xref: /dragonfly/sys/net/ip_mroute/ip_mroute.c (revision 4e7eb5cc)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  * Modified by Ahmed Helmy, SGI, June 1996
11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13  * Modified by Hitoshi Asaeda, WIDE, August 2000
14  * Modified by Pavlin Radoslavov, ICSI, October 2002
15  *
16  * MROUTING Revision: 3.5
17  * and PIM-SMv2 and PIM-DM support, advanced API support,
18  * bandwidth metering and signaling
19  *
20  * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.10 2003/08/24 21:37:34 hsu Exp $
21  * $DragonFly: src/sys/net/ip_mroute/ip_mroute.c,v 1.6 2004/01/06 03:17:26 dillon Exp $
22  */
23 
24 #include "opt_mrouting.h"
25 #include "opt_random_ip_id.h"
26 
27 #ifdef PIM
28 #define _PIM_VT 1
29 #endif
30 
31 #include <sys/param.h>
32 #include <sys/kernel.h>
33 #include <sys/malloc.h>
34 #include <sys/mbuf.h>
35 #include <sys/protosw.h>
36 #include <sys/socket.h>
37 #include <sys/socketvar.h>
38 #include <sys/sockio.h>
39 #include <sys/sysctl.h>
40 #include <sys/syslog.h>
41 #include <sys/systm.h>
42 #include <sys/time.h>
43 #include <net/if.h>
44 #include <net/netisr.h>
45 #include <net/route.h>
46 #include <netinet/in.h>
47 #include <netinet/igmp.h>
48 #include <netinet/in_systm.h>
49 #include <netinet/in_var.h>
50 #include <netinet/ip.h>
51 #include "ip_mroute.h"
52 #include <netinet/ip_var.h>
53 #ifdef PIM
54 #include <netinet/pim.h>
55 #include <netinet/pim_var.h>
56 #endif
57 #include <netinet/udp.h>
58 #include <machine/in_cksum.h>
59 
60 /*
61  * Control debugging code for rsvp and multicast routing code.
62  * Can only set them with the debugger.
63  */
64 static	u_int	rsvpdebug;		/* non-zero enables debugging   */
65 
66 static	u_int	mrtdebug;		/* any set of the flags below   */
67 
68 #define		DEBUG_MFC	0x02
69 #define		DEBUG_FORWARD	0x04
70 #define		DEBUG_EXPIRE	0x08
71 #define		DEBUG_XMIT	0x10
72 #define		DEBUG_PIM	0x20
73 
74 #define		VIFI_INVALID	((vifi_t) -1)
75 
76 #define M_HASCL(m)	((m)->m_flags & M_EXT)
77 
78 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
79 
80 static struct mrtstat	mrtstat;
81 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
82     &mrtstat, mrtstat,
83     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
84 
85 static struct mfc	*mfctable[MFCTBLSIZ];
86 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
87     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
88     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
89 
90 static struct vif	viftable[MAXVIFS];
91 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
92     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
93     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
94 
95 static u_char		nexpire[MFCTBLSIZ];
96 
97 static struct callout_handle expire_upcalls_ch;
98 
99 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
100 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
101 
102 /*
103  * Define the token bucket filter structures
104  * tbftable -> each vif has one of these for storing info
105  */
106 
107 static struct tbf tbftable[MAXVIFS];
108 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
109 
110 /*
111  * 'Interfaces' associated with decapsulator (so we can tell
112  * packets that went through it from ones that get reflected
113  * by a broken gateway).  These interfaces are never linked into
114  * the system ifnet list & no routes point to them.  I.e., packets
115  * can't be sent this way.  They only exist as a placeholder for
116  * multicast source verification.
117  */
118 static struct ifnet multicast_decap_if[MAXVIFS];
119 
120 #define ENCAP_TTL 64
121 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
122 
123 /* prototype IP hdr for encapsulated packets */
124 static struct ip multicast_encap_iphdr = {
125 #if BYTE_ORDER == LITTLE_ENDIAN
126 	sizeof(struct ip) >> 2, IPVERSION,
127 #else
128 	IPVERSION, sizeof(struct ip) >> 2,
129 #endif
130 	0,				/* tos */
131 	sizeof(struct ip),		/* total length */
132 	0,				/* id */
133 	0,				/* frag offset */
134 	ENCAP_TTL, ENCAP_PROTO,
135 	0,				/* checksum */
136 };
137 
138 /*
139  * Bandwidth meter variables and constants
140  */
141 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
142 /*
143  * Pending timeouts are stored in a hash table, the key being the
144  * expiration time. Periodically, the entries are analysed and processed.
145  */
146 #define BW_METER_BUCKETS	1024
147 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
148 static struct callout_handle bw_meter_ch;
149 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
150 
151 /*
152  * Pending upcalls are stored in a vector which is flushed when
153  * full, or periodically
154  */
155 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
156 static u_int	bw_upcalls_n; /* # of pending upcalls */
157 static struct callout_handle bw_upcalls_ch;
158 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
159 
160 #ifdef PIM
161 static struct pimstat pimstat;
162 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
163     &pimstat, pimstat,
164     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
165 
166 /*
167  * Note: the PIM Register encapsulation adds the following in front of a
168  * data packet:
169  *
170  * struct pim_encap_hdr {
171  *    struct ip ip;
172  *    struct pim_encap_pimhdr  pim;
173  * }
174  *
175  */
176 
177 struct pim_encap_pimhdr {
178 	struct pim pim;
179 	uint32_t   flags;
180 };
181 
182 static struct ip pim_encap_iphdr = {
183 #if BYTE_ORDER == LITTLE_ENDIAN
184 	sizeof(struct ip) >> 2,
185 	IPVERSION,
186 #else
187 	IPVERSION,
188 	sizeof(struct ip) >> 2,
189 #endif
190 	0,			/* tos */
191 	sizeof(struct ip),	/* total length */
192 	0,			/* id */
193 	0,			/* frag offset */
194 	ENCAP_TTL,
195 	IPPROTO_PIM,
196 	0,			/* checksum */
197 };
198 
199 static struct pim_encap_pimhdr pim_encap_pimhdr = {
200     {
201 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
202 	0,			/* reserved */
203 	0,			/* checksum */
204     },
205     0				/* flags */
206 };
207 
208 static struct ifnet multicast_register_if;
209 static vifi_t reg_vif_num = VIFI_INVALID;
210 #endif /* PIM */
211 
212 /*
213  * Private variables.
214  */
215 static vifi_t	   numvifs;
216 static int have_encap_tunnel;
217 
218 /*
219  * one-back cache used by ipip_input to locate a tunnel's vif
220  * given a datagram's src ip address.
221  */
222 static u_long last_encap_src;
223 static struct vif *last_encap_vif;
224 
225 static u_long	X_ip_mcast_src(int vifi);
226 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
227 			struct mbuf *m, struct ip_moptions *imo);
228 static int	X_ip_mrouter_done(void);
229 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
230 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
231 static int	X_legal_vif_num(int vif);
232 static int	X_mrt_ioctl(int cmd, caddr_t data);
233 
234 static int get_sg_cnt(struct sioc_sg_req *);
235 static int get_vif_cnt(struct sioc_vif_req *);
236 static int ip_mrouter_init(struct socket *, int);
237 static int add_vif(struct vifctl *);
238 static int del_vif(vifi_t);
239 static int add_mfc(struct mfcctl2 *);
240 static int del_mfc(struct mfcctl2 *);
241 static int set_api_config(uint32_t *); /* chose API capabilities */
242 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
243 static int set_assert(int);
244 static void expire_upcalls(void *);
245 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
246 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
247 static void encap_send(struct ip *, struct vif *, struct mbuf *);
248 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
249 static void tbf_queue(struct vif *, struct mbuf *);
250 static void tbf_process_q(struct vif *);
251 static void tbf_reprocess_q(void *);
252 static int tbf_dq_sel(struct vif *, struct ip *);
253 static void tbf_send_packet(struct vif *, struct mbuf *);
254 static void tbf_update_tokens(struct vif *);
255 static int priority(struct vif *, struct ip *);
256 
257 /*
258  * Bandwidth monitoring
259  */
260 static void free_bw_list(struct bw_meter *list);
261 static int add_bw_upcall(struct bw_upcall *);
262 static int del_bw_upcall(struct bw_upcall *);
263 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
264 		struct timeval *nowp);
265 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
266 static void bw_upcalls_send(void);
267 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
268 static void unschedule_bw_meter(struct bw_meter *x);
269 static void bw_meter_process(void);
270 static void expire_bw_upcalls_send(void *);
271 static void expire_bw_meter_process(void *);
272 
273 #ifdef PIM
274 static int pim_register_send(struct ip *, struct vif *,
275 		struct mbuf *, struct mfc *);
276 static int pim_register_send_rp(struct ip *, struct vif *,
277 		struct mbuf *, struct mfc *);
278 static int pim_register_send_upcall(struct ip *, struct vif *,
279 		struct mbuf *, struct mfc *);
280 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
281 #endif
282 
283 /*
284  * whether or not special PIM assert processing is enabled.
285  */
286 static int pim_assert;
287 /*
288  * Rate limit for assert notification messages, in usec
289  */
290 #define ASSERT_MSG_TIME		3000000
291 
292 /*
293  * Kernel multicast routing API capabilities and setup.
294  * If more API capabilities are added to the kernel, they should be
295  * recorded in `mrt_api_support'.
296  */
297 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
298 					 MRT_MFC_FLAGS_BORDER_VIF |
299 					 MRT_MFC_RP |
300 					 MRT_MFC_BW_UPCALL);
301 static uint32_t mrt_api_config = 0;
302 
303 /*
304  * Hash function for a source, group entry
305  */
306 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
307 			((g) >> 20) ^ ((g) >> 10) ^ (g))
308 
309 /*
310  * Find a route for a given origin IP address and Multicast group address
311  * Type of service parameter to be added in the future!!!
312  * Statistics are updated by the caller if needed
313  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
314  */
315 static struct mfc *
316 mfc_find(in_addr_t o, in_addr_t g)
317 {
318     struct mfc *rt;
319 
320     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
321 	if ((rt->mfc_origin.s_addr == o) &&
322 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
323 	    break;
324     return rt;
325 }
326 
327 /*
328  * Macros to compute elapsed time efficiently
329  * Borrowed from Van Jacobson's scheduling code
330  */
331 #define TV_DELTA(a, b, delta) {					\
332 	int xxs;						\
333 	delta = (a).tv_usec - (b).tv_usec;			\
334 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
335 		switch (xxs) {					\
336 		case 2:						\
337 			delta += 1000000;			\
338 			/* FALLTHROUGH */			\
339 		case 1:						\
340 			delta += 1000000;			\
341 			break;					\
342 		default:					\
343 			delta += (1000000 * xxs);		\
344 		}						\
345 	}							\
346 }
347 
348 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
349 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
350 
351 /*
352  * Handle MRT setsockopt commands to modify the multicast routing tables.
353  */
354 static int
355 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
356 {
357     int	error, optval;
358     vifi_t	vifi;
359     struct	vifctl vifc;
360     struct	mfcctl2 mfc;
361     struct	bw_upcall bw_upcall;
362     uint32_t	i;
363 
364     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
365 	return EPERM;
366 
367     error = 0;
368     switch (sopt->sopt_name) {
369     case MRT_INIT:
370 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
371 	if (error)
372 	    break;
373 	error = ip_mrouter_init(so, optval);
374 	break;
375 
376     case MRT_DONE:
377 	error = ip_mrouter_done();
378 	break;
379 
380     case MRT_ADD_VIF:
381 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
382 	if (error)
383 	    break;
384 	error = add_vif(&vifc);
385 	break;
386 
387     case MRT_DEL_VIF:
388 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
389 	if (error)
390 	    break;
391 	error = del_vif(vifi);
392 	break;
393 
394     case MRT_ADD_MFC:
395     case MRT_DEL_MFC:
396 	/*
397 	 * select data size depending on API version.
