1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_mpls.h" 36 #include "opt_netgraph.h" 37 #include "opt_carp.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/globaldata.h> 43 #include <sys/kernel.h> 44 #include <sys/ktr.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/msgport.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/sysctl.h> 52 #include <sys/thread.h> 53 54 #include <sys/thread2.h> 55 #include <sys/mplock2.h> 56 57 #include <net/if.h> 58 #include <net/netisr.h> 59 #include <net/route.h> 60 #include <net/if_llc.h> 61 #include <net/if_dl.h> 62 #include <net/if_types.h> 63 #include <net/ifq_var.h> 64 #include <net/bpf.h> 65 #include <net/ethernet.h> 66 #include <net/vlan/if_vlan_ether.h> 67 #include <net/vlan/if_vlan_var.h> 68 #include <net/netmsg2.h> 69 #include <net/netisr2.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/ip_var.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet/if_ether.h> 76 #include <netinet/ip_flow.h> 77 #include <net/ipfw/ip_fw.h> 78 #include <net/ipfw3/ip_fw.h> 79 #include <net/dummynet/ip_dummynet.h> 80 #endif 81 #ifdef INET6 82 #include <netinet6/nd6.h> 83 #endif 84 85 #ifdef CARP 86 #include <netinet/ip_carp.h> 87 #endif 88 89 #ifdef MPLS 90 #include <netproto/mpls/mpls.h> 91 #endif 92 93 /* netgraph node hooks for ng_ether(4) */ 94 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 95 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 96 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 97 void (*ng_ether_attach_p)(struct ifnet *ifp); 98 void (*ng_ether_detach_p)(struct ifnet *ifp); 99 100 void (*vlan_input_p)(struct mbuf *); 101 102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 103 struct rtentry *); 104 static void ether_restore_header(struct mbuf **, const struct ether_header *, 105 const struct ether_header *); 106 static int ether_characterize(struct mbuf **); 107 static void ether_dispatch(struct ifnet *, int, struct mbuf *, int); 108 109 /* 110 * if_bridge support 111 */ 112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 113 int (*bridge_output_p)(struct ifnet *, struct mbuf *); 114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 115 struct ifnet *(*bridge_interface_p)(void *if_bridge); 116 117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 118 struct sockaddr *); 119 120 /* 121 * if_lagg(4) support 122 */ 123 void (*lagg_input_p)(struct ifnet *, struct mbuf *); 124 int (*lagg_output_p)(struct ifnet *, struct mbuf *); 125 126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 128 }; 129 130 #define gotoerr(e) do { error = (e); goto bad; } while (0) 131 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 132 133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 134 struct ip_fw **rule, 135 const struct ether_header *eh); 136 137 static int ether_ipfw; 138 static u_long ether_restore_hdr; 139 static u_long ether_prepend_hdr; 140 static u_long ether_input_wronghash; 141 static int ether_debug; 142 143 #ifdef RSS_DEBUG 144 static u_long ether_pktinfo_try; 145 static u_long ether_pktinfo_hit; 146 static u_long ether_rss_nopi; 147 static u_long ether_rss_nohash; 148 static u_long ether_input_requeue; 149 #endif 150 static u_long ether_input_wronghwhash; 151 static int ether_input_ckhash; 152 153 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU) 154 155 #define ETHER_NMBCLUSTERS_DEFMIN 32 156 #define ETHER_NMBCLUSTERS_DEFAULT 256 157 158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT; 159 TUNABLE_INT("net.link.ether.tsolen", ðer_tsolen_default); 160 161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT; 162 TUNABLE_INT("net.link.ether.nmbclusters", ðer_nmbclusters_default); 163 164 SYSCTL_DECL(_net_link); 165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW, 167 ðer_debug, 0, "Ether debug"); 168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 169 ðer_ipfw, 0, "Pass ether pkts through firewall"); 170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW, 171 ðer_restore_hdr, 0, "# of ether header restoration"); 172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW, 173 ðer_prepend_hdr, 0, 174 "# of ether header restoration which prepends mbuf"); 175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW, 176 ðer_input_wronghash, 0, "# of input packets with wrong hash"); 177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW, 178 ðer_tsolen_default, 0, "Default max TSO length"); 179 180 #ifdef RSS_DEBUG 181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW, 182 ðer_rss_nopi, 0, "# of packets do not have pktinfo"); 183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW, 184 ðer_rss_nohash, 0, "# of packets do not have hash"); 185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW, 186 ðer_pktinfo_try, 0, 187 "# of tries to find packets' msgport using pktinfo"); 188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW, 189 ðer_pktinfo_hit, 0, 190 "# of packets whose msgport are found using pktinfo"); 191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW, 192 ðer_input_requeue, 0, "# of input packets gets requeued"); 193 #endif 194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW, 195 ðer_input_wronghwhash, 0, "# of input packets with wrong hw hash"); 196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW, 197 ðer_input_ckhash, 0, "always check hash"); 198 199 #define ETHER_KTR_STR "ifp=%p" 200 #define ETHER_KTR_ARGS struct ifnet *ifp 201 #ifndef KTR_ETHERNET 202 #define KTR_ETHERNET KTR_ALL 203 #endif 204 KTR_INFO_MASTER(ether); 205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS); 206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS); 207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS); 208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS); 209 #define logether(name, arg) KTR_LOG(ether_ ## name, arg) 210 211 /* 212 * Ethernet output routine. 