arg)
1429 {
1430 	struct ifnet *ifp;
1431 
1432 	crit_enter();
1433 
1434 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1435 		if (if_stats_compat) {
1436 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1437 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1438 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1439 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1440 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1441 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1442 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1443 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1444 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1445 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1446 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1447 		}
1448 
1449 		if (ifp->if_timer == 0 || --ifp->if_timer)
1450 			continue;
1451 		if (ifp->if_watchdog) {
1452 			if (ifnet_tryserialize_all(ifp)) {
1453 				(*ifp->if_watchdog)(ifp);
1454 				ifnet_deserialize_all(ifp);
1455 			} else {
1456 				/* try again next timeout */
1457 				++ifp->if_timer;
1458 			}
1459 		}
1460 	}
1461 
1462 	crit_exit();
1463 
1464 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1465 }
1466 
1467 /*
1468  * Map interface name to
1469  * interface structure pointer.
1470  */
1471 struct ifnet *
1472 ifunit(const char *name)
1473 {
1474 	struct ifnet *ifp;
1475 
1476 	/*
1477 	 * Search all the interfaces for this name/number
1478 	 */
1479 
1480 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1481 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1482 			break;
1483 	}
1484 	return (ifp);
1485 }
1486 
1487 
1488 /*
1489  * Map interface name in a sockaddr_dl to
1490  * interface structure pointer.
1491  */
1492 struct ifnet *
1493 if_withname(struct sockaddr *sa)
1494 {
1495 	char ifname[IFNAMSIZ+1];
1496 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1497 
1498 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1499 	     (sdl->sdl_nlen > IFNAMSIZ) )
1500 		return NULL;
1501 
1502 	/*
1503 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1504 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1505 	 * and there might not be room to put the trailing null anyway, so we
1506 	 * make a local copy that we know we can null terminate safely.
1507 	 */
1508 
1509 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1510 	ifname[sdl->sdl_nlen] = '\0';
1511 	return ifunit(ifname);
1512 }
1513 
1514 
1515 /*
1516  * Interface ioctls.
1517  */
1518 int
1519 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1520 {
1521 	struct ifnet *ifp;
1522 	struct ifreq *ifr;
1523 	struct ifstat *ifs;
1524 	int error;
1525 	short oif_flags;
1526 	int new_flags;
1527 #ifdef COMPAT_43
1528 	int ocmd;
1529 #endif
1530 	size_t namelen, onamelen;
1531 	char new_name[IFNAMSIZ];
1532 	struct ifaddr *ifa;
1533 	struct sockaddr_dl *sdl;
1534 
1535 	switch (cmd) {
1536 	case SIOCGIFCONF:
1537 	case OSIOCGIFCONF:
1538 		return (ifconf(cmd, data, cred));
1539 	default:
1540 		break;
1541 	}
1542 
1543 	ifr = (struct ifreq *)data;
1544 
1545 	switch (cmd) {
1546 	case SIOCIFCREATE:
1547 	case SIOCIFCREATE2:
1548 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1549 			return (error);
1550 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1551 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1552 	case SIOCIFDESTROY:
1553 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1554 			return (error);
1555 		return (if_clone_destroy(ifr->ifr_name));
1556 	case SIOCIFGCLONERS:
1557 		return (if_clone_list((struct if_clonereq *)data));
1558 	default:
1559 		break;
1560 	}
1561 
1562 	/*
1563 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1564 	 * lock to serialize the ifconfig ioctl operation.
1565 	 */
1566 	ifp = ifunit(ifr->ifr_name);
1567 	if (ifp == NULL)
1568 		return (ENXIO);
1569 	error = 0;
1570 	mtx_lock(&ifp->if_ioctl_mtx);
1571 
1572 	switch (cmd) {
1573 	case SIOCGIFINDEX:
1574 		ifr->ifr_index = ifp->if_index;
1575 		break;
1576 
1577 	case SIOCGIFFLAGS:
1578 		ifr->ifr_flags = ifp->if_flags;
1579 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1580 		break;
1581 
1582 	case SIOCGIFCAP:
1583 		ifr->ifr_reqcap = ifp->if_capabilities;
1584 		ifr->ifr_curcap = ifp->if_capenable;
1585 		break;
1586 
1587 	case SIOCGIFMETRIC:
1588 		ifr->ifr_metric = ifp->if_metric;
1589 		break;
1590 
1591 	case SIOCGIFMTU:
1592 		ifr->ifr_mtu = ifp->if_mtu;
1593 		break;
1594 
1595 	case SIOCGIFTSOLEN:
1596 		ifr->ifr_tsolen = ifp->if_tsolen;
1597 		break;
1598 
1599 	case SIOCGIFDATA:
1600 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1601 				sizeof(ifp->if_data));
1602 		break;
1603 
1604 	case SIOCGIFPHYS:
1605 		ifr->ifr_phys = ifp->if_physical;
1606 		break;
1607 
1608 	case SIOCGIFPOLLCPU:
1609 		ifr->ifr_pollcpu = -1;
1610 		break;
1611 
1612 	case SIOCSIFPOLLCPU:
1613 		break;
1614 
1615 	case SIOCSIFFLAGS:
1616 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1617 		if (error)
1618 			break;
1619 		new_flags = (ifr->ifr_flags & 0xffff) |
1620 		    (ifr->ifr_flagshigh << 16);
1621 		if (ifp->if_flags & IFF_SMART) {
1622 			/* Smart drivers twiddle their own routes */
1623 		} else if (ifp->if_flags & IFF_UP &&
1624 		    (new_flags & IFF_UP) == 0) {
1625 			crit_enter();
1626 			if_down(ifp);
1627 			crit_exit();
1628 		} else if (new_flags & IFF_UP &&
1629 		    (ifp->if_flags & IFF_UP) == 0) {
1630 			crit_enter();
1631 			if_up(ifp);
1632 			crit_exit();
1633 		}
1634 
1635 #ifdef IFPOLL_ENABLE
1636 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1637 			if (new_flags & IFF_NPOLLING)
1638 				ifpoll_register(ifp);
1639 			else
1640 				ifpoll_deregister(ifp);
1641 		}
1642 #endif
1643 
1644 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1645 			(new_flags &~ IFF_CANTCHANGE);
1646 		if (new_flags & IFF_PPROMISC) {
1647 			/* Permanently promiscuous mode requested */
1648 			ifp->if_flags |= IFF_PROMISC;
1649 		} else if (ifp->if_pcount == 0) {
1650 			ifp->if_flags &= ~IFF_PROMISC;
1651 		}
1652 		if (ifp->if_ioctl) {
1653 			ifnet_serialize_all(ifp);
1654 			ifp->if_ioctl(ifp, cmd, data, cred);
1655 			ifnet_deserialize_all(ifp);
1656 		}
1657 		getmicrotime(&ifp->if_lastchange);
1658 		break;
1659 
1660 	case SIOCSIFCAP:
1661 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1662 		if (error)
1663 			break;
1664 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1665 			error = EINVAL;
1666 			break;
1667 		}
1668 		ifnet_serialize_all(ifp);
1669 		ifp->if_ioctl(ifp, cmd, data, cred);
1670 		ifnet_deserialize_all(ifp);
1671 		break;
1672 
1673 	case SIOCSIFNAME:
1674 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1675 		if (error)
1676 			break;
1677 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1678 		if (error)
1679 			break;
1680 		if (new_name[0] == '\0') {
1681 			error = EINVAL;
1682 			break;
1683 		}
1684 		if (ifunit(new_name) != NULL) {
1685 			error = EEXIST;
1686 			break;
1687 		}
1688 
1689 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1690 
1691 		/* Announce the departure of the interface. */
1692 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1693 
1694 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1695 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1696 		/* XXX IFA_LOCK(ifa); */
1697 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1698 		namelen = strlen(new_name);
1699 		onamelen = sdl->sdl_nlen;
1700 		/*
1701 		 * Move the address if needed.  This is safe because we
1702 		 * allocate space for a name of length IFNAMSIZ when we
1703 		 * create this in if_attach().