398 	 */
399 	if (sopt->sopt_name == MRT_ADD_MFC &&
400 		mrt_api_config & MRT_API_FLAGS_ALL) {
401 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
402 				sizeof(struct mfcctl2));
403 	} else {
404 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
405 				sizeof(struct mfcctl));
406 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
407 			sizeof(mfc) - sizeof(struct mfcctl));
408 	}
409 	if (error)
410 	    break;
411 	if (sopt->sopt_name == MRT_ADD_MFC)
412 	    error = add_mfc(&mfc);
413 	else
414 	    error = del_mfc(&mfc);
415 	break;
416 
417     case MRT_ASSERT:
418 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
419 	if (error)
420 	    break;
421 	set_assert(optval);
422 	break;
423 
424     case MRT_API_CONFIG:
425 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
426 	if (!error)
427 	    error = set_api_config(&i);
428 	if (!error)
429 	    error = sooptcopyout(sopt, &i, sizeof i);
430 	break;
431 
432     case MRT_ADD_BW_UPCALL:
433     case MRT_DEL_BW_UPCALL:
434 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
435 				sizeof bw_upcall);
436 	if (error)
437 	    break;
438 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
439 	    error = add_bw_upcall(&bw_upcall);
440 	else
441 	    error = del_bw_upcall(&bw_upcall);
442 	break;
443 
444     default:
445 	error = EOPNOTSUPP;
446 	break;
447     }
448     return error;
449 }
450 
451 /*
452  * Handle MRT getsockopt commands
453  */
454 static int
455 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
456 {
457     int error;
458     static int version = 0x0305; /* !!! why is this here? XXX */
459 
460     switch (sopt->sopt_name) {
461     case MRT_VERSION:
462 	error = sooptcopyout(sopt, &version, sizeof version);
463 	break;
464 
465     case MRT_ASSERT:
466 	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
467 	break;
468 
469     case MRT_API_SUPPORT:
470 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
471 	break;
472 
473     case MRT_API_CONFIG:
474 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
475 	break;
476 
477     default:
478 	error = EOPNOTSUPP;
479 	break;
480     }
481     return error;
482 }
483 
484 /*
485  * Handle ioctl commands to obtain information from the cache
486  */
487 static int
488 X_mrt_ioctl(int cmd, caddr_t data)
489 {
490     int error = 0;
491 
492     switch (cmd) {
493     case SIOCGETVIFCNT:
494 	error = get_vif_cnt((struct sioc_vif_req *)data);
495 	break;
496 
497     case SIOCGETSGCNT:
498 	error = get_sg_cnt((struct sioc_sg_req *)data);
499 	break;
500 
501     default:
502 	error = EINVAL;
503 	break;
504     }
505     return error;
506 }
507 
508 /*
509  * returns the packet, byte, rpf-failure count for the source group provided
510  */
511 static int
512 get_sg_cnt(struct sioc_sg_req *req)
513 {
514     int s;
515     struct mfc *rt;
516 
517     s = splnet();
518     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
519     splx(s);
520     if (rt == NULL) {
521 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
522 	return EADDRNOTAVAIL;
523     }
524     req->pktcnt = rt->mfc_pkt_cnt;
525     req->bytecnt = rt->mfc_byte_cnt;
526     req->wrong_if = rt->mfc_wrong_if;
527     return 0;
528 }
529 
530 /*
531  * returns the input and output packet and byte counts on the vif provided
532  */
533 static int
534 get_vif_cnt(struct sioc_vif_req *req)
535 {
536     vifi_t vifi = req->vifi;
537 
538     if (vifi >= numvifs)
539 	return EINVAL;
540 
541     req->icount = viftable[vifi].v_pkt_in;
542     req->ocount = viftable[vifi].v_pkt_out;
543     req->ibytes = viftable[vifi].v_bytes_in;
544     req->obytes = viftable[vifi].v_bytes_out;
545 
546     return 0;
547 }
548 
549 /*
550  * Enable multicast routing
551  */
552 static int
553 ip_mrouter_init(struct socket *so, int version)
554 {
555     if (mrtdebug)
556 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
557 	    so->so_type, so->so_proto->pr_protocol);
558 
559     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
560 	return EOPNOTSUPP;
561 
562     if (version != 1)
563 	return ENOPROTOOPT;
564 
565     if (ip_mrouter != NULL)
566 	return EADDRINUSE;
567 
568     ip_mrouter = so;
569 
570     bzero((caddr_t)mfctable, sizeof(mfctable));
571     bzero((caddr_t)nexpire, sizeof(nexpire));
572 
573     pim_assert = 0;
574 
575     expire_upcalls_ch = timeout(expire_upcalls, NULL, EXPIRE_TIMEOUT);
576 
577     bw_upcalls_n = 0;
578     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
579     bw_upcalls_ch = timeout(expire_bw_upcalls_send, NULL, BW_UPCALLS_PERIOD);
580     bw_meter_ch = timeout(expire_bw_meter_process, NULL, BW_METER_PERIOD);
581 
582     mrt_api_config = 0;
583 
584     if (mrtdebug)
585 	log(LOG_DEBUG, "ip_mrouter_init\n");
586 
587     return 0;
588 }
589 
590 /*
591  * Disable multicast routing
592  */
593 static int
594 X_ip_mrouter_done(void)
595 {
596     vifi_t vifi;
597     int i;
598     struct ifnet *ifp;
599     struct ifreq ifr;
600     struct mfc *rt;
601     struct rtdetq *rte;
602     int s;
603 
604     s = splnet();
605 
606     /*
607      * For each phyint in use, disable promiscuous reception of all IP
608      * multicasts.
609      */
610     for (vifi = 0; vifi < numvifs; vifi++) {
611 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
612 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
613 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
614 
615 	    so->sin_len = sizeof(struct sockaddr_in);
616 	    so->sin_family = AF_INET;
617 	    so->sin_addr.s_addr = INADDR_ANY;
618 	    ifp = viftable[vifi].v_ifp;
619 	    if_allmulti(ifp, 0);
620 	}
621     }
622     bzero((caddr_t)tbftable, sizeof(tbftable));
623     bzero((caddr_t)viftable, sizeof(viftable));
624     numvifs = 0;
625     pim_assert = 0;
626 
627     untimeout(expire_upcalls, NULL, expire_upcalls_ch);
628 
629     mrt_api_config = 0;
630     bw_upcalls_n = 0;
631     untimeout(expire_bw_upcalls_send, NULL, bw_upcalls_ch);
632     untimeout(expire_bw_meter_process, NULL, bw_meter_ch);
633 
634     /*
635      * Free all multicast forwarding cache entries.
636      */
637     for (i = 0; i < MFCTBLSIZ; i++) {
638 	for (rt = mfctable[i]; rt != NULL; ) {
639 	    struct mfc *nr = rt->mfc_next;
640 
641 	    for (rte = rt->mfc_stall; rte != NULL; ) {
642 		struct rtdetq *n = rte->next;
643 
644 		m_freem(rte->m);
645 		free(rte, M_MRTABLE);
646 		rte = n;
647 	    }
648 	    free_bw_list(rt->mfc_bw_meter);
649 	    free(rt, M_MRTABLE);
650 	    rt = nr;
651 	}
652     }
653 
654     bzero((caddr_t)mfctable, sizeof(mfctable));
655 
656     bzero(bw_meter_timers, sizeof(bw_meter_timers));
657 
658     /*
659      * Reset de-encapsulation cache
660      */
661     last_encap_src = INADDR_ANY;
662     last_encap_vif = NULL;
663 #ifdef PIM
664     reg_vif_num = VIFI_INVALID;
665 #endif
666     have_encap_tunnel = 0;
667 
668     ip_mrouter = NULL;
669 
670     splx(s);
671 
672     if (mrtdebug)
673 	log(LOG_DEBUG, "ip_mrouter_done\n");
674 
675     return 0;
676 }
677 
678 /*
679  * Set PIM assert processing global
680  */
681 static int
682 set_assert(int i)
683 {
684     if ((i != 1) && (i != 0))
685 	return EINVAL;
686 
687     pim_assert = i;
688 
689     return 0;
690 }
691 
692 /*
693  * Configure API capabilities
694  */
695 int
696 set_api_config(uint32_t *apival)
697 {
698     int i;
699 
700     /*
701      * We can set the API capabilities only if it is the first operation
702      * after MRT_INIT. I.e.:
703      *  - there are no vifs installed
704      *  - pim_assert is not enabled
705      *  - the MFC table is empty
706      */
707     if (numvifs > 0) {
708 	*apival = 0;
709 	return EPERM;
710     }
711     if (pim_assert) {
712 	*apival = 0;
713 	return EPERM;
714     }
715     for (i = 0; i < MFCTBLSIZ; i++) {
716 	if (mfctable[i] != NULL) {
717 	    *apival = 0;
718 	    return EPERM;
719 	}
720     }
721 
722     mrt_api_config = *apival & mrt_api_support;
723     *apival = mrt_api_config;
724 
725     return 0;
726 }
727 
728 /*
729  * Add a vif to the vif table
730  */
731 static int
732 add_vif(struct vifctl *vifcp)
733 {
734     struct vif *vifp = viftable + vifcp->vifc_vifi;
735     struct sockaddr_in sin = {sizeof sin, AF_INET};
736     struct ifaddr *ifa;
737     struct ifnet *ifp;
738     int error, s;
739     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
740 
741     if (vifcp->vifc_vifi >= MAXVIFS)
742 	return EINVAL;
743     if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
744 	return EADDRINUSE;
745     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
746 	return EADDRNOTAVAIL;
747 
748     /* Find the interface with an address in AF_INET family */
749 #ifdef PIM
750     if (vifcp->vifc_flags & VIFF_REGISTER) {
751 	/*
752 	 * XXX: Because VIFF_REGISTER does not really need a valid
753 	 * local interface (e.g. it could be 127.0.0.2), we don't
754 	 * check its address.
755 	 */
756 	ifp = NULL;
757     } else
758 #endif
759     {
760 	sin.sin_addr = vifcp->vifc_lcl_addr;
761 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
762 	if (ifa == NULL)
763 	    return EADDRNOTAVAIL;
764 	ifp = ifa->ifa_ifp;
765     }
766 
767     if (vifcp->vifc_flags & VIFF_TUNNEL) {
768 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
769 	    /*
770 	     * An encapsulating tunnel is wanted.  Tell ipip_input() to
771 	     * start paying attention to encapsulated packets.