213 * Encapsulate a packet of type family for the local net. 214 * Use trailer local net encapsulation if enough data in first 215 * packet leaves a multiple of 512 bytes of data in remainder. 216 * Assumes that ifp is actually pointer to arpcom structure. 217 */ 218 static int 219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 220 struct rtentry *rt) 221 { 222 struct ether_header *eh, *deh; 223 u_char *edst; 224 int loop_copy = 0; 225 int hlen = ETHER_HDR_LEN; /* link layer header length */ 226 struct arpcom *ac = IFP2AC(ifp); 227 int error; 228 229 ASSERT_NETISR_NCPUS(mycpuid); 230 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 231 232 if (ifp->if_flags & IFF_MONITOR) 233 gotoerr(ENETDOWN); 234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 235 gotoerr(ENETDOWN); 236 237 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 238 if (m == NULL) 239 return (ENOBUFS); 240 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header); 241 eh = mtod(m, struct ether_header *); 242 edst = eh->ether_dhost; 243 244 /* 245 * Fill in the destination ethernet address and frame type. 246 */ 247 switch (dst->sa_family) { 248 #ifdef INET 249 case AF_INET: 250 error = arpresolve(ifp, rt, m, dst, edst); 251 if (error != 0) 252 return error == EWOULDBLOCK ? 0 : error; 253 #ifdef MPLS 254 if (m->m_flags & M_MPLSLABELED) 255 eh->ether_type = htons(ETHERTYPE_MPLS); 256 else 257 #endif 258 eh->ether_type = htons(ETHERTYPE_IP); 259 break; 260 case AF_ARP: 261 { 262 struct arphdr *ah; 263 264 ah = mtod(m, struct arphdr *); 265 ah->ar_hrd = htons(ARPHRD_ETHER); 266 267 loop_copy = -1; /* if this is for us, don't do it */ 268 269 switch(ntohs(ah->ar_op)) { 270 case ARPOP_REVREQUEST: 271 case ARPOP_REVREPLY: 272 eh->ether_type = htons(ETHERTYPE_REVARP); 273 break; 274 case ARPOP_REQUEST: 275 case ARPOP_REPLY: 276 default: 277 eh->ether_type = htons(ETHERTYPE_ARP); 278 break; 279 } 280 281 if (m->m_flags & M_BCAST) 282 bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); 283 else 284 bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); 285 } 286 #endif 287 #ifdef INET6 288 case AF_INET6: 289 error = nd6_resolve(&ac->ac_if, rt, m, dst, edst); 290 if (error != 0) 291 return error == EWOULDBLOCK ? 0 : error; 292 eh->ether_type = htons(ETHERTYPE_IPV6); 293 break; 294 #endif 295 case pseudo_AF_HDRCMPLT: 296 case AF_UNSPEC: 297 loop_copy = -1; /* if this is for us, don't do it */ 298 deh = (struct ether_header *)dst->sa_data; 299 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 300 eh->ether_type = deh->ether_type; 301 break; 302 303 default: 304 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 305 gotoerr(EAFNOSUPPORT); 306 } 307 308 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 309 memcpy(eh->ether_shost, 310 ((struct ether_header *)dst->sa_data)->ether_shost, 311 ETHER_ADDR_LEN); 312 else 313 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 314 315 /* 316 * Bridges require special output handling. 317 */ 318 if (ifp->if_bridge) { 319 KASSERT(bridge_output_p != NULL, 320 ("%s: if_bridge not loaded!", __func__)); 321 return bridge_output_p(ifp, m); 322 } 323 #if 0 /* XXX */ 324 if (ifp->if_lagg) { 325 KASSERT(lagg_output_p != NULL, 326 ("%s: if_lagg not loaded!", __func__)); 327 return lagg_output_p(ifp, m); 328 } 329 #endif 330 331 /* 332 * If a simplex interface, and the packet is being sent to our 333 * Ethernet address or a broadcast address, loopback a copy. 334 * XXX To make a simplex device behave exactly like a duplex 335 * device, we should copy in the case of sending to our own 336 * ethernet address (thus letting the original actually appear 337 * on the wire). However, we don't do that here for security 338 * reasons and compatibility with the original behavior. 339 */ 340 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 341 int csum_flags = 0; 342 343 if (m->m_pkthdr.csum_flags & CSUM_IP) 344 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 345 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 346 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 347 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 348 struct mbuf *n; 349 350 if ((n = m_copypacket(m, M_NOWAIT)) != NULL) { 351 n->m_pkthdr.csum_flags |= csum_flags; 352 if (csum_flags & CSUM_DATA_VALID) 353 n->m_pkthdr.csum_data = 0xffff; 354 if_simloop(ifp, n, dst->sa_family, hlen); 355 } else 356 IFNET_STAT_INC(ifp, iqdrops, 1); 357 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 358 ETHER_ADDR_LEN) == 0) { 359 m->m_pkthdr.csum_flags |= csum_flags; 360 if (csum_flags & CSUM_DATA_VALID) 361 m->m_pkthdr.csum_data = 0xffff; 362 if_simloop(ifp, m, dst->sa_family, hlen); 363 return (0); /* XXX */ 364 } 365 } 366 367 #ifdef CARP 368 if (ifp->if_type == IFT_CARP) { 369 ifp = carp_parent(ifp); 370 if (ifp == NULL) 371 gotoerr(ENETUNREACH); 372 373 ac = IFP2AC(ifp); 374 375 /* 376 * Check precondition again 377 */ 378 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 379 380 if (ifp->if_flags & IFF_MONITOR) 381 gotoerr(ENETDOWN); 382 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 383 (IFF_UP | IFF_RUNNING)) 384 gotoerr(ENETDOWN); 385 } 386 #endif 387 388 /* Handle ng_ether(4) processing, if any */ 389 if (ng_ether_output_p != NULL) { 390 /* 391 * Hold BGL and recheck ng_ether_output_p 392 */ 393 get_mplock(); 394 if (ng_ether_output_p != NULL) { 395 if ((error = ng_ether_output_p(ifp, &m)) != 0) { 396 rel_mplock(); 397 goto bad; 398 } 399 if (m == NULL) { 400 rel_mplock(); 401 return (0); 402 } 403 } 404 rel_mplock(); 405 } 406 407 /* Continue with link-layer output */ 408 return ether_output_frame(ifp, m); 409 410 bad: 411 m_freem(m); 412 return (error); 413 } 414 415 /* 416 * Returns the bridge interface an ifp is associated 417 * with. 418 * 419 * Only call if ifp->if_bridge != NULL. 420 */ 421 struct ifnet * 422 ether_bridge_interface(struct ifnet *ifp) 423 { 424 if (bridge_interface_p) 425 return(bridge_interface_p(ifp->if_bridge)); 426 return (ifp); 427 } 428 429 /* 430 * Ethernet link layer output routine to send a raw frame to the device. 