1704 		 */
1705 		if (namelen != onamelen) {
1706 			bcopy(sdl->sdl_data + onamelen,
1707 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1708 		}
1709 		bcopy(new_name, sdl->sdl_data, namelen);
1710 		sdl->sdl_nlen = namelen;
1711 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1712 		bzero(sdl->sdl_data, onamelen);
1713 		while (namelen != 0)
1714 			sdl->sdl_data[--namelen] = 0xff;
1715 		/* XXX IFA_UNLOCK(ifa) */
1716 
1717 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1718 
1719 		/* Announce the return of the interface. */
1720 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1721 		break;
1722 
1723 	case SIOCSIFMETRIC:
1724 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1725 		if (error)
1726 			break;
1727 		ifp->if_metric = ifr->ifr_metric;
1728 		getmicrotime(&ifp->if_lastchange);
1729 		break;
1730 
1731 	case SIOCSIFPHYS:
1732 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1733 		if (error)
1734 			break;
1735 		if (ifp->if_ioctl == NULL) {
1736 		        error = EOPNOTSUPP;
1737 			break;
1738 		}
1739 		ifnet_serialize_all(ifp);
1740 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1741 		ifnet_deserialize_all(ifp);
1742 		if (error == 0)
1743 			getmicrotime(&ifp->if_lastchange);
1744 		break;
1745 
1746 	case SIOCSIFMTU:
1747 	{
1748 		u_long oldmtu = ifp->if_mtu;
1749 
1750 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1751 		if (error)
1752 			break;
1753 		if (ifp->if_ioctl == NULL) {
1754 			error = EOPNOTSUPP;
1755 			break;
1756 		}
1757 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1758 			error = EINVAL;
1759 			break;
1760 		}
1761 		ifnet_serialize_all(ifp);
1762 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1763 		ifnet_deserialize_all(ifp);
1764 		if (error == 0) {
1765 			getmicrotime(&ifp->if_lastchange);
1766 			rt_ifmsg(ifp);
1767 		}
1768 		/*
1769 		 * If the link MTU changed, do network layer specific procedure.
1770 		 */
1771 		if (ifp->if_mtu != oldmtu) {
1772 #ifdef INET6
1773 			nd6_setmtu(ifp);
1774 #endif
1775 		}
1776 		break;
1777 	}
1778 
1779 	case SIOCSIFTSOLEN:
1780 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1781 		if (error)
1782 			break;
1783 
1784 		/* XXX need driver supplied upper limit */
1785 		if (ifr->ifr_tsolen <= 0) {
1786 			error = EINVAL;
1787 			break;
1788 		}
1789 		ifp->if_tsolen = ifr->ifr_tsolen;
1790 		break;
1791 
1792 	case SIOCADDMULTI:
1793 	case SIOCDELMULTI:
1794 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1795 		if (error)
1796 			break;
1797 
1798 		/* Don't allow group membership on non-multicast interfaces. */
1799 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1800 			error = EOPNOTSUPP;
1801 			break;
1802 		}
1803 
1804 		/* Don't let users screw up protocols' entries. */
1805 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1806 			error = EINVAL;
1807 			break;
1808 		}
1809 
1810 		if (cmd == SIOCADDMULTI) {
1811 			struct ifmultiaddr *ifma;
1812 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1813 		} else {
1814 			error = if_delmulti(ifp, &ifr->ifr_addr);
1815 		}
1816 		if (error == 0)
1817 			getmicrotime(&ifp->if_lastchange);
1818 		break;
1819 
1820 	case SIOCSIFPHYADDR:
1821 	case SIOCDIFPHYADDR:
1822 #ifdef INET6
1823 	case SIOCSIFPHYADDR_IN6:
1824 #endif
1825 	case SIOCSLIFPHYADDR:
1826         case SIOCSIFMEDIA:
1827 	case SIOCSIFGENERIC:
1828 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1829 		if (error)
1830 			break;
1831 		if (ifp->if_ioctl == 0) {
1832 			error = EOPNOTSUPP;
1833 			break;
1834 		}
1835 		ifnet_serialize_all(ifp);
1836 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1837 		ifnet_deserialize_all(ifp);
1838 		if (error == 0)
1839 			getmicrotime(&ifp->if_lastchange);
1840 		break;
1841 
1842 	case SIOCGIFSTATUS:
1843 		ifs = (struct ifstat *)data;
1844 		ifs->ascii[0] = '\0';
1845 		/* fall through */
1846 	case SIOCGIFPSRCADDR:
1847 	case SIOCGIFPDSTADDR:
1848 	case SIOCGLIFPHYADDR:
1849 	case SIOCGIFMEDIA:
1850 	case SIOCGIFGENERIC:
1851 		if (ifp->if_ioctl == NULL) {
1852 			error = EOPNOTSUPP;
1853 			break;
1854 		}
1855 		ifnet_serialize_all(ifp);
1856 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1857 		ifnet_deserialize_all(ifp);
1858 		break;
1859 
1860 	case SIOCSIFLLADDR:
