xref: /dragonfly/sys/net/ipfw/ip_fw2.c (revision 409b4c59)
1 /*
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26  * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.100 2008/11/22 11:03:35 sephe Exp $
27  */
28 
29 /*
30  * Implement IP packet firewall (new version)
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_inet.h"
35 #ifndef INET
36 #error IPFIREWALL requires INET.
37 #endif /* INET */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 #include <sys/syslog.h>
49 #include <sys/thread2.h>
50 #include <sys/ucred.h>
51 #include <sys/in_cksum.h>
52 #include <sys/lock.h>
53 
54 #include <net/if.h>
55 #include <net/route.h>
56 #include <net/netmsg2.h>
57 #include <net/pfil.h>
58 #include <net/dummynet/ip_dummynet.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/in_pcb.h>
64 #include <netinet/ip.h>
65 #include <netinet/ip_var.h>
66 #include <netinet/ip_icmp.h>
67 #include <netinet/tcp.h>
68 #include <netinet/tcp_timer.h>
69 #include <netinet/tcp_var.h>
70 #include <netinet/tcpip.h>
71 #include <netinet/udp.h>
72 #include <netinet/udp_var.h>
73 #include <netinet/ip_divert.h>
74 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
75 
76 #include <net/ipfw/ip_fw2.h>
77 
78 #ifdef IPFIREWALL_DEBUG
79 #define DPRINTF(fmt, ...) \
80 do { \
81 	if (fw_debug > 0) \
82 		kprintf(fmt, __VA_ARGS__); \
83 } while (0)
84 #else
85 #define DPRINTF(fmt, ...)	((void)0)
86 #endif
87 
88 /*
89  * Description about per-CPU rule duplication:
90  *
91  * Module loading/unloading and all ioctl operations are serialized
92  * by netisr0, so we don't have any ordering or locking problems.
93  *
94  * Following graph shows how operation on per-CPU rule list is
95  * performed [2 CPU case]:
96  *
97  *   CPU0                 CPU1
98  *
99  * netisr0 <------------------------------------+
100  *  domsg                                       |
101  *    |                                         |
102  *    | netmsg                                  |
103  *    |                                         |
104  *    V                                         |
105  *  ifnet0                                      |
106  *    :                                         | netmsg
107  *    :(delete/add...)                          |
108  *    :                                         |
109  *    :         netmsg                          |
110  *  forwardmsg---------->ifnet1                 |
111  *                          :                   |
112  *                          :(delete/add...)    |
113  *                          :                   |
114  *                          :                   |
115  *                        replymsg--------------+
116  *
117  *
118  *
119  *
120  * Rules which will not create states (dyn rules) [2 CPU case]
121  *
122  *    CPU0               CPU1
123  * layer3_chain       layer3_chain
124  *     |                  |
125  *     V                  V
126  * +-------+ sibling  +-------+ sibling
127  * | rule1 |--------->| rule1 |--------->NULL
128  * +-------+          +-------+
129  *     |                  |
130  *     |next              |next
131  *     V                  V
132  * +-------+ sibling  +-------+ sibling
133  * | rule2 |--------->| rule2 |--------->NULL
134  * +-------+          +-------+
135  *
136  * ip_fw.sibling:
137  * 1) Ease statistics calculation during IP_FW_GET.  We only need to
138  *    iterate layer3_chain on CPU0; the current rule's duplication on
139  *    the other CPUs could safely be read-only accessed by using
140  *    ip_fw.sibling
141  * 2) Accelerate rule insertion and deletion, e.g. rule insertion:
142  *    a) In netisr0 (on CPU0) rule3 is determined to be inserted between
143  *       rule1 and rule2.  To make this decision we need to iterate the
144  *       layer3_chain on CPU0.  The netmsg, which is used to insert the
145  *       rule, will contain rule1 on CPU0 as prev_rule and rule2 on CPU0
146  *       as next_rule
147  *    b) After the insertion on CPU0 is done, we will move on to CPU1.
148  *       But instead of relocating the rule3's position on CPU1 by
149  *       iterating the layer3_chain on CPU1, we set the netmsg's prev_rule
150  *       to rule1->sibling and next_rule to rule2->sibling before the
151  *       netmsg is forwarded to CPU1 from CPU0
152  *
153  *
154  *
155  * Rules which will create states (dyn rules) [2 CPU case]
156  * (unnecessary parts are omitted; they are same as in the previous figure)
157  *
158  *   CPU0                       CPU1
159  *
160  * +-------+                  +-------+
161  * | rule1 |                  | rule1 |
162  * +-------+                  +-------+
163  *   ^   |                      |   ^
164  *   |   |stub              stub|   |
165  *   |   |                      |   |
166  *   |   +----+            +----+   |
167  *   |        |            |        |
168  *   |        V            V        |
169  *   |    +--------------------+    |
170  *   |    |     rule_stub      |    |
171  *   |    | (read-only shared) |    |
172  *   |    |                    |    |
173  *   |    | back pointer array |    |
174  *   |    | (indexed by cpuid) |    |
175  *   |    |                    |    |
176  *   +----|---------[0]        |    |
177  *        |         [1]--------|----+
178  *        |                    |
179  *        +--------------------+
180  *          ^            ^
181  *          |            |
182  *  ........|............|............
183  *  :       |            |           :
184  *  :       |stub        |stub       :
185  *  :       |            |           :
186  *  :  +---------+  +---------+      :
187  *  :  | state1a |  | state1b | .... :
188  *  :  +---------+  +---------+      :
189  *  :                                :
190  *  :           states table         :
191  *  :            (shared)            :
192  *  :      (protected by dyn_lock)   :
193  *  ..................................
194  *
195  * [state1a and state1b are states created by rule1]
196  *
197  * ip_fw_stub:
198  * This structure is introduced so that shared (locked) state table could
199  * work with per-CPU (duplicated) static rules.  It mainly bridges states
200  * and static rules and serves as static rule's place holder (a read-only
201  * shared part of duplicated rules) from states point of view.
202  *
203  * IPFW_RULE_F_STATE (only for rules which create states):
204  * o  During rule installation, this flag is turned on after rule's
205  *    duplications reach all CPUs, to avoid at least following race:
206  *    1) rule1 is duplicated on CPU0 and is not duplicated on CPU1 yet
207  *    2) rule1 creates state1
208  *    3) state1 is located on CPU1 by check-state
209  *    But rule1 is not duplicated on CPU1 yet
210  * o  During rule deletion, this flag is turned off before deleting states
211  *    created by the rule and before deleting the rule itself, so no
212  *    more states will be created by the to-be-deleted rule even when its
213  *    duplication on certain CPUs are not eliminated yet.
214  */
215 
216 #define IPFW_AUTOINC_STEP_MIN	1
217 #define IPFW_AUTOINC_STEP_MAX	1000
218 #define IPFW_AUTOINC_STEP_DEF	100
219 
220 #define	IPFW_DEFAULT_RULE	65535	/* rulenum for the default rule */
221 #define IPFW_DEFAULT_SET	31	/* set number for the default rule */
222 
223 struct netmsg_ipfw {
224 	struct netmsg	nmsg;
225 	const struct ipfw_ioc_rule *ioc_rule;
226 	struct ip_fw	*next_rule;
227 	struct ip_fw	*prev_rule;
228 	struct ip_fw	*sibling;
229 	struct ip_fw_stub *stub;
230 };
231 
232 struct netmsg_del {
233 	struct netmsg	nmsg;
234 	struct ip_fw	*start_rule;
235 	struct ip_fw	*prev_rule;
236 	uint16_t	rulenum;
237 	uint8_t		from_set;
238 	uint8_t		to_set;
239 };
240 
241 struct netmsg_zent {
242 	struct netmsg	nmsg;
243 	struct ip_fw	*start_rule;
244 	uint16_t	rulenum;
245 	uint16_t	log_only;
246 };
247 
248 struct ipfw_context {
249 	struct ip_fw	*ipfw_layer3_chain;	/* list of rules for layer3 */
250 	struct ip_fw	*ipfw_default_rule;	/* default rule */
251 	uint64_t	ipfw_norule_counter;	/* counter for ipfw_log(NULL) */
252 
253 	/*
254 	 * ipfw_set_disable contains one bit per set value (0..31).
255 	 * If the bit is set, all rules with the corresponding set
256 	 * are disabled.  Set IPDW_DEFAULT_SET is reserved for the
257 	 * default rule and CANNOT be disabled.
258 	 */
259 	uint32_t	ipfw_set_disable;
260 	uint32_t	ipfw_gen;		/* generation of rule list */
261 };
262 
263 static struct ipfw_context	*ipfw_ctx[MAXCPU];
264 
265 #ifdef KLD_MODULE
266 /*
267  * Module can not be unloaded, if there are references to
268  * certains rules of ipfw(4), e.g. dummynet(4)
269  */
270 static int ipfw_refcnt;
271 #endif
272 
273 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
274 
275 /*
276  * Following two global variables are accessed and
277  * updated only on CPU0
278  */
279 static uint32_t static_count;	/* # of static rules */
280 static uint32_t static_ioc_len;	/* bytes of static rules */
281 
282 /*
283  * If 1, then ipfw static rules are being flushed,
284  * ipfw_chk() will skip to the default rule.
285  */
286 static int ipfw_flushing;
287 
288 static int fw_verbose;
289 static int verbose_limit;
290 
291 static int fw_debug;
292 static int autoinc_step = IPFW_AUTOINC_STEP_DEF;
293 
294 static int	ipfw_sysctl_enable(SYSCTL_HANDLER_ARGS);
295 static int	ipfw_sysctl_autoinc_step(SYSCTL_HANDLER_ARGS);
296 static int	ipfw_sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS);
297 static int	ipfw_sysctl_dyn_fin(SYSCTL_HANDLER_ARGS);
298 static int	ipfw_sysctl_dyn_rst(SYSCTL_HANDLER_ARGS);
299 
300 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
301 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
302     &fw_enable, 0, ipfw_sysctl_enable, "I", "Enable ipfw");
303 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLTYPE_INT | CTLFLAG_RW,
304     &autoinc_step, 0, ipfw_sysctl_autoinc_step, "I",
305     "Rule number autincrement step");
306 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
307     &fw_one_pass, 0,
308     "Only do a single pass through ipfw when using dummynet(4)");
309 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
310     &fw_debug, 0, "Enable printing of debug ip_fw statements");
311 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
312     &fw_verbose, 0, "Log matches to ipfw rules");
313 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
314     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
315 
316 /*
317  * Description of dynamic rules.
318  *
319  * Dynamic rules are stored in lists accessed through a hash table
320  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
321  * be modified through the sysctl variable dyn_buckets which is
322  * updated when the table becomes empty.
323  *
324  * XXX currently there is only one list, ipfw_dyn.
325  *
326  * When a packet is received, its address fields are first masked
327  * with the mask defined for the rule, then hashed, then matched
328  * against the entries in the corresponding list.
329  * Dynamic rules can be used for different purposes:
330  *  + stateful rules;
331  *  + enforcing limits on the number of sessions;
332  *  + in-kernel NAT (not implemented yet)
333  *
334  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
335  * measured in seconds and depending on the flags.
336  *
337  * The total number of dynamic rules is stored in dyn_count.
338  * The max number of dynamic rules is dyn_max. When we reach
339  * the maximum number of rules we do not create anymore. This is
340  * done to avoid consuming too much memory, but also too much
341  * time when searching on each packet (ideally, we should try instead
342  * to put a limit on the length of the list on each bucket...).
343  *
344  * Each dynamic rule holds a pointer to the parent ipfw rule so
345  * we know what action to perform. Dynamic rules are removed when
346  * the parent rule is deleted. XXX we should make them survive.
347  *
348  * There are some limitations with dynamic rules -- we do not
349  * obey the 'randomized match', and we do not do multiple
350  * passes through the firewall. XXX check the latter!!!
351  *
352  * NOTE about the SHARED LOCKMGR LOCK during dynamic rule looking up:
353  * Only TCP state transition will change dynamic rule's state and ack
354  * sequences, while all packets of one TCP connection only goes through
355  * one TCP thread, so it is safe to use shared lockmgr lock during dynamic
356  * rule looking up.  The keep alive callout uses exclusive lockmgr lock
357  * when it tries to find suitable dynamic rules to send keep alive, so
358  * it will not see half updated state and ack sequences.  Though the expire
359  * field updating looks racy for other protocols, the resolution (second)
360  * of expire field makes this kind of race harmless.
361  * XXX statistics' updating is _not_ MPsafe!!!
362  * XXX once UDP output path is fixed, we could use lockless dynamic rule
363  *     hash table
364  */
365 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
366 static uint32_t dyn_buckets = 256; /* must be power of 2 */
367 static uint32_t curr_dyn_buckets = 256; /* must be power of 2 */
368 static uint32_t dyn_buckets_gen; /* generation of dyn buckets array */
369 static struct lock dyn_lock; /* dynamic rules' hash table lock */
370 
371 static struct netmsg ipfw_timeout_netmsg; /* schedule ipfw timeout */
372 static struct callout ipfw_timeout_h;
373 
374 /*
375  * Timeouts for various events in handing dynamic rules.
376  */
377 static uint32_t dyn_ack_lifetime = 300;
378 static uint32_t dyn_syn_lifetime = 20;
379 static uint32_t dyn_fin_lifetime = 1;
380 static uint32_t dyn_rst_lifetime = 1;
381 static uint32_t dyn_udp_lifetime = 10;
382 static uint32_t dyn_short_lifetime = 5;
383 
384 /*
385  * Keepalives are sent if dyn_keepalive is set. They are sent every
386  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
387  * seconds of lifetime of a rule.
388  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
389  * than dyn_keepalive_period.
390  */
391 
392 static uint32_t dyn_keepalive_interval = 20;
393 static uint32_t dyn_keepalive_period = 5;
394 static uint32_t dyn_keepalive = 1;	/* do send keepalives */
395 
396 static uint32_t dyn_count;		/* # of dynamic rules */
397 static uint32_t dyn_max = 4096;		/* max # of dynamic rules */
398 
399 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLTYPE_INT | CTLFLAG_RW,
400     &dyn_buckets, 0, ipfw_sysctl_dyn_buckets, "I", "Number of dyn. buckets");
401 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
402     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
403 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
404     &dyn_count, 0, "Number of dyn. rules");
405 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
406     &dyn_max, 0, "Max number of dyn. rules");
407 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
408     &static_count, 0, "Number of static rules");
409 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
410     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
411 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
412     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
413 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
414     CTLTYPE_INT | CTLFLAG_RW, &dyn_fin_lifetime, 0, ipfw_sysctl_dyn_fin, "I",
415     "Lifetime of dyn. rules for fin");
416 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
417     CTLTYPE_INT | CTLFLAG_RW, &dyn_rst_lifetime, 0, ipfw_sysctl_dyn_rst, "I",
418     "Lifetime of dyn. rules for rst");
419 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
420     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
421 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
422     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
423 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
424     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
425 
426 static ip_fw_chk_t	ipfw_chk;
427 static void		ipfw_tick(void *);
428 
429 static __inline int
430 ipfw_free_rule(struct ip_fw *rule)
431 {
432 	KASSERT(rule->cpuid == mycpuid, ("rule freed on cpu%d\n", mycpuid));
433 	KASSERT(rule->refcnt > 0, ("invalid refcnt %u\n", rule->refcnt));
434 	rule->refcnt--;
435 	if (rule->refcnt == 0) {
436 		kfree(rule, M_IPFW);
437 		return 1;
438 	}
439 	return 0;
440 }
441 
442 static void
443 ipfw_unref_rule(void *priv)
444 {
445 	ipfw_free_rule(priv);
446 #ifdef KLD_MODULE
447 	atomic_subtract_int(&ipfw_refcnt, 1);
448 #endif
449 }
450 
451 static __inline void
452 ipfw_ref_rule(struct ip_fw *rule)
453 {
454 	KASSERT(rule->cpuid == mycpuid, ("rule used on cpu%d\n", mycpuid));
455 #ifdef KLD_MODULE
456 	atomic_add_int(&ipfw_refcnt, 1);
457 #endif
458 	rule->refcnt++;
459 }
460 
461 /*
462  * This macro maps an ip pointer into a layer3 header pointer of type T
463  */
464 #define	L3HDR(T, ip) ((T *)((uint32_t *)(ip) + (ip)->ip_hl))
465 
466 static __inline int
467 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
468 {
469 	int type = L3HDR(struct icmp,ip)->icmp_type;
470 
471 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1 << type)));
472 }
473 
474 #define TT	((1 << ICMP_ECHO) | \
475 		 (1 << ICMP_ROUTERSOLICIT) | \
476 		 (1 << ICMP_TSTAMP) | \
477 		 (1 << ICMP_IREQ) | \
478 		 (1 << ICMP_MASKREQ))
479 
480 static int
481 is_icmp_query(struct ip *ip)
482 {
483 	int type = L3HDR(struct icmp, ip)->icmp_type;
484 
485 	return (type <= ICMP_MAXTYPE && (TT & (1 << type)));
486 }
487 
488 #undef TT
489 
490 /*
491  * The following checks use two arrays of 8 or 16 bits to store the
492  * bits that we want set or clear, respectively. They are in the
493  * low and high half of cmd->arg1 or cmd->d[0].
494  *
495  * We scan options and store the bits we find set. We succeed if
496  *
497  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
498  *
499  * The code is sometimes optimized not to store additional variables.
500  */
501 
502 static int
503 flags_match(ipfw_insn *cmd, uint8_t bits)
504 {
505 	u_char want_clear;
506 	bits = ~bits;
507 
508 	if (((cmd->arg1 & 0xff) & bits) != 0)
509 		return 0; /* some bits we want set were clear */
510 
511 	want_clear = (cmd->arg1 >> 8) & 0xff;
512 	if ((want_clear & bits) != want_clear)
513 		return 0; /* some bits we want clear were set */
514 	return 1;
515 }
516 
517 static int
518 ipopts_match(struct ip *ip, ipfw_insn *cmd)
519 {
520 	int optlen, bits = 0;
521 	u_char *cp = (u_char *)(ip + 1);
522 	int x = (ip->ip_hl << 2) - sizeof(struct ip);
523 
524 	for (; x > 0; x -= optlen, cp += optlen) {
525 		int opt = cp[IPOPT_OPTVAL];
526 
527 		if (opt == IPOPT_EOL)
528 			break;
529 
530 		if (opt == IPOPT_NOP) {
531 			optlen = 1;
532 		} else {
533 			optlen = cp[IPOPT_OLEN];
534 			if (optlen <= 0 || optlen > x)
535 				return 0; /* invalid or truncated */
536 		}
537 
538 		switch (opt) {
539 		case IPOPT_LSRR:
540 			bits |= IP_FW_IPOPT_LSRR;
541 			break;
542 
543 		case IPOPT_SSRR:
544 			bits |= IP_FW_IPOPT_SSRR;
545 			break;
546 
547 		case IPOPT_RR:
548 			bits |= IP_FW_IPOPT_RR;
549 			break;
550 
551 		case IPOPT_TS:
552 			bits |= IP_FW_IPOPT_TS;
553 			break;
554 
555 		default:
556 			break;
557 		}
558 	}
559 	return (flags_match(cmd, bits));
560 }
561 
562 static int
563 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
564 {
565 	int optlen, bits = 0;
566 	struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
567 	u_char *cp = (u_char *)(tcp + 1);
568 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
569 
570 	for (; x > 0; x -= optlen, cp += optlen) {
571 		int opt = cp[0];
572 
573 		if (opt == TCPOPT_EOL)
574 			break;
575 
576 		if (opt == TCPOPT_NOP) {
577 			optlen = 1;
578 		} else {
579 			optlen = cp[1];
580 			if (optlen <= 0)
581 				break;
582 		}
583 
584 		switch (opt) {
585 		case TCPOPT_MAXSEG:
586 			bits |= IP_FW_TCPOPT_MSS;
587 			break;
588 
589 		case TCPOPT_WINDOW:
590 			bits |= IP_FW_TCPOPT_WINDOW;
591 			break;
592 
593 		case TCPOPT_SACK_PERMITTED:
594 		case TCPOPT_SACK:
595 			bits |= IP_FW_TCPOPT_SACK;
596 			break;
597 
598 		case TCPOPT_TIMESTAMP:
599 			bits |= IP_FW_TCPOPT_TS;
600 			break;
601 
602 		case TCPOPT_CC:
603 		case TCPOPT_CCNEW:
604 		case TCPOPT_CCECHO:
605 			bits |= IP_FW_TCPOPT_CC;
606 			break;
607 
608 		default:
609 			break;
610 		}
611 	}
612 	return (flags_match(cmd, bits));
613 }
614 
615 static int
616 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
617 {
618 	if (ifp == NULL)	/* no iface with this packet, match fails */
619 		return 0;
620 
621 	/* Check by name or by IP address */
622 	if (cmd->name[0] != '\0') { /* match by name */
623 		/* Check name */
624 		if (cmd->p.glob) {
625 			if (kfnmatch(cmd->name, ifp->if_xname, 0) == 0)
626 				return(1);
627 		} else {
628 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
629 				return(1);
630 		}
631 	} else {
632 		struct ifaddr_container *ifac;
633 
634 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
635 			struct ifaddr *ia = ifac->ifa;
636 
637 			if (ia->ifa_addr == NULL)
638 				continue;
639 			if (ia->ifa_addr->sa_family != AF_INET)
640 				continue;
641 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
642 			    (ia->ifa_addr))->sin_addr.s_addr)
643 				return(1);	/* match */
644 		}
645 	}
646 	return(0);	/* no match, fail ... */
647 }
648 
649 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
650 
651 /*
652  * We enter here when we have a rule with O_LOG.