772 	     */
773 	    if (have_encap_tunnel == 0) {
774 		have_encap_tunnel = 1;
775 		for (s = 0; s < MAXVIFS; ++s) {
776 		    if_initname(&multicast_decap_if[s], "mdecap", s);
777 		}
778 	    }
779 	    /*
780 	     * Set interface to fake encapsulator interface
781 	     */
782 	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
783 	    /*
784 	     * Prepare cached route entry
785 	     */
786 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
787 	} else {
788 	    log(LOG_ERR, "source routed tunnels not supported\n");
789 	    return EOPNOTSUPP;
790 	}
791 #ifdef PIM
792     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
793 	ifp = &multicast_register_if;
794 	if (mrtdebug)
795 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
796 		    (void *)&multicast_register_if);
797 	if (reg_vif_num == VIFI_INVALID) {
798 	    if_initname(&multicast_register_if, "register_vif", 0);
799 	    multicast_register_if.if_flags = IFF_LOOPBACK;
800 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
801 	    reg_vif_num = vifcp->vifc_vifi;
802 	}
803 #endif
804     } else {		/* Make sure the interface supports multicast */
805 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
806 	    return EOPNOTSUPP;
807 
808 	/* Enable promiscuous reception of all IP multicasts from the if */
809 	s = splnet();
810 	error = if_allmulti(ifp, 1);
811 	splx(s);
812 	if (error)
813 	    return error;
814     }
815 
816     s = splnet();
817     /* define parameters for the tbf structure */
818     vifp->v_tbf = v_tbf;
819     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
820     vifp->v_tbf->tbf_n_tok = 0;
821     vifp->v_tbf->tbf_q_len = 0;
822     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
823     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
824 
825     vifp->v_flags     = vifcp->vifc_flags;
826     vifp->v_threshold = vifcp->vifc_threshold;
827     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
828     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
829     vifp->v_ifp       = ifp;
830     /* scaling up here allows division by 1024 in critical code */
831     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
832     vifp->v_rsvp_on   = 0;
833     vifp->v_rsvpd     = NULL;
834     /* initialize per vif pkt counters */
835     vifp->v_pkt_in    = 0;
836     vifp->v_pkt_out   = 0;
837     vifp->v_bytes_in  = 0;
838     vifp->v_bytes_out = 0;
839     splx(s);
840 
841     /* Adjust numvifs up if the vifi is higher than numvifs */
842     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
843 
844     if (mrtdebug)
845 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
846 	    vifcp->vifc_vifi,
847 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
848 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
849 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
850 	    vifcp->vifc_threshold,
851 	    vifcp->vifc_rate_limit);
852 
853     return 0;
854 }
855 
856 /*
857  * Delete a vif from the vif table
858  */
859 static int
860 del_vif(vifi_t vifi)
861 {
862     struct vif *vifp;
863     int s;
864 
865     if (vifi >= numvifs)
866 	return EINVAL;
867     vifp = &viftable[vifi];
868     if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
869 	return EADDRNOTAVAIL;
870 
871     s = splnet();
872 
873     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
874 	if_allmulti(vifp->v_ifp, 0);
875 
876     if (vifp == last_encap_vif) {
877 	last_encap_vif = NULL;
878 	last_encap_src = INADDR_ANY;
879     }
880 
881     /*
882      * Free packets queued at the interface
883      */
884     while (vifp->v_tbf->tbf_q) {
885 	struct mbuf *m = vifp->v_tbf->tbf_q;
886 
887 	vifp->v_tbf->tbf_q = m->m_act;
888 	m_freem(m);
889     }
890 
891 #ifdef PIM
892     if (vifp->v_flags & VIFF_REGISTER)
893 	reg_vif_num = VIFI_INVALID;
894 #endif
895 
896     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
897     bzero((caddr_t)vifp, sizeof (*vifp));
898 
899     if (mrtdebug)
900 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
901 
902     /* Adjust numvifs down */
903     for (vifi = numvifs; vifi > 0; vifi--)
904 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
905 	    break;
906     numvifs = vifi;
907 
908     splx(s);
909 
910     return 0;
911 }
912 
913 /*
914  * update an mfc entry without resetting counters and S,G addresses.
915  */
916 static void
917 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
918 {
919     int i;
920 
921     rt->mfc_parent = mfccp->mfcc_parent;
922     for (i = 0; i < numvifs; i++) {
923 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
924 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
925 	    MRT_MFC_FLAGS_ALL;
926     }
927     /* set the RP address */
928     if (mrt_api_config & MRT_MFC_RP)
929 	rt->mfc_rp = mfccp->mfcc_rp;
930     else
931 	rt->mfc_rp.s_addr = INADDR_ANY;
932 }
933 
934 /*
935  * fully initialize an mfc entry from the parameter.
936  */
937 static void
938 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
939 {
940     rt->mfc_origin     = mfccp->mfcc_origin;
941     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
942 
943     update_mfc_params(rt, mfccp);
944 
945     /* initialize pkt counters per src-grp */
946     rt->mfc_pkt_cnt    = 0;
947     rt->mfc_byte_cnt   = 0;
948     rt->mfc_wrong_if   = 0;
949     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
950 }
951 
952 
953 /*
954  * Add an mfc entry
955  */
956 static int
957 add_mfc(struct mfcctl2 *mfccp)
958 {
959     struct mfc *rt;
960     u_long hash;
961     struct rtdetq *rte;
962     u_short nstl;
963     int s;
964 
965     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
966 
967     /* If an entry already exists, just update the fields */
968     if (rt) {
969 	if (mrtdebug & DEBUG_MFC)
970 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
971 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
972 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
973 		mfccp->mfcc_parent);
974 
975 	s = splnet();
976 	update_mfc_params(rt, mfccp);
977 	splx(s);
978 	return 0;
979     }
980 
981     /*
982      * Find the entry for which the upcall was made and update
983      */
984     s = splnet();
985     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
986     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
987 
988 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
989 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
990 		(rt->mfc_stall != NULL)) {
991 
992 	    if (nstl++)
993 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
994 		    "multiple kernel entries",
995 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
996 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
997 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
998 
999 	    if (mrtdebug & DEBUG_MFC)
1000 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1001 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1002 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1003 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1004 
1005 	    init_mfc_params(rt, mfccp);
1006 
1007 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1008 	    nexpire[hash]--;
1009 
1010 	    /* free packets Qed at the end of this entry */
1011 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1012 		struct rtdetq *n = rte->next;
1013 
1014 		ip_mdq(rte->m, rte->ifp, rt, -1);
1015 		m_freem(rte->m);
1016 		free(rte, M_MRTABLE);
1017 		rte = n;
1018 	    }
1019 	    rt->mfc_stall = NULL;
1020 	}
1021     }
1022 
1023     /*
1024      * It is possible that an entry is being inserted without an upcall
1025      */
1026     if (nstl == 0) {
1027 	if (mrtdebug & DEBUG_MFC)
1028 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1029 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1030 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1031 		mfccp->mfcc_parent);
1032 
1033 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1034 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1035 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1036 		init_mfc_params(rt, mfccp);
1037 		if (rt->mfc_expire)
1038 		    nexpire[hash]--;
1039 		rt->mfc_expire = 0;
1040 		break; /* XXX */
1041 	    }
1042 	}
1043 	if (rt == NULL) {		/* no upcall, so make a new entry */
1044 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1045 	    if (rt == NULL) {
1046 		splx(s);
1047 		return ENOBUFS;
1048 	    }
1049 
1050 	    init_mfc_params(rt, mfccp);
1051 	    rt->mfc_expire     = 0;
1052 	    rt->mfc_stall      = NULL;
1053 
1054 	    rt->mfc_bw_meter = NULL;
1055 	    /* insert new entry at head of hash chain */
1056 	    rt->mfc_next = mfctable[hash];
1057 	    mfctable[hash] = rt;
1058 	}
1059     }
1060     splx(s);
1061     return 0;
1062 }
1063 
1064 /*
1065  * Delete an mfc entry
1066  */
1067 static int
1068 del_mfc(struct mfcctl2 *mfccp)
1069 {
1070     struct in_addr 	origin;
1071     struct in_addr 	mcastgrp;
1072     struct mfc 		*rt;
1073     struct mfc	 	**nptr;
1074     u_long 		hash;
1075     int s;
1076     struct bw_meter	*list;
1077 
1078     origin = mfccp->mfcc_origin;
1079     mcastgrp = mfccp->mfcc_mcastgrp;
1080 
1081     if (mrtdebug & DEBUG_MFC)
1082 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1083 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1084 
1085     s = splnet();
1086 
1087     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1088     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1089 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1090 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1091 		rt->mfc_stall == NULL)
1092 	    break;
1093     if (rt == NULL) {
1094 	splx(s);
1095 	return EADDRNOTAVAIL;
1096     }
1097 
1098     *nptr = rt->mfc_next;
1099 
1100     /*
1101      * free the bw_meter entries
1102      */
1103     list = rt->mfc_bw_meter;
1104     rt->mfc_bw_meter = NULL;
1105 
1106     free(rt, M_MRTABLE);
1107 
1108     splx(s);
1109 
1110     free_bw_list(list);
1111 
1112     return 0;
1113 }
1114 
1115 /*
1116  * Send a message to mrouted on the multicast routing socket
1117  */
1118 static int
1119 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1120 {
1121     if (s) {
1122 	if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1123 	    sorwakeup(s);
1124 	    return 0;
1125 	}
1126     }
1127     m_freem(mm);
1128     return -1;
1129 }
1130 
1131 /*
1132  * IP multicast forwarding function. This function assumes that the packet
1133  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1134  * pointed to by "ifp", and the packet is to be relayed to other networks
1135  * that have members of the packet's destination IP multicast group.
1136  *
1137  * The packet is returned unscathed to the caller, unless it is
1138  * erroneous, in which case a non-zero return value tells the caller to
1139  * discard it.
1140  */
1141 
1142 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1143 
1144 static int
1145 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1146     struct ip_moptions *imo)
1147 {
1148     struct mfc *rt;
1149     int s;
1150     vifi_t vifi;
1151 
1152     if (mrtdebug & DEBUG_FORWARD)
1153 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1154 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1155 	    (void *)ifp);
1156 
1157     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1158 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1159 	/*
1160 	 * Packet arrived via a physical interface or
1161 	 * an encapsulated tunnel or a register_vif.
1162 	 */
1163     } else {
1164 	/*
1165 	 * Packet arrived through a source-route tunnel.
1166 	 * Source-route tunnels are no longer supported.
1167 	 */
1168 	static int last_log;
1169 	if (last_log != time_second) {
1170 	    last_log = time_second;
1171 	    log(LOG_ERR,
1172 		"ip_mforward: received source-routed packet from %lx\n",
1173 		(u_long)ntohl(ip->ip_src.s_addr));
1174 	}
1175 	return 1;
1176     }
1177 
1178     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1179 	if (ip->ip_ttl < 255)
1180 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1181 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1182 	    struct vif *vifp = viftable + vifi;
1183 
1184 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1185 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1186 		vifi,
1187 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1188 		vifp->v_ifp->if_xname);
1189 	}
1190 	return ip_mdq(m, ifp, NULL, vifi);
1191     }
1192     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1193 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1194 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1195 	if (!imo)
1196 	    printf("In fact, no options were specified at all\n");
1197     }
1198 
1199     /*
1200      * Don't forward a packet with time-to-live of zero or one,
1201      * or a packet destined to a local-only group.
1202      */
1203     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1204 	return 0;
1205 
1206     /*
1207      * Determine forwarding vifs from the forwarding cache table
1208      */
1209     s = splnet();
1210     ++mrtstat.mrts_mfc_lookups;
1211     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1212 
1213     /* Entry exists, so forward if necessary */
1214     if (rt != NULL) {
1215 	splx(s);
1216 	return ip_mdq(m, ifp, rt, -1);
1217     } else {
1218 	/*
1219 	 * If we don't have a route for packet's origin,
1220 	 * Make a copy of the packet & send message to routing daemon
1221 	 */
1222 
1223 	struct mbuf *mb0;
1224 	struct rtdetq *rte;
1225 	u_long hash;
1226 	int hlen = ip->ip_hl << 2;
1227 
1228 	++mrtstat.mrts_mfc_misses;
1229 
1230 	mrtstat.mrts_no_route++;
1231 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1232 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1233 		(u_long)ntohl(ip->ip_src.s_addr),
1234 		(u_long)ntohl(ip->ip_dst.s_addr));
1235 
1236 	/*
1237 	 * Allocate mbufs early so that we don't do extra work if we are
1238 	 * just going to fail anyway.  Make sure to pullup the header so
1239 	 * that other people can't step on it.
1240 	 */
1241 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1242 	if (rte == NULL) {
1243 	    splx(s);
1244 	    return ENOBUFS;
1245 	}
1246 	mb0 = m_copypacket(m, M_DONTWAIT);
1247 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1248 	    mb0 = m_pullup(mb0, hlen);
1249 	if (mb0 == NULL) {
1250 	    free(rte, M_MRTABLE);
1251 	    splx(s);
1252 	    return ENOBUFS;
1253 	}
1254 
1255 	/* is there an upcall waiting for this flow ? */
1256 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1257 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1258 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1259 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1260 		    (rt->mfc_stall != NULL))
1261 		break;
1262 	}
1263 
1264 	if (rt == NULL) {
1265 	    int i;
1266 	    struct igmpmsg *im;
1267 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1268 	    struct mbuf *mm;
1269 
1270 	    /*
1271 	     * Locate the vifi for the incoming interface for this packet.
1272 	     * If none found, drop packet.