1861 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1862 		if (error)
1863 			break;
1864 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1865 				     ifr->ifr_addr.sa_len);
1866 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1867 		break;
1868 
1869 	default:
1870 		oif_flags = ifp->if_flags;
1871 		if (so->so_proto == 0) {
1872 			error = EOPNOTSUPP;
1873 			break;
1874 		}
1875 #ifndef COMPAT_43
1876 		error = so_pru_control_direct(so, cmd, data, ifp);
1877 #else
1878 		ocmd = cmd;
1879 
1880 		switch (cmd) {
1881 		case SIOCSIFDSTADDR:
1882 		case SIOCSIFADDR:
1883 		case SIOCSIFBRDADDR:
1884 		case SIOCSIFNETMASK:
1885 #if BYTE_ORDER != BIG_ENDIAN
1886 			if (ifr->ifr_addr.sa_family == 0 &&
1887 			    ifr->ifr_addr.sa_len < 16) {
1888 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1889 				ifr->ifr_addr.sa_len = 16;
1890 			}
1891 #else
1892 			if (ifr->ifr_addr.sa_len == 0)
1893 				ifr->ifr_addr.sa_len = 16;
1894 #endif
1895 			break;
1896 		case OSIOCGIFADDR:
1897 			cmd = SIOCGIFADDR;
1898 			break;
1899 		case OSIOCGIFDSTADDR:
1900 			cmd = SIOCGIFDSTADDR;
1901 			break;
1902 		case OSIOCGIFBRDADDR:
1903 			cmd = SIOCGIFBRDADDR;
1904 			break;
1905 		case OSIOCGIFNETMASK:
1906 			cmd = SIOCGIFNETMASK;
1907 			break;
1908 		default:
1909 			break;
1910 		}
1911 
1912 		error = so_pru_control_direct(so, cmd, data, ifp);
1913 
1914 		switch (ocmd) {
1915 		case OSIOCGIFADDR:
1916 		case OSIOCGIFDSTADDR:
1917 		case OSIOCGIFBRDADDR:
1918 		case OSIOCGIFNETMASK:
1919 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1920 			break;
1921 		}
1922 #endif /* COMPAT_43 */
1923 
1924 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1925 #ifdef INET6
1926 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1927 			if (ifp->if_flags & IFF_UP) {
1928 				crit_enter();
1929 				in6_if_up(ifp);
1930 				crit_exit();
1931 			}
1932 #endif
1933 		}
1934 		break;
1935 	}
1936 
1937 	mtx_unlock(&ifp->if_ioctl_mtx);
1938 	return (error);
1939 }
1940 
1941 /*
1942  * Set/clear promiscuous mode on interface ifp based on the truth value
1943  * of pswitch.  The calls are reference counted so that only the first
1944  * "on" request actually has an effect, as does the final "off" request.
1945  * Results are undefined if the "off" and "on" requests are not matched.
1946  */
1947 int
1948 ifpromisc(struct ifnet *ifp, int pswitch)
1949 {
1950 	struct ifreq ifr;
1951 	int error;
1952 	int oldflags;
1953 
1954 	oldflags = ifp->if_flags;
1955 	if (ifp->if_flags & IFF_PPROMISC) {
1956 		/* Do nothing if device is in permanently promiscuous mode */
1957 		ifp->if_pcount += pswitch ? 1 : -1;
1958 		return (0);
1959 	}
1960 	if (pswitch) {
1961 		/*
1962 		 * If the device is not configured up, we cannot put it in
1963 		 * promiscuous mode.
1964 		 */
1965 		if ((ifp->if_flags & IFF_UP) == 0)
1966 			return (ENETDOWN);
1967 		if (ifp->if_pcount++ != 0)
1968 			return (0);
1969 		ifp->if_flags |= IFF_PROMISC;
1970 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1971 		    ifp->if_xname);
1972 	} else {
1973 		if (--ifp->if_pcount > 0)
1974 			return (0);
1975 		ifp->if_flags &= ~IFF_PROMISC;
1976 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1977 		    ifp->if_xname);
1978 	}
1979 	ifr.ifr_flags = ifp->if_flags;
1980 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1981 	ifnet_serialize_all(ifp);
1982 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1983 	ifnet_deserialize_all(ifp);
1984 	if (error == 0)
1985 		rt_ifmsg(ifp);
1986 	else
1987 		ifp->if_flags = oldflags;
1988 	return error;
1989 }
1990 
1991 /*
1992  * Return interface configuration
1993  * of system.  List may be used
1994  * in later ioctl's (above) to get
1995  * other information.
1996  */
1997 static int
1998 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1999 {
2000 	struct ifconf *ifc = (struct ifconf *)data;
2001 	struct ifnet *ifp;
2002 	struct sockaddr *sa;
2003 	struct ifreq ifr, *ifrp;
2004 	int space = ifc->ifc_len, error = 0;
2005 
2006 	ifrp = ifc->ifc_req;
2007 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2008 		struct ifaddr_container *ifac;
2009 		int addrs;
2010 
2011 		if (space <= sizeof ifr)
2012 			break;
2013 
2014 		/*
2015 		 * Zero the stack declared structure first to prevent
2016 		 * memory disclosure.