653  * XXX this function alone takes about 2Kbytes of code!
654  */
655 static void
656 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
657 	 struct mbuf *m, struct ifnet *oif)
658 {
659 	char *action;
660 	int limit_reached = 0;
661 	char action2[40], proto[48], fragment[28];
662 
663 	fragment[0] = '\0';
664 	proto[0] = '\0';
665 
666 	if (f == NULL) {	/* bogus pkt */
667 		struct ipfw_context *ctx = ipfw_ctx[mycpuid];
668 
669 		if (verbose_limit != 0 &&
670 		    ctx->ipfw_norule_counter >= verbose_limit)
671 			return;
672 		ctx->ipfw_norule_counter++;
673 		if (ctx->ipfw_norule_counter == verbose_limit)
674 			limit_reached = verbose_limit;
675 		action = "Refuse";
676 	} else {	/* O_LOG is the first action, find the real one */
677 		ipfw_insn *cmd = ACTION_PTR(f);
678 		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
679 
680 		if (l->max_log != 0 && l->log_left == 0)
681 			return;
682 		l->log_left--;
683 		if (l->log_left == 0)
684 			limit_reached = l->max_log;
685 		cmd += F_LEN(cmd);	/* point to first action */
686 		if (cmd->opcode == O_PROB)
687 			cmd += F_LEN(cmd);
688 
689 		action = action2;
690 		switch (cmd->opcode) {
691 		case O_DENY:
692 			action = "Deny";
693 			break;
694 
695 		case O_REJECT:
696 			if (cmd->arg1==ICMP_REJECT_RST) {
697 				action = "Reset";
698 			} else if (cmd->arg1==ICMP_UNREACH_HOST) {
699 				action = "Reject";
700 			} else {
701 				ksnprintf(SNPARGS(action2, 0), "Unreach %d",
702 					  cmd->arg1);
703 			}
704 			break;
705 
706 		case O_ACCEPT:
707 			action = "Accept";
708 			break;
709 
710 		case O_COUNT:
711 			action = "Count";
712 			break;
713 
714 		case O_DIVERT:
715 			ksnprintf(SNPARGS(action2, 0), "Divert %d", cmd->arg1);
716 			break;
717 
718 		case O_TEE:
719 			ksnprintf(SNPARGS(action2, 0), "Tee %d", cmd->arg1);
720 			break;
721 
722 		case O_SKIPTO:
723 			ksnprintf(SNPARGS(action2, 0), "SkipTo %d", cmd->arg1);
724 			break;
725 
726 		case O_PIPE:
727 			ksnprintf(SNPARGS(action2, 0), "Pipe %d", cmd->arg1);
728 			break;
729 
730 		case O_QUEUE:
731 			ksnprintf(SNPARGS(action2, 0), "Queue %d", cmd->arg1);
732 			break;
733 
734 		case O_FORWARD_IP:
735 			{
736 				ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
737 				int len;
738 
739 				len = ksnprintf(SNPARGS(action2, 0),
740 						"Forward to %s",
741 						inet_ntoa(sa->sa.sin_addr));
742 				if (sa->sa.sin_port) {
743 					ksnprintf(SNPARGS(action2, len), ":%d",
744 						  sa->sa.sin_port);
745 				}
746 			}
747 			break;
748 
749 		default:
750 			action = "UNKNOWN";
751 			break;
752 		}
753 	}
754 
755 	if (hlen == 0) {	/* non-ip */
756 		ksnprintf(SNPARGS(proto, 0), "MAC");
757 	} else {
758 		struct ip *ip = mtod(m, struct ip *);
759 		/* these three are all aliases to the same thing */
760 		struct icmp *const icmp = L3HDR(struct icmp, ip);
761 		struct tcphdr *const tcp = (struct tcphdr *)icmp;
762 		struct udphdr *const udp = (struct udphdr *)icmp;
763 
764 		int ip_off, offset, ip_len;
765 		int len;
766 
767 		if (eh != NULL) { /* layer 2 packets are as on the wire */
768 			ip_off = ntohs(ip->ip_off);
769 			ip_len = ntohs(ip->ip_len);
770 		} else {
771 			ip_off = ip->ip_off;
772 			ip_len = ip->ip_len;
773 		}
774 		offset = ip_off & IP_OFFMASK;
775 		switch (ip->ip_p) {
776 		case IPPROTO_TCP:
777 			len = ksnprintf(SNPARGS(proto, 0), "TCP %s",
778 					inet_ntoa(ip->ip_src));
779 			if (offset == 0) {
780 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
781 					  ntohs(tcp->th_sport),
782 					  inet_ntoa(ip->ip_dst),
783 					  ntohs(tcp->th_dport));
784 			} else {
785 				ksnprintf(SNPARGS(proto, len), " %s",
786 					  inet_ntoa(ip->ip_dst));
787 			}
788 			break;
789 
790 		case IPPROTO_UDP:
791 			len = ksnprintf(SNPARGS(proto, 0), "UDP %s",
792 					inet_ntoa(ip->ip_src));
793 			if (offset == 0) {
794 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
795 					  ntohs(udp->uh_sport),
796 					  inet_ntoa(ip->ip_dst),
797 					  ntohs(udp->uh_dport));
798 			} else {
799 				ksnprintf(SNPARGS(proto, len), " %s",
800 					  inet_ntoa(ip->ip_dst));
801 			}
802 			break;
803 
804 		case IPPROTO_ICMP:
805 			if (offset == 0) {
806 				len = ksnprintf(SNPARGS(proto, 0),
807 						"ICMP:%u.%u ",
808 						icmp->icmp_type,
809 						icmp->icmp_code);
810 			} else {
811 				len = ksnprintf(SNPARGS(proto, 0), "ICMP ");
812 			}
813 			len += ksnprintf(SNPARGS(proto, len), "%s",
814 					 inet_ntoa(ip->ip_src));
815 			ksnprintf(SNPARGS(proto, len), " %s",
816 				  inet_ntoa(ip->ip_dst));
817 			break;
818 
819 		default:
820 			len = ksnprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
821 					inet_ntoa(ip->ip_src));
822 			ksnprintf(SNPARGS(proto, len), " %s",
823 				  inet_ntoa(ip->ip_dst));
824 			break;
825 		}
826 
827 		if (ip_off & (IP_MF | IP_OFFMASK)) {
828 			ksnprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
829 				  ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
830 				  offset << 3, (ip_off & IP_MF) ? "+" : "");
831 		}
832 	}
833 
834 	if (oif || m->m_pkthdr.rcvif) {
835 		log(LOG_SECURITY | LOG_INFO,
836 		    "ipfw: %d %s %s %s via %s%s\n",
837 		    f ? f->rulenum : -1,
838 		    action, proto, oif ? "out" : "in",
839 		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
840 		    fragment);
841 	} else {
842 		log(LOG_SECURITY | LOG_INFO,
843 		    "ipfw: %d %s %s [no if info]%s\n",
844 		    f ? f->rulenum : -1,
845 		    action, proto, fragment);
846 	}
847 
848 	if (limit_reached) {
849 		log(LOG_SECURITY | LOG_NOTICE,
850 		    "ipfw: limit %d reached on entry %d\n",
851 		    limit_reached, f ? f->rulenum : -1);
852 	}
853 }
854 
855 #undef SNPARGS
856 
857 /*
858  * IMPORTANT: the hash function for dynamic rules must be commutative
859  * in source and destination (ip,port), because rules are bidirectional
860  * and we want to find both in the same bucket.
861  */
862 static __inline int
863 hash_packet(struct ipfw_flow_id *id)
864 {
865 	uint32_t i;
866 
867 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
868 	i &= (curr_dyn_buckets - 1);
869 	return i;
870 }
871 
872 /**
873  * unlink a dynamic rule from a chain. prev is a pointer to
874  * the previous one, q is a pointer to the rule to delete,
875  * head is a pointer to the head of the queue.
876  * Modifies q and potentially also head.
877  */
878 #define UNLINK_DYN_RULE(prev, head, q)					\
879 do {									\
880 	ipfw_dyn_rule *old_q = q;					\
881 									\
882 	/* remove a refcount to the parent */				\
883 	if (q->dyn_type == O_LIMIT)					\
884 		q->parent->count--;					\
885 	DPRINTF("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",	\
886 		q->id.src_ip, q->id.src_port,				\
887 		q->id.dst_ip, q->id.dst_port, dyn_count - 1);		\
888 	if (prev != NULL)						\
889 		prev->next = q = q->next;				\
890 	else								\
891 		head = q = q->next;					\
892 	KASSERT(dyn_count > 0, ("invalid dyn count %u\n", dyn_count));	\
893 	dyn_count--;							\
894 	kfree(old_q, M_IPFW);						\
895 } while (0)
896 
897 #define TIME_LEQ(a, b)	((int)((a) - (b)) <= 0)
898 
899 /**
900  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
901  *
902  * If keep_me == NULL, rules are deleted even if not expired,
903  * otherwise only expired rules are removed.
904  *
905  * The value of the second parameter is also used to point to identify
906  * a rule we absolutely do not want to remove (e.g. because we are
907  * holding a reference to it -- this is the case with O_LIMIT_PARENT
908  * rules). The pointer is only used for comparison, so any non-null
909  * value will do.
910  */
911 static void
912 remove_dyn_rule_locked(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
913 {
914 	static uint32_t last_remove = 0; /* XXX */
915 
916 #define FORCE	(keep_me == NULL)
917 
918 	ipfw_dyn_rule *prev, *q;
919 	int i, pass = 0, max_pass = 0, unlinked = 0;
920 
921 	if (ipfw_dyn_v == NULL || dyn_count == 0)
922 		return;
923 	/* do not expire more than once per second, it is useless */
924 	if (!FORCE && last_remove == time_second)
925 		return;
926 	last_remove = time_second;
927 
928 	/*
929 	 * because O_LIMIT refer to parent rules, during the first pass only
930 	 * remove child and mark any pending LIMIT_PARENT, and remove
931 	 * them in a second pass.
932 	 */
933 next_pass:
934 	for (i = 0; i < curr_dyn_buckets; i++) {
935 		for (prev = NULL, q = ipfw_dyn_v[i]; q;) {
936 			/*
937 			 * Logic can become complex here, so we split tests.
938 			 */
939 			if (q == keep_me)
940 				goto next;
941 			if (rule != NULL && rule->stub != q->stub)
942 				goto next; /* not the one we are looking for */
943 			if (q->dyn_type == O_LIMIT_PARENT) {
944 				/*
945 				 * handle parent in the second pass,
946 				 * record we need one.
947 				 */
948 				max_pass = 1;
949 				if (pass == 0)
950 					goto next;
951 				if (FORCE && q->count != 0) {
952 					/* XXX should not happen! */
953 					kprintf("OUCH! cannot remove rule, "
954 						"count %d\n", q->count);
955 				}
956 			} else {
957 				if (!FORCE && !TIME_LEQ(q->expire, time_second))
958 					goto next;
959 			}
960 			unlinked = 1;
961 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
962 			continue;
963 next:
964 			prev = q;
965 			q = q->next;
966 		}
967 	}
968 	if (pass++ < max_pass)
969 		goto next_pass;
970 
971 	if (unlinked)
972 		++dyn_buckets_gen;
973 
974 #undef FORCE
975 }
976 
977 /**
978  * lookup a dynamic rule.
979  */
980 static ipfw_dyn_rule *
981 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
982 		struct tcphdr *tcp)
983 {
984 	/*
985 	 * stateful ipfw extensions.
986 	 * Lookup into dynamic session queue
987 	 */
988 #define MATCH_REVERSE	0
989 #define MATCH_FORWARD	1
990 #define MATCH_NONE	2
991 #define MATCH_UNKNOWN	3
992 	int i, dir = MATCH_NONE;
993 	ipfw_dyn_rule *prev, *q=NULL;
994 
995 	if (ipfw_dyn_v == NULL)
996 		goto done;	/* not found */
997 
998 	i = hash_packet(pkt);
999 	for (prev = NULL, q = ipfw_dyn_v[i]; q != NULL;) {
1000 		if (q->dyn_type == O_LIMIT_PARENT)
1001 			goto next;
1002 
1003 		if (TIME_LEQ(q->expire, time_second)) {
1004 			/*
1005 			 * Entry expired; skip.
1006 			 * Let ipfw_tick() take care of it
1007 			 */
1008 			goto next;
1009 		}
1010 
1011 		if (pkt->proto == q->id.proto) {
1012 			if (pkt->src_ip == q->id.src_ip &&
1013 			    pkt->dst_ip == q->id.dst_ip &&
1014 			    pkt->src_port == q->id.src_port &&
1015 			    pkt->dst_port == q->id.dst_port) {
1016 				dir = MATCH_FORWARD;
1017 				break;
1018 			}
1019 			if (pkt->src_ip == q->id.dst_ip &&
1020 			    pkt->dst_ip == q->id.src_ip &&
1021 			    pkt->src_port == q->id.dst_port &&
1022 			    pkt->dst_port == q->id.src_port) {
1023 				dir = MATCH_REVERSE;
1024 				break;
1025 			}
1026 		}
1027 next:
1028 		prev = q;
1029 		q = q->next;
1030 	}
1031 	if (q == NULL)
1032 		goto done; /* q = NULL, not found */
1033 
1034 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1035 		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1036 
1037 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1038 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1039 
1040 		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1041 		switch (q->state) {
1042 		case TH_SYN:				/* opening */
1043 			q->expire = time_second + dyn_syn_lifetime;
1044 			break;
1045 
1046 		case BOTH_SYN:			/* move to established */
1047 		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1048 		case BOTH_SYN | (TH_FIN << 8) :
1049  			if (tcp) {
1050 				uint32_t ack = ntohl(tcp->th_ack);
1051 
1052 #define _SEQ_GE(a, b)	((int)(a) - (int)(b) >= 0)
1053 
1054 				if (dir == MATCH_FORWARD) {
1055 					if (q->ack_fwd == 0 ||
1056 					    _SEQ_GE(ack, q->ack_fwd))
1057 						q->ack_fwd = ack;
1058 					else /* ignore out-of-sequence */
1059 						break;
1060 				} else {
1061 					if (q->ack_rev == 0 ||
1062 					    _SEQ_GE(ack, q->ack_rev))
1063 						q->ack_rev = ack;
1064 					else /* ignore out-of-sequence */
1065 						break;
1066 				}
1067 #undef _SEQ_GE
1068 			}
1069 			q->expire = time_second + dyn_ack_lifetime;
1070 			break;
1071 
1072 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1073 			KKASSERT(dyn_fin_lifetime < dyn_keepalive_period);
1074 			q->expire = time_second + dyn_fin_lifetime;
1075 			break;
1076 
1077 		default:
1078 #if 0
1079 			/*
1080 			 * reset or some invalid combination, but can also
1081 			 * occur if we use keep-state the wrong way.
1082 			 */
1083 			if ((q->state & ((TH_RST << 8) | TH_RST)) == 0)
1084 				kprintf("invalid state: 0x%x\n", q->state);
1085 #endif
1086 			KKASSERT(dyn_rst_lifetime < dyn_keepalive_period);
1087 			q->expire = time_second + dyn_rst_lifetime;
1088 			break;
1089 		}
1090 	} else if (pkt->proto == IPPROTO_UDP) {
1091 		q->expire = time_second + dyn_udp_lifetime;
1092 	} else {
1093 		/* other protocols */
1094 		q->expire = time_second + dyn_short_lifetime;
1095 	}
1096 done:
1097 	if (match_direction)
1098 		*match_direction = dir;
1099 	return q;
1100 }
1101 
1102 static struct ip_fw *
1103 lookup_rule(struct ipfw_flow_id *pkt, int *match_direction, struct tcphdr *tcp,
1104 	    uint16_t len, int *deny)
1105 {
1106 	struct ip_fw *rule = NULL;
1107 	ipfw_dyn_rule *q;
1108 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1109 	uint32_t gen;
1110 
1111 	*deny = 0;
1112 	gen = ctx->ipfw_gen;
1113 
1114 	lockmgr(&dyn_lock, LK_SHARED);
1115 
1116 	if (ctx->ipfw_gen != gen) {
1117 		/*
1118 		 * Static rules had been change when we were waiting
1119 		 * for the dynamic hash table lock; deny this packet,
1120 		 * since it is _not_ known whether it is safe to keep
1121 		 * iterating the static rules.
1122 		 */
1123 		*deny = 1;
1124 		goto back;
1125 	}
1126 
1127 	q = lookup_dyn_rule(pkt, match_direction, tcp);
1128 	if (q == NULL) {
1129 		rule = NULL;
1130 	} else {
1131 		rule = q->stub->rule[mycpuid];
1132 		KKASSERT(rule->stub == q->stub && rule->cpuid == mycpuid);
1133 
1134 		/* XXX */
1135 		q->pcnt++;
1136 		q->bcnt += len;
1137 	}
1138 back:
1139 	lockmgr(&dyn_lock, LK_RELEASE);
1140 	return rule;
1141 }
1142 
1143 static void
1144 realloc_dynamic_table(void)
1145 {
1146 	ipfw_dyn_rule **old_dyn_v;
1147 	uint32_t old_curr_dyn_buckets;
1148 
1149 	KASSERT(dyn_buckets <= 65536 && (dyn_buckets & (dyn_buckets - 1)) == 0,
1150 		("invalid dyn_buckets %d\n", dyn_buckets));
1151 
1152 	/* Save the current buckets array for later error recovery */
1153 	old_dyn_v = ipfw_dyn_v;
1154 	old_curr_dyn_buckets = curr_dyn_buckets;
1155 
1156 	curr_dyn_buckets = dyn_buckets;
1157 	for (;;) {
1158 		ipfw_dyn_v = kmalloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1159 				     M_IPFW, M_NOWAIT | M_ZERO);
1160 		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1161 			break;
1162 
1163 		curr_dyn_buckets /= 2;
1164 		if (curr_dyn_buckets <= old_curr_dyn_buckets &&
1165 		    old_dyn_v != NULL) {
1166 			/*
1167 			 * Don't try allocating smaller buckets array, reuse
1168 			 * the old one, which alreay contains enough buckets
1169 			 */
1170 			break;
1171 		}
1172 	}
1173 
1174 	if (ipfw_dyn_v != NULL) {
1175 		if (old_dyn_v != NULL)
1176 			kfree(old_dyn_v, M_IPFW);
1177 	} else {
1178 		/* Allocation failed, restore old buckets array */
1179 		ipfw_dyn_v = old_dyn_v;
1180 		curr_dyn_buckets = old_curr_dyn_buckets;
1181 	}
1182 
1183 	if (ipfw_dyn_v != NULL)
1184 		++dyn_buckets_gen;
1185 }
1186 
1187 /**
1188  * Install state of type 'type' for a dynamic session.