431 * 432 * This assumes that the 14 byte Ethernet header is present and contiguous 433 * in the first mbuf. 434 */ 435 int 436 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 437 { 438 struct ip_fw *rule = NULL; 439 int error = 0; 440 struct altq_pktattr pktattr; 441 442 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 443 444 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 445 struct m_tag *mtag; 446 447 /* Extract info from dummynet tag */ 448 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 449 KKASSERT(mtag != NULL); 450 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 451 KKASSERT(rule != NULL); 452 453 m_tag_delete(m, mtag); 454 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 455 } 456 457 if (ifq_is_enabled(&ifp->if_snd)) 458 altq_etherclassify(&ifp->if_snd, m, &pktattr); 459 crit_enter(); 460 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) { 461 struct ether_header save_eh, *eh; 462 463 eh = mtod(m, struct ether_header *); 464 save_eh = *eh; 465 m_adj(m, ETHER_HDR_LEN); 466 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) { 467 crit_exit(); 468 if (m != NULL) { 469 m_freem(m); 470 return ENOBUFS; /* pkt dropped */ 471 } else 472 return 0; /* consumed e.g. in a pipe */ 473 } 474 475 /* packet was ok, restore the ethernet header */ 476 ether_restore_header(&m, eh, &save_eh); 477 if (m == NULL) { 478 crit_exit(); 479 return ENOBUFS; 480 } 481 } 482 crit_exit(); 483 484 /* 485 * Queue message on interface, update output statistics if 486 * successful, and start output if interface not yet active. 487 */ 488 error = ifq_dispatch(ifp, m, &pktattr); 489 return (error); 490 } 491 492 /* 493 * ipfw processing for ethernet packets (in and out). 494 * The second parameter is NULL from ether_demux(), and ifp from 495 * ether_output_frame(). 496 */ 497 static boolean_t 498 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, 499 const struct ether_header *eh) 500 { 501 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */ 502 struct ip_fw_args args; 503 struct m_tag *mtag; 504 struct mbuf *m; 505 int i; 506 507 if (*rule != NULL && fw_one_pass) 508 return TRUE; /* dummynet packet, already partially processed */ 509 510 /* 511 * I need some amount of data to be contiguous. 512 */ 513 i = min((*m0)->m_pkthdr.len, max_protohdr); 514 if ((*m0)->m_len < i) { 515 *m0 = m_pullup(*m0, i); 516 if (*m0 == NULL) 517 return FALSE; 518 } 519 520 /* 521 * Clean up tags 522 */ 523 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 524 m_tag_delete(*m0, mtag); 525 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) { 526 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL); 527 KKASSERT(mtag != NULL); 528 m_tag_delete(*m0, mtag); 529 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED; 530 } 531 532 args.flags = 0; 533 args.xlat = NULL; 534 args.m = *m0; /* the packet we are looking at */ 535 args.oif = dst; /* destination, if any */ 536 args.rule = *rule; /* matching rule to restart */ 537 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 538 i = ip_fw_chk_ptr(&args); 539 *m0 = args.m; 540 *rule = args.rule; 541 542 if (*m0 == NULL) 543 return FALSE; 544 545 switch (i) { 546 case IP_FW_PASS: 547 return TRUE; 548 549 case IP_FW_DIVERT: 550 case IP_FW_TEE: 551 case IP_FW_DENY: 552 /* 553 * XXX at some point add support for divert/forward actions. 554 * If none of the above matches, we have to drop the pkt. 555 */ 556 return FALSE; 557 558 case IP_FW_DUMMYNET: 559 /* 560 * Pass the pkt to dummynet, which consumes it. 561 */ 562 m = *m0; /* pass the original to dummynet */ 563 *m0 = NULL; /* and nothing back to the caller */ 564 565 ether_restore_header(&m, eh, &save_eh); 566 if (m == NULL) 567 return FALSE; 568 569 m = ip_fw_dn_io_ptr(m, args.cookie, 570 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 571 if (m != NULL) 572 ip_dn_queue(m); 573 return FALSE; 574 575 default: 576 panic("unknown ipfw return value: %d", i); 577 } 578 } 579 580 /* 581 * Perform common duties while attaching to interface list 582 */ 583 void 584 ether_ifattach(struct ifnet *ifp, const uint8_t *lla, 585 lwkt_serialize_t serializer) 586 { 587 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header), 588 serializer); 589 } 590 591 void 592 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla, 593 u_int dlt, u_int hdrlen, lwkt_serialize_t serializer) 594 { 595 struct sockaddr_dl *sdl; 596 char ethstr[ETHER_ADDRSTRLEN + 1]; 597 struct ifaltq *ifq; 598 int i; 599 600 /* 601 * If driver does not configure # of mbuf clusters/jclusters 602 * that could sit on the device queues for quite some time, 603 * we then assume: 604 * - The device queues only consume mbuf clusters. 