2017 		 */
2018 		bzero(&ifr, sizeof(ifr));
2019 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2020 		    >= sizeof(ifr.ifr_name)) {
2021 			error = ENAMETOOLONG;
2022 			break;
2023 		}
2024 
2025 		addrs = 0;
2026 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2027 			struct ifaddr *ifa = ifac->ifa;
2028 
2029 			if (space <= sizeof ifr)
2030 				break;
2031 			sa = ifa->ifa_addr;
2032 			if (cred->cr_prison &&
2033 			    prison_if(cred, sa))
2034 				continue;
2035 			addrs++;
2036 #ifdef COMPAT_43
2037 			if (cmd == OSIOCGIFCONF) {
2038 				struct osockaddr *osa =
2039 					 (struct osockaddr *)&ifr.ifr_addr;
2040 				ifr.ifr_addr = *sa;
2041 				osa->sa_family = sa->sa_family;
2042 				error = copyout(&ifr, ifrp, sizeof ifr);
2043 				ifrp++;
2044 			} else
2045 #endif
2046 			if (sa->sa_len <= sizeof(*sa)) {
2047 				ifr.ifr_addr = *sa;
2048 				error = copyout(&ifr, ifrp, sizeof ifr);
2049 				ifrp++;
2050 			} else {
2051 				if (space < (sizeof ifr) + sa->sa_len -
2052 					    sizeof(*sa))
2053 					break;
2054 				space -= sa->sa_len - sizeof(*sa);
2055 				error = copyout(&ifr, ifrp,
2056 						sizeof ifr.ifr_name);
2057 				if (error == 0)
2058 					error = copyout(sa, &ifrp->ifr_addr,
2059 							sa->sa_len);
2060 				ifrp = (struct ifreq *)
2061 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2062 			}
2063 			if (error)
2064 				break;
2065 			space -= sizeof ifr;
2066 		}
2067 		if (error)
2068 			break;
2069 		if (!addrs) {
2070 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2071 			error = copyout(&ifr, ifrp, sizeof ifr);
2072 			if (error)
2073 				break;
2074 			space -= sizeof ifr;
2075 			ifrp++;
2076 		}
2077 	}
2078 	ifc->ifc_len -= space;
2079 	return (error);
2080 }
2081 
2082 /*
2083  * Just like if_promisc(), but for all-multicast-reception mode.
2084  */
2085 int
2086 if_allmulti(struct ifnet *ifp, int onswitch)
2087 {
2088 	int error = 0;
2089 	struct ifreq ifr;
2090 
2091 	crit_enter();
2092 
2093 	if (onswitch) {
2094 		if (ifp->if_amcount++ == 0) {
2095 			ifp->if_flags |= IFF_ALLMULTI;
2096 			ifr.ifr_flags = ifp->if_flags;
2097 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2098 			ifnet_serialize_all(ifp);
2099 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2100 					      NULL);
2101 			ifnet_deserialize_all(ifp);
2102 		}
2103 	} else {
2104 		if (ifp->if_amcount > 1) {
2105 			ifp->if_amcount--;
2106 		} else {
2107 			ifp->if_amcount = 0;
2108 			ifp->if_flags &= ~IFF_ALLMULTI;
2109 			ifr.ifr_flags = ifp->if_flags;
2110 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2111 			ifnet_serialize_all(ifp);
2112 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2113 					      NULL);
2114 			ifnet_deserialize_all(ifp);
2115 		}
2116 	}
2117 
2118 	crit_exit();
2119 
2120 	if (error == 0)
2121 		rt_ifmsg(ifp);
2122 	return error;
2123 }
2124 
2125 /*
2126  * Add a multicast listenership to the interface in question.
2127  * The link layer provides a routine which converts
2128  */
2129 int
2130 if_addmulti(
2131 	struct ifnet *ifp,	/* interface to manipulate */
2132 	struct sockaddr *sa,	/* address to add */
2133 	struct ifmultiaddr **retifma)
2134 {
2135 	struct sockaddr *llsa, *dupsa;
2136 	int error;
2137 	struct ifmultiaddr *ifma;
2138 
2139 	/*
2140 	 * If the matching multicast address already exists
2141 	 * then don't add a new one, just add a reference
2142 	 */
2143 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2144 		if (sa_equal(sa, ifma->ifma_addr)) {
2145 			ifma->ifma_refcount++;
2146 			if (retifma)
2147 				*retifma = ifma;
2148 			return 0;
2149 		}
2150 	}
2151 
2152 	/*
2153 	 * Give the link layer a chance to accept/reject it, and also
2154 	 * find out which AF_LINK address this maps to, if it isn't one
2155 	 * already.
2156 	 */
2157 	if (ifp->if_resolvemulti) {
2158 		ifnet_serialize_all(ifp);
2159 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2160 		ifnet_deserialize_all(ifp);
2161 		if (error)
2162 			return error;
2163 	} else {
2164 		llsa = NULL;
2165 	}
2166 
2167 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2168 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2169 	bcopy(sa, dupsa, sa->sa_len);
2170 
2171 	ifma->ifma_addr = dupsa;
2172 	ifma->ifma_lladdr = llsa;
2173 	ifma->ifma_ifp = ifp;
2174 	ifma->ifma_refcount = 1;
2175 	ifma->ifma_protospec = 0;
2176 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2177 
2178 	/*
2179 	 * Some network interfaces can scan the address list at
2180 	 * interrupt time; lock them out.
2181 	 */
2182 	crit_enter();
2183 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2184 	crit_exit();
2185 	if (retifma)
2186 		*retifma = ifma;
2187 
2188 	if (llsa != NULL) {
2189 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2190 			if (sa_equal(ifma->ifma_addr, llsa))
2191 				break;
2192 		}
2193 		if (ifma) {
2194 			ifma->ifma_refcount++;
2195 		} else {
2196 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2197 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2198 			bcopy(llsa, dupsa, llsa->sa_len);
2199 			ifma->ifma_addr = dupsa;
2200 			ifma->ifma_ifp = ifp;
2201 			ifma->ifma_refcount = 1;
2202 			crit_enter();
2203 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2204 			crit_exit();
2205 		}
2206 	}
2207 	/*
2208 	 * We are certain we have added something, so call down to the
2209 	 * interface to let them know about it.
2210 	 */
2211 	crit_enter();
2212 	ifnet_serialize_all(ifp);
2213 	if (ifp->if_ioctl)
2214 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2215 	ifnet_deserialize_all(ifp);
2216 	crit_exit();
2217 
2218 	return 0;
2219 }
2220 
2221 /*
2222  * Remove a reference to a multicast address on this interface.  Yell
2223  * if the request does not match an existing membership.
2224  */
2225 int
2226 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2227 {
2228 	struct ifmultiaddr *ifma;
2229 
2230 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2231 		if (sa_equal(sa, ifma->ifma_addr))
2232 			break;
2233 	if (ifma == NULL)
2234 		return ENOENT;
2235 
2236 	if (ifma->ifma_refcount > 1) {
2237 		ifma->ifma_refcount--;
2238 		return 0;
2239 	}
2240 
2241 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2242 	sa = ifma->ifma_lladdr;
2243 	crit_enter();
2244 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2245 	/*
2246 	 * Make sure the interface driver is notified
2247 	 * in the case of a link layer mcast group being left.