1189  * The hash table contains two type of rules:
1190  * - regular rules (O_KEEP_STATE)
1191  * - rules for sessions with limited number of sess per user
1192  *   (O_LIMIT). When they are created, the parent is
1193  *   increased by 1, and decreased on delete. In this case,
1194  *   the third parameter is the parent rule and not the chain.
1195  * - "parent" rules for the above (O_LIMIT_PARENT).
1196  */
1197 static ipfw_dyn_rule *
1198 add_dyn_rule(struct ipfw_flow_id *id, uint8_t dyn_type, struct ip_fw *rule)
1199 {
1200 	ipfw_dyn_rule *r;
1201 	int i;
1202 
1203 	if (ipfw_dyn_v == NULL ||
1204 	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1205 		realloc_dynamic_table();
1206 		if (ipfw_dyn_v == NULL)
1207 			return NULL; /* failed ! */
1208 	}
1209 	i = hash_packet(id);
1210 
1211 	r = kmalloc(sizeof(*r), M_IPFW, M_NOWAIT | M_ZERO);
1212 	if (r == NULL) {
1213 		kprintf ("sorry cannot allocate state\n");
1214 		return NULL;
1215 	}
1216 
1217 	/* increase refcount on parent, and set pointer */
1218 	if (dyn_type == O_LIMIT) {
1219 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1220 
1221 		if (parent->dyn_type != O_LIMIT_PARENT)
1222 			panic("invalid parent");
1223 		parent->count++;
1224 		r->parent = parent;
1225 		rule = parent->stub->rule[mycpuid];
1226 		KKASSERT(rule->stub == parent->stub);
1227 	}
1228 	KKASSERT(rule->cpuid == mycpuid && rule->stub != NULL);
1229 
1230 	r->id = *id;
1231 	r->expire = time_second + dyn_syn_lifetime;
1232 	r->stub = rule->stub;
1233 	r->dyn_type = dyn_type;
1234 	r->pcnt = r->bcnt = 0;
1235 	r->count = 0;
1236 
1237 	r->bucket = i;
1238 	r->next = ipfw_dyn_v[i];
1239 	ipfw_dyn_v[i] = r;
1240 	dyn_count++;
1241 	dyn_buckets_gen++;
1242 	DPRINTF("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1243 		dyn_type,
1244 		r->id.src_ip, r->id.src_port,
1245 		r->id.dst_ip, r->id.dst_port, dyn_count);
1246 	return r;
1247 }
1248 
1249 /**
1250  * lookup dynamic parent rule using pkt and rule as search keys.
1251  * If the lookup fails, then install one.
1252  */
1253 static ipfw_dyn_rule *
1254 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1255 {
1256 	ipfw_dyn_rule *q;
1257 	int i;
1258 
1259 	if (ipfw_dyn_v) {
1260 		i = hash_packet(pkt);
1261 		for (q = ipfw_dyn_v[i]; q != NULL; q = q->next) {
1262 			if (q->dyn_type == O_LIMIT_PARENT &&
1263 			    rule->stub == q->stub &&
1264 			    pkt->proto == q->id.proto &&
1265 			    pkt->src_ip == q->id.src_ip &&
1266 			    pkt->dst_ip == q->id.dst_ip &&
1267 			    pkt->src_port == q->id.src_port &&
1268 			    pkt->dst_port == q->id.dst_port) {
1269 				q->expire = time_second + dyn_short_lifetime;
1270 				DPRINTF("lookup_dyn_parent found 0x%p\n", q);
1271 				return q;
1272 			}
1273 		}
1274 	}
1275 	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1276 }
1277 
1278 /**
1279  * Install dynamic state for rule type cmd->o.opcode
1280  *
1281  * Returns 1 (failure) if state is not installed because of errors or because
1282  * session limitations are enforced.
1283  */
1284 static int
1285 install_state_locked(struct ip_fw *rule, ipfw_insn_limit *cmd,
1286 		     struct ip_fw_args *args)
1287 {
1288 	static int last_log; /* XXX */
1289 
1290 	ipfw_dyn_rule *q;
1291 
1292 	DPRINTF("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
1293 		cmd->o.opcode,
1294 		args->f_id.src_ip, args->f_id.src_port,
1295 		args->f_id.dst_ip, args->f_id.dst_port);
1296 
1297 	q = lookup_dyn_rule(&args->f_id, NULL, NULL);
1298 	if (q != NULL) { /* should never occur */
1299 		if (last_log != time_second) {
1300 			last_log = time_second;
1301 			kprintf(" install_state: entry already present, done\n");
1302 		}
1303 		return 0;
1304 	}
1305 
1306 	if (dyn_count >= dyn_max) {
1307 		/*
1308 		 * Run out of slots, try to remove any expired rule.
1309 		 */
1310 		remove_dyn_rule_locked(NULL, (ipfw_dyn_rule *)1);
1311 		if (dyn_count >= dyn_max) {
1312 			if (last_log != time_second) {
1313 				last_log = time_second;
1314 				kprintf("install_state: "
1315 					"Too many dynamic rules\n");
1316 			}
1317 			return 1; /* cannot install, notify caller */
1318 		}
1319 	}
1320 
1321 	switch (cmd->o.opcode) {
1322 	case O_KEEP_STATE: /* bidir rule */
1323 		if (add_dyn_rule(&args->f_id, O_KEEP_STATE, rule) == NULL)
1324 			return 1;
1325 		break;
1326 
1327 	case O_LIMIT: /* limit number of sessions */
1328 		{
1329 			uint16_t limit_mask = cmd->limit_mask;
1330 			struct ipfw_flow_id id;
1331 			ipfw_dyn_rule *parent;
1332 
1333 			DPRINTF("installing dyn-limit rule %d\n",
1334 				cmd->conn_limit);
1335 
1336 			id.dst_ip = id.src_ip = 0;
1337 			id.dst_port = id.src_port = 0;
1338 			id.proto = args->f_id.proto;
1339 
1340 			if (limit_mask & DYN_SRC_ADDR)
1341 				id.src_ip = args->f_id.src_ip;
1342 			if (limit_mask & DYN_DST_ADDR)
1343 				id.dst_ip = args->f_id.dst_ip;
1344 			if (limit_mask & DYN_SRC_PORT)
1345 				id.src_port = args->f_id.src_port;
1346 			if (limit_mask & DYN_DST_PORT)
1347 				id.dst_port = args->f_id.dst_port;
1348 
1349 			parent = lookup_dyn_parent(&id, rule);
1350 			if (parent == NULL) {
1351 				kprintf("add parent failed\n");
1352 				return 1;
1353 			}
1354 
1355 			if (parent->count >= cmd->conn_limit) {
1356 				/*
1357 				 * See if we can remove some expired rule.
1358 				 */
1359 				remove_dyn_rule_locked(rule, parent);
1360 				if (parent->count >= cmd->conn_limit) {
1361 					if (fw_verbose &&
1362 					    last_log != time_second) {
1363 						last_log = time_second;
1364 						log(LOG_SECURITY | LOG_DEBUG,
1365 						    "drop session, "
1366 						    "too many entries\n");
1367 					}
1368 					return 1;
1369 				}
1370 			}
1371 			if (add_dyn_rule(&args->f_id, O_LIMIT,
1372 					 (struct ip_fw *)parent) == NULL)
1373 				return 1;
1374 		}
1375 		break;
1376 	default:
1377 		kprintf("unknown dynamic rule type %u\n", cmd->o.opcode);
1378 		return 1;
1379 	}
1380 	lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1381 	return 0;
1382 }
1383 
1384 static int
1385 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1386 	      struct ip_fw_args *args, int *deny)
1387 {
1388 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1389 	uint32_t gen;
1390 	int ret = 0;
1391 
1392 	*deny = 0;
1393 	gen = ctx->ipfw_gen;
1394 
1395 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
1396 	if (ctx->ipfw_gen != gen) {
1397 		/* See the comment in lookup_rule() */
1398 		*deny = 1;
1399 	} else {
1400 		ret = install_state_locked(rule, cmd, args);
1401 	}
1402 	lockmgr(&dyn_lock, LK_RELEASE);
1403 
1404 	return ret;
1405 }
1406 
1407 /*
1408  * Transmit a TCP packet, containing either a RST or a keepalive.
1409  * When flags & TH_RST, we are sending a RST packet, because of a
1410  * "reset" action matched the packet.
1411  * Otherwise we are sending a keepalive, and flags & TH_
1412  */
1413 static void
1414 send_pkt(struct ipfw_flow_id *id, uint32_t seq, uint32_t ack, int flags)
1415 {
1416 	struct mbuf *m;
1417 	struct ip *ip;
1418 	struct tcphdr *tcp;
1419 	struct route sro;	/* fake route */
1420 
1421 	MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1422 	if (m == NULL)
1423 		return;
1424 	m->m_pkthdr.rcvif = NULL;
1425 	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1426 	m->m_data += max_linkhdr;
1427 
1428 	ip = mtod(m, struct ip *);
1429 	bzero(ip, m->m_len);
1430 	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1431 	ip->ip_p = IPPROTO_TCP;
1432 	tcp->th_off = 5;
1433 
1434 	/*
1435 	 * Assume we are sending a RST (or a keepalive in the reverse
1436 	 * direction), swap src and destination addresses and ports.
1437 	 */
1438 	ip->ip_src.s_addr = htonl(id->dst_ip);
1439 	ip->ip_dst.s_addr = htonl(id->src_ip);
1440 	tcp->th_sport = htons(id->dst_port);
1441 	tcp->th_dport = htons(id->src_port);
1442 	if (flags & TH_RST) {	/* we are sending a RST */
1443 		if (flags & TH_ACK) {
1444 			tcp->th_seq = htonl(ack);
1445 			tcp->th_ack = htonl(0);
1446 			tcp->th_flags = TH_RST;
1447 		} else {
1448 			if (flags & TH_SYN)
1449 				seq++;
1450 			tcp->th_seq = htonl(0);
1451 			tcp->th_ack = htonl(seq);
1452 			tcp->th_flags = TH_RST | TH_ACK;
1453 		}
1454 	} else {
1455 		/*
1456 		 * We are sending a keepalive. flags & TH_SYN determines
1457 		 * the direction, forward if set, reverse if clear.
1458 		 * NOTE: seq and ack are always assumed to be correct
1459 		 * as set by the caller. This may be confusing...
1460 		 */
1461 		if (flags & TH_SYN) {
1462 			/*
1463 			 * we have to rewrite the correct addresses!
1464 			 */
1465 			ip->ip_dst.s_addr = htonl(id->dst_ip);
1466 			ip->ip_src.s_addr = htonl(id->src_ip);
1467 			tcp->th_dport = htons(id->dst_port);
1468 			tcp->th_sport = htons(id->src_port);
1469 		}
1470 		tcp->th_seq = htonl(seq);
1471 		tcp->th_ack = htonl(ack);
1472 		tcp->th_flags = TH_ACK;
1473 	}
1474 
1475 	/*
1476 	 * set ip_len to the payload size so we can compute
1477 	 * the tcp checksum on the pseudoheader
1478 	 * XXX check this, could save a couple of words ?
1479 	 */
1480 	ip->ip_len = htons(sizeof(struct tcphdr));
1481 	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1482 
1483 	/*
1484 	 * now fill fields left out earlier
1485 	 */
1486 	ip->ip_ttl = ip_defttl;
1487 	ip->ip_len = m->m_pkthdr.len;
1488 
1489 	bzero(&sro, sizeof(sro));
1490 	ip_rtaddr(ip->ip_dst, &sro);
1491 
1492 	m->m_pkthdr.fw_flags |= IPFW_MBUF_GENERATED;
1493 	ip_output(m, NULL, &sro, 0, NULL, NULL);
1494 	if (sro.ro_rt)
1495 		RTFREE(sro.ro_rt);
1496 }
1497 
1498 /*
1499  * sends a reject message, consuming the mbuf passed as an argument.
1500  */
1501 static void
1502 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1503 {
1504 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1505 		/* We need the IP header in host order for icmp_error(). */
1506 		if (args->eh != NULL) {
1507 			struct ip *ip = mtod(args->m, struct ip *);
1508 
1509 			ip->ip_len = ntohs(ip->ip_len);
1510 			ip->ip_off = ntohs(ip->ip_off);
1511 		}
1512 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1513 	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1514 		struct tcphdr *const tcp =
1515 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1516 
1517 		if ((tcp->th_flags & TH_RST) == 0) {
1518 			send_pkt(&args->f_id, ntohl(tcp->th_seq),
1519 				 ntohl(tcp->th_ack), tcp->th_flags | TH_RST);
1520 		}
1521 		m_freem(args->m);
1522 	} else {
1523 		m_freem(args->m);
1524 	}
1525 	args->m = NULL;
1526 }
1527 
1528 /**
1529  *
1530  * Given an ip_fw *, lookup_next_rule will return a pointer
1531  * to the next rule, which can be either the jump
1532  * target (for skipto instructions) or the next one in the list (in
1533  * all other cases including a missing jump target).
1534  * The result is also written in the "next_rule" field of the rule.
1535  * Backward jumps are not allowed, so start looking from the next
1536  * rule...
1537  *
1538  * This never returns NULL -- in case we do not have an exact match,
1539  * the next rule is returned. When the ruleset is changed,
1540  * pointers are flushed so we are always correct.
1541  */
1542 
1543 static struct ip_fw *
1544 lookup_next_rule(struct ip_fw *me)
1545 {
1546 	struct ip_fw *rule = NULL;
1547 	ipfw_insn *cmd;
1548 
1549 	/* look for action, in case it is a skipto */
1550 	cmd = ACTION_PTR(me);
1551 	if (cmd->opcode == O_LOG)
1552 		cmd += F_LEN(cmd);
1553 	if (cmd->opcode == O_SKIPTO) {
1554 		for (rule = me->next; rule; rule = rule->next) {
1555 			if (rule->rulenum >= cmd->arg1)
1556 				break;
1557 		}
1558 	}
1559 	if (rule == NULL)			/* failure or not a skipto */
1560 		rule = me->next;
1561 	me->next_rule = rule;
1562 	return rule;
1563 }
1564 
1565 static int
1566 _ipfw_match_uid(const struct ipfw_flow_id *fid, struct ifnet *oif,
1567 		enum ipfw_opcodes opcode, uid_t uid)
1568 {
1569 	struct in_addr src_ip, dst_ip;
1570 	struct inpcbinfo *pi;
1571 	int wildcard;
1572 	struct inpcb *pcb;
1573 
1574 	if (fid->proto == IPPROTO_TCP) {
1575 		wildcard = 0;
1576 		pi = &tcbinfo[mycpuid];
1577 	} else if (fid->proto == IPPROTO_UDP) {
1578 		wildcard = 1;
1579 		pi = &udbinfo;
1580 	} else {
1581 		return 0;
1582 	}
1583 
1584 	/*
1585 	 * Values in 'fid' are in host byte order
1586 	 */
1587 	dst_ip.s_addr = htonl(fid->dst_ip);
1588 	src_ip.s_addr = htonl(fid->src_ip);
1589 	if (oif) {
1590 		pcb = in_pcblookup_hash(pi,
1591 			dst_ip, htons(fid->dst_port),
1592 			src_ip, htons(fid->src_port),
1593 			wildcard, oif);
1594 	} else {
1595 		pcb = in_pcblookup_hash(pi,
1596 			src_ip, htons(fid->src_port),
1597 			dst_ip, htons(fid->dst_port),
1598 			wildcard, NULL);
1599 	}
1600 	if (pcb == NULL || pcb->inp_socket == NULL)
1601 		return 0;
1602 
1603 	if (opcode == O_UID) {
1604 #define socheckuid(a,b)	((a)->so_cred->cr_uid != (b))
1605 		return !socheckuid(pcb->inp_socket, uid);
1606 #undef socheckuid
1607 	} else  {
1608 		return groupmember(uid, pcb->inp_socket->so_cred);
1609 	}
1610 }
1611 
1612 static int
1613 ipfw_match_uid(const struct ipfw_flow_id *fid, struct ifnet *oif,
1614 	       enum ipfw_opcodes opcode, uid_t uid, int *deny)
1615 {
1616 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1617 	uint32_t gen;
1618 	int match = 0;
1619 
1620 	*deny = 0;
1621 	gen = ctx->ipfw_gen;
1622 
1623 	get_mplock();
1624 	if (gen != ctx->ipfw_gen) {
1625 		/* See the comment in lookup_rule() */
1626 		*deny = 1;
1627 	} else {
1628 		match = _ipfw_match_uid(fid, oif, opcode, uid);
1629 	}
1630 	rel_mplock();
1631 	return match;
1632 }
1633 
1634 /*
1635  * The main check routine for the firewall.
1636  *
1637  * All arguments are in args so we can modify them and return them
1638  * back to the caller.
1639  *
1640  * Parameters:
1641  *
1642  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1643  *		Starts with the IP header.
1644  *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1645  *	args->oif	Outgoing interface, or NULL if packet is incoming.
1646  *		The incoming interface is in the mbuf. (in)
1647  *
1648  *	args->rule	Pointer to the last matching rule (in/out)
1649  *	args->f_id	Addresses grabbed from the packet (out)
1650  *
1651  * Return value:
1652  *
1653  *	If the packet was denied/rejected and has been dropped, *m is equal
1654  *	to NULL upon return.
1655  *
1656  *	IP_FW_DENY	the packet must be dropped.
1657  *	IP_FW_PASS	The packet is to be accepted and routed normally.
1658  *	IP_FW_DIVERT	Divert the packet to port (args->cookie)
1659  *	IP_FW_TEE	Tee the packet to port (args->cookie)
1660  *	IP_FW_DUMMYNET	Send the packet to pipe/queue (args->cookie)
1661  */
1662 
1663 static int
1664 ipfw_chk(struct ip_fw_args *args)
1665 {
1666 	/*
1667 	 * Local variables hold state during the processing of a packet.
1668 	 *
1669 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1670 	 * are some assumption on the values of the variables, which
1671 	 * are documented here. Should you change them, please check
1672 	 * the implementation of the various instructions to make sure
1673 	 * that they still work.
1674 	 *
1675 	 * args->eh	The MAC header. It is non-null for a layer2
1676 	 *	packet, it is NULL for a layer-3 packet.
1677 	 *
1678 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1679 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1680 	 *	consumes the packet because it calls send_reject().
1681 	 *	XXX This has to change, so that ipfw_chk() never modifies
1682 	 *	or consumes the buffer.
1683 	 * ip	is simply an alias of the value of m, and it is kept
1684 	 *	in sync with it (the packet is	supposed to start with
1685 	 *	the ip header).
1686 	 */
1687 	struct mbuf *m = args->m;
1688 	struct ip *ip = mtod(m, struct ip *);
1689 
1690 	/*
1691 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1692 	 *	inbound path (ether_input, ip_input).
1693 	 *	If non-NULL, ipfw_chk has been called on the outbound path
1694 	 *	(ether_output, ip_output).
1695 	 */
1696 	struct ifnet *oif = args->oif;
1697 
1698 	struct ip_fw *f = NULL;		/* matching rule */
1699 	int retval = IP_FW_PASS;
1700 	struct m_tag *mtag;
1701 	struct divert_info *divinfo;
1702 
1703 	/*
1704 	 * hlen	The length of the IPv4 header.
1705 	 *	hlen >0 means we have an IPv4 packet.
1706 	 */
1707 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1708 
1709 	/*
1710 	 * offset	The offset of a fragment. offset != 0 means that
1711 	 *	we have a fragment at this offset of an IPv4 packet.
1712 	 *	offset == 0 means that (if this is an IPv4 packet)
1713 	 *	this is the first or only fragment.
1714 	 */
1715 	u_short offset = 0;
1716 
1717 	/*
1718 	 * Local copies of addresses. They are only valid if we have
1719 	 * an IP packet.