605 * - No more than ether_nmbclusters_default (by default 256) 606 * mbuf clusters will sit on the device queues for quite 607 * some time. 608 */ 609 if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) { 610 if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) { 611 kprintf("ether nmbclusters %d -> %d\n", 612 ether_nmbclusters_default, 613 ETHER_NMBCLUSTERS_DEFAULT); 614 ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT; 615 } 616 ifp->if_nmbclusters = ether_nmbclusters_default; 617 } 618 619 ifp->if_type = IFT_ETHER; 620 ifp->if_addrlen = ETHER_ADDR_LEN; 621 ifp->if_hdrlen = ETHER_HDR_LEN; 622 if_attach(ifp, serializer); 623 ifq = &ifp->if_snd; 624 for (i = 0; i < ifq->altq_subq_cnt; ++i) { 625 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i); 626 627 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * 628 (ETHER_MAX_LEN - ETHER_CRC_LEN); 629 } 630 ifp->if_mtu = ETHERMTU; 631 if (ifp->if_tsolen <= 0) { 632 if ((ether_tsolen_default / ETHERMTU) < 2) { 633 kprintf("ether TSO maxlen %d -> %d\n", 634 ether_tsolen_default, ETHER_TSOLEN_DEFAULT); 635 ether_tsolen_default = ETHER_TSOLEN_DEFAULT; 636 } 637 ifp->if_tsolen = ether_tsolen_default; 638 } 639 if (ifp->if_baudrate == 0) 640 ifp->if_baudrate = 10000000; 641 ifp->if_output = ether_output; 642 ifp->if_input = ether_input; 643 ifp->if_resolvemulti = ether_resolvemulti; 644 ifp->if_broadcastaddr = etherbroadcastaddr; 645 sdl = IF_LLSOCKADDR(ifp); 646 sdl->sdl_type = IFT_ETHER; 647 sdl->sdl_alen = ifp->if_addrlen; 648 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 649 /* 650 * XXX Keep the current drivers happy. 651 * XXX Remove once all drivers have been cleaned up 652 */ 653 if (lla != IFP2AC(ifp)->ac_enaddr) 654 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 655 bpfattach(ifp, dlt, hdrlen); 656 if (ng_ether_attach_p != NULL) 657 (*ng_ether_attach_p)(ifp); 658 659 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr)); 660 } 661 662 /* 663 * Perform common duties while detaching an Ethernet interface 664 */ 665 void 666 ether_ifdetach(struct ifnet *ifp) 667 { 668 if_down(ifp); 669 670 if (ng_ether_detach_p != NULL) 671 (*ng_ether_detach_p)(ifp); 672 bpfdetach(ifp); 673 if_detach(ifp); 674 } 675 676 int 677 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 678 { 679 struct ifaddr *ifa = (struct ifaddr *) data; 680 struct ifreq *ifr = (struct ifreq *) data; 681 int error = 0; 682 683 #define IF_INIT(ifp) \ 684 do { \ 685 if (((ifp)->if_flags & IFF_UP) == 0) { \ 686 (ifp)->if_flags |= IFF_UP; \ 687 (ifp)->if_init((ifp)->if_softc); \ 688 } \ 689 } while (0) 690 691 ASSERT_IFNET_SERIALIZED_ALL(ifp); 692 693 switch (command) { 694 case SIOCSIFADDR: 695 switch (ifa->ifa_addr->sa_family) { 696 #ifdef INET 697 case AF_INET: 698 IF_INIT(ifp); /* before arpwhohas */ 699 arp_ifinit(ifp, ifa); 700 break; 701 #endif 702 default: 703 IF_INIT(ifp); 704 break; 705 } 706 break; 707 708 case SIOCGIFADDR: 709 case SIOCGHWADDR: 710 error = copyout(IFP2AC(ifp)->ac_enaddr, 711 ((struct sockaddr *)ifr->ifr_data)->sa_data, 712 ETHER_ADDR_LEN); 713 break; 714 715 case SIOCSIFMTU: 716 /* 717 * Set the interface MTU. 718 */ 719 if (ifr->ifr_mtu > ETHERMTU) { 720 error = EINVAL; 721 } else { 722 ifp->if_mtu = ifr->ifr_mtu; 723 } 724 break; 725 default: 726 error = EINVAL; 727 break; 728 } 729 return (error); 730 731 #undef IF_INIT 732 } 733 734 static int 735 ether_resolvemulti( 736 struct ifnet *ifp, 737 struct sockaddr **llsa, 738 struct sockaddr *sa) 739 { 740 struct sockaddr_dl *sdl; 741 #ifdef INET 742 struct sockaddr_in *sin; 743 #endif 744 #ifdef INET6 745 struct sockaddr_in6 *sin6; 746 #endif 747 u_char *e_addr; 748 749 switch(sa->sa_family) { 750 case AF_LINK: 751 /* 752 * No mapping needed. Just check that it's a valid MC address. 753 */ 754 sdl = (struct sockaddr_dl *)sa; 755 e_addr = LLADDR(sdl); 756 if ((e_addr[0] & 1) != 1) 757 return EADDRNOTAVAIL; 758 *llsa = NULL; 759 return 0; 760 761 #ifdef INET 762 case AF_INET: 763 sin = (struct sockaddr_in *)sa; 764 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 765 return EADDRNOTAVAIL; 766 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 767 sdl->sdl_len = sizeof *sdl; 768 sdl->sdl_family = AF_LINK; 769 sdl->sdl_index = ifp->if_index; 770 sdl->sdl_type = IFT_ETHER; 771 sdl->sdl_alen = ETHER_ADDR_LEN; 772 e_addr = LLADDR(sdl); 773 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 774 *llsa = (struct sockaddr *)sdl; 775 return 0; 776 #endif 777 #ifdef INET6 778 case AF_INET6: 779 sin6 = (struct sockaddr_in6 *)sa; 780 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 781 /* 782 * An IP6 address of 0 means listen to all 783 * of the Ethernet multicast address used for IP6. 784 * (This is used for multicast routers.) 785 */ 786 ifp->if_flags |= IFF_ALLMULTI; 787 *llsa = NULL; 788 return 0; 789 } 790 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 791 return EADDRNOTAVAIL; 792 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 793 sdl->sdl_len = sizeof *sdl; 794 sdl->sdl_family = AF_LINK; 795 sdl->sdl_index = ifp->if_index; 796 sdl->sdl_type = IFT_ETHER; 797 sdl->sdl_alen = ETHER_ADDR_LEN; 798 e_addr = LLADDR(sdl); 799 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 800 *llsa = (struct sockaddr *)sdl; 801 return 0; 802 #endif 803 804 default: 805 /* 806 * Well, the text isn't quite right, but it's the name 807 * that counts... 