1273 	     */
1274 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1275 		;
1276 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1277 		goto non_fatal;
1278 
1279 	    /* no upcall, so make a new entry */
1280 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1281 	    if (rt == NULL)
1282 		goto fail;
1283 	    /* Make a copy of the header to send to the user level process */
1284 	    mm = m_copy(mb0, 0, hlen);
1285 	    if (mm == NULL)
1286 		goto fail1;
1287 
1288 	    /*
1289 	     * Send message to routing daemon to install
1290 	     * a route into the kernel table
1291 	     */
1292 
1293 	    im = mtod(mm, struct igmpmsg *);
1294 	    im->im_msgtype = IGMPMSG_NOCACHE;
1295 	    im->im_mbz = 0;
1296 	    im->im_vif = vifi;
1297 
1298 	    mrtstat.mrts_upcalls++;
1299 
1300 	    k_igmpsrc.sin_addr = ip->ip_src;
1301 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1302 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1303 		++mrtstat.mrts_upq_sockfull;
1304 fail1:
1305 		free(rt, M_MRTABLE);
1306 fail:
1307 		free(rte, M_MRTABLE);
1308 		m_freem(mb0);
1309 		splx(s);
1310 		return ENOBUFS;
1311 	    }
1312 
1313 	    /* insert new entry at head of hash chain */
1314 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1315 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1316 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1317 	    nexpire[hash]++;
1318 	    for (i = 0; i < numvifs; i++) {
1319 		rt->mfc_ttls[i] = 0;
1320 		rt->mfc_flags[i] = 0;
1321 	    }
1322 	    rt->mfc_parent = -1;
1323 
1324 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1325 
1326 	    rt->mfc_bw_meter = NULL;
1327 
1328 	    /* link into table */
1329 	    rt->mfc_next   = mfctable[hash];
1330 	    mfctable[hash] = rt;
1331 	    rt->mfc_stall = rte;
1332 
1333 	} else {
1334 	    /* determine if q has overflowed */
1335 	    int npkts = 0;
1336 	    struct rtdetq **p;
1337 
1338 	    /*
1339 	     * XXX ouch! we need to append to the list, but we
1340 	     * only have a pointer to the front, so we have to
1341 	     * scan the entire list every time.
1342 	     */
1343 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1344 		npkts++;
1345 
1346 	    if (npkts > MAX_UPQ) {
1347 		mrtstat.mrts_upq_ovflw++;
1348 non_fatal:
1349 		free(rte, M_MRTABLE);
1350 		m_freem(mb0);
1351 		splx(s);
1352 		return 0;
1353 	    }
1354 
1355 	    /* Add this entry to the end of the queue */
1356 	    *p = rte;
1357 	}
1358 
1359 	rte->m 			= mb0;
1360 	rte->ifp 		= ifp;
1361 	rte->next		= NULL;
1362 
1363 	splx(s);
1364 
1365 	return 0;
1366     }
1367 }
1368 
1369 /*
1370  * Clean up the cache entry if upcall is not serviced
1371  */
1372 static void
1373 expire_upcalls(void *unused)
1374 {
1375     struct rtdetq *rte;
1376     struct mfc *mfc, **nptr;
1377     int i;
1378     int s;
1379 
1380     s = splnet();
1381     for (i = 0; i < MFCTBLSIZ; i++) {
1382 	if (nexpire[i] == 0)
1383 	    continue;
1384 	nptr = &mfctable[i];
1385 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1386 	    /*
1387 	     * Skip real cache entries
1388 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1389 	     * If it expires now
1390 	     */
1391 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1392 		    --mfc->mfc_expire == 0) {
1393 		if (mrtdebug & DEBUG_EXPIRE)
1394 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1395 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1396 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1397 		/*
1398 		 * drop all the packets
1399 		 * free the mbuf with the pkt, if, timing info
1400 		 */
1401 		for (rte = mfc->mfc_stall; rte; ) {
1402 		    struct rtdetq *n = rte->next;
1403 
1404 		    m_freem(rte->m);
1405 		    free(rte, M_MRTABLE);
1406 		    rte = n;
1407 		}
1408 		++mrtstat.mrts_cache_cleanups;
1409 		nexpire[i]--;
1410 
1411 		/*
1412 		 * free the bw_meter entries
1413 		 */
1414 		while (mfc->mfc_bw_meter != NULL) {
1415 		    struct bw_meter *x = mfc->mfc_bw_meter;
1416 
1417 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1418 		    free(x, M_BWMETER);
1419 		}
1420 
1421 		*nptr = mfc->mfc_next;
1422 		free(mfc, M_MRTABLE);
1423 	    } else {
1424 		nptr = &mfc->mfc_next;
1425 	    }
1426 	}
1427     }
1428     splx(s);
1429     expire_upcalls_ch = timeout(expire_upcalls, NULL, EXPIRE_TIMEOUT);
1430 }
1431 
1432 /*
1433  * Packet forwarding routine once entry in the cache is made
1434  */
1435 static int
1436 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1437 {
1438     struct ip  *ip = mtod(m, struct ip *);
1439     vifi_t vifi;
1440     int plen = ip->ip_len;
1441 
1442 /*
1443  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1444  * input, they shouldn't get counted on output, so statistics keeping is
1445  * separate.
1446  */
1447 #define MC_SEND(ip,vifp,m) {				\
1448 		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1449 		    encap_send((ip), (vifp), (m));	\
1450 		else					\
1451 		    phyint_send((ip), (vifp), (m));	\
1452 }
1453 
1454     /*
1455      * If xmt_vif is not -1, send on only the requested vif.
1456      *
1457      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1458      */
1459     if (xmt_vif < numvifs) {
1460 #ifdef PIM
1461 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1462 	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1463         else
1464 #endif
1465 	MC_SEND(ip, viftable + xmt_vif, m);
1466 	return 1;
1467     }
1468 
1469     /*
1470      * Don't forward if it didn't arrive from the parent vif for its origin.
1471      */
1472     vifi = rt->mfc_parent;
1473     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1474 	/* came in the wrong interface */
1475 	if (mrtdebug & DEBUG_FORWARD)
1476 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1477 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1478 	++mrtstat.mrts_wrong_if;
1479 	++rt->mfc_wrong_if;
1480 	/*
1481 	 * If we are doing PIM assert processing, send a message
1482 	 * to the routing daemon.
1483 	 *
1484 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1485 	 * can complete the SPT switch, regardless of the type
1486 	 * of the iif (broadcast media, GRE tunnel, etc).
1487 	 */
1488 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1489 	    struct timeval now;
1490 	    u_long delta;
1491 
1492 #ifdef PIM
1493 	    if (ifp == &multicast_register_if)
1494 		pimstat.pims_rcv_registers_wrongiif++;
1495 #endif
1496 
1497 	    /* Get vifi for the incoming packet */
1498 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1499 		;
1500 	    if (vifi >= numvifs)
1501 		return 0;	/* The iif is not found: ignore the packet. */
1502 
1503 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1504 		return 0;	/* WRONGVIF disabled: ignore the packet */
1505 
1506 	    GET_TIME(now);
1507 
1508 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1509 
1510 	    if (delta > ASSERT_MSG_TIME) {
1511 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1512 		struct igmpmsg *im;
1513 		int hlen = ip->ip_hl << 2;
1514 		struct mbuf *mm = m_copy(m, 0, hlen);
1515 
1516 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1517 		    mm = m_pullup(mm, hlen);
1518 		if (mm == NULL)
1519 		    return ENOBUFS;
1520 
1521 		rt->mfc_last_assert = now;
1522 
1523 		im = mtod(mm, struct igmpmsg *);
1524 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1525 		im->im_mbz		= 0;
1526 		im->im_vif		= vifi;
1527 
1528 		mrtstat.mrts_upcalls++;
1529 
1530 		k_igmpsrc.sin_addr = im->im_src;
1531 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1532 		    log(LOG_WARNING,
1533 			"ip_mforward: ip_mrouter socket queue full\n");
1534 		    ++mrtstat.mrts_upq_sockfull;
1535 		    return ENOBUFS;
1536 		}
1537 	    }
1538 	}
1539 	return 0;
1540     }
1541 
1542     /* If I sourced this packet, it counts as output, else it was input. */
1543     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1544 	viftable[vifi].v_pkt_out++;
1545 	viftable[vifi].v_bytes_out += plen;
1546     } else {
1547 	viftable[vifi].v_pkt_in++;
1548 	viftable[vifi].v_bytes_in += plen;
1549     }
1550     rt->mfc_pkt_cnt++;
1551     rt->mfc_byte_cnt += plen;
1552 
1553     /*
1554      * For each vif, decide if a copy of the packet should be forwarded.
1555      * Forward if:
1556      *		- the ttl exceeds the vif's threshold
1557      *		- there are group members downstream on interface
1558      */
1559     for (vifi = 0; vifi < numvifs; vifi++)
1560 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1561 	    viftable[vifi].v_pkt_out++;
1562 	    viftable[vifi].v_bytes_out += plen;
1563 #ifdef PIM
1564 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1565 		pim_register_send(ip, viftable + vifi, m, rt);
1566 	    else
1567 #endif
1568 	    MC_SEND(ip, viftable+vifi, m);
1569 	}
1570 
1571     /*
1572      * Perform upcall-related bw measuring.
1573      */
1574     if (rt->mfc_bw_meter != NULL) {
1575 	struct bw_meter *x;
1576 	struct timeval now;
1577 
1578 	GET_TIME(now);
1579 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1580 	    bw_meter_receive_packet(x, plen, &now);
1581     }
1582 
1583     return 0;
1584 }
1585 
1586 /*
1587  * check if a vif number is legal/ok. This is used by ip_output.
1588  */
1589 static int
1590 X_legal_vif_num(int vif)
1591 {
1592     return (vif >= 0 && vif < numvifs);
1593 }
1594 
1595 /*
1596  * Return the local address used by this vif
1597  */
1598 static u_long
1599 X_ip_mcast_src(int vifi)
1600 {
1601     if (vifi >= 0 && vifi < numvifs)
1602 	return viftable[vifi].v_lcl_addr.s_addr;
1603     else
1604 	return INADDR_ANY;
1605 }
1606 
1607 static void
1608 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1609 {
1610     struct mbuf *mb_copy;
1611     int hlen = ip->ip_hl << 2;
1612 
1613     /*
1614      * Make a new reference to the packet; make sure that
1615      * the IP header is actually copied, not just referenced,
1616      * so that ip_output() only scribbles on the copy.
1617      */
1618     mb_copy = m_copypacket(m, M_DONTWAIT);
1619     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1620 	mb_copy = m_pullup(mb_copy, hlen);
1621     if (mb_copy == NULL)
1622 	return;
1623 
1624     if (vifp->v_rate_limit == 0)
1625 	tbf_send_packet(vifp, mb_copy);
1626     else
1627 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1628 }
1629 
1630 static void
1631 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1632 {
1633     struct mbuf *mb_copy;
1634     struct ip *ip_copy;
1635     int i, len = ip->ip_len;
1636 
1637     /* Take care of delayed checksums */
1638     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1639 	in_delayed_cksum(m);
1640 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1641     }
1642 
1643     /*
1644      * copy the old packet & pullup its IP header into the
1645      * new mbuf so we can modify it.  Try to fill the new
1646      * mbuf since if we don't the ethernet driver will.
1647      */
1648     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1649     if (mb_copy == NULL)
1650 	return;
1651     mb_copy->m_data += max_linkhdr;
1652     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1653 
1654     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1655 	m_freem(mb_copy);
1656 	return;
1657     }
1658     i = MHLEN - M_LEADINGSPACE(mb_copy);
1659     if (i > len)
1660 	i = len;
1661     mb_copy = m_pullup(mb_copy, i);
1662     if (mb_copy == NULL)
1663 	return;
1664     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1665 
1666     /*
1667      * fill in the encapsulating IP header.
1668      */
1669     ip_copy = mtod(mb_copy, struct ip *);
1670     *ip_copy = multicast_encap_iphdr;
1671 #ifdef RANDOM_IP_ID
1672     ip_copy->ip_id = ip_randomid();
1673 #else
1674     ip_copy->ip_id = htons(ip_id++);
1675 #endif
1676     ip_copy->ip_len += len;
1677     ip_copy->ip_src = vifp->v_lcl_addr;
1678     ip_copy->ip_dst = vifp->v_rmt_addr;
1679 
1680     /*
1681      * turn the encapsulated IP header back into a valid one.