1720 	 *
1721 	 * proto	The protocol. Set to 0 for non-ip packets,
1722 	 *	or to the protocol read from the packet otherwise.
1723 	 *	proto != 0 means that we have an IPv4 packet.
1724 	 *
1725 	 * src_port, dst_port	port numbers, in HOST format. Only
1726 	 *	valid for TCP and UDP packets.
1727 	 *
1728 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1729 	 *	Only valid for IPv4 packets.
1730 	 */
1731 	uint8_t proto;
1732 	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1733 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1734 	uint16_t ip_len = 0;
1735 
1736 	/*
1737 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1738 	 * 	MATCH_NONE when checked and not matched (dyn_f = NULL),
1739 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (dyn_f != NULL)
1740 	 */
1741 	int dyn_dir = MATCH_UNKNOWN;
1742 	struct ip_fw *dyn_f = NULL;
1743 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1744 
1745 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_GENERATED)
1746 		return IP_FW_PASS;	/* accept */
1747 
1748 	if (args->eh == NULL ||		/* layer 3 packet */
1749 	    (m->m_pkthdr.len >= sizeof(struct ip) &&
1750 	     ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1751 		hlen = ip->ip_hl << 2;
1752 
1753 	/*
1754 	 * Collect parameters into local variables for faster matching.
1755 	 */
1756 	if (hlen == 0) {	/* do not grab addresses for non-ip pkts */
1757 		proto = args->f_id.proto = 0;	/* mark f_id invalid */
1758 		goto after_ip_checks;
1759 	}
1760 
1761 	proto = args->f_id.proto = ip->ip_p;
1762 	src_ip = ip->ip_src;
1763 	dst_ip = ip->ip_dst;
1764 	if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1765 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1766 		ip_len = ntohs(ip->ip_len);
1767 	} else {
1768 		offset = ip->ip_off & IP_OFFMASK;
1769 		ip_len = ip->ip_len;
1770 	}
1771 
1772 #define PULLUP_TO(len)				\
1773 do {						\
1774 	if (m->m_len < (len)) {			\
1775 		args->m = m = m_pullup(m, (len));\
1776 		if (m == NULL)			\
1777 			goto pullup_failed;	\
1778 		ip = mtod(m, struct ip *);	\
1779 	}					\
1780 } while (0)
1781 
1782 	if (offset == 0) {
1783 		switch (proto) {
1784 		case IPPROTO_TCP:
1785 			{
1786 				struct tcphdr *tcp;
1787 
1788 				PULLUP_TO(hlen + sizeof(struct tcphdr));
1789 				tcp = L3HDR(struct tcphdr, ip);
1790 				dst_port = tcp->th_dport;
1791 				src_port = tcp->th_sport;
1792 				args->f_id.flags = tcp->th_flags;
1793 			}
1794 			break;
1795 
1796 		case IPPROTO_UDP:
1797 			{
1798 				struct udphdr *udp;
1799 
1800 				PULLUP_TO(hlen + sizeof(struct udphdr));
1801 				udp = L3HDR(struct udphdr, ip);
1802 				dst_port = udp->uh_dport;
1803 				src_port = udp->uh_sport;
1804 			}
1805 			break;
1806 
1807 		case IPPROTO_ICMP:
1808 			PULLUP_TO(hlen + 4);	/* type, code and checksum. */
1809 			args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1810 			break;
1811 
1812 		default:
1813 			break;
1814 		}
1815 	}
1816 
1817 #undef PULLUP_TO
1818 
1819 	args->f_id.src_ip = ntohl(src_ip.s_addr);
1820 	args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1821 	args->f_id.src_port = src_port = ntohs(src_port);
1822 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1823 
1824 after_ip_checks:
1825 	if (args->rule) {
1826 		/*
1827 		 * Packet has already been tagged. Look for the next rule
1828 		 * to restart processing.
1829 		 *
1830 		 * If fw_one_pass != 0 then just accept it.
1831 		 * XXX should not happen here, but optimized out in
1832 		 * the caller.
1833 		 */
1834 		if (fw_one_pass)
1835 			return IP_FW_PASS;
1836 
1837 		/* This rule is being/has been flushed */
1838 		if (ipfw_flushing)
1839 			return IP_FW_DENY;
1840 
1841 		KASSERT(args->rule->cpuid == mycpuid,
1842 			("rule used on cpu%d\n", mycpuid));
1843 
1844 		/* This rule was deleted */
1845 		if (args->rule->rule_flags & IPFW_RULE_F_INVALID)
1846 			return IP_FW_DENY;
1847 
1848 		f = args->rule->next_rule;
1849 		if (f == NULL)
1850 			f = lookup_next_rule(args->rule);
1851 	} else {
1852 		/*
1853 		 * Find the starting rule. It can be either the first
1854 		 * one, or the one after divert_rule if asked so.
1855 		 */
1856 		int skipto;
1857 
1858 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1859 		if (mtag != NULL) {
1860 			divinfo = m_tag_data(mtag);
1861 			skipto = divinfo->skipto;
1862 		} else {
1863 			skipto = 0;
1864 		}
1865 
1866 		f = ctx->ipfw_layer3_chain;
1867 		if (args->eh == NULL && skipto != 0) {
1868 			/* No skipto during rule flushing */
1869 			if (ipfw_flushing)
1870 				return IP_FW_DENY;
1871 
1872 			if (skipto >= IPFW_DEFAULT_RULE)
1873 				return IP_FW_DENY; /* invalid */
1874 
1875 			while (f && f->rulenum <= skipto)
1876 				f = f->next;
1877 			if (f == NULL)	/* drop packet */
1878 				return IP_FW_DENY;
1879 		} else if (ipfw_flushing) {
1880 			/* Rules are being flushed; skip to default rule */
1881 			f = ctx->ipfw_default_rule;
1882 		}
1883 	}
1884 	if ((mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
1885 		m_tag_delete(m, mtag);
1886 
1887 	/*
1888 	 * Now scan the rules, and parse microinstructions for each rule.
1889 	 */
1890 	for (; f; f = f->next) {
1891 		int l, cmdlen;
1892 		ipfw_insn *cmd;
1893 		int skip_or; /* skip rest of OR block */
1894 
1895 again:
1896 		if (ctx->ipfw_set_disable & (1 << f->set))
1897 			continue;
1898 
1899 		skip_or = 0;
1900 		for (l = f->cmd_len, cmd = f->cmd; l > 0;
1901 		     l -= cmdlen, cmd += cmdlen) {
1902 			int match, deny;
1903 
1904 			/*
1905 			 * check_body is a jump target used when we find a
1906 			 * CHECK_STATE, and need to jump to the body of
1907 			 * the target rule.
1908 			 */
1909 
1910 check_body:
1911 			cmdlen = F_LEN(cmd);
1912 			/*
1913 			 * An OR block (insn_1 || .. || insn_n) has the
1914 			 * F_OR bit set in all but the last instruction.
1915 			 * The first match will set "skip_or", and cause
1916 			 * the following instructions to be skipped until
1917 			 * past the one with the F_OR bit clear.
1918 			 */
1919 			if (skip_or) {		/* skip this instruction */
1920 				if ((cmd->len & F_OR) == 0)
1921 					skip_or = 0;	/* next one is good */
1922 				continue;
1923 			}
1924 			match = 0; /* set to 1 if we succeed */
1925 
1926 			switch (cmd->opcode) {
1927 			/*
1928 			 * The first set of opcodes compares the packet's
1929 			 * fields with some pattern, setting 'match' if a
1930 			 * match is found. At the end of the loop there is
1931 			 * logic to deal with F_NOT and F_OR flags associated
1932 			 * with the opcode.
1933 			 */
1934 			case O_NOP:
1935 				match = 1;
1936 				break;
1937 
1938 			case O_FORWARD_MAC:
1939 				kprintf("ipfw: opcode %d unimplemented\n",
1940 					cmd->opcode);
1941 				break;
1942 
1943 			case O_GID:
1944 			case O_UID:
1945 				/*
1946 				 * We only check offset == 0 && proto != 0,
1947 				 * as this ensures that we have an IPv4
1948 				 * packet with the ports info.
1949 				 */
1950 				if (offset!=0)
1951 					break;
1952 
1953 				match = ipfw_match_uid(&args->f_id, oif,
1954 					cmd->opcode,
1955 					(uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1956 					&deny);
1957 				if (deny)
1958 					return IP_FW_DENY;
1959 				break;
1960 
1961 			case O_RECV:
1962 				match = iface_match(m->m_pkthdr.rcvif,
1963 				    (ipfw_insn_if *)cmd);
1964 				break;
1965 
1966 			case O_XMIT:
1967 				match = iface_match(oif, (ipfw_insn_if *)cmd);
1968 				break;
1969 
1970 			case O_VIA:
1971 				match = iface_match(oif ? oif :
1972 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1973 				break;
1974 
1975 			case O_MACADDR2:
1976 				if (args->eh != NULL) {	/* have MAC header */
1977 					uint32_t *want = (uint32_t *)
1978 						((ipfw_insn_mac *)cmd)->addr;
1979 					uint32_t *mask = (uint32_t *)
1980 						((ipfw_insn_mac *)cmd)->mask;
1981 					uint32_t *hdr = (uint32_t *)args->eh;
1982 
1983 					match =
1984 					(want[0] == (hdr[0] & mask[0]) &&
1985 					 want[1] == (hdr[1] & mask[1]) &&
1986 					 want[2] == (hdr[2] & mask[2]));
1987 				}
1988 				break;
1989 
1990 			case O_MAC_TYPE:
1991 				if (args->eh != NULL) {
1992 					uint16_t t =
1993 					    ntohs(args->eh->ether_type);
1994 					uint16_t *p =
1995 					    ((ipfw_insn_u16 *)cmd)->ports;
1996 					int i;
1997 
1998 					/* Special vlan handling */
1999 					if (m->m_flags & M_VLANTAG)
2000 						t = ETHERTYPE_VLAN;
2001 
2002 					for (i = cmdlen - 1; !match && i > 0;
2003 					     i--, p += 2) {
2004 						match =
2005 						(t >= p[0] && t <= p[1]);
2006 					}
2007 				}
2008 				break;
2009 
2010 			case O_FRAG:
2011 				match = (hlen > 0 && offset != 0);
2012 				break;
2013 
2014 			case O_IN:	/* "out" is "not in" */
2015 				match = (oif == NULL);
2016 				break;
2017 
2018 			case O_LAYER2:
2019 				match = (args->eh != NULL);
2020 				break;
2021 
2022 			case O_PROTO:
2023 				/*
2024 				 * We do not allow an arg of 0 so the
2025 				 * check of "proto" only suffices.
2026 				 */
2027 				match = (proto == cmd->arg1);
2028 				break;
2029 
2030 			case O_IP_SRC:
2031 				match = (hlen > 0 &&
2032 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2033 				    src_ip.s_addr);
2034 				break;
2035 
2036 			case O_IP_SRC_MASK:
2037 				match = (hlen > 0 &&
2038 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2039 				     (src_ip.s_addr &
2040 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
2041 				break;
2042 
2043 			case O_IP_SRC_ME:
2044 				if (hlen > 0) {
2045 					struct ifnet *tif;
2046 
2047 					tif = INADDR_TO_IFP(&src_ip);
2048 					match = (tif != NULL);
2049 				}
2050 				break;
2051 
2052 			case O_IP_DST_SET:
2053 			case O_IP_SRC_SET:
2054 				if (hlen > 0) {
2055 					uint32_t *d = (uint32_t *)(cmd + 1);
2056 					uint32_t addr =
2057 					    cmd->opcode == O_IP_DST_SET ?
2058 						args->f_id.dst_ip :
2059 						args->f_id.src_ip;
2060 
2061 					if (addr < d[0])
2062 						break;
2063 					addr -= d[0]; /* subtract base */
2064 					match =
2065 					(addr < cmd->arg1) &&
2066 					 (d[1 + (addr >> 5)] &
2067 					  (1 << (addr & 0x1f)));
2068 				}
2069 				break;
2070 
2071 			case O_IP_DST:
2072 				match = (hlen > 0 &&
2073 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2074 				    dst_ip.s_addr);
2075 				break;
2076 
2077 			case O_IP_DST_MASK:
2078 				match = (hlen > 0) &&
2079 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2080 				     (dst_ip.s_addr &
2081 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
2082 				break;
2083 
2084 			case O_IP_DST_ME:
2085 				if (hlen > 0) {
2086 					struct ifnet *tif;
2087 
2088 					tif = INADDR_TO_IFP(&dst_ip);
2089 					match = (tif != NULL);
2090 				}
2091 				break;
2092 
2093 			case O_IP_SRCPORT:
2094 			case O_IP_DSTPORT:
2095 				/*
2096 				 * offset == 0 && proto != 0 is enough
2097 				 * to guarantee that we have an IPv4
2098 				 * packet with port info.
2099 				 */
2100 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2101 				    && offset == 0) {
2102 					uint16_t x =
2103 					    (cmd->opcode == O_IP_SRCPORT) ?
2104 						src_port : dst_port ;
2105 					uint16_t *p =
2106 					    ((ipfw_insn_u16 *)cmd)->ports;
2107 					int i;
2108 
2109 					for (i = cmdlen - 1; !match && i > 0;
2110 					     i--, p += 2) {
2111 						match =
2112 						(x >= p[0] && x <= p[1]);
2113 					}
2114 				}
2115 				break;
2116 
2117 			case O_ICMPTYPE:
2118 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2119 				    icmptype_match(ip, (ipfw_insn_u32 *)cmd));
2120 				break;
2121 
2122 			case O_IPOPT:
2123 				match = (hlen > 0 && ipopts_match(ip, cmd));
2124 				break;
2125 
2126 			case O_IPVER:
2127 				match = (hlen > 0 && cmd->arg1 == ip->ip_v);
2128 				break;
2129 
2130 			case O_IPTTL:
2131 				match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
2132 				break;
2133 
2134 			case O_IPID:
2135 				match = (hlen > 0 &&
2136 				    cmd->arg1 == ntohs(ip->ip_id));
2137 				break;
2138 
2139 			case O_IPLEN:
2140 				match = (hlen > 0 && cmd->arg1 == ip_len);
2141 				break;
2142 
2143 			case O_IPPRECEDENCE:
2144 				match = (hlen > 0 &&
2145 				    (cmd->arg1 == (ip->ip_tos & 0xe0)));
2146 				break;
2147 
2148 			case O_IPTOS:
2149 				match = (hlen > 0 &&
2150 				    flags_match(cmd, ip->ip_tos));
2151 				break;
2152 
2153 			case O_TCPFLAGS:
2154 				match = (proto == IPPROTO_TCP && offset == 0 &&
2155 				    flags_match(cmd,
2156 					L3HDR(struct tcphdr,ip)->th_flags));
2157 				break;
2158 
2159 			case O_TCPOPTS:
2160 				match = (proto == IPPROTO_TCP && offset == 0 &&
2161 				    tcpopts_match(ip, cmd));
2162 				break;
2163 
2164 			case O_TCPSEQ:
2165 				match = (proto == IPPROTO_TCP && offset == 0 &&
2166 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2167 					L3HDR(struct tcphdr,ip)->th_seq);
2168 				break;
2169 
2170 			case O_TCPACK:
2171 				match = (proto == IPPROTO_TCP && offset == 0 &&
2172 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2173 					L3HDR(struct tcphdr,ip)->th_ack);
2174 				break;
2175 
2176 			case O_TCPWIN:
2177 				match = (proto == IPPROTO_TCP && offset == 0 &&
2178 				    cmd->arg1 ==
2179 					L3HDR(struct tcphdr,ip)->th_win);
2180 				break;
2181 
2182 			case O_ESTAB:
2183 				/* reject packets which have SYN only */
2184 				/* XXX should i also check for TH_ACK ? */
2185 				match = (proto == IPPROTO_TCP && offset == 0 &&
2186 				    (L3HDR(struct tcphdr,ip)->th_flags &
2187 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2188 				break;
2189 
2190 			case O_LOG:
2191 				if (fw_verbose)
2192 					ipfw_log(f, hlen, args->eh, m, oif);
2193 				match = 1;
2194 				break;
2195 
2196 			case O_PROB:
2197 				match = (krandom() <
2198 					((ipfw_insn_u32 *)cmd)->d[0]);
2199 				break;
2200 
2201 			/*
2202 			 * The second set of opcodes represents 'actions',
2203 			 * i.e. the terminal part of a rule once the packet
2204 			 * matches all previous patterns.
2205 			 * Typically there is only one action for each rule,
2206 			 * and the opcode is stored at the end of the rule
2207 			 * (but there are exceptions -- see below).
2208 			 *
2209 			 * In general, here we set retval and terminate the
2210 			 * outer loop (would be a 'break 3' in some language,
2211 			 * but we need to do a 'goto done').
2212 			 *
2213 			 * Exceptions:
2214 			 * O_COUNT and O_SKIPTO actions:
2215 			 *   instead of terminating, we jump to the next rule
2216 			 *   ('goto next_rule', equivalent to a 'break 2'),
2217 			 *   or to the SKIPTO target ('goto again' after
2218 			 *   having set f, cmd and l), respectively.
2219 			 *
2220 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2221 			 *   not real 'actions', and are stored right
2222 			 *   before the 'action' part of the rule.
2223 			 *   These opcodes try to install an entry in the
2224 			 *   state tables; if successful, we continue with
2225 			 *   the next opcode (match=1; break;), otherwise
2226 			 *   the packet must be dropped ('goto done' after
2227 			 *   setting retval).  If static rules are changed
2228 			 *   during the state installation, the packet will
2229 			 *   be dropped and rule's stats will not beupdated
2230 			 *   ('return IP_FW_DENY').
2231 			 *
2232 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2233 			 *   cause a lookup of the state table, and a jump
2234 			 *   to the 'action' part of the parent rule
2235 			 *   ('goto check_body') if an entry is found, or
2236 			 *   (CHECK_STATE only) a jump to the next rule if
2237 			 *   the entry is not found ('goto next_rule').
2238 			 *   The result of the lookup is cached to make
2239 			 *   further instances of these opcodes are
2240 			 *   effectively NOPs.  If static rules are changed
2241 			 *   during the state looking up, the packet will
2242 			 *   be dropped and rule's stats will not be updated
2243 			 *   ('return IP_FW_DENY').
2244 			 */
2245 			case O_LIMIT:
2246 			case O_KEEP_STATE:
2247 				if (!(f->rule_flags & IPFW_RULE_F_STATE)) {
2248 					kprintf("%s rule (%d) is not ready "
2249 						"on cpu%d\n",
2250 						cmd->opcode == O_LIMIT ?
2251 						"limit" : "keep state",
2252 						f->rulenum, f->cpuid);
2253 					goto next_rule;
2254 				}
2255 				if (install_state(f,
2256 				    (ipfw_insn_limit *)cmd, args, &deny)) {
2257 					if (deny)
2258 						return IP_FW_DENY;
2259 
2260 					retval = IP_FW_DENY;
2261 					goto done; /* error/limit violation */
2262 				}
2263 				if (deny)
2264 					return IP_FW_DENY;
2265 				match = 1;
2266 				break;
2267 
2268 			case O_PROBE_STATE:
2269 			case O_CHECK_STATE:
2270 				/*
2271 				 * dynamic rules are checked at the first
2272 				 * keep-state or check-state occurrence,
2273 				 * with the result being stored in dyn_dir.
2274 				 * The compiler introduces a PROBE_STATE
2275 				 * instruction for us when we have a
2276 				 * KEEP_STATE (because PROBE_STATE needs
2277 				 * to be run first).
2278 				 */
2279 				if (dyn_dir == MATCH_UNKNOWN) {
2280 					dyn_f = lookup_rule(&args->f_id,
2281 						&dyn_dir,
2282 						proto == IPPROTO_TCP ?
2283 						L3HDR(struct tcphdr, ip) : NULL,
2284 						ip_len, &deny);
2285 					if (deny)
2286 						return IP_FW_DENY;
2287 					if (dyn_f != NULL) {
2288 						/*
2289 						 * Found a rule from a dynamic
2290 						 * entry; jump to the 'action'
2291 						 * part of the rule.