808 */ 809 return EAFNOSUPPORT; 810 } 811 } 812 813 #if 0 814 /* 815 * This is for reference. We have a table-driven version 816 * of the little-endian crc32 generator, which is faster 817 * than the double-loop. 818 */ 819 uint32_t 820 ether_crc32_le(const uint8_t *buf, size_t len) 821 { 822 uint32_t c, crc, carry; 823 size_t i, j; 824 825 crc = 0xffffffffU; /* initial value */ 826 827 for (i = 0; i < len; i++) { 828 c = buf[i]; 829 for (j = 0; j < 8; j++) { 830 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 831 crc >>= 1; 832 c >>= 1; 833 if (carry) 834 crc = (crc ^ ETHER_CRC_POLY_LE); 835 } 836 } 837 838 return (crc); 839 } 840 #else 841 uint32_t 842 ether_crc32_le(const uint8_t *buf, size_t len) 843 { 844 static const uint32_t crctab[] = { 845 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 846 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 847 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 848 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 849 }; 850 uint32_t crc; 851 size_t i; 852 853 crc = 0xffffffffU; /* initial value */ 854 855 for (i = 0; i < len; i++) { 856 crc ^= buf[i]; 857 crc = (crc >> 4) ^ crctab[crc & 0xf]; 858 crc = (crc >> 4) ^ crctab[crc & 0xf]; 859 } 860 861 return (crc); 862 } 863 #endif 864 865 uint32_t 866 ether_crc32_be(const uint8_t *buf, size_t len) 867 { 868 uint32_t c, crc, carry; 869 size_t i, j; 870 871 crc = 0xffffffffU; /* initial value */ 872 873 for (i = 0; i < len; i++) { 874 c = buf[i]; 875 for (j = 0; j < 8; j++) { 876 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 877 crc <<= 1; 878 c >>= 1; 879 if (carry) 880 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 881 } 882 } 883 884 return (crc); 885 } 886 887 /* 888 * find the size of ethernet header, and call classifier 889 */ 890 void 891 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 892 struct altq_pktattr *pktattr) 893 { 894 struct ether_header *eh; 895 uint16_t ether_type; 896 int hlen, af, hdrsize; 897 898 hlen = sizeof(struct ether_header); 899 eh = mtod(m, struct ether_header *); 900 901 ether_type = ntohs(eh->ether_type); 902 if (ether_type < ETHERMTU) { 903 /* ick! LLC/SNAP */ 904 struct llc *llc = (struct llc *)(eh + 1); 905 hlen += 8; 906 907 if (m->m_len < hlen || 908 llc->llc_dsap != LLC_SNAP_LSAP || 909 llc->llc_ssap != LLC_SNAP_LSAP || 910 llc->llc_control != LLC_UI) 911 goto bad; /* not snap! */ 912 913 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 914 } 915 916 if (ether_type == ETHERTYPE_IP) { 917 af = AF_INET; 918 hdrsize = 20; /* sizeof(struct ip) */ 919 #ifdef INET6 920 } else if (ether_type == ETHERTYPE_IPV6) { 921 af = AF_INET6; 922 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 923 #endif 924 } else 925 goto bad; 926 927 while (m->m_len <= hlen) { 928 hlen -= m->m_len; 929 m = m->m_next; 930 } 931 if (m->m_len < hlen + hdrsize) { 932 /* 933 * ip header is not in a single mbuf. this should not 934 * happen in the current code. 935 * (todo: use m_pulldown in the future) 936 */ 937 goto bad; 938 } 939 m->m_data += hlen; 940 m->m_len -= hlen; 941 ifq_classify(ifq, m, af, pktattr); 942 m->m_data -= hlen; 943 m->m_len += hlen; 944 945 return; 946 947 bad: 948 pktattr->pattr_class = NULL; 949 pktattr->pattr_hdr = NULL; 950 pktattr->pattr_af = AF_UNSPEC; 951 } 952 953 static void 954 ether_restore_header(struct mbuf **m0, const struct ether_header *eh, 955 const struct ether_header *save_eh) 956 { 957 struct mbuf *m = *m0; 958 959 ether_restore_hdr++; 960 961 /* 962 * Prepend the header, optimize for the common case of 963 * eh pointing into the mbuf. 964 */ 965 if ((const void *)(eh + 1) == (void *)m->m_data) { 966 m->m_data -= ETHER_HDR_LEN; 967 m->m_len += ETHER_HDR_LEN; 968 m->m_pkthdr.len += ETHER_HDR_LEN; 969 } else { 970 ether_prepend_hdr++; 971 972 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 973 if (m != NULL) { 974 bcopy(save_eh, mtod(m, struct ether_header *), 975 ETHER_HDR_LEN); 976 } 977 } 978 *m0 = m; 979 } 980 981 /* 982 * Upper layer processing for a received Ethernet packet. 983 */ 984 void 985 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m) 986 { 987 struct ether_header *eh; 988 int isr, discard = 0; 989 u_short ether_type; 990 struct ip_fw *rule = NULL; 991 992 M_ASSERTPKTHDR(m); 993 KASSERT(m->m_len >= ETHER_HDR_LEN, 994 ("ether header is not contiguous!")); 995 996 eh = mtod(m, struct ether_header *); 997 998 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 999 struct m_tag *mtag; 1000 1001 /* Extract info from dummynet tag */ 1002 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 1003 KKASSERT(mtag != NULL); 1004 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 1005 KKASSERT(rule != NULL); 1006 1007 m_tag_delete(m, mtag); 1008 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 1009 1010 /* packet is passing the second time */ 1011 goto post_stats; 1012 } 1013 1014 /* 1015 * We got a packet which was unicast to a different Ethernet 1016 * address. If the driver is working properly, then this 1017 * situation can only happen when the interface is in 1018 * promiscuous mode. We defer the packet discarding until the 1019 * vlan processing is done, so that vlan/bridge or vlan/netgraph 1020 * could work. 1021 */ 1022 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 1023 !ETHER_IS_MULTICAST(eh->ether_dhost) && 1024 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 1025 if (ether_debug & 1) { 1026 kprintf("%02x:%02x:%02x:%02x:%02x:%02x " 1027 "%02x:%02x:%02x:%02x:%02x:%02x " 1028 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n", 1029 eh->ether_dhost[0], 1030 eh->ether_dhost[1], 1031 eh->ether_dhost[2], 1032 eh->ether_dhost[3], 1033 eh->ether_dhost[4], 1034 eh->ether_dhost[5], 1035 eh->ether_shost[0], 1036 eh->ether_shost[1], 1037 eh->ether_shost[2], 1038 eh->ether_shost[3], 1039 eh->ether_shost[4], 1040 eh->ether_shost[5], 1041 eh->ether_type, 1042 