2248 	 */
2249 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2250 		ifnet_serialize_all(ifp);
2251 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2252 		ifnet_deserialize_all(ifp);
2253 	}
2254 	crit_exit();
2255 	kfree(ifma->ifma_addr, M_IFMADDR);
2256 	kfree(ifma, M_IFMADDR);
2257 	if (sa == NULL)
2258 		return 0;
2259 
2260 	/*
2261 	 * Now look for the link-layer address which corresponds to
2262 	 * this network address.  It had been squirreled away in
2263 	 * ifma->ifma_lladdr for this purpose (so we don't have
2264 	 * to call ifp->if_resolvemulti() again), and we saved that
2265 	 * value in sa above.  If some nasty deleted the
2266 	 * link-layer address out from underneath us, we can deal because
2267 	 * the address we stored was is not the same as the one which was
2268 	 * in the record for the link-layer address.  (So we don't complain
2269 	 * in that case.)
2270 	 */
2271 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2272 		if (sa_equal(sa, ifma->ifma_addr))
2273 			break;
2274 	if (ifma == NULL)
2275 		return 0;
2276 
2277 	if (ifma->ifma_refcount > 1) {
2278 		ifma->ifma_refcount--;
2279 		return 0;
2280 	}
2281 
2282 	crit_enter();
2283 	ifnet_serialize_all(ifp);
2284 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2285 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2286 	ifnet_deserialize_all(ifp);
2287 	crit_exit();
2288 	kfree(ifma->ifma_addr, M_IFMADDR);
2289 	kfree(sa, M_IFMADDR);
2290 	kfree(ifma, M_IFMADDR);
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * Delete all multicast group membership for an interface.
2297  * Should be used to quickly flush all multicast filters.
2298  */
2299 void
2300 if_delallmulti(struct ifnet *ifp)
2301 {
2302 	struct ifmultiaddr *ifma;
2303 	struct ifmultiaddr *next;
2304 
2305 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2306 		if_delmulti(ifp, ifma->ifma_addr);
2307 }
2308 
2309 
2310 /*
2311  * Set the link layer address on an interface.
2312  *
2313  * At this time we only support certain types of interfaces,
2314  * and we don't allow the length of the address to change.
2315  */
2316 int
2317 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2318 {
2319 	struct sockaddr_dl *sdl;
2320 	struct ifreq ifr;
2321 
2322 	sdl = IF_LLSOCKADDR(ifp);
2323 	if (sdl == NULL)
2324 		return (EINVAL);
2325 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2326 		return (EINVAL);
2327 	switch (ifp->if_type) {
2328 	case IFT_ETHER:			/* these types use struct arpcom */
2329 	case IFT_XETHER:
2330 	case IFT_L2VLAN:
2331 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2332 		bcopy(lladdr, LLADDR(sdl), len);
2333 		break;
2334 	default:
2335 		return (ENODEV);
2336 	}
2337 	/*
2338 	 * If the interface is already up, we need
2339 	 * to re-init it in order to reprogram its
2340 	 * address filter.
2341 	 */
2342 	ifnet_serialize_all(ifp);
2343 	if ((ifp->if_flags & IFF_UP) != 0) {
2344 #ifdef INET
2345 		struct ifaddr_container *ifac;
2346 #endif
2347 
2348 		ifp->if_flags &= ~IFF_UP;
2349 		ifr.ifr_flags = ifp->if_flags;
2350 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2351 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2352 			      NULL);
2353 		ifp->if_flags |= IFF_UP;
2354 		ifr.ifr_flags = ifp->if_flags;
2355 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2356 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2357 				 NULL);
2358 #ifdef INET
2359 		/*
2360 		 * Also send gratuitous ARPs to notify other nodes about
2361 		 * the address change.
2362 		 */
2363 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2364 			struct ifaddr *ifa = ifac->ifa;
2365 
2366 			if (ifa->ifa_addr != NULL &&
2367 			    ifa->ifa_addr->sa_family == AF_INET)
2368 				arp_gratuitous(ifp, ifa);
2369 		}
2370 #endif
2371 	}
2372 	ifnet_deserialize_all(ifp);
2373 	return (0);
2374 }
2375 
2376 struct ifmultiaddr *
2377 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2378 {
2379 	struct ifmultiaddr *ifma;
2380 
2381 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2382 		if (sa_equal(ifma->ifma_addr, sa))
2383 			break;
2384 
2385 	return ifma;
2386 }
2387 
2388 /*
2389  * This function locates the first real ethernet MAC from a network
2390  * card and loads it into node, returning 0 on success or ENOENT if
2391  * no suitable interfaces were found.  It is used by the uuid code to
2392  * generate a unique 6-byte number.
2393  */
2394 int
2395 if_getanyethermac(uint16_t *node, int minlen)
2396 {
2397 	struct ifnet *ifp;
2398 	struct sockaddr_dl *sdl;
2399 
2400 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2401 		if (ifp->if_type != IFT_ETHER)
2402 			continue;
2403 		sdl = IF_LLSOCKADDR(ifp);
2404 		if (sdl->sdl_alen < minlen)
2405 			continue;
2406 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2407 		      minlen);
2408 		return(0);
2409 	}
2410 	return (ENOENT);
2411 }
2412 
2413 /*
2414  * The name argument must be a pointer to storage which will last as
2415  * long as the interface does.  For physical devices, the result of
2416  * device_get_name(dev) is a good choice and for pseudo-devices a
2417  * static string works well.
2418  */
2419 void
2420 if_initname(struct ifnet *ifp, const char *name, int unit)
2421 {
2422 	ifp->if_dname = name;
2423 	ifp->if_dunit = unit;
2424 	if (unit != IF_DUNIT_NONE)
2425 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2426 	else
2427 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2428 }
2429 
2430 int
2431 if_printf(struct ifnet *ifp, const char *fmt, ...)