2292 						 */
2293 						f = dyn_f;
2294 						cmd = ACTION_PTR(f);
2295 						l = f->cmd_len - f->act_ofs;
2296 						goto check_body;
2297 					}
2298 				}
2299 				/*
2300 				 * Dynamic entry not found. If CHECK_STATE,
2301 				 * skip to next rule, if PROBE_STATE just
2302 				 * ignore and continue with next opcode.
2303 				 */
2304 				if (cmd->opcode == O_CHECK_STATE)
2305 					goto next_rule;
2306 				else if (!(f->rule_flags & IPFW_RULE_F_STATE))
2307 					goto next_rule; /* not ready yet */
2308 				match = 1;
2309 				break;
2310 
2311 			case O_ACCEPT:
2312 				retval = IP_FW_PASS;	/* accept */
2313 				goto done;
2314 
2315 			case O_PIPE:
2316 			case O_QUEUE:
2317 				args->rule = f; /* report matching rule */
2318 				args->cookie = cmd->arg1;
2319 				retval = IP_FW_DUMMYNET;
2320 				goto done;
2321 
2322 			case O_DIVERT:
2323 			case O_TEE:
2324 				if (args->eh) /* not on layer 2 */
2325 					break;
2326 
2327 				mtag = m_tag_get(PACKET_TAG_IPFW_DIVERT,
2328 						 sizeof(*divinfo), MB_DONTWAIT);
2329 				if (mtag == NULL) {
2330 					retval = IP_FW_DENY;
2331 					goto done;
2332 				}
2333 				divinfo = m_tag_data(mtag);
2334 
2335 				divinfo->skipto = f->rulenum;
2336 				divinfo->port = cmd->arg1;
2337 				divinfo->tee = (cmd->opcode == O_TEE);
2338 				m_tag_prepend(m, mtag);
2339 
2340 				args->cookie = cmd->arg1;
2341 				retval = (cmd->opcode == O_DIVERT) ?
2342 					 IP_FW_DIVERT : IP_FW_TEE;
2343 				goto done;
2344 
2345 			case O_COUNT:
2346 			case O_SKIPTO:
2347 				f->pcnt++;	/* update stats */
2348 				f->bcnt += ip_len;
2349 				f->timestamp = time_second;
2350 				if (cmd->opcode == O_COUNT)
2351 					goto next_rule;
2352 				/* handle skipto */
2353 				if (f->next_rule == NULL)
2354 					lookup_next_rule(f);
2355 				f = f->next_rule;
2356 				goto again;
2357 
2358 			case O_REJECT:
2359 				/*
2360 				 * Drop the packet and send a reject notice
2361 				 * if the packet is not ICMP (or is an ICMP
2362 				 * query), and it is not multicast/broadcast.
2363 				 */
2364 				if (hlen > 0 &&
2365 				    (proto != IPPROTO_ICMP ||
2366 				     is_icmp_query(ip)) &&
2367 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2368 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2369 					/*
2370 					 * Update statistics before the possible
2371 					 * blocking 'send_reject'
2372 					 */
2373 					f->pcnt++;
2374 					f->bcnt += ip_len;
2375 					f->timestamp = time_second;
2376 
2377 					send_reject(args, cmd->arg1,
2378 					    offset,ip_len);
2379 					m = args->m;
2380 
2381 					/*
2382 					 * Return directly here, rule stats
2383 					 * have been updated above.
2384 					 */
2385 					return IP_FW_DENY;
2386 				}
2387 				/* FALLTHROUGH */
2388 			case O_DENY:
2389 				retval = IP_FW_DENY;
2390 				goto done;
2391 
2392 			case O_FORWARD_IP:
2393 				if (args->eh)	/* not valid on layer2 pkts */
2394 					break;
2395 				if (!dyn_f || dyn_dir == MATCH_FORWARD) {
2396 					struct sockaddr_in *sin;
2397 
2398 					mtag = m_tag_get(PACKET_TAG_IPFORWARD,
2399 					       sizeof(*sin), MB_DONTWAIT);
2400 					if (mtag == NULL) {
2401 						retval = IP_FW_DENY;
2402 						goto done;
2403 					}
2404 					sin = m_tag_data(mtag);
2405 
2406 					/* Structure copy */
2407 					*sin = ((ipfw_insn_sa *)cmd)->sa;
2408 
2409 					m_tag_prepend(m, mtag);
2410 					m->m_pkthdr.fw_flags |=
2411 						IPFORWARD_MBUF_TAGGED;
2412 				}
2413 				retval = IP_FW_PASS;
2414 				goto done;
2415 
2416 			default:
2417 				panic("-- unknown opcode %d\n", cmd->opcode);
2418 			} /* end of switch() on opcodes */
2419 
2420 			if (cmd->len & F_NOT)
2421 				match = !match;
2422 
2423 			if (match) {
2424 				if (cmd->len & F_OR)
2425 					skip_or = 1;
2426 			} else {
2427 				if (!(cmd->len & F_OR)) /* not an OR block, */
2428 					break;		/* try next rule    */
2429 			}
2430 
2431 		}	/* end of inner for, scan opcodes */
2432 
2433 next_rule:;		/* try next rule		*/
2434 
2435 	}		/* end of outer for, scan rules */
2436 	kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
2437 	return IP_FW_DENY;
2438 
2439 done:
2440 	/* Update statistics */
2441 	f->pcnt++;
2442 	f->bcnt += ip_len;
2443 	f->timestamp = time_second;
2444 	return retval;
2445 
2446 pullup_failed:
2447 	if (fw_verbose)
2448 		kprintf("pullup failed\n");
2449 	return IP_FW_DENY;
2450 }
2451 
2452 static void
2453 ipfw_dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
2454 {
2455 	struct m_tag *mtag;
2456 	struct dn_pkt *pkt;
2457 	ipfw_insn *cmd;
2458 	const struct ipfw_flow_id *id;
2459 	struct dn_flow_id *fid;
2460 
2461 	M_ASSERTPKTHDR(m);
2462 
2463 	mtag = m_tag_get(PACKET_TAG_DUMMYNET, sizeof(*pkt), MB_DONTWAIT);
2464 	if (mtag == NULL) {
2465 		m_freem(m);
2466 		return;
2467 	}
2468 	m_tag_prepend(m, mtag);
2469 
2470 	pkt = m_tag_data(mtag);
2471 	bzero(pkt, sizeof(*pkt));
2472 
2473 	cmd = fwa->rule->cmd + fwa->rule->act_ofs;
2474 	if (cmd->opcode == O_LOG)
2475 		cmd += F_LEN(cmd);
2476 	KASSERT(cmd->opcode == O_PIPE || cmd->opcode == O_QUEUE,
2477 		("Rule is not PIPE or QUEUE, opcode %d\n", cmd->opcode));
2478 
2479 	pkt->dn_m = m;
2480 	pkt->dn_flags = (dir & DN_FLAGS_DIR_MASK);
2481 	pkt->ifp = fwa->oif;
2482 	pkt->pipe_nr = pipe_nr;
2483 
2484 	pkt->cpuid = mycpuid;
2485 	pkt->msgport = curnetport;
2486 
2487 	id = &fwa->f_id;
2488 	fid = &pkt->id;
2489 	fid->fid_dst_ip = id->dst_ip;
2490 	fid->fid_src_ip = id->src_ip;
2491 	fid->fid_dst_port = id->dst_port;
2492 	fid->fid_src_port = id->src_port;
2493 	fid->fid_proto = id->proto;
2494 	fid->fid_flags = id->flags;
2495 
2496 	ipfw_ref_rule(fwa->rule);
2497 	pkt->dn_priv = fwa->rule;
2498 	pkt->dn_unref_priv = ipfw_unref_rule;
2499 
2500 	if (cmd->opcode == O_PIPE)
2501 		pkt->dn_flags |= DN_FLAGS_IS_PIPE;
2502 
2503 	m->m_pkthdr.fw_flags |= DUMMYNET_MBUF_TAGGED;
2504 }
2505 
2506 /*
2507  * When a rule is added/deleted, clear the next_rule pointers in all rules.
2508  * These will be reconstructed on the fly as packets are matched.
2509  * Must be called at splimp().
2510  */
2511 static void
2512 ipfw_flush_rule_ptrs(struct ipfw_context *ctx)
2513 {
2514 	struct ip_fw *rule;
2515 
2516 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next)
2517 		rule->next_rule = NULL;
2518 }
2519 
2520 static __inline void
2521 ipfw_inc_static_count(struct ip_fw *rule)
2522 {
2523 	/* Static rule's counts are updated only on CPU0 */
2524 	KKASSERT(mycpuid == 0);
2525 
2526 	static_count++;
2527 	static_ioc_len += IOC_RULESIZE(rule);
2528 }
2529 
2530 static __inline void
2531 ipfw_dec_static_count(struct ip_fw *rule)
2532 {
2533 	int l = IOC_RULESIZE(rule);
2534 
2535 	/* Static rule's counts are updated only on CPU0 */
2536 	KKASSERT(mycpuid == 0);
2537 
2538 	KASSERT(static_count > 0, ("invalid static count %u\n", static_count));
2539 	static_count--;
2540 
2541 	KASSERT(static_ioc_len >= l,
2542 		("invalid static len %u\n", static_ioc_len));
2543 	static_ioc_len -= l;
2544 }
2545 
2546 static void
2547 ipfw_link_sibling(struct netmsg_ipfw *fwmsg, struct ip_fw *rule)
2548 {
2549 	if (fwmsg->sibling != NULL) {
2550 		KKASSERT(mycpuid > 0 && fwmsg->sibling->cpuid == mycpuid - 1);
2551 		fwmsg->sibling->sibling = rule;
2552 	}
2553 	fwmsg->sibling = rule;
2554 }
2555 
2556 static struct ip_fw *
2557 ipfw_create_rule(const struct ipfw_ioc_rule *ioc_rule, struct ip_fw_stub *stub)
2558 {
2559 	struct ip_fw *rule;
2560 
2561 	rule = kmalloc(RULESIZE(ioc_rule), M_IPFW, M_WAITOK | M_ZERO);
2562 
2563 	rule->act_ofs = ioc_rule->act_ofs;
2564 	rule->cmd_len = ioc_rule->cmd_len;
2565 	rule->rulenum = ioc_rule->rulenum;
2566 	rule->set = ioc_rule->set;
2567 	rule->usr_flags = ioc_rule->usr_flags;
2568 
2569 	bcopy(ioc_rule->cmd, rule->cmd, rule->cmd_len * 4 /* XXX */);
2570 
2571 	rule->refcnt = 1;
2572 	rule->cpuid = mycpuid;
2573 
2574 	rule->stub = stub;
2575 	if (stub != NULL)
2576 		stub->rule[mycpuid] = rule;
2577 
2578 	return rule;
2579 }
2580 
2581 static void
2582 ipfw_add_rule_dispatch(struct netmsg *nmsg)
2583 {
2584 	struct netmsg_ipfw *fwmsg = (struct netmsg_ipfw *)nmsg;
2585 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2586 	struct ip_fw *rule;
2587 
2588 	rule = ipfw_create_rule(fwmsg->ioc_rule, fwmsg->stub);
2589 
2590 	/*
2591 	 * Bump generation after ipfw_create_rule(),
2592 	 * since this function is blocking
2593 	 */
2594 	ctx->ipfw_gen++;
2595 
2596 	/*
2597 	 * Insert rule into the pre-determined position
2598 	 */
2599 	if (fwmsg->prev_rule != NULL) {
2600 		struct ip_fw *prev, *next;
2601 
2602 		prev = fwmsg->prev_rule;
2603 		KKASSERT(prev->cpuid == mycpuid);
2604 
2605 		next = fwmsg->next_rule;
2606 		KKASSERT(next->cpuid == mycpuid);
2607 
2608 		rule->next = next;
2609 		prev->next = rule;
2610 
2611 		/*
2612 		 * Move to the position on the next CPU
2613 		 * before the msg is forwarded.
2614 		 */
2615 		fwmsg->prev_rule = prev->sibling;
2616 		fwmsg->next_rule = next->sibling;
2617 	} else {
2618 		KKASSERT(fwmsg->next_rule == NULL);
2619 		rule->next = ctx->ipfw_layer3_chain;
2620 		ctx->ipfw_layer3_chain = rule;
2621 	}
2622 
2623 	/* Link rule CPU sibling */
2624 	ipfw_link_sibling(fwmsg, rule);
2625 
2626 	ipfw_flush_rule_ptrs(ctx);
2627 
2628 	if (mycpuid == 0) {
2629 		/* Statistics only need to be updated once */
2630 		ipfw_inc_static_count(rule);
2631 
2632 		/* Return the rule on CPU0 */
2633 		nmsg->nm_lmsg.u.ms_resultp = rule;
2634 	}
2635 
2636 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2637 }
2638 
2639 static void
2640 ipfw_enable_state_dispatch(struct netmsg *nmsg)
2641 {
2642 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
2643 	struct ip_fw *rule = lmsg->u.ms_resultp;
2644 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2645 
2646 	ctx->ipfw_gen++;
2647 
2648 	KKASSERT(rule->cpuid == mycpuid);
2649 	KKASSERT(rule->stub != NULL && rule->stub->rule[mycpuid] == rule);
2650 	KKASSERT(!(rule->rule_flags & IPFW_RULE_F_STATE));
2651 	rule->rule_flags |= IPFW_RULE_F_STATE;
2652 	lmsg->u.ms_resultp = rule->sibling;
2653 
2654 	ifnet_forwardmsg(lmsg, mycpuid + 1);
2655 }
2656 
2657 /*
2658  * Add a new rule to the list.  Copy the rule into a malloc'ed area,
2659  * then possibly create a rule number and add the rule to the list.
2660  * Update the rule_number in the input struct so the caller knows
2661  * it as well.
2662  */
2663 static void
2664 ipfw_add_rule(struct ipfw_ioc_rule *ioc_rule, uint32_t rule_flags)
2665 {
2666 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2667 	struct netmsg_ipfw fwmsg;
2668 	struct netmsg *nmsg;
2669 	struct ip_fw *f, *prev, *rule;
2670 	struct ip_fw_stub *stub;
2671 
2672 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
2673 
2674 	/*
2675 	 * If rulenum is 0, find highest numbered rule before the
2676 	 * default rule, and add rule number incremental step.
2677 	 */
2678 	if (ioc_rule->rulenum == 0) {
2679 		int step = autoinc_step;
2680 
2681 		KKASSERT(step >= IPFW_AUTOINC_STEP_MIN &&
2682 			 step <= IPFW_AUTOINC_STEP_MAX);
2683 
2684 		/*
2685 		 * Locate the highest numbered rule before default
2686 		 */
2687 		for (f = ctx->ipfw_layer3_chain; f; f = f->next) {
2688 			if (f->rulenum == IPFW_DEFAULT_RULE)
2689 				break;
2690 			ioc_rule->rulenum = f->rulenum;
2691 		}
2692 		if (ioc_rule->rulenum < IPFW_DEFAULT_RULE - step)
2693 			ioc_rule->rulenum += step;
2694 	}
2695 	KASSERT(ioc_rule->rulenum != IPFW_DEFAULT_RULE &&
2696 		ioc_rule->rulenum != 0,
2697 		("invalid rule num %d\n", ioc_rule->rulenum));
2698 
2699 	/*
2700 	 * Now find the right place for the new rule in the sorted list.
2701 	 */
2702 	for (prev = NULL, f = ctx->ipfw_layer3_chain; f;
2703 	     prev = f, f = f->next) {
2704 		if (f->rulenum > ioc_rule->rulenum) {
2705 			/* Found the location */
2706 			break;
2707 		}
2708 	}
2709 	KASSERT(f != NULL, ("no default rule?!\n"));
2710 
2711 	if (rule_flags & IPFW_RULE_F_STATE) {
2712 		int size;
2713 
2714 		/*
2715 		 * If the new rule will create states, then allocate
2716 		 * a rule stub, which will be referenced by states
2717 		 * (dyn rules)
2718 		 */
2719 		size = sizeof(*stub) + ((ncpus - 1) * sizeof(struct ip_fw *));
2720 		stub = kmalloc(size, M_IPFW, M_WAITOK | M_ZERO);
2721 	} else {
2722 		stub = NULL;
2723 	}
2724 
2725 	/*
2726 	 * Duplicate the rule onto each CPU.
2727 	 * The rule duplicated on CPU0 will be returned.
2728 	 */
2729 	bzero(&fwmsg, sizeof(fwmsg));
2730 	nmsg = &fwmsg.nmsg;
2731 	netmsg_init(nmsg, &curthread->td_msgport, 0, ipfw_add_rule_dispatch);
2732 	fwmsg.ioc_rule = ioc_rule;
2733 	fwmsg.prev_rule = prev;
2734 	fwmsg.next_rule = prev == NULL ? NULL : f;
2735 	fwmsg.stub = stub;
2736 
2737 	ifnet_domsg(&nmsg->nm_lmsg, 0);
2738 	KKASSERT(fwmsg.prev_rule == NULL && fwmsg.next_rule == NULL);
2739 
2740 	rule = nmsg->nm_lmsg.u.ms_resultp;
2741 	KKASSERT(rule != NULL && rule->cpuid == mycpuid);
2742 
2743 	if (rule_flags & IPFW_RULE_F_STATE) {
2744 		/*
2745 		 * Turn on state flag, _after_ everything on all
2746 		 * CPUs have been setup.
2747 		 */
2748 		bzero(nmsg, sizeof(*nmsg));
2749 		netmsg_init(nmsg, &curthread->td_msgport, 0,
2750 			    ipfw_enable_state_dispatch);
2751 		nmsg->nm_lmsg.u.ms_resultp = rule;
2752 
2753 		ifnet_domsg(&nmsg->nm_lmsg, 0);
2754 		KKASSERT(nmsg->nm_lmsg.u.ms_resultp == NULL);
2755 	}
2756 
2757 	DPRINTF("++ installed rule %d, static count now %d\n",
2758 		rule->rulenum, static_count);
2759 }
2760 
2761 /**
2762  * Free storage associated with a static rule (including derived
2763  * dynamic rules).
2764  * The caller is in charge of clearing rule pointers to avoid
2765  * dangling pointers.
2766  * @return a pointer to the next entry.
2767  * Arguments are not checked, so they better be correct.
2768  * Must be called at splimp().
2769  */
2770 static struct ip_fw *
2771 ipfw_delete_rule(struct ipfw_context *ctx,
2772 		 struct ip_fw *prev, struct ip_fw *rule)
2773 {
2774 	struct ip_fw *n;
2775 	struct ip_fw_stub *stub;
2776 
2777 	ctx->ipfw_gen++;
2778 
2779 	/* STATE flag should have been cleared before we reach here */
2780 	KKASSERT((rule->rule_flags & IPFW_RULE_F_STATE) == 0);
2781 
2782 	stub = rule->stub;
2783 	n = rule->next;
2784 	if (prev == NULL)
2785 		ctx->ipfw_layer3_chain = n;
2786 	else
2787 		prev->next = n;
2788 
2789 	/* Mark the rule as invalid */
2790 	rule->rule_flags |= IPFW_RULE_F_INVALID;
2791 	rule->next_rule = NULL;
2792 	rule->sibling = NULL;
2793 	rule->stub = NULL;
2794 #ifdef foo
2795 	/* Don't reset cpuid here; keep various assertion working */
2796 	rule->cpuid = -1;
2797 #endif
2798 
2799 	/* Statistics only need to be updated once */
2800 	if (mycpuid == 0)
2801 		ipfw_dec_static_count(rule);
2802 
2803 	/* Free 'stub' on the last CPU */
2804 	if (stub != NULL && mycpuid == ncpus - 1)
2805 		kfree(stub, M_IPFW);
2806 
2807 	/* Try to free this rule */
2808 	ipfw_free_rule(rule);
2809 
2810 	/* Return the next rule */
2811 	return n;
2812 }
2813 
2814 static void
2815 ipfw_flush_dispatch(struct netmsg *nmsg)
2816 {
2817 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
2818 	int kill_default = lmsg->u.ms_result;
2819 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2820 	struct ip_fw *rule;
2821 
2822 	ipfw_flush_rule_ptrs(ctx); /* more efficient to do outside the loop */
2823 
2824 	while ((rule = ctx->ipfw_layer3_chain) != NULL &&
2825 	       (kill_default || rule->rulenum != IPFW_DEFAULT_RULE))
2826 		ipfw_delete_rule(ctx, NULL, rule);
2827 
2828 	ifnet_forwardmsg(lmsg, mycpuid + 1);
2829 }
2830 
2831 static void
2832 ipfw_disable_rule_state_dispatch(struct netmsg *nmsg)
2833 {
2834 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
2835 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2836 	struct ip_fw *rule;
2837 
2838 	ctx->ipfw_gen++;
2839 
2840 	rule = dmsg->start_rule;
2841 	if (rule != NULL) {
2842 		KKASSERT(rule->cpuid == mycpuid);
2843 
2844 		/*
2845 		 * Move to the position on the next CPU
2846 		 * before the msg is forwarded.