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0], 1043 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1], 1044 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2], 1045 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3], 1046 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4], 1047 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5] 1048 ); 1049 } 1050 if ((ether_debug & 2) == 0) 1051 discard = 1; 1052 } 1053 1054 post_stats: 1055 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) { 1056 struct ether_header save_eh = *eh; 1057 1058 /* XXX old crufty stuff, needs to be removed */ 1059 m_adj(m, sizeof(struct ether_header)); 1060 1061 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 1062 m_freem(m); 1063 return; 1064 } 1065 1066 ether_restore_header(&m, eh, &save_eh); 1067 if (m == NULL) 1068 return; 1069 eh = mtod(m, struct ether_header *); 1070 } 1071 1072 ether_type = ntohs(eh->ether_type); 1073 KKASSERT(ether_type != ETHERTYPE_VLAN); 1074 1075 /* Handle input from a lagg(4) port */ 1076 if (ifp->if_type == IFT_IEEE8023ADLAG) { 1077 KASSERT(lagg_input_p != NULL, 1078 ("%s: if_lagg not loaded!", __func__)); 1079 (*lagg_input_p)(ifp, m); 1080 return; 1081 } 1082 1083 if (m->m_flags & M_VLANTAG) { 1084 void (*vlan_input_func)(struct mbuf *); 1085 1086 vlan_input_func = vlan_input_p; 1087 /* Make sure 'vlan_input_func' is really used. */ 1088 cpu_ccfence(); 1089 if (vlan_input_func != NULL) { 1090 vlan_input_func(m); 1091 } else { 1092 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1093 m_freem(m); 1094 } 1095 return; 1096 } 1097 1098 /* 1099 * If we have been asked to discard this packet 1100 * (e.g. not for us), drop it before entering 1101 * the upper layer. 1102 */ 1103 if (discard) { 1104 m_freem(m); 1105 return; 1106 } 1107 1108 /* 1109 * Clear protocol specific flags, 1110 * before entering the upper layer. 1111 */ 1112 m->m_flags &= ~M_ETHER_FLAGS; 1113 1114 /* Strip ethernet header. */ 1115 m_adj(m, sizeof(struct ether_header)); 1116 1117 switch (ether_type) { 1118 #ifdef INET 1119 case ETHERTYPE_IP: 1120 if ((m->m_flags & M_LENCHECKED) == 0) { 1121 if (!ip_lengthcheck(&m, 0)) 1122 return; 1123 } 1124 if (ipflow_fastforward(m)) 1125 return; 1126 isr = NETISR_IP; 1127 break; 1128 1129 case ETHERTYPE_ARP: 1130 if (ifp->if_flags & IFF_NOARP) { 1131 /* Discard packet if ARP is disabled on interface */ 1132 m_freem(m); 1133 return; 1134 } 1135 isr = NETISR_ARP; 1136 break; 1137 #endif 1138 1139 #ifdef INET6 1140 case ETHERTYPE_IPV6: 1141 isr = NETISR_IPV6; 1142 break; 1143 #endif 1144 1145 #ifdef MPLS 1146 case ETHERTYPE_MPLS: 1147 case ETHERTYPE_MPLS_MCAST: 1148 /* Should have been set by ether_input(). */ 1149 KKASSERT(m->m_flags & M_MPLSLABELED); 1150 isr = NETISR_MPLS; 1151 break; 1152 #endif 1153 1154 default: 1155 /* 1156 * The accurate msgport is not determined before 1157 * we reach here, so recharacterize packet. 1158 */ 1159 m->m_flags &= ~M_HASH; 1160 if (ng_ether_input_orphan_p != NULL) { 1161 /* 1162 * Put back the ethernet header so netgraph has a 1163 * consistent view of inbound packets. 1164 */ 1165 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 1166 if (m == NULL) { 1167 /* 1168 * M_PREPEND frees the mbuf in case of failure. 1169 */ 1170 return; 1171 } 1172 /* 1173 * Hold BGL and recheck ng_ether_input_orphan_p 1174 */ 1175 get_mplock(); 1176 if (ng_ether_input_orphan_p != NULL) { 1177 ng_ether_input_orphan_p(ifp, m); 1178 rel_mplock(); 1179 return; 1180 } 1181 rel_mplock(); 1182 } 1183 m_freem(m); 1184 return; 1185 } 1186 1187 if (m->m_flags & M_HASH) { 1188 if (&curthread->td_msgport == 1189 netisr_hashport(m->m_pkthdr.hash)) { 1190 netisr_handle(isr, m); 1191 return; 1192 } else { 1193 /* 1194 * XXX Something is wrong, 1195 * we probably should panic here! 1196 */ 1197 m->m_flags &= ~M_HASH; 1198 atomic_add_long(ðer_input_wronghash, 1); 1199 } 1200 } 1201 #ifdef RSS_DEBUG 1202 atomic_add_long(ðer_input_requeue, 1); 1203 #endif 1204 netisr_queue(isr, m); 1205 } 1206 1207 /* 1208 * First we perform any link layer operations, then continue to the 1209 * upper layers with ether_demux_oncpu(). 1210 */ 1211 static void 1212 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m) 1213 { 1214 #ifdef CARP 1215 void *carp; 1216 #endif 1217 1218 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) { 1219 /* 1220 * Receiving interface's flags are changed, when this 1221 * packet is waiting for processing; discard it. 1222 */ 1223 m_freem(m); 1224 return; 1225 } 1226 1227 /* 1228 * A vlan tagged packet must be processed by ether_demux_oncpu() 1229 * immediately, before any bridging or packet filtering. If 1230 * the vlan decides to process it, this function will be called 1231 * again w/ the vlan interface for normal processing. 1232 */ 1233 if (m->m_flags & M_VLANTAG) { 1234 ether_demux_oncpu(ifp, m); 1235 return; 1236 } 1237 1238 /* 1239 * Tap the packet off here for a bridge. bridge_input() 1240 * will return NULL if it has consumed the packet, otherwise 1241 * it gets processed as normal. Note that bridge_input() 1242 * will always return the original packet if we need to 1243 * process it locally. 