2432 {
2433 	__va_list ap;
2434 	int retval;
2435 
2436 	retval = kprintf("%s: ", ifp->if_xname);
2437 	__va_start(ap, fmt);
2438 	retval += kvprintf(fmt, ap);
2439 	__va_end(ap);
2440 	return (retval);
2441 }
2442 
2443 struct ifnet *
2444 if_alloc(uint8_t type)
2445 {
2446         struct ifnet *ifp;
2447 	size_t size;
2448 
2449 	/*
2450 	 * XXX temporary hack until arpcom is setup in if_l2com
2451 	 */
2452 	if (type == IFT_ETHER)
2453 		size = sizeof(struct arpcom);
2454 	else
2455 		size = sizeof(struct ifnet);
2456 
2457 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2458 
2459 	ifp->if_type = type;
2460 
2461 	if (if_com_alloc[type] != NULL) {
2462 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2463 		if (ifp->if_l2com == NULL) {
2464 			kfree(ifp, M_IFNET);
2465 			return (NULL);
2466 		}
2467 	}
2468 	return (ifp);
2469 }
2470 
2471 void
2472 if_free(struct ifnet *ifp)
2473 {
2474 	kfree(ifp, M_IFNET);
2475 }
2476 
2477 void
2478 ifq_set_classic(struct ifaltq *ifq)
2479 {
2480 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2481 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2482 }
2483 
2484 void
2485 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2486     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2487 {
2488 	int q;
2489 
2490 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2491 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2492 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2493 	KASSERT(request != NULL, ("request is not specified"));
2494 
2495 	ifq->altq_mapsubq = mapsubq;
2496 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2497 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2498 
2499 		ifsq->ifsq_enqueue = enqueue;
2500 		ifsq->ifsq_dequeue = dequeue;
2501 		ifsq->ifsq_request = request;
2502 	}
2503 }
2504 
2505 int
2506 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2507     struct altq_pktattr *pa __unused)
2508 {
2509 	if (ifsq->ifq_len >= ifsq->ifq_maxlen) {
2510 		m_freem(m);
2511 		return ENOBUFS;
2512 	} else {
2513 		m->m_nextpkt = NULL;
2514 		if (ifsq->ifq_tail == NULL)
2515 			ifsq->ifq_head = m;
2516 		else
2517 			ifsq->ifq_tail->m_nextpkt = m;
2518 		ifsq->ifq_tail = m;
2519 		ifsq->ifq_len++;
2520 		return 0;
2521 	}
2522 }
2523 
2524 struct mbuf *
2525 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, struct mbuf *mpolled, int op)
2526 {
2527 	struct mbuf *m;
2528 
2529 	switch (op) {
2530 	case ALTDQ_POLL:
2531 		m = ifsq->ifq_head;
2532 		break;
2533 
2534 	case ALTDQ_REMOVE:
2535 		m = ifsq->ifq_head;
2536 		if (m != NULL) {
2537 			if ((ifsq->ifq_head = m->m_nextpkt) == NULL)
2538 				ifsq->ifq_tail = NULL;
2539 			m->m_nextpkt = NULL;
2540 			ifsq->ifq_len--;
2541 		}
2542 		break;
2543 
2544 	default:
2545 		panic("unsupported ALTQ dequeue op: %d", op);
2546 	}
2547 	KKASSERT(mpolled == NULL || mpolled == m);
2548 	return m;
2549 }
2550 
2551 int
2552 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2553 {
2554 	switch (req) {
2555 	case ALTRQ_PURGE:
2556 		for (;;) {
2557 			struct mbuf *m;
2558 
2559 			m = ifsq_classic_dequeue(ifsq, NULL, ALTDQ_REMOVE);
2560 			if (m == NULL)
2561 				break;
2562 			m_freem(m);
2563 		}
2564 		break;
2565 
2566 	default:
2567 		panic("unsupported ALTQ request: %d", req);
2568 	}
2569 	return 0;
2570 }
2571 
2572 static void
2573 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2574 {
2575 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2576 	int running = 0, need_sched;
2577 
2578 	/*
2579 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2580 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2581 	 * the subqueue will be scheduled on the subqueue owner CPU.
2582 	 */
2583 	if (!ifsq_tryserialize_hw(ifsq)) {
2584 		/*
2585 		 * Subqueue hardware serializer contention happened,
2586 		 * ifnet.if_start on the subqueue is scheduled on
2587 		 * the subqueue owner CPU, and we keep going.
2588 		 */
2589 		ifsq_ifstart_schedule(ifsq, 1);
2590 		return;
2591 	}
2592 
2593 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2594 		ifp->if_start(ifp, ifsq);
2595 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2596 			running = 1;
2597 	}
2598 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2599 
2600 	ifsq_deserialize_hw(ifsq);
2601 
2602 	if (need_sched) {
2603 		/*
2604 		 * More data need to be transmitted, ifnet.if_start on the
2605 		 * subqueue is scheduled on the subqueue owner CPU, and we
2606 		 * keep going.
2607 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2608 		 */
2609 		ifsq_ifstart_schedule(ifsq, force_sched);
2610 	}
2611 }
2612 
2613 /*
2614  * Subqeue packets staging mechanism:
2615  *
2616  * The packets enqueued into the subqueue are staged to a certain amount
2617  * before the ifnet.if_start on the subqueue is called.  In this way, the
2618  * driver could avoid writing to hardware registers upon every packet,
2619  * instead, hardware registers could be written when certain amount of
2620  * packets are put onto hardware TX ring.  The measurement on several modern
2621  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2622  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2623  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2624  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2625  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2626  *
2627  * Subqueue packets staging is performed for two entry points into drivers'
2628  * transmission function:
2629  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2630  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2631  *
2632  * Subqueue packets staging will be stopped upon any of the following
2633  * conditions:
2634  * - If the count of packets enqueued on the current CPU is great than or
2635  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2636  * - If the total length of packets enqueued on the current CPU is great
2637  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2638  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2639  *   is usually less than hardware's MTU.
2640  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2641  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2642  *   released.
2643  * - The if_start_rollup(), which is registered as low priority netisr
2644  *   rollup function, is called; probably because no more work is pending
2645  *   for netisr.
2646  *
2647  * NOTE:
2648  * Currently subqueue packet staging is only performed in netisr threads.