1682      */
1683     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1684     --ip->ip_ttl;
1685     ip->ip_len = htons(ip->ip_len);
1686     ip->ip_off = htons(ip->ip_off);
1687     ip->ip_sum = 0;
1688     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1689     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1690     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1691 
1692     if (vifp->v_rate_limit == 0)
1693 	tbf_send_packet(vifp, mb_copy);
1694     else
1695 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1696 }
1697 
1698 /*
1699  * De-encapsulate a packet and feed it back through ip input (this
1700  * routine is called whenever IP gets a packet with proto type
1701  * ENCAP_PROTO and a local destination address).
1702  *
1703  * This is similar to mroute_encapcheck() + mroute_encap_input() in -current.
1704  */
1705 static void
1706 X_ipip_input(struct mbuf *m, int off, int proto)
1707 {
1708     struct ip *ip = mtod(m, struct ip *);
1709     int hlen = ip->ip_hl << 2;
1710 
1711     if (!have_encap_tunnel) {
1712 	rip_input(m, off, proto);
1713 	return;
1714     }
1715     /*
1716      * dump the packet if it's not to a multicast destination or if
1717      * we don't have an encapsulating tunnel with the source.
1718      * Note:  This code assumes that the remote site IP address
1719      * uniquely identifies the tunnel (i.e., that this site has
1720      * at most one tunnel with the remote site).
1721      */
1722     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) {
1723 	++mrtstat.mrts_bad_tunnel;
1724 	m_freem(m);
1725 	return;
1726     }
1727     if (ip->ip_src.s_addr != last_encap_src) {
1728 	struct vif *vifp = viftable;
1729 	struct vif *vife = vifp + numvifs;
1730 
1731 	last_encap_src = ip->ip_src.s_addr;
1732 	last_encap_vif = NULL;
1733 	for ( ; vifp < vife; ++vifp)
1734 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1735 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1736 		    == VIFF_TUNNEL)
1737 		    last_encap_vif = vifp;
1738 		break;
1739 	    }
1740     }
1741     if (last_encap_vif == NULL) {
1742 	last_encap_src = INADDR_ANY;
1743 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1744 	m_freem(m);
1745 	if (mrtdebug)
1746 	    log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1747 		(u_long)ntohl(ip->ip_src.s_addr));
1748 	return;
1749     }
1750 
1751     if (hlen > sizeof(struct ip))
1752 	ip_stripoptions(m, NULL);
1753     m->m_data += sizeof(struct ip);
1754     m->m_len -= sizeof(struct ip);
1755     m->m_pkthdr.len -= sizeof(struct ip);
1756     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
1757 
1758     netisr_queue(NETISR_IP, m);
1759 }
1760 
1761 /*
1762  * Token bucket filter module
1763  */
1764 
1765 static void
1766 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1767 {
1768     struct tbf *t = vifp->v_tbf;
1769 
1770     if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1771 	mrtstat.mrts_pkt2large++;
1772 	m_freem(m);
1773 	return;
1774     }
1775 
1776     tbf_update_tokens(vifp);
1777 
1778     if (t->tbf_q_len == 0) {		/* queue empty...		*/
1779 	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens	*/
1780 	    t->tbf_n_tok -= p_len;
1781 	    tbf_send_packet(vifp, m);
1782 	} else {			/* no, queue packet and try later */
1783 	    tbf_queue(vifp, m);
1784 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1785 	}
1786     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1787 	/* finite queue length, so queue pkts and process queue */
1788 	tbf_queue(vifp, m);
1789 	tbf_process_q(vifp);
1790     } else {
1791 	/* queue full, try to dq and queue and process */
1792 	if (!tbf_dq_sel(vifp, ip)) {
1793 	    mrtstat.mrts_q_overflow++;
1794 	    m_freem(m);
1795 	} else {
1796 	    tbf_queue(vifp, m);
1797 	    tbf_process_q(vifp);
1798 	}
1799     }
1800 }
1801 
1802 /*
1803  * adds a packet to the queue at the interface
1804  */
1805 static void
1806 tbf_queue(struct vif *vifp, struct mbuf *m)
1807 {
1808     int s = splnet();
1809     struct tbf *t = vifp->v_tbf;
1810 
1811     if (t->tbf_t == NULL)	/* Queue was empty */
1812 	t->tbf_q = m;
1813     else			/* Insert at tail */
1814 	t->tbf_t->m_act = m;
1815 
1816     t->tbf_t = m;		/* Set new tail pointer */
1817 
1818 #ifdef DIAGNOSTIC
1819     /* Make sure we didn't get fed a bogus mbuf */
1820     if (m->m_act)
1821 	panic("tbf_queue: m_act");
1822 #endif
1823     m->m_act = NULL;
1824 
1825     t->tbf_q_len++;
1826 
1827     splx(s);
1828 }
1829 
1830 /*
1831  * processes the queue at the interface
1832  */
1833 static void
1834 tbf_process_q(struct vif *vifp)
1835 {
1836     int s = splnet();
1837     struct tbf *t = vifp->v_tbf;
1838 
1839     /* loop through the queue at the interface and send as many packets
1840      * as possible
1841      */
1842     while (t->tbf_q_len > 0) {
1843 	struct mbuf *m = t->tbf_q;
1844 	int len = mtod(m, struct ip *)->ip_len;
1845 
1846 	/* determine if the packet can be sent */
1847 	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1848 	    break;
1849 	/* ok, reduce no of tokens, dequeue and send the packet. */
1850 	t->tbf_n_tok -= len;
1851 
1852 	t->tbf_q = m->m_act;
1853 	if (--t->tbf_q_len == 0)
1854 	    t->tbf_t = NULL;
1855 
1856 	m->m_act = NULL;
1857 	tbf_send_packet(vifp, m);
1858     }
1859     splx(s);
1860 }
1861 
1862 static void
1863 tbf_reprocess_q(void *xvifp)
1864 {
1865     struct vif *vifp = xvifp;
1866 
1867     if (ip_mrouter == NULL)
1868 	return;
1869     tbf_update_tokens(vifp);
1870     tbf_process_q(vifp);
1871     if (vifp->v_tbf->tbf_q_len)
1872 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1873 }
1874 
1875 /* function that will selectively discard a member of the queue
1876  * based on the precedence value and the priority
1877  */
1878 static int
1879 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1880 {
1881     int s = splnet();
1882     u_int p;
1883     struct mbuf *m, *last;
1884     struct mbuf **np;
1885     struct tbf *t = vifp->v_tbf;
1886 
1887     p = priority(vifp, ip);
1888 
1889     np = &t->tbf_q;
1890     last = NULL;
1891     while ((m = *np) != NULL) {
1892 	if (p > priority(vifp, mtod(m, struct ip *))) {
1893 	    *np = m->m_act;
1894 	    /* If we're removing the last packet, fix the tail pointer */
1895 	    if (m == t->tbf_t)
1896 		t->tbf_t = last;
1897 	    m_freem(m);
1898 	    /* It's impossible for the queue to be empty, but check anyways. */
1899 	    if (--t->tbf_q_len == 0)
1900 		t->tbf_t = NULL;
1901 	    splx(s);
1902 	    mrtstat.mrts_drop_sel++;
1903 	    return 1;
1904 	}
1905 	np = &m->m_act;
1906 	last = m;
1907     }
1908     splx(s);
1909     return 0;
1910 }
1911 
1912 static void
1913 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1914 {
1915     int s = splnet();
1916 
1917     if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1918 	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1919     else {
1920 	struct ip_moptions imo;
1921 	int error;
1922 	static struct route ro; /* XXX check this */
1923 
1924 	imo.imo_multicast_ifp  = vifp->v_ifp;
1925 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1926 	imo.imo_multicast_loop = 1;
1927 	imo.imo_multicast_vif  = -1;
1928 
1929 	/*
1930 	 * Re-entrancy should not be a problem here, because
1931 	 * the packets that we send out and are looped back at us
1932 	 * should get rejected because they appear to come from
1933 	 * the loopback interface, thus preventing looping.
1934 	 */
1935 	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1936 
1937 	if (mrtdebug & DEBUG_XMIT)
1938 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1939 		(int)(vifp - viftable), error);
1940     }
1941     splx(s);
1942 }
1943 
1944 /* determine the current time and then
1945  * the elapsed time (between the last time and time now)
1946  * in milliseconds & update the no. of tokens in the bucket
1947  */
1948 static void
1949 tbf_update_tokens(struct vif *vifp)
1950 {
1951     struct timeval tp;
1952     u_long tm;
1953     int s = splnet();
1954     struct tbf *t = vifp->v_tbf;
1955 
1956     GET_TIME(tp);
1957 
1958     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1959 
1960     /*
1961      * This formula is actually
1962      * "time in seconds" * "bytes/second".
1963      *
1964      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1965      *
1966      * The (1000/1024) was introduced in add_vif to optimize
1967      * this divide into a shift.
1968      */
1969     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1970     t->tbf_last_pkt_t = tp;
1971 
1972     if (t->tbf_n_tok > MAX_BKT_SIZE)
1973 	t->tbf_n_tok = MAX_BKT_SIZE;
1974 
1975     splx(s);
1976 }
1977 
1978 static int
1979 priority(struct vif *vifp, struct ip *ip)
1980 {
1981     int prio = 50; /* the lowest priority -- default case */
1982 
1983     /* temporary hack; may add general packet classifier some day */
1984 
1985     /*
1986      * The UDP port space is divided up into four priority ranges:
1987      * [0, 16384)     : unclassified - lowest priority
1988      * [16384, 32768) : audio - highest priority
1989      * [32768, 49152) : whiteboard - medium priority
1990      * [49152, 65536) : video - low priority
1991      *
1992      * Everything else gets lowest priority.
1993      */
1994     if (ip->ip_p == IPPROTO_UDP) {
1995 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1996 	switch (ntohs(udp->uh_dport) & 0xc000) {
1997 	case 0x4000:
1998 	    prio = 70;
1999 	    break;
2000 	case 0x8000:
2001 	    prio = 60;
2002 	    break;
2003 	case 0xc000:
2004 	    prio = 55;
2005 	    break;
2006 	}
2007     }
2008     return prio;
2009 }
2010 
2011 /*
2012  * End of token bucket filter modifications
2013  */
2014 
2015 static int
2016 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2017 {
2018     int error, vifi, s;
2019 
2020     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2021 	return EOPNOTSUPP;
2022 
2023     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2024     if (error)
2025 	return error;
2026 
2027     s = splnet();
2028 
2029     if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
2030 	splx(s);
2031 	return EADDRNOTAVAIL;
2032     }
2033 
2034     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2035 	/* Check if socket is available. */
2036 	if (viftable[vifi].v_rsvpd != NULL) {
2037 	    splx(s);
2038 	    return EADDRINUSE;
2039 	}
2040 
2041 	viftable[vifi].v_rsvpd = so;
2042 	/* This may seem silly, but we need to be sure we don't over-increment
2043 	 * the RSVP counter, in case something slips up.
2044 	 */
2045 	if (!viftable[vifi].v_rsvp_on) {
2046 	    viftable[vifi].v_rsvp_on = 1;
2047 	    rsvp_on++;
2048 	}
2049     } else { /* must be VIF_OFF */
2050 	/*
2051 	 * XXX as an additional consistency check, one could make sure
2052 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2053 	 * first parameter is pretty useless.
2054 	 */
2055 	viftable[vifi].v_rsvpd = NULL;
2056 	/*
2057 	 * This may seem silly, but we need to be sure we don't over-decrement
2058 	 * the RSVP counter, in case something slips up.
2059 	 */
2060 	if (viftable[vifi].v_rsvp_on) {
2061 	    viftable[vifi].v_rsvp_on = 0;
2062 	    rsvp_on--;
2063 	}
2064     }
2065     splx(s);
2066     return 0;
2067 }
2068 
2069 static void
2070 X_ip_rsvp_force_done(struct socket *so)
2071 {
2072     int vifi;
2073     int s;
2074 
2075     /* Don't bother if it is not the right type of socket. */
2076     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2077 	return;
2078 
2079     s = splnet();
2080 
2081     /* The socket may be attached to more than one vif...this
2082      * is perfectly legal.
2083      */
2084     for (vifi = 0; vifi < numvifs; vifi++) {
2085 	if (viftable[vifi].v_rsvpd == so) {
2086 	    viftable[vifi].v_rsvpd = NULL;
2087 	    /* This may seem silly, but we need to be sure we don't
2088 	     * over-decrement the RSVP counter, in case something slips up.