2847 		 */
2848 		dmsg->start_rule = rule->sibling;
2849 	} else {
2850 		KKASSERT(dmsg->rulenum == 0);
2851 		rule = ctx->ipfw_layer3_chain;
2852 	}
2853 
2854 	while (rule != NULL) {
2855 		if (dmsg->rulenum && rule->rulenum != dmsg->rulenum)
2856 			break;
2857 		rule->rule_flags &= ~IPFW_RULE_F_STATE;
2858 		rule = rule->next;
2859 	}
2860 
2861 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2862 }
2863 
2864 /*
2865  * Deletes all rules from a chain (including the default rule
2866  * if the second argument is set).
2867  * Must be called at splimp().
2868  */
2869 static void
2870 ipfw_flush(int kill_default)
2871 {
2872 	struct netmsg_del dmsg;
2873 	struct netmsg nmsg;
2874 	struct lwkt_msg *lmsg;
2875 	struct ip_fw *rule;
2876 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2877 
2878 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
2879 
2880 	/*
2881 	 * If 'kill_default' then caller has done the necessary
2882 	 * msgport syncing; unnecessary to do it again.
2883 	 */
2884 	if (!kill_default) {
2885 		/*
2886 		 * Let ipfw_chk() know the rules are going to
2887 		 * be flushed, so it could jump directly to
2888 		 * the default rule.
2889 		 */
2890 		ipfw_flushing = 1;
2891 		netmsg_service_sync();
2892 	}
2893 
2894 	/*
2895 	 * Clear STATE flag on rules, so no more states (dyn rules)
2896 	 * will be created.
2897 	 */
2898 	bzero(&dmsg, sizeof(dmsg));
2899 	netmsg_init(&dmsg.nmsg, &curthread->td_msgport, 0,
2900 		    ipfw_disable_rule_state_dispatch);
2901 	ifnet_domsg(&dmsg.nmsg.nm_lmsg, 0);
2902 
2903 	/*
2904 	 * This actually nukes all states (dyn rules)
2905 	 */
2906 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
2907 	for (rule = ctx->ipfw_layer3_chain; rule != NULL; rule = rule->next) {
2908 		/*
2909 		 * Can't check IPFW_RULE_F_STATE here,
2910 		 * since it has been cleared previously.
2911 		 * Check 'stub' instead.
2912 		 */
2913 		if (rule->stub != NULL) {
2914 			/* Force removal */
2915 			remove_dyn_rule_locked(rule, NULL);
2916 		}
2917 	}
2918 	lockmgr(&dyn_lock, LK_RELEASE);
2919 
2920 	/*
2921 	 * Press the 'flush' button
2922 	 */
2923 	bzero(&nmsg, sizeof(nmsg));
2924 	netmsg_init(&nmsg, &curthread->td_msgport, 0, ipfw_flush_dispatch);
2925 	lmsg = &nmsg.nm_lmsg;
2926 	lmsg->u.ms_result = kill_default;
2927 	ifnet_domsg(lmsg, 0);
2928 
2929 	KASSERT(dyn_count == 0, ("%u dyn rule remains\n", dyn_count));
2930 
2931 	if (kill_default) {
2932 		if (ipfw_dyn_v != NULL) {
2933 			/*
2934 			 * Free dynamic rules(state) hash table
2935 			 */
2936 			kfree(ipfw_dyn_v, M_IPFW);
2937 			ipfw_dyn_v = NULL;
2938 		}
2939 
2940 		KASSERT(static_count == 0,
2941 			("%u static rules remains\n", static_count));
2942 		KASSERT(static_ioc_len == 0,
2943 			("%u bytes of static rules remains\n", static_ioc_len));
2944 	} else {
2945 		KASSERT(static_count == 1,
2946 			("%u static rules remains\n", static_count));
2947 		KASSERT(static_ioc_len == IOC_RULESIZE(ctx->ipfw_default_rule),
2948 			("%u bytes of static rules remains, should be %u\n",
2949 			 static_ioc_len, IOC_RULESIZE(ctx->ipfw_default_rule)));
2950 	}
2951 
2952 	/* Flush is done */
2953 	ipfw_flushing = 0;
2954 }
2955 
2956 static void
2957 ipfw_alt_delete_rule_dispatch(struct netmsg *nmsg)
2958 {
2959 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
2960 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2961 	struct ip_fw *rule, *prev;
2962 
2963 	rule = dmsg->start_rule;
2964 	KKASSERT(rule->cpuid == mycpuid);
2965 	dmsg->start_rule = rule->sibling;
2966 
2967 	prev = dmsg->prev_rule;
2968 	if (prev != NULL) {
2969 		KKASSERT(prev->cpuid == mycpuid);
2970 
2971 		/*
2972 		 * Move to the position on the next CPU
2973 		 * before the msg is forwarded.
2974 		 */
2975 		dmsg->prev_rule = prev->sibling;
2976 	}
2977 
2978 	/*
2979 	 * flush pointers outside the loop, then delete all matching
2980 	 * rules.  'prev' remains the same throughout the cycle.
2981 	 */
2982 	ipfw_flush_rule_ptrs(ctx);
2983 	while (rule && rule->rulenum == dmsg->rulenum)
2984 		rule = ipfw_delete_rule(ctx, prev, rule);
2985 
2986 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2987 }
2988 
2989 static int
2990 ipfw_alt_delete_rule(uint16_t rulenum)
2991 {
2992 	struct ip_fw *prev, *rule, *f;
2993 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2994 	struct netmsg_del dmsg;
2995 	struct netmsg *nmsg;
2996 	int state;
2997 
2998 	/*
2999 	 * Locate first rule to delete
3000 	 */
3001 	for (prev = NULL, rule = ctx->ipfw_layer3_chain;
3002 	     rule && rule->rulenum < rulenum;
3003 	     prev = rule, rule = rule->next)
3004 		; /* EMPTY */
3005 	if (rule->rulenum != rulenum)
3006 		return EINVAL;
3007 
3008 	/*
3009 	 * Check whether any rules with the given number will
3010 	 * create states.
3011 	 */
3012 	state = 0;
3013 	for (f = rule; f && f->rulenum == rulenum; f = f->next) {
3014 		if (f->rule_flags & IPFW_RULE_F_STATE) {
3015 			state = 1;
3016 			break;
3017 		}
3018 	}
3019 
3020 	if (state) {
3021 		/*
3022 		 * Clear the STATE flag, so no more states will be
3023 		 * created based the rules numbered 'rulenum'.
3024 		 */
3025 		bzero(&dmsg, sizeof(dmsg));
3026 		nmsg = &dmsg.nmsg;
3027 		netmsg_init(nmsg, &curthread->td_msgport, 0,
3028 			    ipfw_disable_rule_state_dispatch);
3029 		dmsg.start_rule = rule;
3030 		dmsg.rulenum = rulenum;
3031 
3032 		ifnet_domsg(&nmsg->nm_lmsg, 0);
3033 		KKASSERT(dmsg.start_rule == NULL);
3034 
3035 		/*
3036 		 * Nuke all related states
3037 		 */
3038 		lockmgr(&dyn_lock, LK_EXCLUSIVE);
3039 		for (f = rule; f && f->rulenum == rulenum; f = f->next) {
3040 			/*
3041 			 * Can't check IPFW_RULE_F_STATE here,
3042 			 * since it has been cleared previously.
3043 			 * Check 'stub' instead.
3044 			 */
3045 			if (f->stub != NULL) {
3046 				/* Force removal */
3047 				remove_dyn_rule_locked(f, NULL);
3048 			}
3049 		}
3050 		lockmgr(&dyn_lock, LK_RELEASE);
3051 	}
3052 
3053 	/*
3054 	 * Get rid of the rule duplications on all CPUs
3055 	 */
3056 	bzero(&dmsg, sizeof(dmsg));
3057 	nmsg = &dmsg.nmsg;
3058 	netmsg_init(nmsg, &curthread->td_msgport, 0,
3059 		    ipfw_alt_delete_rule_dispatch);
3060 	dmsg.prev_rule = prev;
3061 	dmsg.start_rule = rule;
3062 	dmsg.rulenum = rulenum;
3063 
3064 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3065 	KKASSERT(dmsg.prev_rule == NULL && dmsg.start_rule == NULL);
3066 	return 0;
3067 }
3068 
3069 static void
3070 ipfw_alt_delete_ruleset_dispatch(struct netmsg *nmsg)
3071 {
3072 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3073 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3074 	struct ip_fw *prev, *rule;
3075 #ifdef INVARIANTS
3076 	int del = 0;
3077 #endif
3078 
3079 	ipfw_flush_rule_ptrs(ctx);
3080 
3081 	prev = NULL;
3082 	rule = ctx->ipfw_layer3_chain;
3083 	while (rule != NULL) {
3084 		if (rule->set == dmsg->from_set) {
3085 			rule = ipfw_delete_rule(ctx, prev, rule);
3086 #ifdef INVARIANTS
3087 			del = 1;
3088 #endif
3089 		} else {
3090 			prev = rule;
3091 			rule = rule->next;
3092 		}
3093 	}
3094 	KASSERT(del, ("no match set?!\n"));
3095 
3096 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3097 }
3098 
3099 static void
3100 ipfw_disable_ruleset_state_dispatch(struct netmsg *nmsg)
3101 {
3102 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3103 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3104 	struct ip_fw *rule;
3105 #ifdef INVARIANTS
3106 	int cleared = 0;
3107 #endif
3108 
3109 	ctx->ipfw_gen++;
3110 
3111 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3112 		if (rule->set == dmsg->from_set) {
3113 #ifdef INVARIANTS
3114 			cleared = 1;
3115 #endif
3116 			rule->rule_flags &= ~IPFW_RULE_F_STATE;
3117 		}
3118 	}
3119 	KASSERT(cleared, ("no match set?!\n"));
3120 
3121 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3122 }
3123 
3124 static int
3125 ipfw_alt_delete_ruleset(uint8_t set)
3126 {
3127 	struct netmsg_del dmsg;
3128 	struct netmsg *nmsg;
3129 	int state, del;
3130 	struct ip_fw *rule;
3131 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3132 
3133 	/*
3134 	 * Check whether the 'set' exists.  If it exists,
3135 	 * then check whether any rules within the set will
3136 	 * try to create states.
3137 	 */
3138 	state = 0;
3139 	del = 0;
3140 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3141 		if (rule->set == set) {
3142 			del = 1;
3143 			if (rule->rule_flags & IPFW_RULE_F_STATE) {
3144 				state = 1;
3145 				break;
3146 			}
3147 		}
3148 	}
3149 	if (!del)
3150 		return 0; /* XXX EINVAL? */
3151 
3152 	if (state) {
3153 		/*
3154 		 * Clear the STATE flag, so no more states will be
3155 		 * created based the rules in this set.
3156 		 */
3157 		bzero(&dmsg, sizeof(dmsg));
3158 		nmsg = &dmsg.nmsg;
3159 		netmsg_init(nmsg, &curthread->td_msgport, 0,
3160 			    ipfw_disable_ruleset_state_dispatch);
3161 		dmsg.from_set = set;
3162 
3163 		ifnet_domsg(&nmsg->nm_lmsg, 0);
3164 
3165 		/*
3166 		 * Nuke all related states
3167 		 */
3168 		lockmgr(&dyn_lock, LK_EXCLUSIVE);
3169 		for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3170 			if (rule->set != set)
3171 				continue;
3172 
3173 			/*
3174 			 * Can't check IPFW_RULE_F_STATE here,
3175 			 * since it has been cleared previously.
3176 			 * Check 'stub' instead.
3177 			 */
3178 			if (rule->stub != NULL) {
3179 				/* Force removal */
3180 				remove_dyn_rule_locked(rule, NULL);
3181 			}
3182 		}
3183 		lockmgr(&dyn_lock, LK_RELEASE);
3184 	}
3185 
3186 	/*
3187 	 * Delete this set
3188 	 */
3189 	bzero(&dmsg, sizeof(dmsg));
3190 	nmsg = &dmsg.nmsg;
3191 	netmsg_init(nmsg, &curthread->td_msgport, 0,
3192 		    ipfw_alt_delete_ruleset_dispatch);
3193 	dmsg.from_set = set;
3194 
3195 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3196 	return 0;
3197 }
3198 
3199 static void
3200 ipfw_alt_move_rule_dispatch(struct netmsg *nmsg)
3201 {
3202 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3203 	struct ip_fw *rule;
3204 
3205 	rule = dmsg->start_rule;
3206 	KKASSERT(rule->cpuid == mycpuid);
3207 
3208 	/*
3209 	 * Move to the position on the next CPU
3210 	 * before the msg is forwarded.
3211 	 */
3212 	dmsg->start_rule = rule->sibling;
3213 
3214 	while (rule && rule->rulenum <= dmsg->rulenum) {
3215 		if (rule->rulenum == dmsg->rulenum)
3216 			rule->set = dmsg->to_set;
3217 		rule = rule->next;
3218 	}
3219 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3220 }
3221 
3222 static int
3223 ipfw_alt_move_rule(uint16_t rulenum, uint8_t set)
3224 {
3225 	struct netmsg_del dmsg;
3226 	struct netmsg *nmsg;
3227 	struct ip_fw *rule;
3228 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3229 
3230 	/*
3231 	 * Locate first rule to move
3232 	 */
3233 	for (rule = ctx->ipfw_layer3_chain; rule && rule->rulenum <= rulenum;
3234 	     rule = rule->next) {
3235 		if (rule->rulenum == rulenum && rule->set != set)
3236 			break;
3237 	}
3238 	if (rule == NULL || rule->rulenum > rulenum)
3239 		return 0; /* XXX error? */
3240 
3241 	bzero(&dmsg, sizeof(dmsg));
3242 	nmsg = &dmsg.nmsg;
3243 	netmsg_init(nmsg, &curthread->td_msgport, 0,
3244 		    ipfw_alt_move_rule_dispatch);
3245 	dmsg.start_rule = rule;
3246 	dmsg.rulenum = rulenum;
3247 	dmsg.to_set = set;
3248 
3249 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3250 	KKASSERT(dmsg.start_rule == NULL);
3251 	return 0;
3252 }
3253 
3254 static void
3255 ipfw_alt_move_ruleset_dispatch(struct netmsg *nmsg)
3256 {
3257 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3258 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3259 	struct ip_fw *rule;
3260 
3261 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3262 		if (rule->set == dmsg->from_set)
3263 			rule->set = dmsg->to_set;
3264 	}
3265 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3266 }
3267 
3268 static int
3269 ipfw_alt_move_ruleset(uint8_t from_set, uint8_t to_set)
3270 {
3271 	struct netmsg_del dmsg;
3272 	struct netmsg *nmsg;
3273 
3274 	bzero(&dmsg, sizeof(dmsg));
3275 	nmsg = &dmsg.nmsg;
3276 	netmsg_init(nmsg, &curthread->td_msgport, 0,
3277 		    ipfw_alt_move_ruleset_dispatch);
3278 	dmsg.from_set = from_set;
3279 	dmsg.to_set = to_set;
3280 
3281 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3282 	return 0;
3283 }
3284 
3285 static void
3286 ipfw_alt_swap_ruleset_dispatch(struct netmsg *nmsg)
3287 {
3288 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3289 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3290 	struct ip_fw *rule;
3291 
3292 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3293 		if (rule->set == dmsg->from_set)
3294 			rule->set = dmsg->to_set;
3295 		else if (rule->set == dmsg->to_set)
3296 			rule->set = dmsg->from_set;
3297 	}
3298 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3299 }
3300 
3301 static int
3302 ipfw_alt_swap_ruleset(uint8_t set1, uint8_t set2)
3303 {
3304 	struct netmsg_del dmsg;
3305 	struct netmsg *nmsg;
3306 
3307 	bzero(&dmsg, sizeof(dmsg));
3308 	nmsg = &dmsg.nmsg;
3309 	netmsg_init(nmsg, &curthread->td_msgport, 0,
3310 		    ipfw_alt_swap_ruleset_dispatch);
3311 	dmsg.from_set = set1;
3312 	dmsg.to_set = set2;
3313 
3314 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3315 	return 0;
3316 }
3317 
3318 /**
3319  * Remove all rules with given number, and also do set manipulation.
3320  *
3321  * The argument is an uint32_t. The low 16 bit are the rule or set number,
3322  * the next 8 bits are the new set, the top 8 bits are the command:
3323  *
3324  *	0	delete rules with given number
3325  *	1	delete rules with given set number
3326  *	2	move rules with given number to new set
3327  *	3	move rules with given set number to new set
3328  *	4	swap sets with given numbers
3329  */
3330 static int
3331 ipfw_ctl_alter(uint32_t arg)
3332 {
3333 	uint16_t rulenum;
3334 	uint8_t cmd, new_set;
3335 	int error = 0;
3336 
3337 	rulenum = arg & 0xffff;
3338 	cmd = (arg >> 24) & 0xff;
3339 	new_set = (arg >> 16) & 0xff;
3340 
3341 	if (cmd > 4)
3342 		return EINVAL;
3343 	if (new_set >= IPFW_DEFAULT_SET)
3344 		return EINVAL;
3345 	if (cmd == 0 || cmd == 2) {
3346 		if (rulenum == IPFW_DEFAULT_RULE)
3347 			return EINVAL;
3348 	} else {
3349 		if (rulenum >= IPFW_DEFAULT_SET)
3350 			return EINVAL;
3351 	}
3352 
3353 	switch (cmd) {
3354 	case 0:	/* delete rules with given number */
3355 		error = ipfw_alt_delete_rule(rulenum);
3356 		break;
3357 
3358 	case 1:	/* delete all rules with given set number */
3359 		error = ipfw_alt_delete_ruleset(rulenum);
3360 		break;
3361 
3362 	case 2:	/* move rules with given number to new set */
3363 		error = ipfw_alt_move_rule(rulenum, new_set);
3364 		break;
3365 
3366 	case 3: /* move rules with given set number to new set */
3367 		error = ipfw_alt_move_ruleset(rulenum, new_set);
3368 		break;
3369 
3370 	case 4: /* swap two sets */
3371 		error = ipfw_alt_swap_ruleset(rulenum, new_set);
3372 		break;
3373 	}
3374 	return error;
3375 }
3376 
3377 /*
3378  * Clear counters for a specific rule.
3379  */
3380 static void
3381 clear_counters(struct ip_fw *rule, int log_only)
3382 {
3383 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3384 
3385 	if (log_only == 0) {
3386 		rule->bcnt = rule->pcnt = 0;
3387 		rule->timestamp = 0;
3388 	}
3389 	if (l->o.opcode == O_LOG)
3390 		l->log_left = l->max_log;
3391 }
3392 
3393 static void
3394 ipfw_zero_entry_dispatch(struct netmsg *nmsg)
3395 {
3396 	struct netmsg_zent *zmsg = (struct netmsg_zent *)nmsg;
3397 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3398 	struct ip_fw *rule;
3399 
3400 	if (zmsg->rulenum == 0) {
3401 		KKASSERT(zmsg->start_rule == NULL);
3402 
3403 		ctx->ipfw_norule_counter = 0;
3404 		for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next)
3405 			clear_counters(rule, zmsg->log_only);
3406 	} else {
3407 		struct ip_fw *start = zmsg->start_rule;
3408 
3409 		KKASSERT(start->cpuid == mycpuid);
3410 		KKASSERT(start->rulenum == zmsg->rulenum);
3411 
3412 		/*
3413 		 * We can have multiple rules with the same number, so we
3414 		 * need to clear them all.