2649  */
2650 int
2651 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2652 {
2653 	struct ifaltq *ifq = &ifp->if_snd;
2654 	struct ifaltq_subque *ifsq;
2655 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2656 	struct ifsubq_stage_head *head = NULL;
2657 	struct ifsubq_stage *stage = NULL;
2658 
2659 	ifsq = ifq_map_subq(ifq, mycpuid);
2660 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2661 
2662 	len = m->m_pkthdr.len;
2663 	if (m->m_flags & M_MCAST)
2664 		mcast = 1;
2665 
2666 	if (curthread->td_type == TD_TYPE_NETISR) {
2667 		head = &ifsubq_stage_heads[mycpuid];
2668 		stage = ifsq_get_stage(ifsq, mycpuid);
2669 
2670 		stage->stg_cnt++;
2671 		stage->stg_len += len;
2672 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2673 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2674 			avoid_start = 1;
2675 	}
2676 
2677 	ALTQ_SQ_LOCK(ifsq);
2678 	error = ifsq_enqueue_locked(ifsq, m, pa);
2679 	if (error) {
2680 		if (!ifsq_data_ready(ifsq)) {
2681 			ALTQ_SQ_UNLOCK(ifsq);
2682 			return error;
2683 		}
2684 		avoid_start = 0;
2685 	}
2686 	if (!ifsq_is_started(ifsq)) {
2687 		if (avoid_start) {
2688 			ALTQ_SQ_UNLOCK(ifsq);
2689 
2690 			KKASSERT(!error);
2691 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2692 				ifsq_stage_insert(head, stage);
2693 
2694 			IFNET_STAT_INC(ifp, obytes, len);
2695 			if (mcast)
2696 				IFNET_STAT_INC(ifp, omcasts, 1);
2697 			return error;
2698 		}
2699 
2700 		/*
2701 		 * Hold the subqueue interlock of ifnet.if_start
2702 		 */
2703 		ifsq_set_started(ifsq);
2704 		start = 1;
2705 	}
2706 	ALTQ_SQ_UNLOCK(ifsq);
2707 
2708 	if (!error) {
2709 		IFNET_STAT_INC(ifp, obytes, len);
2710 		if (mcast)
2711 			IFNET_STAT_INC(ifp, omcasts, 1);
2712 	}
2713 
2714 	if (stage != NULL) {
2715 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2716 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2717 			if (!avoid_start) {
2718 				ifsq_stage_remove(head, stage);
2719 				ifsq_ifstart_schedule(ifsq, 1);
2720 			}
2721 			return error;
2722 		}
2723 
2724 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2725 			ifsq_stage_remove(head, stage);
2726 		} else {
2727 			stage->stg_cnt = 0;
2728 			stage->stg_len = 0;
2729 		}
2730 	}
2731 
2732 	if (!start)
2733 		return error;
2734 
2735 	ifsq_ifstart_try(ifsq, 0);
2736 	return error;
2737 }
2738 
2739 void *
2740 ifa_create(int size, int flags)
2741 {
2742 	struct ifaddr *ifa;
2743 	int i;
2744 
2745 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2746 
2747 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2748 	if (ifa == NULL)
2749 		return NULL;
2750 
2751 	ifa->ifa_containers =
2752 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2753 	        M_IFADDR, M_WAITOK | M_ZERO);
2754 	ifa->ifa_ncnt = ncpus;
2755 	for (i = 0; i < ncpus; ++i) {
2756 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2757 
2758 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2759 		ifac->ifa = ifa;
2760 		ifac->ifa_refcnt = 1;
2761 	}
2762 #ifdef IFADDR_DEBUG
2763 	kprintf("alloc ifa %p %d\n", ifa, size);
2764 #endif
2765 	return ifa;
2766 }
2767 
2768 void
2769 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2770 {
2771 	struct ifaddr *ifa = ifac->ifa;
2772 
2773 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2774 	KKASSERT(ifac->ifa_refcnt == 0);
2775 	KASSERT(ifac->ifa_listmask == 0,
2776 		("ifa is still on %#x lists", ifac->ifa_listmask));
2777 
2778 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2779 
2780 #ifdef IFADDR_DEBUG_VERBOSE
2781 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2782 #endif
2783 
2784 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2785 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2786 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2787 #ifdef IFADDR_DEBUG
2788 		kprintf("free ifa %p\n", ifa);
2789 #endif
2790 		kfree(ifa->ifa_containers, M_IFADDR);
2791 		kfree(ifa, M_IFADDR);
2792 	}
2793 }
2794 
2795 static void
2796 ifa_iflink_dispatch(netmsg_t nmsg)
2797 {
2798 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2799 	struct ifaddr *ifa = msg->ifa;
2800 	struct ifnet *ifp = msg->ifp;
2801 	int cpu = mycpuid;
2802 	struct ifaddr_container *ifac;
2803 
2804 	crit_enter();
2805 
2806 	ifac = &ifa->ifa_containers[cpu];
2807 	ASSERT_IFAC_VALID(ifac);
2808 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2809 		("ifaddr is on if_addrheads"));
2810 
2811 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2812 	if (msg->tail)
2813 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2814 	else
2815 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2816 
2817 	crit_exit();
2818 
2819 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2820 }
2821 
2822 void
2823 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2824 {
2825 	struct netmsg_ifaddr msg;
2826 
2827 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2828 		    0, ifa_iflink_dispatch);
2829 	msg.ifa = ifa;
2830 	msg.ifp = ifp;
2831 	msg.tail = tail;
2832 
2833 	ifa_domsg(&msg.base.lmsg, 0);
2834 }
2835 
2836 static void
2837 ifa_ifunlink_dispatch(netmsg_t nmsg)
2838 {
2839 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2840 	struct ifaddr *ifa = msg->ifa;
2841 	struct ifnet *ifp = msg->ifp;
2842 	int cpu = mycpuid;
2843 	struct ifaddr_container *ifac;
2844 
2845 	crit_enter();
2846 
2847 	ifac = &ifa->ifa_containers[cpu];
2848 	ASSERT_IFAC_VALID(ifac);
2849 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2850 		("ifaddr is not on if_addrhead"));
2851 
2852 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2853 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2854 
2855 	crit_exit();
2856 
2857 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2858 }
2859 
2860 void
2861 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2862 {
2863 	struct netmsg_ifaddr msg;
2864 
2865 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2866 		    0, ifa_ifunlink_dispatch);
2867 	msg.ifa = ifa;
2868 	msg.ifp = ifp;
2869 
2870 	ifa_domsg(&msg.base.lmsg, 0);
2871 }
2872 
2873 static void
2874 ifa_destroy_dispatch(netmsg_t nmsg)
2875 {
2876 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2877 
2878 	IFAFREE(msg->ifa);
2879 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2880 }
2881 
2882 void
2883 ifa_destroy(struct ifaddr *ifa)
2884 {
2885 	struct netmsg_ifaddr msg;
2886 
2887 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2888 		    0, ifa_destroy_dispatch);
2889 	msg.ifa = ifa;
2890 
2891 	ifa_domsg(&msg.base.lmsg, 0);
2892 }
2893 
2894 struct lwkt_port *
2895 ifnet_portfn(int cpu)
2896 {
2897 	return &ifnet_threads[cpu].td_msgport;
2898 }
2899 
2900 void
2901 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2902 {
2903 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2904 
2905 	if (next_cpu < ncpus)
2906 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2907 	else
2908 		lwkt_replymsg(lmsg, 0);
2909 }
2910 
2911 int
2912 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2913 {
2914 	KKASSERT(cpu < ncpus);
2915 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2916 }
2917 
2918 void
2919 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2920 {
2921 	KKASSERT(cpu < ncpus);
2922 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2923 }
2924 
2925 /*
2926  * Generic netmsg service loop.  Some protocols may roll their own but all
2927  * must do the basic command dispatch function call done here.