2089 	     */
2090 	    if (viftable[vifi].v_rsvp_on) {
2091 		viftable[vifi].v_rsvp_on = 0;
2092 		rsvp_on--;
2093 	    }
2094 	}
2095     }
2096 
2097     splx(s);
2098 }
2099 
2100 static void
2101 X_rsvp_input(struct mbuf *m, int off, int proto)
2102 {
2103     int vifi;
2104     struct ip *ip = mtod(m, struct ip *);
2105     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2106     int s;
2107     struct ifnet *ifp;
2108 
2109     if (rsvpdebug)
2110 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2111 
2112     /* Can still get packets with rsvp_on = 0 if there is a local member
2113      * of the group to which the RSVP packet is addressed.  But in this
2114      * case we want to throw the packet away.
2115      */
2116     if (!rsvp_on) {
2117 	m_freem(m);
2118 	return;
2119     }
2120 
2121     s = splnet();
2122 
2123     if (rsvpdebug)
2124 	printf("rsvp_input: check vifs\n");
2125 
2126 #ifdef DIAGNOSTIC
2127     if (!(m->m_flags & M_PKTHDR))
2128 	panic("rsvp_input no hdr");
2129 #endif
2130 
2131     ifp = m->m_pkthdr.rcvif;
2132     /* Find which vif the packet arrived on. */
2133     for (vifi = 0; vifi < numvifs; vifi++)
2134 	if (viftable[vifi].v_ifp == ifp)
2135 	    break;
2136 
2137     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2138 	/*
2139 	 * If the old-style non-vif-associated socket is set,
2140 	 * then use it.  Otherwise, drop packet since there
2141 	 * is no specific socket for this vif.
2142 	 */
2143 	if (ip_rsvpd != NULL) {
2144 	    if (rsvpdebug)
2145 		printf("rsvp_input: Sending packet up old-style socket\n");
2146 	    rip_input(m, off, proto);  /* xxx */
2147 	} else {
2148 	    if (rsvpdebug && vifi == numvifs)
2149 		printf("rsvp_input: Can't find vif for packet.\n");
2150 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2151 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2152 	    m_freem(m);
2153 	}
2154 	splx(s);
2155 	return;
2156     }
2157     rsvp_src.sin_addr = ip->ip_src;
2158 
2159     if (rsvpdebug && m)
2160 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2161 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2162 
2163     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2164 	if (rsvpdebug)
2165 	    printf("rsvp_input: Failed to append to socket\n");
2166     } else {
2167 	if (rsvpdebug)
2168 	    printf("rsvp_input: send packet up\n");
2169     }
2170 
2171     splx(s);
2172 }
2173 
2174 /*
2175  * Code for bandwidth monitors
2176  */
2177 
2178 /*
2179  * Define common interface for timeval-related methods
2180  */
2181 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2182 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2183 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2184 
2185 static uint32_t
2186 compute_bw_meter_flags(struct bw_upcall *req)
2187 {
2188     uint32_t flags = 0;
2189 
2190     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2191 	flags |= BW_METER_UNIT_PACKETS;
2192     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2193 	flags |= BW_METER_UNIT_BYTES;
2194     if (req->bu_flags & BW_UPCALL_GEQ)
2195 	flags |= BW_METER_GEQ;
2196     if (req->bu_flags & BW_UPCALL_LEQ)
2197 	flags |= BW_METER_LEQ;
2198 
2199     return flags;
2200 }
2201 
2202 /*
2203  * Add a bw_meter entry
2204  */
2205 static int
2206 add_bw_upcall(struct bw_upcall *req)
2207 {
2208     struct mfc *mfc;
2209     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2210 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2211     struct timeval now;
2212     struct bw_meter *x;
2213     uint32_t flags;
2214     int s;
2215 
2216     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2217 	return EOPNOTSUPP;
2218 
2219     /* Test if the flags are valid */
2220     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2221 	return EINVAL;
2222     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2223 	return EINVAL;
2224     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2225 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2226 	return EINVAL;
2227 
2228     /* Test if the threshold time interval is valid */
2229     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2230 	return EINVAL;
2231 
2232     flags = compute_bw_meter_flags(req);
2233 
2234     /*
2235      * Find if we have already same bw_meter entry
2236      */
2237     s = splnet();
2238     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2239     if (mfc == NULL) {
2240 	splx(s);
2241 	return EADDRNOTAVAIL;
2242     }
2243     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2244 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2245 			   &req->bu_threshold.b_time, ==)) &&
2246 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2247 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2248 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2249 	    splx(s);
2250 	    return 0;		/* XXX Already installed */
2251 	}
2252     }
2253     splx(s);
2254 
2255     /* Allocate the new bw_meter entry */
2256     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2257     if (x == NULL)
2258 	return ENOBUFS;
2259 
2260     /* Set the new bw_meter entry */
2261     x->bm_threshold.b_time = req->bu_threshold.b_time;
2262     GET_TIME(now);
2263     x->bm_start_time = now;
2264     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2265     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2266     x->bm_measured.b_packets = 0;
2267     x->bm_measured.b_bytes = 0;
2268     x->bm_flags = flags;
2269     x->bm_time_next = NULL;
2270     x->bm_time_hash = BW_METER_BUCKETS;
2271 
2272     /* Add the new bw_meter entry to the front of entries for this MFC */
2273     s = splnet();
2274     x->bm_mfc = mfc;
2275     x->bm_mfc_next = mfc->mfc_bw_meter;
2276     mfc->mfc_bw_meter = x;
2277     schedule_bw_meter(x, &now);
2278     splx(s);
2279 
2280     return 0;
2281 }
2282 
2283 static void
2284 free_bw_list(struct bw_meter *list)
2285 {
2286     while (list != NULL) {
2287 	struct bw_meter *x = list;
2288 
2289 	list = list->bm_mfc_next;
2290 	unschedule_bw_meter(x);
2291 	free(x, M_BWMETER);
2292     }
2293 }
2294 
2295 /*
2296  * Delete one or multiple bw_meter entries
2297  */
2298 static int
2299 del_bw_upcall(struct bw_upcall *req)
2300 {
2301     struct mfc *mfc;
2302     struct bw_meter *x;
2303     int s;
2304 
2305     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2306 	return EOPNOTSUPP;
2307 
2308     s = splnet();
2309     /* Find the corresponding MFC entry */
2310     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2311     if (mfc == NULL) {
2312 	splx(s);
2313 	return EADDRNOTAVAIL;
2314     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2315 	/*
2316 	 * Delete all bw_meter entries for this mfc
2317 	 */
2318 	struct bw_meter *list;
2319 
2320 	list = mfc->mfc_bw_meter;
2321 	mfc->mfc_bw_meter = NULL;
2322 	splx(s);
2323 	free_bw_list(list);
2324 	return 0;
2325     } else {			/* Delete a single bw_meter entry */
2326 	struct bw_meter *prev;
2327 	uint32_t flags = 0;
2328 
2329 	flags = compute_bw_meter_flags(req);
2330 
2331 	/* Find the bw_meter entry to delete */
2332 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2333 	     x = x->bm_mfc_next) {
2334 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2335 			       &req->bu_threshold.b_time, ==)) &&
2336 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2337 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2338 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2339 		break;
2340 	}
2341 	if (x != NULL) { /* Delete entry from the list for this MFC */
2342 	    if (prev != NULL)
2343 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2344 	    else
2345 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2346 	    splx(s);
2347 
2348 	    unschedule_bw_meter(x);
2349 	    /* Free the bw_meter entry */
2350 	    free(x, M_BWMETER);
2351 	    return 0;
2352 	} else {
2353 	    splx(s);
2354 	    return EINVAL;
2355 	}
2356     }
2357     /* NOTREACHED */
2358 }
2359 
2360 /*
2361  * Perform bandwidth measurement processing that may result in an upcall
2362  */
2363 static void
2364 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2365 {
2366     struct timeval delta;
2367     int s;
2368 
2369     s = splnet();
2370     delta = *nowp;
2371     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2372 
2373     if (x->bm_flags & BW_METER_GEQ) {
2374 	/*
2375 	 * Processing for ">=" type of bw_meter entry
2376 	 */
2377 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2378 	    /* Reset the bw_meter entry */
2379 	    x->bm_start_time = *nowp;
2380 	    x->bm_measured.b_packets = 0;
2381 	    x->bm_measured.b_bytes = 0;
2382 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2383 	}
2384 
2385 	/* Record that a packet is received */
2386 	x->bm_measured.b_packets++;
2387 	x->bm_measured.b_bytes += plen;
2388 
2389 	/*
2390 	 * Test if we should deliver an upcall
2391 	 */
2392 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2393 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2394 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2395 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2396 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2397 		/* Prepare an upcall for delivery */
2398 		bw_meter_prepare_upcall(x, nowp);
2399 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2400 	    }
2401 	}
2402     } else if (x->bm_flags & BW_METER_LEQ) {
2403 	/*
2404 	 * Processing for "<=" type of bw_meter entry
2405 	 */
2406 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2407 	    /*
2408 	     * We are behind time with the multicast forwarding table
2409 	     * scanning for "<=" type of bw_meter entries, so test now
2410 	     * if we should deliver an upcall.
2411 	     */
2412 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2413 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2414 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2415 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2416 		/* Prepare an upcall for delivery */
2417 		bw_meter_prepare_upcall(x, nowp);
2418 	    }
2419 	    /* Reschedule the bw_meter entry */
2420 	    unschedule_bw_meter(x);
2421 	    schedule_bw_meter(x, nowp);
2422 	}
2423 
2424 	/* Record that a packet is received */
2425 	x->bm_measured.b_packets++;
2426 	x->bm_measured.b_bytes += plen;
2427 
2428 	/*
2429 	 * Test if we should restart the measuring interval
2430 	 */
2431 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2432 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2433 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2434 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2435 	    /* Don't restart the measuring interval */
2436 	} else {
2437 	    /* Do restart the measuring interval */
2438 	    /*
2439 	     * XXX: note that we don't unschedule and schedule, because this
2440 	     * might be too much overhead per packet. Instead, when we process
2441 	     * all entries for a given timer hash bin, we check whether it is
2442 	     * really a timeout. If not, we reschedule at that time.
2443 	     */
2444 	    x->bm_start_time = *nowp;
2445 	    x->bm_measured.b_packets = 0;
2446 	    x->bm_measured.b_bytes = 0;
2447 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2448 	}
2449     }
2450     splx(s);
2451 }
2452 
2453 /*
2454  * Prepare a bandwidth-related upcall
2455  */
2456 static void
2457 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2458 {
2459     struct timeval delta;
2460     struct bw_upcall *u;
2461     int s;
2462 
2463     s = splnet();
2464 
2465     /*
2466      * Compute the measured time interval
2467      */
2468     delta = *nowp;
2469     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2470 
2471     /*
2472      * If there are too many pending upcalls, deliver them now
2473      */
2474     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2475 	bw_upcalls_send();
2476 
2477     /*
2478      * Set the bw_upcall entry
2479      */
2480     u = &bw_upcalls[bw_upcalls_n++];
2481     u->bu_src = x->bm_mfc->mfc_origin;
2482     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2483     u->bu_threshold.b_time = x->bm_threshold.b_time;
2484     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2485     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2486     u->bu_measured.b_time = delta;
2487     u->bu_measured.b_packets = x->bm_measured.b_packets;
2488     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2489     u->bu_flags = 0;
2490     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2491 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2492     if (x->bm_flags & BW_METER_UNIT_BYTES)
2493 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2494     if (x->bm_flags & BW_METER_GEQ)
2495 	u->bu_flags |= BW_UPCALL_GEQ;
2496     if (x->bm_flags & BW_METER_LEQ)
2497 	u->bu_flags |= BW_UPCALL_LEQ;
2498 
2499     splx(s);
2500 }
2501 
2502 /*
2503  * Send the pending bandwidth-related upcalls
2504  */
2505 static void
2506 bw_upcalls_send(void)
2507 {
2508     struct mbuf *m;
2509     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2510     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2511     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2512 				      0,		/* unused2 */
2513 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2514 				      0,		/* im_mbz  */
2515 				      0,		/* im_vif  */
2516 				      0,		/* unused3 */
2517 				      { 0 },		/* im_src  */
2518 				      { 0 } };		/* im_dst  */
2519 
2520     if (bw_upcalls_n == 0)
2521 	return;			/* No pending upcalls */
2522 
2523     bw_upcalls_n = 0;
2524 
2525     /*
2526      * Allocate a new mbuf, initialize it with the header and
2527      * the payload for the pending calls.