1244 */ 1245 if (ifp->if_bridge) { 1246 KASSERT(bridge_input_p != NULL, 1247 ("%s: if_bridge not loaded!", __func__)); 1248 1249 if(m->m_flags & M_ETHER_BRIDGED) { 1250 m->m_flags &= ~M_ETHER_BRIDGED; 1251 } else { 1252 m = bridge_input_p(ifp, m); 1253 if (m == NULL) 1254 return; 1255 1256 KASSERT(ifp == m->m_pkthdr.rcvif, 1257 ("bridge_input_p changed rcvif")); 1258 } 1259 } 1260 1261 #ifdef CARP 1262 carp = ifp->if_carp; 1263 if (carp) { 1264 m = carp_input(carp, m); 1265 if (m == NULL) 1266 return; 1267 KASSERT(ifp == m->m_pkthdr.rcvif, 1268 ("carp_input changed rcvif")); 1269 } 1270 #endif 1271 1272 /* Handle ng_ether(4) processing, if any */ 1273 if (ng_ether_input_p != NULL) { 1274 /* 1275 * Hold BGL and recheck ng_ether_input_p 1276 */ 1277 get_mplock(); 1278 if (ng_ether_input_p != NULL) 1279 ng_ether_input_p(ifp, &m); 1280 rel_mplock(); 1281 1282 if (m == NULL) 1283 return; 1284 } 1285 1286 /* Continue with upper layer processing */ 1287 ether_demux_oncpu(ifp, m); 1288 } 1289 1290 /* 1291 * Perform certain functions of ether_input(): 1292 * - Test IFF_UP 1293 * - Update statistics 1294 * - Run bpf(4) tap if requested 1295 * Then pass the packet to ether_input_oncpu(). 1296 * 1297 * This function should be used by pseudo interface (e.g. vlan(4)), 1298 * when it tries to claim that the packet is received by it. 1299 * 1300 * REINPUT_KEEPRCVIF 1301 * REINPUT_RUNBPF 1302 */ 1303 void 1304 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags) 1305 { 1306 /* Discard packet if interface is not up */ 1307 if (!(ifp->if_flags & IFF_UP)) { 1308 m_freem(m); 1309 return; 1310 } 1311 1312 /* 1313 * Change receiving interface. The bridge will often pass a flag to 1314 * ask that this not be done so ARPs get applied to the correct 1315 * side. 1316 */ 1317 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 || 1318 m->m_pkthdr.rcvif == NULL) { 1319 m->m_pkthdr.rcvif = ifp; 1320 } 1321 1322 /* Update statistics */ 1323 IFNET_STAT_INC(ifp, ipackets, 1); 1324 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len); 1325 if (m->m_flags & (M_MCAST | M_BCAST)) 1326 IFNET_STAT_INC(ifp, imcasts, 1); 1327 1328 if (reinput_flags & REINPUT_RUNBPF) 1329 BPF_MTAP(ifp, m); 1330 1331 ether_input_oncpu(ifp, m); 1332 } 1333 1334 static __inline boolean_t 1335 ether_vlancheck(struct mbuf **m0) 1336 { 1337 struct mbuf *m = *m0; 1338 struct ether_header *eh = mtod(m, struct ether_header *); 1339 uint16_t ether_type = ntohs(eh->ether_type); 1340 1341 if (ether_type == ETHERTYPE_VLAN) { 1342 if ((m->m_flags & M_VLANTAG) == 0) { 1343 /* 1344 * Extract vlan tag if hardware does not do 1345 * it for us. 1346 */ 1347 vlan_ether_decap(&m); 1348 if (m == NULL) 1349 goto failed; 1350 1351 eh = mtod(m, struct ether_header *); 1352 ether_type = ntohs(eh->ether_type); 1353 if (ether_type == ETHERTYPE_VLAN) { 1354 /* 1355 * To prevent possible dangerous recursion, 1356 * we don't do vlan-in-vlan. 1357 */ 1358 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1359 goto failed; 1360 } 1361 } else { 1362 /* 1363 * To prevent possible dangerous recursion, 1364 * we don't do vlan-in-vlan. 1365 */ 1366 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1367 goto failed; 1368 } 1369 KKASSERT(ether_type != ETHERTYPE_VLAN); 1370 } 1371 1372 m->m_flags |= M_ETHER_VLANCHECKED; 1373 *m0 = m; 1374 return TRUE; 1375 failed: 1376 if (m != NULL) 1377 m_freem(m); 1378 *m0 = NULL; 1379 return FALSE; 1380 } 1381 1382 static void 1383 ether_input_handler(netmsg_t nmsg) 1384 { 1385 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1386 struct ether_header *eh; 1387 struct ifnet *ifp; 1388 struct mbuf *m; 1389 1390 m = nmp->nm_packet; 1391 M_ASSERTPKTHDR(m); 1392 1393 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) { 1394 if (!ether_vlancheck(&m)) { 1395 KKASSERT(m == NULL); 1396 return; 1397 } 1398 } 1399 1400 ifp = m->m_pkthdr.rcvif; 1401 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) || 1402 __predict_false(ether_input_ckhash)) { 1403 int isr; 1404 1405 /* 1406 * Need to verify the hash supplied by the hardware 1407 * which could be wrong. 1408 */ 1409 m->m_flags &= ~(M_HASH | M_CKHASH); 1410 isr = ether_characterize(&m); 1411 if (m == NULL) 1412 return; 1413 KKASSERT(m->m_flags & M_HASH); 1414 1415 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) { 1416 /* 1417 * Wrong hardware supplied hash; redispatch 1418 */ 1419 ether_dispatch(ifp, isr, m, -1); 1420 if (__predict_false(ether_input_ckhash)) 1421 atomic_add_long(ðer_input_wronghwhash, 1); 1422 return; 1423 } 1424 } 1425 1426 eh = mtod(m, struct ether_header *); 1427 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 1428 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 1429 ifp->if_addrlen) == 0) 1430 m->m_flags |= M_BCAST; 1431 else 1432 m->m_flags |= M_MCAST; 1433 IFNET_STAT_INC(ifp, imcasts, 1); 1434 } 1435 1436 ether_input_oncpu(ifp, m); 1437 } 1438 1439 /* 1440 * Send the packet to the target netisr msgport 1441 * 1442 * At this point the packet must be characterized (M_HASH set), 1443 * so we know which netisr to send it to. 1444 */ 1445 static void 1446 ether_dispatch(struct ifnet *ifp, int isr, struct mbuf *m, int cpuid) 1447 { 1448 struct netmsg_packet *pmsg; 1449 int target_cpuid; 1450 1451 KKASSERT(m->m_flags & M_HASH); 1452 target_cpuid = netisr_hashcpu(m->m_pkthdr.hash); 1453 1454 pmsg = &m->m_hdr.mh_netmsg; 1455 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1456 0, ether_input_handler); 1457 pmsg->nm_packet = m; 1458 pmsg->base.lmsg.u.ms_result = isr; 1459 1460 logether(disp_beg, NULL); 1461 if (target_cpuid == cpuid) { 1462 if ((ifp->if_flags & IFF_IDIRECT) && IN_NETISR_NCPUS(cpuid)) { 1463 ether_input_handler((netmsg_t)pmsg); 1464 } else { 1465 lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid), 1466 &pmsg->base.lmsg); 1467 } 1468 } else { 1469 lwkt_sendmsg(netisr_cpuport(target_cpuid), 1470 &pmsg->base.lmsg); 1471 } 1472 logether(disp_end, NULL); 1473 } 1474 1475 /* 1476 * Process a received Ethernet packet. 