3415 		 */
3416 		for (rule = start; rule && rule->rulenum == zmsg->rulenum;
3417 		     rule = rule->next)
3418 			clear_counters(rule, zmsg->log_only);
3419 
3420 		/*
3421 		 * Move to the position on the next CPU
3422 		 * before the msg is forwarded.
3423 		 */
3424 		zmsg->start_rule = start->sibling;
3425 	}
3426 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3427 }
3428 
3429 /**
3430  * Reset some or all counters on firewall rules.
3431  * @arg frwl is null to clear all entries, or contains a specific
3432  * rule number.
3433  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3434  */
3435 static int
3436 ipfw_ctl_zero_entry(int rulenum, int log_only)
3437 {
3438 	struct netmsg_zent zmsg;
3439 	struct netmsg *nmsg;
3440 	const char *msg;
3441 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3442 
3443 	bzero(&zmsg, sizeof(zmsg));
3444 	nmsg = &zmsg.nmsg;
3445 	netmsg_init(nmsg, &curthread->td_msgport, 0, ipfw_zero_entry_dispatch);
3446 	zmsg.log_only = log_only;
3447 
3448 	if (rulenum == 0) {
3449 		msg = log_only ? "ipfw: All logging counts reset.\n"
3450 			       : "ipfw: Accounting cleared.\n";
3451 	} else {
3452 		struct ip_fw *rule;
3453 
3454 		/*
3455 		 * Locate the first rule with 'rulenum'
3456 		 */
3457 		for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3458 			if (rule->rulenum == rulenum)
3459 				break;
3460 		}
3461 		if (rule == NULL) /* we did not find any matching rules */
3462 			return (EINVAL);
3463 		zmsg.start_rule = rule;
3464 		zmsg.rulenum = rulenum;
3465 
3466 		msg = log_only ? "ipfw: Entry %d logging count reset.\n"
3467 			       : "ipfw: Entry %d cleared.\n";
3468 	}
3469 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3470 	KKASSERT(zmsg.start_rule == NULL);
3471 
3472 	if (fw_verbose)
3473 		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3474 	return (0);
3475 }
3476 
3477 /*
3478  * Check validity of the structure before insert.
3479  * Fortunately rules are simple, so this mostly need to check rule sizes.
3480  */
3481 static int
3482 ipfw_check_ioc_rule(struct ipfw_ioc_rule *rule, int size, uint32_t *rule_flags)
3483 {
3484 	int l, cmdlen = 0;
3485 	int have_action = 0;
3486 	ipfw_insn *cmd;
3487 
3488 	*rule_flags = 0;
3489 
3490 	/* Check for valid size */
3491 	if (size < sizeof(*rule)) {
3492 		kprintf("ipfw: rule too short\n");
3493 		return EINVAL;
3494 	}
3495 	l = IOC_RULESIZE(rule);
3496 	if (l != size) {
3497 		kprintf("ipfw: size mismatch (have %d want %d)\n", size, l);
3498 		return EINVAL;
3499 	}
3500 
3501 	/* Check rule number */
3502 	if (rule->rulenum == IPFW_DEFAULT_RULE) {
3503 		kprintf("ipfw: invalid rule number\n");
3504 		return EINVAL;
3505 	}
3506 
3507 	/*
3508 	 * Now go for the individual checks. Very simple ones, basically only
3509 	 * instruction sizes.
3510 	 */
3511 	for (l = rule->cmd_len, cmd = rule->cmd; l > 0;
3512 	     l -= cmdlen, cmd += cmdlen) {
3513 		cmdlen = F_LEN(cmd);
3514 		if (cmdlen > l) {
3515 			kprintf("ipfw: opcode %d size truncated\n",
3516 				cmd->opcode);
3517 			return EINVAL;
3518 		}
3519 
3520 		DPRINTF("ipfw: opcode %d\n", cmd->opcode);
3521 
3522 		if (cmd->opcode == O_KEEP_STATE || cmd->opcode == O_LIMIT) {
3523 			/* This rule will create states */
3524 			*rule_flags |= IPFW_RULE_F_STATE;
3525 		}
3526 
3527 		switch (cmd->opcode) {
3528 		case O_NOP:
3529 		case O_PROBE_STATE:
3530 		case O_KEEP_STATE:
3531 		case O_PROTO:
3532 		case O_IP_SRC_ME:
3533 		case O_IP_DST_ME:
3534 		case O_LAYER2:
3535 		case O_IN:
3536 		case O_FRAG:
3537 		case O_IPOPT:
3538 		case O_IPLEN:
3539 		case O_IPID:
3540 		case O_IPTOS:
3541 		case O_IPPRECEDENCE:
3542 		case O_IPTTL:
3543 		case O_IPVER:
3544 		case O_TCPWIN:
3545 		case O_TCPFLAGS:
3546 		case O_TCPOPTS:
3547 		case O_ESTAB:
3548 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3549 				goto bad_size;
3550 			break;
3551 
3552 		case O_UID:
3553 		case O_GID:
3554 		case O_IP_SRC:
3555 		case O_IP_DST:
3556 		case O_TCPSEQ:
3557 		case O_TCPACK:
3558 		case O_PROB:
3559 		case O_ICMPTYPE:
3560 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3561 				goto bad_size;
3562 			break;
3563 
3564 		case O_LIMIT:
3565 			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3566 				goto bad_size;
3567 			break;
3568 
3569 		case O_LOG:
3570 			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3571 				goto bad_size;
3572 
3573 			((ipfw_insn_log *)cmd)->log_left =
3574 			    ((ipfw_insn_log *)cmd)->max_log;
3575 
3576 			break;
3577 
3578 		case O_IP_SRC_MASK:
3579 		case O_IP_DST_MASK:
3580 			if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
3581 				goto bad_size;
3582 			if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
3583 				kprintf("ipfw: opcode %d, useless rule\n",
3584 					cmd->opcode);
3585 				return EINVAL;
3586 			}
3587 			break;
3588 
3589 		case O_IP_SRC_SET:
3590 		case O_IP_DST_SET:
3591 			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3592 				kprintf("ipfw: invalid set size %d\n",
3593 					cmd->arg1);
3594 				return EINVAL;
3595 			}
3596 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3597 			    (cmd->arg1+31)/32 )
3598 				goto bad_size;
3599 			break;
3600 
3601 		case O_MACADDR2:
3602 			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3603 				goto bad_size;
3604 			break;
3605 
3606 		case O_MAC_TYPE:
3607 		case O_IP_SRCPORT:
3608 		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3609 			if (cmdlen < 2 || cmdlen > 31)
3610 				goto bad_size;
3611 			break;
3612 
3613 		case O_RECV:
3614 		case O_XMIT:
3615 		case O_VIA:
3616 			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3617 				goto bad_size;
3618 			break;
3619 
3620 		case O_PIPE:
3621 		case O_QUEUE:
3622 			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3623 				goto bad_size;
3624 			goto check_action;
3625 
3626 		case O_FORWARD_IP:
3627 			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa)) {
3628 				goto bad_size;
3629 			} else {
3630 				in_addr_t fwd_addr;
3631 
3632 				fwd_addr = ((ipfw_insn_sa *)cmd)->
3633 					   sa.sin_addr.s_addr;
3634 				if (IN_MULTICAST(ntohl(fwd_addr))) {
3635 					kprintf("ipfw: try forwarding to "
3636 						"multicast address\n");
3637 					return EINVAL;
3638 				}
3639 			}
3640 			goto check_action;
3641 
3642 		case O_FORWARD_MAC: /* XXX not implemented yet */
3643 		case O_CHECK_STATE:
3644 		case O_COUNT:
3645 		case O_ACCEPT:
3646 		case O_DENY:
3647 		case O_REJECT:
3648 		case O_SKIPTO:
3649 		case O_DIVERT:
3650 		case O_TEE:
3651 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3652 				goto bad_size;
3653 check_action:
3654 			if (have_action) {
3655 				kprintf("ipfw: opcode %d, multiple actions"
3656 					" not allowed\n",
3657 					cmd->opcode);
3658 				return EINVAL;
3659 			}
3660 			have_action = 1;
3661 			if (l != cmdlen) {
3662 				kprintf("ipfw: opcode %d, action must be"
3663 					" last opcode\n",
3664 					cmd->opcode);
3665 				return EINVAL;
3666 			}
3667 			break;
3668 		default:
3669 			kprintf("ipfw: opcode %d, unknown opcode\n",
3670 				cmd->opcode);
3671 			return EINVAL;
3672 		}
3673 	}
3674 	if (have_action == 0) {
3675 		kprintf("ipfw: missing action\n");
3676 		return EINVAL;
3677 	}
3678 	return 0;
3679 
3680 bad_size:
3681 	kprintf("ipfw: opcode %d size %d wrong\n",
3682 		cmd->opcode, cmdlen);
3683 	return EINVAL;
3684 }
3685 
3686 static int
3687 ipfw_ctl_add_rule(struct sockopt *sopt)
3688 {
3689 	struct ipfw_ioc_rule *ioc_rule;
3690 	size_t size;
3691 	uint32_t rule_flags;
3692 	int error;
3693 
3694 	size = sopt->sopt_valsize;
3695 	if (size > (sizeof(uint32_t) * IPFW_RULE_SIZE_MAX) ||
3696 	    size < sizeof(*ioc_rule)) {
3697 		return EINVAL;
3698 	}
3699 	if (size != (sizeof(uint32_t) * IPFW_RULE_SIZE_MAX)) {
3700 		sopt->sopt_val = krealloc(sopt->sopt_val, sizeof(uint32_t) *
3701 					  IPFW_RULE_SIZE_MAX, M_TEMP, M_WAITOK);
3702 	}
3703 	ioc_rule = sopt->sopt_val;
3704 
3705 	error = ipfw_check_ioc_rule(ioc_rule, size, &rule_flags);
3706 	if (error)
3707 		return error;
3708 
3709 	ipfw_add_rule(ioc_rule, rule_flags);
3710 
3711 	if (sopt->sopt_dir == SOPT_GET)
3712 		sopt->sopt_valsize = IOC_RULESIZE(ioc_rule);
3713 	return 0;
3714 }
3715 
3716 static void *
3717 ipfw_copy_rule(const struct ip_fw *rule, struct ipfw_ioc_rule *ioc_rule)
3718 {
3719 	const struct ip_fw *sibling;
3720 #ifdef INVARIANTS
3721 	int i;
3722 #endif
3723 
3724 	KKASSERT(rule->cpuid == IPFW_CFGCPUID);
3725 
3726 	ioc_rule->act_ofs = rule->act_ofs;
3727 	ioc_rule->cmd_len = rule->cmd_len;
3728 	ioc_rule->rulenum = rule->rulenum;
3729 	ioc_rule->set = rule->set;
3730 	ioc_rule->usr_flags = rule->usr_flags;
3731 
3732 	ioc_rule->set_disable = ipfw_ctx[mycpuid]->ipfw_set_disable;
3733 	ioc_rule->static_count = static_count;
3734 	ioc_rule->static_len = static_ioc_len;
3735 
3736 	/*
3737 	 * Visit (read-only) all of the rule's duplications to get
3738 	 * the necessary statistics
3739 	 */
3740 #ifdef INVARIANTS
3741 	i = 0;
3742 #endif
3743 	ioc_rule->pcnt = 0;
3744 	ioc_rule->bcnt = 0;
3745 	ioc_rule->timestamp = 0;
3746 	for (sibling = rule; sibling != NULL; sibling = sibling->sibling) {
3747 		ioc_rule->pcnt += sibling->pcnt;
3748 		ioc_rule->bcnt += sibling->bcnt;
3749 		if (sibling->timestamp > ioc_rule->timestamp)
3750 			ioc_rule->timestamp = sibling->timestamp;
3751 #ifdef INVARIANTS
3752 		++i;
3753 #endif
3754 	}
3755 	KASSERT(i == ncpus, ("static rule is not duplicated on every cpu\n"));
3756 
3757 	bcopy(rule->cmd, ioc_rule->cmd, ioc_rule->cmd_len * 4 /* XXX */);
3758 
3759 	return ((uint8_t *)ioc_rule + IOC_RULESIZE(ioc_rule));
3760 }
3761 
3762 static void
3763 ipfw_copy_state(const ipfw_dyn_rule *dyn_rule,
3764 		struct ipfw_ioc_state *ioc_state)
3765 {
3766 	const struct ipfw_flow_id *id;
3767 	struct ipfw_ioc_flowid *ioc_id;
3768 
3769 	ioc_state->expire = TIME_LEQ(dyn_rule->expire, time_second) ?
3770 			    0 : dyn_rule->expire - time_second;
3771 	ioc_state->pcnt = dyn_rule->pcnt;
3772 	ioc_state->bcnt = dyn_rule->bcnt;
3773 
3774 	ioc_state->dyn_type = dyn_rule->dyn_type;
3775 	ioc_state->count = dyn_rule->count;
3776 
3777 	ioc_state->rulenum = dyn_rule->stub->rule[mycpuid]->rulenum;
3778 
3779 	id = &dyn_rule->id;
3780 	ioc_id = &ioc_state->id;
3781 
3782 	ioc_id->type = ETHERTYPE_IP;
3783 	ioc_id->u.ip.dst_ip = id->dst_ip;
3784 	ioc_id->u.ip.src_ip = id->src_ip;
3785 	ioc_id->u.ip.dst_port = id->dst_port;
3786 	ioc_id->u.ip.src_port = id->src_port;
3787 	ioc_id->u.ip.proto = id->proto;
3788 }
3789 
3790 static int
3791 ipfw_ctl_get_rules(struct sockopt *sopt)
3792 {
3793 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3794 	struct ip_fw *rule;
3795 	void *bp;
3796 	size_t size;
3797 	uint32_t dcount = 0;
3798 
3799 	/*
3800 	 * pass up a copy of the current rules. Static rules
3801 	 * come first (the last of which has number IPFW_DEFAULT_RULE),
3802 	 * followed by a possibly empty list of dynamic rule.
3803 	 */
3804 
3805 	size = static_ioc_len;	/* size of static rules */
3806 	if (ipfw_dyn_v) {	/* add size of dyn.rules */
3807 		dcount = dyn_count;
3808 		size += dcount * sizeof(struct ipfw_ioc_state);
3809 	}
3810 
3811 	if (sopt->sopt_valsize < size) {
3812 		/* short length, no need to return incomplete rules */
3813 		/* XXX: if superuser, no need to zero buffer */
3814 		bzero(sopt->sopt_val, sopt->sopt_valsize);
3815 		return 0;
3816 	}
3817 	bp = sopt->sopt_val;
3818 
3819 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next)
3820 		bp = ipfw_copy_rule(rule, bp);
3821 
3822 	if (ipfw_dyn_v && dcount != 0) {
3823 		struct ipfw_ioc_state *ioc_state = bp;
3824 		uint32_t dcount2 = 0;
3825 #ifdef INVARIANTS
3826 		size_t old_size = size;
3827 #endif
3828 		int i;
3829 
3830 		lockmgr(&dyn_lock, LK_SHARED);
3831 
3832 		/* Check 'ipfw_dyn_v' again with lock held */
3833 		if (ipfw_dyn_v == NULL)
3834 			goto skip;
3835 
3836 		for (i = 0; i < curr_dyn_buckets; i++) {
3837 			ipfw_dyn_rule *p;
3838 
3839 			/*
3840 			 * The # of dynamic rules may have grown after the
3841 			 * snapshot of 'dyn_count' was taken, so we will have
3842 			 * to check 'dcount' (snapshot of dyn_count) here to
3843 			 * make sure that we don't overflow the pre-allocated
3844 			 * buffer.
3845 			 */
3846 			for (p = ipfw_dyn_v[i]; p != NULL && dcount != 0;
3847 			     p = p->next, ioc_state++, dcount--, dcount2++)
3848 				ipfw_copy_state(p, ioc_state);
3849 		}
3850 skip:
3851 		lockmgr(&dyn_lock, LK_RELEASE);
3852 
3853 		/*
3854 		 * The # of dynamic rules may be shrinked after the
3855 		 * snapshot of 'dyn_count' was taken.  To give user a
3856 		 * correct dynamic rule count, we use the 'dcount2'
3857 		 * calculated above (with shared lockmgr lock held).
3858 		 */
3859 		size = static_ioc_len +
3860 		       (dcount2 * sizeof(struct ipfw_ioc_state));
3861 		KKASSERT(size <= old_size);
3862 	}
3863 
3864 	sopt->sopt_valsize = size;
3865 	return 0;
3866 }
3867 
3868 static void
3869 ipfw_set_disable_dispatch(struct netmsg *nmsg)
3870 {
3871 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
3872 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3873 
3874 	ctx->ipfw_gen++;
3875 	ctx->ipfw_set_disable = lmsg->u.ms_result32;
3876 
3877 	ifnet_forwardmsg(lmsg, mycpuid + 1);
3878 }
3879 
3880 static void
3881 ipfw_ctl_set_disable(uint32_t disable, uint32_t enable)
3882 {
3883 	struct netmsg nmsg;
3884 	struct lwkt_msg *lmsg;
3885 	uint32_t set_disable;
3886 
3887 	/* IPFW_DEFAULT_SET is always enabled */
3888 	enable |= (1 << IPFW_DEFAULT_SET);
3889 	set_disable = (ipfw_ctx[mycpuid]->ipfw_set_disable | disable) & ~enable;
3890 
3891 	bzero(&nmsg, sizeof(nmsg));
3892 	netmsg_init(&nmsg, &curthread->td_msgport, 0, ipfw_set_disable_dispatch);
3893 	lmsg = &nmsg.nm_lmsg;
3894 	lmsg->u.ms_result32 = set_disable;
3895 
3896 	ifnet_domsg(lmsg, 0);
3897 }
3898 
3899 /**
3900  * {set|get}sockopt parser.
3901  */
3902 static int
3903 ipfw_ctl(struct sockopt *sopt)
3904 {
3905 	int error, rulenum;
3906 	uint32_t *masks;
3907 	size_t size;
3908 
3909 	error = 0;
3910 
3911 	switch (sopt->sopt_name) {
3912 	case IP_FW_GET:
3913 		error = ipfw_ctl_get_rules(sopt);
3914 		break;
3915 
3916 	case IP_FW_FLUSH:
3917 		ipfw_flush(0 /* keep default rule */);
3918 		break;
3919 
3920 	case IP_FW_ADD:
3921 		error = ipfw_ctl_add_rule(sopt);
3922 		break;
3923 
3924 	case IP_FW_DEL:
3925 		/*
3926 		 * IP_FW_DEL is used for deleting single rules or sets,
3927 		 * and (ab)used to atomically manipulate sets.
3928 		 * Argument size is used to distinguish between the two:
3929 		 *    sizeof(uint32_t)
3930 		 *	delete single rule or set of rules,
3931 		 *	or reassign rules (or sets) to a different set.
3932 		 *    2 * sizeof(uint32_t)
3933 		 *	atomic disable/enable sets.
3934 		 *	first uint32_t contains sets to be disabled,
3935 		 *	second uint32_t contains sets to be enabled.