2528      */
2529     MGETHDR(m, M_DONTWAIT, MT_HEADER);
2530     if (m == NULL) {
2531 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2532 	return;
2533     }
2534 
2535     m->m_len = m->m_pkthdr.len = 0;
2536     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2537     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2538 
2539     /*
2540      * Send the upcalls
2541      * XXX do we need to set the address in k_igmpsrc ?
2542      */
2543     mrtstat.mrts_upcalls++;
2544     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2545 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2546 	++mrtstat.mrts_upq_sockfull;
2547     }
2548 }
2549 
2550 /*
2551  * Compute the timeout hash value for the bw_meter entries
2552  */
2553 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2554     do {								\
2555 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2556 									\
2557 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2558 	(hash) = next_timeval.tv_sec;					\
2559 	if (next_timeval.tv_usec)					\
2560 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2561 	(hash) %= BW_METER_BUCKETS;					\
2562     } while (0)
2563 
2564 /*
2565  * Schedule a timer to process periodically bw_meter entry of type "<="
2566  * by linking the entry in the proper hash bucket.
2567  */
2568 static void
2569 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2570 {
2571     int time_hash, s;
2572 
2573     if (!(x->bm_flags & BW_METER_LEQ))
2574 	return;		/* XXX: we schedule timers only for "<=" entries */
2575 
2576     /*
2577      * Reset the bw_meter entry
2578      */
2579     s = splnet();
2580     x->bm_start_time = *nowp;
2581     x->bm_measured.b_packets = 0;
2582     x->bm_measured.b_bytes = 0;
2583     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2584     splx(s);
2585 
2586     /*
2587      * Compute the timeout hash value and insert the entry
2588      */
2589     BW_METER_TIMEHASH(x, time_hash);
2590     x->bm_time_next = bw_meter_timers[time_hash];
2591     bw_meter_timers[time_hash] = x;
2592     x->bm_time_hash = time_hash;
2593 }
2594 
2595 /*
2596  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2597  * by removing the entry from the proper hash bucket.
2598  */
2599 static void
2600 unschedule_bw_meter(struct bw_meter *x)
2601 {
2602     int time_hash;
2603     struct bw_meter *prev, *tmp;
2604 
2605     if (!(x->bm_flags & BW_METER_LEQ))
2606 	return;		/* XXX: we schedule timers only for "<=" entries */
2607 
2608     /*
2609      * Compute the timeout hash value and delete the entry
2610      */
2611     time_hash = x->bm_time_hash;
2612     if (time_hash >= BW_METER_BUCKETS)
2613 	return;		/* Entry was not scheduled */
2614 
2615     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2616 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2617 	if (tmp == x)
2618 	    break;
2619 
2620     if (tmp == NULL)
2621 	panic("unschedule_bw_meter: bw_meter entry not found");
2622 
2623     if (prev != NULL)
2624 	prev->bm_time_next = x->bm_time_next;
2625     else
2626 	bw_meter_timers[time_hash] = x->bm_time_next;
2627 
2628     x->bm_time_next = NULL;
2629     x->bm_time_hash = BW_METER_BUCKETS;
2630 }
2631 
2632 
2633 /*
2634  * Process all "<=" type of bw_meter that should be processed now,
2635  * and for each entry prepare an upcall if necessary. Each processed
2636  * entry is rescheduled again for the (periodic) processing.
2637  *
2638  * This is run periodically (once per second normally). On each round,
2639  * all the potentially matching entries are in the hash slot that we are
2640  * looking at.
2641  */
2642 static void
2643 bw_meter_process()
2644 {
2645     static uint32_t last_tv_sec;	/* last time we processed this */
2646 
2647     uint32_t loops;
2648     int i, s;
2649     struct timeval now, process_endtime;
2650 
2651     GET_TIME(now);
2652     if (last_tv_sec == now.tv_sec)
2653 	return;		/* nothing to do */
2654 
2655     s = splnet();
2656     loops = now.tv_sec - last_tv_sec;
2657     last_tv_sec = now.tv_sec;
2658     if (loops > BW_METER_BUCKETS)
2659 	loops = BW_METER_BUCKETS;
2660 
2661     /*
2662      * Process all bins of bw_meter entries from the one after the last
2663      * processed to the current one. On entry, i points to the last bucket
2664      * visited, so we need to increment i at the beginning of the loop.
2665      */
2666     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2667 	struct bw_meter *x, *tmp_list;
2668 
2669 	if (++i >= BW_METER_BUCKETS)
2670 	    i = 0;
2671 
2672 	/* Disconnect the list of bw_meter entries from the bin */
2673 	tmp_list = bw_meter_timers[i];
2674 	bw_meter_timers[i] = NULL;
2675 
2676 	/* Process the list of bw_meter entries */
2677 	while (tmp_list != NULL) {
2678 	    x = tmp_list;
2679 	    tmp_list = tmp_list->bm_time_next;
2680 
2681 	    /* Test if the time interval is over */
2682 	    process_endtime = x->bm_start_time;
2683 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2684 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2685 		/* Not yet: reschedule, but don't reset */
2686 		int time_hash;
2687 
2688 		BW_METER_TIMEHASH(x, time_hash);
2689 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2690 		    /*
2691 		     * XXX: somehow the bin processing is a bit ahead of time.
2692 		     * Put the entry in the next bin.
2693 		     */
2694 		    if (++time_hash >= BW_METER_BUCKETS)
2695 			time_hash = 0;
2696 		}
2697 		x->bm_time_next = bw_meter_timers[time_hash];
2698 		bw_meter_timers[time_hash] = x;
2699 		x->bm_time_hash = time_hash;
2700 
2701 		continue;
2702 	    }
2703 
2704 	    /*
2705 	     * Test if we should deliver an upcall
2706 	     */
2707 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2708 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2709 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2710 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2711 		/* Prepare an upcall for delivery */
2712 		bw_meter_prepare_upcall(x, &now);
2713 	    }
2714 
2715 	    /*
2716 	     * Reschedule for next processing
2717 	     */
2718 	    schedule_bw_meter(x, &now);
2719 	}
2720     }
2721     splx(s);
2722 
2723     /* Send all upcalls that are pending delivery */
2724     bw_upcalls_send();
2725 }
2726 
2727 /*
2728  * A periodic function for sending all upcalls that are pending delivery
2729  */
2730 static void
2731 expire_bw_upcalls_send(void *unused)
2732 {
2733     bw_upcalls_send();
2734 
2735     bw_upcalls_ch = timeout(expire_bw_upcalls_send, NULL, BW_UPCALLS_PERIOD);
2736 }
2737 
2738 /*
2739  * A periodic function for periodic scanning of the multicast forwarding
2740  * table for processing all "<=" bw_meter entries.
2741  */
2742 static void
2743 expire_bw_meter_process(void *unused)
2744 {
2745     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2746 	bw_meter_process();
2747 
2748     bw_meter_ch = timeout(expire_bw_meter_process, NULL, BW_METER_PERIOD);
2749 }
2750 
2751 /*
2752  * End of bandwidth monitoring code
2753  */
2754 
2755 #ifdef PIM
2756 /*
2757  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2758  *
2759  */
2760 static int
2761 pim_register_send(struct ip *ip, struct vif *vifp,
2762 	struct mbuf *m, struct mfc *rt)
2763 {
2764     struct mbuf *mb_copy, *mm;
2765 
2766     if (mrtdebug & DEBUG_PIM)
2767         log(LOG_DEBUG, "pim_register_send: ");
2768 
2769     mb_copy = pim_register_prepare(ip, m);
2770     if (mb_copy == NULL)
2771 	return ENOBUFS;
2772 
2773     /*
2774      * Send all the fragments. Note that the mbuf for each fragment
2775      * is freed by the sending machinery.
2776      */
2777     for (mm = mb_copy; mm; mm = mb_copy) {
2778 	mb_copy = mm->m_nextpkt;
2779 	mm->m_nextpkt = 0;
2780 	mm = m_pullup(mm, sizeof(struct ip));
2781 	if (mm != NULL) {
2782 	    ip = mtod(mm, struct ip *);
2783 	    if ((mrt_api_config & MRT_MFC_RP) &&
2784 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2785 		pim_register_send_rp(ip, vifp, mm, rt);
2786 	    } else {
2787 		pim_register_send_upcall(ip, vifp, mm, rt);
2788 	    }
2789 	}
2790     }
2791 
2792     return 0;
2793 }
2794 
2795 /*
2796  * Return a copy of the data packet that is ready for PIM Register
2797  * encapsulation.
2798  * XXX: Note that in the returned copy the IP header is a valid one.
2799  */
2800 static struct mbuf *
2801 pim_register_prepare(struct ip *ip, struct mbuf *m)
2802 {
2803     struct mbuf *mb_copy = NULL;
2804     int mtu;
2805 
2806     /* Take care of delayed checksums */
2807     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2808 	in_delayed_cksum(m);
2809 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2810     }
2811 
2812     /*
2813      * Copy the old packet & pullup its IP header into the
2814      * new mbuf so we can modify it.
2815      */
2816     mb_copy = m_copypacket(m, M_DONTWAIT);
2817     if (mb_copy == NULL)
2818 	return NULL;
2819     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2820     if (mb_copy == NULL)
2821 	return NULL;
2822 
2823     /* take care of the TTL */
2824     ip = mtod(mb_copy, struct ip *);
2825     --ip->ip_ttl;
2826 
2827     /* Compute the MTU after the PIM Register encapsulation */
2828     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2829 
2830     if (ip->ip_len <= mtu) {
2831 	/* Turn the IP header into a valid one */
2832 	ip->ip_len = htons(ip->ip_len);
2833 	ip->ip_off = htons(ip->ip_off);
2834 	ip->ip_sum = 0;
2835 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2836     } else {
2837 	/* Fragment the packet */
2838 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2839 	    m_freem(mb_copy);
2840 	    return NULL;
2841 	}
2842     }
2843     return mb_copy;
2844 }
2845 
2846 /*
2847  * Send an upcall with the data packet to the user-level process.
2848  */
2849 static int
2850 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2851 	struct mbuf *mb_copy, struct mfc *rt)
2852 {
2853     struct mbuf *mb_first;
2854     int len = ntohs(ip->ip_len);
2855     struct igmpmsg *im;
2856     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2857 
2858     /*
2859      * Add a new mbuf with an upcall header
2860      */
2861     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2862     if (mb_first == NULL) {
2863 	m_freem(mb_copy);
2864 	return ENOBUFS;
2865     }
2866     mb_first->m_data += max_linkhdr;
2867     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2868     mb_first->m_len = sizeof(struct igmpmsg);
2869     mb_first->m_next = mb_copy;
2870 
2871     /* Send message to routing daemon */
2872     im = mtod(mb_first, struct igmpmsg *);
2873     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2874     im->im_mbz		= 0;
2875     im->im_vif		= vifp - viftable;
2876     im->im_src		= ip->ip_src;
2877     im->im_dst		= ip->ip_dst;
2878 
2879     k_igmpsrc.sin_addr	= ip->ip_src;
2880 
2881     mrtstat.mrts_upcalls++;
2882 
2883     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2884 	if (mrtdebug & DEBUG_PIM)
2885 	    log(LOG_WARNING,
2886 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2887 	++mrtstat.mrts_upq_sockfull;
2888 	return ENOBUFS;
2889     }
2890 
2891     /* Keep statistics */
2892     pimstat.pims_snd_registers_msgs++;
2893     pimstat.pims_snd_registers_bytes += len;
2894 
2895     return 0;
2896 }
2897 
2898 /*
2899  * Encapsulate the data packet in PIM Register message and send it to the RP.