1477 * 1478 * The ethernet header is assumed to be in the mbuf so the caller 1479 * MUST MAKE SURE that there are at least sizeof(struct ether_header) 1480 * bytes in the first mbuf. 1481 * 1482 * If the caller knows that the current thread is stick to the current 1483 * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid 1484 * (mycpuid) should be passed through 'cpuid' argument. Else -1 should 1485 * be passed as 'cpuid' argument. 1486 */ 1487 void 1488 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi, 1489 int cpuid) 1490 { 1491 int isr; 1492 1493 M_ASSERTPKTHDR(m); 1494 1495 /* Discard packet if interface is not up */ 1496 if (!(ifp->if_flags & IFF_UP)) { 1497 m_freem(m); 1498 return; 1499 } 1500 1501 if (m->m_len < sizeof(struct ether_header)) { 1502 /* XXX error in the caller. */ 1503 m_freem(m); 1504 return; 1505 } 1506 1507 m->m_pkthdr.rcvif = ifp; 1508 1509 logether(pkt_beg, ifp); 1510 1511 ETHER_BPF_MTAP(ifp, m); 1512 1513 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len); 1514 1515 if (ifp->if_flags & IFF_MONITOR) { 1516 struct ether_header *eh; 1517 1518 eh = mtod(m, struct ether_header *); 1519 if (ETHER_IS_MULTICAST(eh->ether_dhost)) 1520 IFNET_STAT_INC(ifp, imcasts, 1); 1521 1522 /* 1523 * Interface marked for monitoring; discard packet. 1524 */ 1525 m_freem(m); 1526 1527 logether(pkt_end, ifp); 1528 return; 1529 } 1530 1531 /* 1532 * If the packet has been characterized (pi->pi_netisr / M_HASH) 1533 * we can dispatch it immediately with trivial checks. 1534 */ 1535 if (pi != NULL && (m->m_flags & M_HASH)) { 1536 #ifdef RSS_DEBUG 1537 atomic_add_long(ðer_pktinfo_try, 1); 1538 #endif 1539 netisr_hashcheck(pi->pi_netisr, m, pi); 1540 if (m->m_flags & M_HASH) { 1541 ether_dispatch(ifp, pi->pi_netisr, m, cpuid); 1542 #ifdef RSS_DEBUG 1543 atomic_add_long(ðer_pktinfo_hit, 1); 1544 #endif 1545 logether(pkt_end, ifp); 1546 return; 1547 } 1548 } 1549 #ifdef RSS_DEBUG 1550 else if (ifp->if_capenable & IFCAP_RSS) { 1551 if (pi == NULL) 1552 atomic_add_long(ðer_rss_nopi, 1); 1553 else 1554 atomic_add_long(ðer_rss_nohash, 1); 1555 } 1556 #endif 1557 1558 /* 1559 * Packet hash will be recalculated by software, so clear 1560 * the M_HASH and M_CKHASH flag set by the driver; the hash 1561 * value calculated by the hardware may not be exactly what 1562 * we want. 1563 */ 1564 m->m_flags &= ~(M_HASH | M_CKHASH); 1565 1566 if (!ether_vlancheck(&m)) { 1567 KKASSERT(m == NULL); 1568 logether(pkt_end, ifp); 1569 return; 1570 } 1571 1572 isr = ether_characterize(&m); 1573 if (m == NULL) { 1574 logether(pkt_end, ifp); 1575 return; 1576 } 1577 1578 /* 1579 * Finally dispatch it 1580 */ 1581 ether_dispatch(ifp, isr, m, cpuid); 1582 1583 logether(pkt_end, ifp); 1584 } 1585 1586 static int 1587 ether_characterize(struct mbuf **m0) 1588 { 1589 struct mbuf *m = *m0; 1590 struct ether_header *eh; 1591 uint16_t ether_type; 1592 int isr; 1593 1594 eh = mtod(m, struct ether_header *); 1595 ether_type = ntohs(eh->ether_type); 1596 1597 /* 1598 * Map ether type to netisr id. 1599 */ 1600 switch (ether_type) { 1601 #ifdef INET 1602 case ETHERTYPE_IP: 1603 isr = NETISR_IP; 1604 break; 1605 1606 case ETHERTYPE_ARP: 1607 isr = NETISR_ARP; 1608 break; 1609 #endif 1610 1611 #ifdef INET6 1612 case ETHERTYPE_IPV6: 1613 isr = NETISR_IPV6; 1614 break; 1615 #endif 1616 1617 #ifdef MPLS 1618 case ETHERTYPE_MPLS: 1619 case ETHERTYPE_MPLS_MCAST: 1620 m->m_flags |= M_MPLSLABELED; 1621 isr = NETISR_MPLS; 1622 break; 1623 #endif 1624 1625 default: 1626 /* 1627 * NETISR_MAX is an invalid value; it is chosen to let 1628 * netisr_characterize() know that we have no clear 1629 * idea where this packet should go. 1630 */ 1631 isr = NETISR_MAX; 1632 break; 1633 } 1634 1635 /* 1636 * Ask the isr to characterize the packet since we couldn't. 1637 * This is an attempt to optimally get us onto the correct protocol 1638 * thread. 1639 */ 1640 netisr_characterize(isr, &m, sizeof(struct ether_header)); 1641 1642 *m0 = m; 1643 return isr; 1644 } 1645 1646 static void 1647 ether_demux_handler(netmsg_t nmsg) 1648 { 1649 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1650 struct ifnet *ifp; 1651 struct mbuf *m; 1652 1653 m = nmp->nm_packet; 1654 M_ASSERTPKTHDR(m); 1655 ifp = m->m_pkthdr.rcvif; 1656 1657 ether_demux_oncpu(ifp, m); 1658 } 1659 1660 void 1661 ether_demux(struct mbuf *m) 1662 { 1663 struct netmsg_packet *pmsg; 1664 int isr; 1665 1666 isr = ether_characterize(&m); 1667 if (m == NULL) 1668 return; 1669 1670 KKASSERT(m->m_flags & M_HASH); 1671 pmsg = &m->m_hdr.mh_netmsg; 1672 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1673 0, ether_demux_handler); 1674 pmsg->nm_packet = m; 1675 pmsg->base.lmsg.u.ms_result = isr; 1676 1677 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg); 1678 } 1679 1680 u_char * 1681 kether_aton(const char *macstr, u_char *addr) 1682 { 1683 unsigned int o0, o1, o2, o3, o4, o5; 1684 int n; 1685 1686 if (macstr == NULL || addr == NULL) 1687 return NULL; 1688 1689 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2, 1690 &o3, &o4, &o5); 1691 if (n != 6) 1692 return NULL; 1693 1694 addr[0] = o0; 1695 addr[1] = o1; 1696 addr[2] = o2; 1697 addr[3] = o3; 1698 addr[4] = o4; 1699 addr[5] = o5; 1700 1701 return addr; 1702 } 1703 1704 char * 1705 kether_ntoa(const u_char *addr, char *buf) 1706 { 1707 int len = ETHER_ADDRSTRLEN + 1; 1708 int n; 1709 1710 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], 1711 addr[1], addr[2], addr[3], addr[4], addr[5]); 1712 1713 if (n < 17) 1714 return NULL; 1715 1716 return buf; 1717 } 1718 1719 MODULE_VERSION(ether, 1); 1720