2928  */
2929 static void
2930 ifnet_service_loop(void *arg __unused)
2931 {
2932 	netmsg_t msg;
2933 
2934 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2935 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2936 		msg->base.nm_dispatch(msg);
2937 	}
2938 }
2939 
2940 static void
2941 if_start_rollup(void)
2942 {
2943 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
2944 	struct ifsubq_stage *stage;
2945 
2946 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
2947 		struct ifaltq_subque *ifsq = stage->stg_subq;
2948 		int is_sched = 0;
2949 
2950 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
2951 			is_sched = 1;
2952 		ifsq_stage_remove(head, stage);
2953 
2954 		if (is_sched) {
2955 			ifsq_ifstart_schedule(ifsq, 1);
2956 		} else {
2957 			int start = 0;
2958 
2959 			ALTQ_SQ_LOCK(ifsq);
2960 			if (!ifsq_is_started(ifsq)) {
2961 				/*
2962 				 * Hold the subqueue interlock of
2963 				 * ifnet.if_start
2964 				 */
2965 				ifsq_set_started(ifsq);
2966 				start = 1;
2967 			}
2968 			ALTQ_SQ_UNLOCK(ifsq);
2969 
2970 			if (start)
2971 				ifsq_ifstart_try(ifsq, 1);
2972 		}
2973 		KKASSERT((stage->stg_flags &
2974 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
2975 	}
2976 }
2977 
2978 static void
2979 ifnetinit(void *dummy __unused)
2980 {
2981 	int i;
2982 
2983 	for (i = 0; i < ncpus; ++i) {
2984 		struct thread *thr = &ifnet_threads[i];
2985 
2986 		lwkt_create(ifnet_service_loop, NULL, NULL,
2987 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
2988 			    i, "ifnet %d", i);
2989 		netmsg_service_port_init(&thr->td_msgport);
2990 		lwkt_schedule(thr);
2991 	}
2992 
2993 	for (i = 0; i < ncpus; ++i)
2994 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
2995 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
2996 }
2997 
2998 struct ifnet *
2999 ifnet_byindex(unsigned short idx)
3000 {
3001 	if (idx > if_index)
3002 		return NULL;
3003 	return ifindex2ifnet[idx];
3004 }
3005 
3006 struct ifaddr *
3007 ifaddr_byindex(unsigned short idx)
3008 {
3009 	struct ifnet *ifp;
3010 
3011 	ifp = ifnet_byindex(idx);
3012 	if (!ifp)
3013 		return NULL;
3014 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
3015 }
3016 
3017 void
3018 if_register_com_alloc(u_char type,
3019     if_com_alloc_t *a, if_com_free_t *f)
3020 {
3021 
3022         KASSERT(if_com_alloc[type] == NULL,
3023             ("if_register_com_alloc: %d already registered", type));
3024         KASSERT(if_com_free[type] == NULL,
3025             ("if_register_com_alloc: %d free already registered", type));
3026 
3027         if_com_alloc[type] = a;
3028         if_com_free[type] = f;
3029 }
3030 
3031 void
3032 if_deregister_com_alloc(u_char type)
3033 {
3034 
3035         KASSERT(if_com_alloc[type] != NULL,
3036             ("if_deregister_com_alloc: %d not registered", type));
3037         KASSERT(if_com_free[type] != NULL,
3038             ("if_deregister_com_alloc: %d free not registered", type));
3039         if_com_alloc[type] = NULL;
3040         if_com_free[type] = NULL;
3041 }
3042 
3043 int
3044 if_ring_count2(int cnt, int cnt_max)
3045 {
3046 	int shift = 0;
3047 
3048 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3049 	    ("invalid ring count max %d", cnt_max));
3050 
3051 	if (cnt <= 0)
3052 		cnt = cnt_max;
3053 	if (cnt > ncpus2)
3054 		cnt = ncpus2;
3055 	if (cnt > cnt_max)
3056 		cnt = cnt_max;
3057 
3058 	while ((1 << (shift + 1)) <= cnt)
3059 		++shift;
3060 	cnt = 1 << shift;
3061 
3062 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3063 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3064 	     cnt, ncpus2, cnt_max));
3065 	return cnt;
3066 }
3067 
3068 void
3069 ifq_set_maxlen(struct ifaltq *ifq, int len)
3070 {
3071 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3072 }
3073 
3074 int
3075 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3076 {
3077 	return ALTQ_SUBQ_INDEX_DEFAULT;
3078 }
3079 
3080 int
3081 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3082 {
3083 	return (cpuid & ifq->altq_subq_mask);
3084 }
3085 
3086 static void
3087 ifsq_watchdog(void *arg)
3088 {
3089 	struct ifsubq_watchdog *wd = arg;
3090 	struct ifnet *ifp;
3091 
3092 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3093 		goto done;
3094 
3095 	ifp = ifsq_get_ifp(wd->wd_subq);
3096 	if (ifnet_tryserialize_all(ifp)) {
3097 		wd->wd_watchdog(wd->wd_subq);
3098 		ifnet_deserialize_all(ifp);
3099 	} else {
3100 		/* try again next timeout */
3101 		wd->wd_timer = 1;
3102 	}
3103 done:
3104 	ifsq_watchdog_reset(wd);
3105 }
3106 
3107 static void
3108 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3109 {
3110 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3111 	    ifsq_get_cpuid(wd->wd_subq));
3112 }
3113 
3114 void
3115 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3116     ifsq_watchdog_t watchdog)
3117 {
3118 	callout_init_mp(&wd->wd_callout);
3119 	wd->wd_timer = 0;
3120 	wd->wd_subq = ifsq;
3121 	wd->wd_watchdog = watchdog;
3122 }
3123 
3124 void
3125 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3126 {
3127 	wd->wd_timer = 0;
3128 	ifsq_watchdog_reset(wd);
3129 }
3130 
3131 void
3132 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3133 {
3134 	wd->wd_timer = 0;
3135 	callout_stop(&wd->wd_callout);
3136 }
3137