2900  */
2901 static int
2902 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2903 	struct mbuf *mb_copy, struct mfc *rt)
2904 {
2905     struct mbuf *mb_first;
2906     struct ip *ip_outer;
2907     struct pim_encap_pimhdr *pimhdr;
2908     int len = ntohs(ip->ip_len);
2909     vifi_t vifi = rt->mfc_parent;
2910 
2911     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2912 	m_freem(mb_copy);
2913 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2914     }
2915 
2916     /*
2917      * Add a new mbuf with the encapsulating header
2918      */
2919     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2920     if (mb_first == NULL) {
2921 	m_freem(mb_copy);
2922 	return ENOBUFS;
2923     }
2924     mb_first->m_data += max_linkhdr;
2925     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2926     mb_first->m_next = mb_copy;
2927 
2928     mb_first->m_pkthdr.len = len + mb_first->m_len;
2929 
2930     /*
2931      * Fill in the encapsulating IP and PIM header
2932      */
2933     ip_outer = mtod(mb_first, struct ip *);
2934     *ip_outer = pim_encap_iphdr;
2935 #ifdef RANDOM_IP_ID
2936     ip_outer->ip_id = ip_randomid();
2937 #else
2938     ip_outer->ip_id = htons(ip_id++);
2939 #endif
2940     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2941     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2942     ip_outer->ip_dst = rt->mfc_rp;
2943     /*
2944      * Copy the inner header TOS to the outer header, and take care of the
2945      * IP_DF bit.
2946      */
2947     ip_outer->ip_tos = ip->ip_tos;
2948     if (ntohs(ip->ip_off) & IP_DF)
2949 	ip_outer->ip_off |= IP_DF;
2950     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2951 					 + sizeof(pim_encap_iphdr));
2952     *pimhdr = pim_encap_pimhdr;
2953     /* If the iif crosses a border, set the Border-bit */
2954     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2955 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2956 
2957     mb_first->m_data += sizeof(pim_encap_iphdr);
2958     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2959     mb_first->m_data -= sizeof(pim_encap_iphdr);
2960 
2961     if (vifp->v_rate_limit == 0)
2962 	tbf_send_packet(vifp, mb_first);
2963     else
2964 	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
2965 
2966     /* Keep statistics */
2967     pimstat.pims_snd_registers_msgs++;
2968     pimstat.pims_snd_registers_bytes += len;
2969 
2970     return 0;
2971 }
2972 
2973 /*
2974  * PIM-SMv2 and PIM-DM messages processing.
2975  * Receives and verifies the PIM control messages, and passes them
2976  * up to the listening socket, using rip_input().
2977  * The only message with special processing is the PIM_REGISTER message
2978  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2979  * is passed to if_simloop().
2980  */
2981 void
2982 pim_input(struct mbuf *m, int off, int proto)
2983 {
2984     struct ip *ip = mtod(m, struct ip *);
2985     struct pim *pim;
2986     int minlen;
2987     int datalen = ip->ip_len;
2988     int ip_tos;
2989     int iphlen = off;
2990 
2991     /* Keep statistics */
2992     pimstat.pims_rcv_total_msgs++;
2993     pimstat.pims_rcv_total_bytes += datalen;
2994 
2995     /*
2996      * Validate lengths
2997      */
2998     if (datalen < PIM_MINLEN) {
2999 	pimstat.pims_rcv_tooshort++;
3000 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3001 	    datalen, (u_long)ip->ip_src.s_addr);
3002 	m_freem(m);
3003 	return;
3004     }
3005 
3006     /*
3007      * If the packet is at least as big as a REGISTER, go agead
3008      * and grab the PIM REGISTER header size, to avoid another
3009      * possible m_pullup() later.
3010      *
3011      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3012      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3013      */
3014     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3015     /*
3016      * Get the IP and PIM headers in contiguous memory, and
3017      * possibly the PIM REGISTER header.
3018      */
3019     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3020 	(m = m_pullup(m, minlen)) == 0) {
3021 	log(LOG_ERR, "pim_input: m_pullup failure\n");
3022 	return;
3023     }
3024     /* m_pullup() may have given us a new mbuf so reset ip. */
3025     ip = mtod(m, struct ip *);
3026     ip_tos = ip->ip_tos;
3027 
3028     /* adjust mbuf to point to the PIM header */
3029     m->m_data += iphlen;
3030     m->m_len  -= iphlen;
3031     pim = mtod(m, struct pim *);
3032 
3033     /*
3034      * Validate checksum. If PIM REGISTER, exclude the data packet.
3035      *
3036      * XXX: some older PIMv2 implementations don't make this distinction,
3037      * so for compatibility reason perform the checksum over part of the
3038      * message, and if error, then over the whole message.
3039      */
3040     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3041 	/* do nothing, checksum okay */
3042     } else if (in_cksum(m, datalen)) {
3043 	pimstat.pims_rcv_badsum++;
3044 	if (mrtdebug & DEBUG_PIM)
3045 	    log(LOG_DEBUG, "pim_input: invalid checksum");
3046 	m_freem(m);
3047 	return;
3048     }
3049 
3050     /* PIM version check */
3051     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3052 	pimstat.pims_rcv_badversion++;
3053 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3054 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3055 	m_freem(m);
3056 	return;
3057     }
3058 
3059     /* restore mbuf back to the outer IP */
3060     m->m_data -= iphlen;
3061     m->m_len  += iphlen;
3062 
3063     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3064 	/*
3065 	 * Since this is a REGISTER, we'll make a copy of the register
3066 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3067 	 * routing daemon.
3068 	 */
3069 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3070 	struct mbuf *mcp;
3071 	struct ip *encap_ip;
3072 	u_int32_t *reghdr;
3073 
3074 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3075 	    if (mrtdebug & DEBUG_PIM)
3076 		log(LOG_DEBUG,
3077 		    "pim_input: register vif not set: %d\n", reg_vif_num);
3078 	    m_freem(m);
3079 	    return;
3080 	}
3081 
3082 	/*
3083 	 * Validate length
3084 	 */
3085 	if (datalen < PIM_REG_MINLEN) {
3086 	    pimstat.pims_rcv_tooshort++;
3087 	    pimstat.pims_rcv_badregisters++;
3088 	    log(LOG_ERR,
3089 		"pim_input: register packet size too small %d from %lx\n",
3090 		datalen, (u_long)ip->ip_src.s_addr);
3091 	    m_freem(m);
3092 	    return;
3093 	}
3094 
3095 	reghdr = (u_int32_t *)(pim + 1);
3096 	encap_ip = (struct ip *)(reghdr + 1);
3097 
3098 	if (mrtdebug & DEBUG_PIM) {
3099 	    log(LOG_DEBUG,
3100 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3101 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3102 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3103 		ntohs(encap_ip->ip_len));
3104 	}
3105 
3106 	/* verify the version number of the inner packet */
3107 	if (encap_ip->ip_v != IPVERSION) {
3108 	    pimstat.pims_rcv_badregisters++;
3109 	    if (mrtdebug & DEBUG_PIM) {
3110 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3111 		    "of the inner packet\n", encap_ip->ip_v);
3112 	    }
3113 	    m_freem(m);
3114 	    return;
3115 	}
3116 
3117 	/* verify the inner packet is destined to a mcast group */
3118 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3119 	    pimstat.pims_rcv_badregisters++;
3120 	    if (mrtdebug & DEBUG_PIM)
3121 		log(LOG_DEBUG,
3122 		    "pim_input: inner packet of register is not "
3123 		    "multicast %lx\n",
3124 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3125 	    m_freem(m);
3126 	    return;
3127 	}
3128 
3129 	/*
3130 	 * Copy the TOS from the outer IP header to the inner IP header.
3131 	 */
3132 	if (encap_ip->ip_tos != ip_tos) {
3133 	    /* Outer TOS -> inner TOS */
3134 	    encap_ip->ip_tos = ip_tos;
3135 	    /* Recompute the inner header checksum. Sigh... */
3136 
3137 	    /* adjust mbuf to point to the inner IP header */
3138 	    m->m_data += (iphlen + PIM_MINLEN);
3139 	    m->m_len  -= (iphlen + PIM_MINLEN);
3140 
3141 	    encap_ip->ip_sum = 0;
3142 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3143 
3144 	    /* restore mbuf to point back to the outer IP header */
3145 	    m->m_data -= (iphlen + PIM_MINLEN);
3146 	    m->m_len  += (iphlen + PIM_MINLEN);
3147 	}
3148 
3149 	/* If a NULL_REGISTER, pass it to the daemon */
3150 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3151 	    goto pim_input_to_daemon;
3152 
3153 	/*
3154 	 * Decapsulate the inner IP packet and loopback to forward it
3155 	 * as a normal multicast packet. Also, make a copy of the
3156 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3157 	 * to pass to the daemon later, so it can take the appropriate
3158 	 * actions (e.g., send back PIM_REGISTER_STOP).
3159 	 * XXX: here m->m_data points to the outer IP header.
3160 	 */
3161 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3162 	if (mcp == NULL) {
3163 	    log(LOG_ERR,
3164 		"pim_input: pim register: could not copy register head\n");
3165 	    m_freem(m);
3166 	    return;
3167 	}
3168 
3169 	/* Keep statistics */
3170 	/* XXX: registers_bytes include only the encap. mcast pkt */
3171 	pimstat.pims_rcv_registers_msgs++;
3172 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3173 
3174 	/*
3175 	 * forward the inner ip packet; point m_data at the inner ip.
3176 	 */
3177 	m_adj(m, iphlen + PIM_MINLEN);
3178 
3179 	if (mrtdebug & DEBUG_PIM) {
3180 	    log(LOG_DEBUG,
3181 		"pim_input: forwarding decapsulated register: "
3182 		"src %lx, dst %lx, vif %d\n",
3183 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3184 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3185 		reg_vif_num);
3186 	}
3187 	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3188 
3189 	/* prepare the register head to send to the mrouting daemon */
3190 	m = mcp;
3191     }
3192 
3193 pim_input_to_daemon:
3194     /*
3195      * Pass the PIM message up to the daemon; if it is a Register message,
3196      * pass the 'head' only up to the daemon. This includes the
3197      * outer IP header, PIM header, PIM-Register header and the
3198      * inner IP header.
3199      * XXX: the outer IP header pkt size of a Register is not adjust to
3200      * reflect the fact that the inner multicast data is truncated.
3201      */
3202     rip_input(m, iphlen, proto);
3203 
3204     return;
3205 }
3206 #endif /* PIM */
3207 
3208 static int
3209 ip_mroute_modevent(module_t mod, int type, void *unused)
3210 {
3211     int s;
3212 
3213     switch (type) {
3214     case MOD_LOAD:
3215 	s = splnet();
3216 	/* XXX Protect against multiple loading */
3217 	ip_mcast_src = X_ip_mcast_src;
3218 	ip_mforward = X_ip_mforward;
3219 	ip_mrouter_done = X_ip_mrouter_done;
3220 	ip_mrouter_get = X_ip_mrouter_get;
3221 	ip_mrouter_set = X_ip_mrouter_set;
3222 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3223 	ip_rsvp_vif = X_ip_rsvp_vif;
3224 	ipip_input = X_ipip_input;
3225 	legal_vif_num = X_legal_vif_num;
3226 	mrt_ioctl = X_mrt_ioctl;
3227 	rsvp_input_p = X_rsvp_input;
3228 	splx(s);
3229 	break;
3230 
3231     case MOD_UNLOAD:
3232 	if (ip_mrouter)
3233 	    return EINVAL;
3234 
3235 	s = splnet();
3236 	ip_mcast_src = NULL;
3237 	ip_mforward = NULL;
3238 	ip_mrouter_done = NULL;
3239 	ip_mrouter_get = NULL;
3240 	ip_mrouter_set = NULL;
3241 	ip_rsvp_force_done = NULL;
3242 	ip_rsvp_vif = NULL;
3243 	ipip_input = NULL;
3244 	legal_vif_num = NULL;
3245 	mrt_ioctl = NULL;
3246 	rsvp_input_p = NULL;
3247 	splx(s);
3248 	break;
3249     }
3250     return 0;
3251 }
3252 
3253 static moduledata_t ip_mroutemod = {
3254     "ip_mroute",
3255     ip_mroute_modevent,
3256     0
3257 };
3258 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3259