3936 		 */
3937 		masks = sopt->sopt_val;
3938 		size = sopt->sopt_valsize;
3939 		if (size == sizeof(*masks)) {
3940 			/*
3941 			 * Delete or reassign static rule
3942 			 */
3943 			error = ipfw_ctl_alter(masks[0]);
3944 		} else if (size == (2 * sizeof(*masks))) {
3945 			/*
3946 			 * Set enable/disable
3947 			 */
3948 			ipfw_ctl_set_disable(masks[0], masks[1]);
3949 		} else {
3950 			error = EINVAL;
3951 		}
3952 		break;
3953 
3954 	case IP_FW_ZERO:
3955 	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3956 		rulenum = 0;
3957 
3958 		if (sopt->sopt_val != 0) {
3959 		    error = soopt_to_kbuf(sopt, &rulenum,
3960 			    sizeof(int), sizeof(int));
3961 		    if (error)
3962 			break;
3963 		}
3964 		error = ipfw_ctl_zero_entry(rulenum,
3965 			sopt->sopt_name == IP_FW_RESETLOG);
3966 		break;
3967 
3968 	default:
3969 		kprintf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
3970 		error = EINVAL;
3971 	}
3972 	return error;
3973 }
3974 
3975 /*
3976  * This procedure is only used to handle keepalives. It is invoked
3977  * every dyn_keepalive_period
3978  */
3979 static void
3980 ipfw_tick_dispatch(struct netmsg *nmsg)
3981 {
3982 	time_t keep_alive;
3983 	uint32_t gen;
3984 	int i;
3985 
3986 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
3987 	KKASSERT(IPFW_LOADED);
3988 
3989 	/* Reply ASAP */
3990 	crit_enter();
3991 	lwkt_replymsg(&nmsg->nm_lmsg, 0);
3992 	crit_exit();
3993 
3994 	if (ipfw_dyn_v == NULL || dyn_count == 0)
3995 		goto done;
3996 
3997 	keep_alive = time_second;
3998 
3999 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
4000 again:
4001 	if (ipfw_dyn_v == NULL || dyn_count == 0) {
4002 		lockmgr(&dyn_lock, LK_RELEASE);
4003 		goto done;
4004 	}
4005 	gen = dyn_buckets_gen;
4006 
4007 	for (i = 0; i < curr_dyn_buckets; i++) {
4008 		ipfw_dyn_rule *q, *prev;
4009 
4010 		for (prev = NULL, q = ipfw_dyn_v[i]; q != NULL;) {
4011 			uint32_t ack_rev, ack_fwd;
4012 			struct ipfw_flow_id id;
4013 
4014 			if (q->dyn_type == O_LIMIT_PARENT)
4015 				goto next;
4016 
4017 			if (TIME_LEQ(q->expire, time_second)) {
4018 				/* State expired */
4019 				UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
4020 				continue;
4021 			}
4022 
4023 			/*
4024 			 * Keep alive processing
4025 			 */
4026 
4027 			if (!dyn_keepalive)
4028 				goto next;
4029 			if (q->id.proto != IPPROTO_TCP)
4030 				goto next;
4031 			if ((q->state & BOTH_SYN) != BOTH_SYN)
4032 				goto next;
4033 			if (TIME_LEQ(time_second + dyn_keepalive_interval,
4034 			    q->expire))
4035 				goto next;	/* too early */
4036 			if (q->keep_alive == keep_alive)
4037 				goto next;	/* alreay done */
4038 
4039 			/*
4040 			 * Save necessary information, so that they could
4041 			 * survive after possible blocking in send_pkt()
4042 			 */
4043 			id = q->id;
4044 			ack_rev = q->ack_rev;
4045 			ack_fwd = q->ack_fwd;
4046 
4047 			/* Sending has been started */
4048 			q->keep_alive = keep_alive;
4049 
4050 			/* Release lock to avoid possible dead lock */
4051 			lockmgr(&dyn_lock, LK_RELEASE);
4052 			send_pkt(&id, ack_rev - 1, ack_fwd, TH_SYN);
4053 			send_pkt(&id, ack_fwd - 1, ack_rev, 0);
4054 			lockmgr(&dyn_lock, LK_EXCLUSIVE);
4055 
4056 			if (gen != dyn_buckets_gen) {
4057 				/*
4058 				 * Dyn bucket array has been changed during
4059 				 * the above two sending; reiterate.
4060 				 */
4061 				goto again;
4062 			}
4063 next:
4064 			prev = q;
4065 			q = q->next;
4066 		}
4067 	}
4068 	lockmgr(&dyn_lock, LK_RELEASE);
4069 done:
4070 	callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
4071 		      ipfw_tick, NULL);
4072 }
4073 
4074 /*
4075  * This procedure is only used to handle keepalives. It is invoked
4076  * every dyn_keepalive_period
4077  */
4078 static void
4079 ipfw_tick(void *dummy __unused)
4080 {
4081 	struct lwkt_msg *lmsg = &ipfw_timeout_netmsg.nm_lmsg;
4082 
4083 	KKASSERT(mycpuid == IPFW_CFGCPUID);
4084 
4085 	crit_enter();
4086 
4087 	KKASSERT(lmsg->ms_flags & MSGF_DONE);
4088 	if (IPFW_LOADED) {
4089 		lwkt_sendmsg(IPFW_CFGPORT, lmsg);
4090 		/* ipfw_timeout_netmsg's handler reset this callout */
4091 	}
4092 
4093 	crit_exit();
4094 }
4095 
4096 static int
4097 ipfw_check_in(void *arg, struct mbuf **m0, struct ifnet *ifp, int dir)
4098 {
4099 	struct ip_fw_args args;
4100 	struct mbuf *m = *m0;
4101 	struct m_tag *mtag;
4102 	int tee = 0, error = 0, ret;
4103 
4104 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
4105 		/* Extract info from dummynet tag */
4106 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
4107 		KKASSERT(mtag != NULL);
4108 		args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
4109 		KKASSERT(args.rule != NULL);
4110 
4111 		m_tag_delete(m, mtag);
4112 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
4113 	} else {
4114 		args.rule = NULL;
4115 	}
4116 
4117 	args.eh = NULL;
4118 	args.oif = NULL;
4119 	args.m = m;
4120 	ret = ipfw_chk(&args);
4121 	m = args.m;
4122 
4123 	if (m == NULL) {
4124 		error = EACCES;
4125 		goto back;
4126 	}
4127 
4128 	switch (ret) {
4129 	case IP_FW_PASS:
4130 		break;
4131 
4132 	case IP_FW_DENY:
4133 		m_freem(m);
4134 		m = NULL;
4135 		error = EACCES;
4136 		break;
4137 
4138 	case IP_FW_DUMMYNET:
4139 		/* Send packet to the appropriate pipe */
4140 		ipfw_dummynet_io(m, args.cookie, DN_TO_IP_IN, &args);
4141 		break;
4142 
4143 	case IP_FW_TEE:
4144 		tee = 1;
4145 		/* FALL THROUGH */
4146 
4147 	case IP_FW_DIVERT:
4148 		if (ip_divert_p != NULL) {
4149 			m = ip_divert_p(m, tee, 1);
4150 		} else {
4151 			m_freem(m);
4152 			m = NULL;
4153 			/* not sure this is the right error msg */
4154 			error = EACCES;
4155 		}
4156 		break;
4157 
4158 	default:
4159 		panic("unknown ipfw return value: %d\n", ret);
4160 	}
4161 back:
4162 	*m0 = m;
4163 	return error;
4164 }
4165 
4166 static int
4167 ipfw_check_out(void *arg, struct mbuf **m0, struct ifnet *ifp, int dir)
4168 {
4169 	struct ip_fw_args args;
4170 	struct mbuf *m = *m0;
4171 	struct m_tag *mtag;
4172 	int tee = 0, error = 0, ret;
4173 
4174 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
4175 		/* Extract info from dummynet tag */
4176 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
4177 		KKASSERT(mtag != NULL);
4178 		args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
4179 		KKASSERT(args.rule != NULL);
4180 
4181 		m_tag_delete(m, mtag);
4182 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
4183 	} else {
4184 		args.rule = NULL;
4185 	}
4186 
4187 	args.eh = NULL;
4188 	args.m = m;
4189 	args.oif = ifp;
4190 	ret = ipfw_chk(&args);
4191 	m = args.m;
4192 
4193 	if (m == NULL) {
4194 		error = EACCES;
4195 		goto back;
4196 	}
4197 
4198 	switch (ret) {
4199 	case IP_FW_PASS:
4200 		break;
4201 
4202 	case IP_FW_DENY:
4203 		m_freem(m);
4204 		m = NULL;
4205 		error = EACCES;
4206 		break;
4207 
4208 	case IP_FW_DUMMYNET:
4209 		ipfw_dummynet_io(m, args.cookie, DN_TO_IP_OUT, &args);
4210 		break;
4211 
4212 	case IP_FW_TEE:
4213 		tee = 1;
4214 		/* FALL THROUGH */
4215 
4216 	case IP_FW_DIVERT:
4217 		if (ip_divert_p != NULL) {
4218 			m = ip_divert_p(m, tee, 0);
4219 		} else {
4220 			m_freem(m);
4221 			m = NULL;
4222 			/* not sure this is the right error msg */
4223 			error = EACCES;
4224 		}
4225 		break;
4226 
4227 	default:
4228 		panic("unknown ipfw return value: %d\n", ret);
4229 	}
4230 back:
4231 	*m0 = m;
4232 	return error;
4233 }
4234 
4235 static void
4236 ipfw_hook(void)
4237 {
4238 	struct pfil_head *pfh;
4239 
4240 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
4241 
4242 	pfh = pfil_head_get(PFIL_TYPE_AF, AF_INET);
4243 	if (pfh == NULL)
4244 		return;
4245 
4246 	pfil_add_hook(ipfw_check_in, NULL, PFIL_IN | PFIL_MPSAFE, pfh);
4247 	pfil_add_hook(ipfw_check_out, NULL, PFIL_OUT | PFIL_MPSAFE, pfh);
4248 }
4249 
4250 static void
4251 ipfw_dehook(void)
4252 {
4253 	struct pfil_head *pfh;
4254 
4255 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
4256 
4257 	pfh = pfil_head_get(PFIL_TYPE_AF, AF_INET);
4258 	if (pfh == NULL)
4259 		return;
4260 
4261 	pfil_remove_hook(ipfw_check_in, NULL, PFIL_IN, pfh);
4262 	pfil_remove_hook(ipfw_check_out, NULL, PFIL_OUT, pfh);
4263 }
4264 
4265 static void
4266 ipfw_sysctl_enable_dispatch(struct netmsg *nmsg)
4267 {
4268 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
4269 	int enable = lmsg->u.ms_result;
4270 
4271 	if (fw_enable == enable)
4272 		goto reply;
4273 
4274 	fw_enable = enable;
4275 	if (fw_enable)
4276 		ipfw_hook();
4277 	else
4278 		ipfw_dehook();
4279 reply:
4280 	lwkt_replymsg(lmsg, 0);
4281 }
4282 
4283 static int
4284 ipfw_sysctl_enable(SYSCTL_HANDLER_ARGS)
4285 {
4286 	struct netmsg nmsg;
4287 	struct lwkt_msg *lmsg;
4288 	int enable, error;
4289 
4290 	enable = fw_enable;
4291 	error = sysctl_handle_int(oidp, &enable, 0, req);
4292 	if (error || req->newptr == NULL)
4293 		return error;
4294 
4295 	netmsg_init(&nmsg, &curthread->td_msgport, 0,
4296 		    ipfw_sysctl_enable_dispatch);
4297 	lmsg = &nmsg.nm_lmsg;
4298 	lmsg->u.ms_result = enable;
4299 
4300 	return lwkt_domsg(IPFW_CFGPORT, lmsg, 0);
4301 }
4302 
4303 static int
4304 ipfw_sysctl_autoinc_step(SYSCTL_HANDLER_ARGS)
4305 {
4306 	return sysctl_int_range(oidp, arg1, arg2, req,
4307 	       IPFW_AUTOINC_STEP_MIN, IPFW_AUTOINC_STEP_MAX);
4308 }
4309 
4310 static int
4311 ipfw_sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
4312 {
4313 	int error, value;
4314 
4315 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
4316 
4317 	value = dyn_buckets;
4318 	error = sysctl_handle_int(oidp, &value, 0, req);
4319 	if (error || !req->newptr)
4320 		goto back;
4321 
4322 	/*
4323 	 * Make sure we have a power of 2 and
4324 	 * do not allow more than 64k entries.
4325 	 */
4326 	error = EINVAL;
4327 	if (value <= 1 || value > 65536)
4328 		goto back;
4329 	if ((value & (value - 1)) != 0)
4330 		goto back;
4331 
4332 	error = 0;
4333 	dyn_buckets = value;
4334 back:
4335 	lockmgr(&dyn_lock, LK_RELEASE);
4336 	return error;
4337 }
4338 
4339 static int
4340 ipfw_sysctl_dyn_fin(SYSCTL_HANDLER_ARGS)
4341 {
4342 	return sysctl_int_range(oidp, arg1, arg2, req,
4343 				1, dyn_keepalive_period - 1);
4344 }
4345 
4346 static int
4347 ipfw_sysctl_dyn_rst(SYSCTL_HANDLER_ARGS)
4348 {
4349 	return sysctl_int_range(oidp, arg1, arg2, req,
4350 				1, dyn_keepalive_period - 1);
4351 }
4352 
4353 static void
4354 ipfw_ctx_init_dispatch(struct netmsg *nmsg)
4355 {
4356 	struct netmsg_ipfw *fwmsg = (struct netmsg_ipfw *)nmsg;
4357 	struct ipfw_context *ctx;
4358 	struct ip_fw *def_rule;
4359 
4360 	ctx = kmalloc(sizeof(*ctx), M_IPFW, M_WAITOK | M_ZERO);
4361 	ipfw_ctx[mycpuid] = ctx;
4362 
4363 	def_rule = kmalloc(sizeof(*def_rule), M_IPFW, M_WAITOK | M_ZERO);
4364 
4365 	def_rule->act_ofs = 0;
4366 	def_rule->rulenum = IPFW_DEFAULT_RULE;
4367 	def_rule->cmd_len = 1;
4368 	def_rule->set = IPFW_DEFAULT_SET;
4369 
4370 	def_rule->cmd[0].len = 1;
4371 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4372 	def_rule->cmd[0].opcode = O_ACCEPT;
4373 #else
4374 	def_rule->cmd[0].opcode = O_DENY;
4375 #endif
4376 
4377 	def_rule->refcnt = 1;
4378 	def_rule->cpuid = mycpuid;
4379 
4380 	/* Install the default rule */
4381 	ctx->ipfw_default_rule = def_rule;
4382 	ctx->ipfw_layer3_chain = def_rule;
4383 
4384 	/* Link rule CPU sibling */
4385 	ipfw_link_sibling(fwmsg, def_rule);
4386 
4387 	/* Statistics only need to be updated once */
4388 	if (mycpuid == 0)
4389 		ipfw_inc_static_count(def_rule);
4390 
4391 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
4392 }
4393 
4394 static void
4395 ipfw_init_dispatch(struct netmsg *nmsg)
4396 {
4397 	struct netmsg_ipfw fwmsg;
4398 	int error = 0;
4399 
4400 	if (IPFW_LOADED) {
4401 		kprintf("IP firewall already loaded\n");
4402 		error = EEXIST;
4403 		goto reply;
4404 	}
4405 
4406 	bzero(&fwmsg, sizeof(fwmsg));
4407 	netmsg_init(&fwmsg.nmsg, &curthread->td_msgport, 0,
4408 		    ipfw_ctx_init_dispatch);
4409 	ifnet_domsg(&fwmsg.nmsg.nm_lmsg, 0);
4410 
4411 	ip_fw_chk_ptr = ipfw_chk;
4412 	ip_fw_ctl_ptr = ipfw_ctl;
4413 	ip_fw_dn_io_ptr = ipfw_dummynet_io;
4414 
4415 	kprintf("ipfw2 initialized, default to %s, logging ",
4416 		ipfw_ctx[mycpuid]->ipfw_default_rule->cmd[0].opcode ==
4417 		O_ACCEPT ? "accept" : "deny");
4418 
4419 #ifdef IPFIREWALL_VERBOSE
4420 	fw_verbose = 1;
4421 #endif
4422 #ifdef IPFIREWALL_VERBOSE_LIMIT
4423 	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4424 #endif
4425 	if (fw_verbose == 0) {
4426 		kprintf("disabled\n");
4427 	} else if (verbose_limit == 0) {
4428 		kprintf("unlimited\n");
4429 	} else {
4430 		kprintf("limited to %d packets/entry by default\n",
4431 			verbose_limit);
4432 	}
4433 
4434 	callout_init_mp(&ipfw_timeout_h);
4435 	netmsg_init(&ipfw_timeout_netmsg, &netisr_adone_rport,
4436 		    MSGF_MPSAFE | MSGF_DROPABLE | MSGF_PRIORITY,
4437 		    ipfw_tick_dispatch);
4438 	lockinit(&dyn_lock, "ipfw_dyn", 0, 0);
4439 
4440 	ip_fw_loaded = 1;
4441 	callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
4442 
4443 	if (fw_enable)
4444 		ipfw_hook();
4445 reply:
4446 	lwkt_replymsg(&nmsg->nm_lmsg, error);
4447 }
4448 
4449 static int
4450 ipfw_init(void)
4451 {
4452 	struct netmsg smsg;
4453 
4454 	netmsg_init(&smsg, &curthread->td_msgport, 0, ipfw_init_dispatch);
4455 	return lwkt_domsg(IPFW_CFGPORT, &smsg.nm_lmsg, 0);
4456 }
4457 
4458 #ifdef KLD_MODULE
4459 
4460 static void
4461 ipfw_fini_dispatch(struct netmsg *nmsg)
4462 {
4463 	int error = 0, cpu;
4464 
4465 	if (ipfw_refcnt != 0) {
4466 		error = EBUSY;
4467 		goto reply;
4468 	}
4469 
4470 	ip_fw_loaded = 0;
4471 
4472 	ipfw_dehook();
4473 	callout_stop(&ipfw_timeout_h);
4474 
4475 	netmsg_service_sync();
4476 
4477 	crit_enter();
4478 	if ((ipfw_timeout_netmsg.nm_lmsg.ms_flags & MSGF_DONE) == 0) {
4479 		/*
4480 		 * Callout message is pending; drop it
4481 		 */
4482 		lwkt_dropmsg(&ipfw_timeout_netmsg.nm_lmsg);
4483 	}
4484 	crit_exit();
4485 
4486 	ip_fw_chk_ptr = NULL;
4487 	ip_fw_ctl_ptr = NULL;
4488 	ip_fw_dn_io_ptr = NULL;
4489 	ipfw_flush(1 /* kill default rule */);
4490 
4491 	/* Free pre-cpu context */
4492 	for (cpu = 0; cpu < ncpus; ++cpu)
4493 		kfree(ipfw_ctx[cpu], M_IPFW);
4494 
4495 	kprintf("IP firewall unloaded\n");
4496 reply:
4497 	lwkt_replymsg(&nmsg->nm_lmsg, error);
4498 }
4499 
4500 static int
4501 ipfw_fini(void)
4502 {
4503 	struct netmsg smsg;
4504 
4505 	netmsg_init(&smsg, &curthread->td_msgport, 0, ipfw_fini_dispatch);
4506 	return lwkt_domsg(IPFW_CFGPORT, &smsg.nm_lmsg, 0);
4507 }
4508 
4509 #endif	/* KLD_MODULE */
4510 
4511 static int
4512 ipfw_modevent(module_t mod, int type, void *unused)
4513 {
4514 	int err = 0;
4515 
4516 	switch (type) {
4517 	case MOD_LOAD:
4518 		err = ipfw_init();
4519 		break;
4520 
4521 	case MOD_UNLOAD:
4522 #ifndef KLD_MODULE
4523 		kprintf("ipfw statically compiled, cannot unload\n");
4524 		err = EBUSY;
4525 #else
4526 		err = ipfw_fini();
4527 #endif
4528 		break;
4529 	default:
4530 		break;
4531 	}
4532 	return err;
4533 }
4534 
4535 static moduledata_t ipfwmod = {
4536 	"ipfw",
4537 	ipfw_modevent,
4538 	0
4539 };
4540 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PROTO_END, SI_ORDER_ANY);
4541 MODULE_VERSION(ipfw, 1);
4542