xref: /dragonfly/sys/net/ipfw/ip_fw2.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26  * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.41 2008/03/07 11:34:20 sephe Exp $
27  */
28 
29 #define        DEB(x)
30 #define        DDB(x) x
31 
32 /*
33  * Implement IP packet firewall (new version)
34  */
35 
36 #ifndef KLD_MODULE
37 #include "opt_ipfw.h"
38 #include "opt_ipdn.h"
39 #include "opt_ipdivert.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/thread2.h>
57 #include <sys/ucred.h>
58 #include <sys/in_cksum.h>
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/ip.h>
66 #include <netinet/ip_var.h>
67 #include <netinet/ip_icmp.h>
68 #include "ip_fw.h"
69 #include <net/dummynet/ip_dummynet.h>
70 #include <netinet/tcp.h>
71 #include <netinet/tcp_timer.h>
72 #include <netinet/tcp_var.h>
73 #include <netinet/tcpip.h>
74 #include <netinet/udp.h>
75 #include <netinet/udp_var.h>
76 
77 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
78 
79 /*
80  * set_disable contains one bit per set value (0..31).
81  * If the bit is set, all rules with the corresponding set
82  * are disabled. Set 31 is reserved for the default rule
83  * and CANNOT be disabled.
84  */
85 static uint32_t set_disable;
86 
87 static int fw_verbose;
88 static int verbose_limit;
89 
90 #ifdef KLD_MODULE
91 static int ipfw_refcnt;
92 #endif
93 
94 static struct callout ipfw_timeout_h;
95 #define	IPFW_DEFAULT_RULE	65535
96 
97 /*
98  * list of rules for layer 3
99  */
100 static struct ip_fw *layer3_chain;
101 
102 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
103 
104 static int fw_debug = 1;
105 static int autoinc_step = 100; /* bounded to 1..1000 in ipfw_add_rule() */
106 
107 #ifdef SYSCTL_NODE
108 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
109 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_RW,
110     &fw_enable, 0, "Enable ipfw");
111 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
112     &autoinc_step, 0, "Rule number autincrement step");
113 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
114     &fw_one_pass, 0,
115     "Only do a single pass through ipfw when using dummynet(4)");
116 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
117     &fw_debug, 0, "Enable printing of debug ip_fw statements");
118 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
119     &fw_verbose, 0, "Log matches to ipfw rules");
120 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
121     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
122 
123 /*
124  * Description of dynamic rules.
125  *
126  * Dynamic rules are stored in lists accessed through a hash table
127  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
128  * be modified through the sysctl variable dyn_buckets which is
129  * updated when the table becomes empty.
130  *
131  * XXX currently there is only one list, ipfw_dyn.
132  *
133  * When a packet is received, its address fields are first masked
134  * with the mask defined for the rule, then hashed, then matched
135  * against the entries in the corresponding list.
136  * Dynamic rules can be used for different purposes:
137  *  + stateful rules;
138  *  + enforcing limits on the number of sessions;
139  *  + in-kernel NAT (not implemented yet)
140  *
141  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
142  * measured in seconds and depending on the flags.
143  *
144  * The total number of dynamic rules is stored in dyn_count.
145  * The max number of dynamic rules is dyn_max. When we reach
146  * the maximum number of rules we do not create anymore. This is
147  * done to avoid consuming too much memory, but also too much
148  * time when searching on each packet (ideally, we should try instead
149  * to put a limit on the length of the list on each bucket...).
150  *
151  * Each dynamic rule holds a pointer to the parent ipfw rule so
152  * we know what action to perform. Dynamic rules are removed when
153  * the parent rule is deleted. XXX we should make them survive.
154  *
155  * There are some limitations with dynamic rules -- we do not
156  * obey the 'randomized match', and we do not do multiple
157  * passes through the firewall. XXX check the latter!!!
158  */
159 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
160 static uint32_t dyn_buckets = 256; /* must be power of 2 */
161 static uint32_t curr_dyn_buckets = 256; /* must be power of 2 */
162 
163 /*
164  * Timeouts for various events in handing dynamic rules.
165  */
166 static uint32_t dyn_ack_lifetime = 300;
167 static uint32_t dyn_syn_lifetime = 20;
168 static uint32_t dyn_fin_lifetime = 1;
169 static uint32_t dyn_rst_lifetime = 1;
170 static uint32_t dyn_udp_lifetime = 10;
171 static uint32_t dyn_short_lifetime = 5;
172 
173 /*
174  * Keepalives are sent if dyn_keepalive is set. They are sent every
175  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
176  * seconds of lifetime of a rule.
177  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
178  * than dyn_keepalive_period.
179  */
180 
181 static uint32_t dyn_keepalive_interval = 20;
182 static uint32_t dyn_keepalive_period = 5;
183 static uint32_t dyn_keepalive = 1;	/* do send keepalives */
184 
185 static uint32_t static_count;		/* # of static rules */
186 static uint32_t static_ioc_len;	/* bytes of static rules */
187 static uint32_t dyn_count;		/* # of dynamic rules */
188 static uint32_t dyn_max = 4096;	/* max # of dynamic rules */
189 
190 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
191     &dyn_buckets, 0, "Number of dyn. buckets");
192 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
193     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
194 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
195     &dyn_count, 0, "Number of dyn. rules");
196 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
197     &dyn_max, 0, "Max number of dyn. rules");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
199     &static_count, 0, "Number of static rules");
200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
201     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
202 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
203     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
205     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
207     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
208 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
209     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
211     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
212 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
213     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
214 
215 #endif /* SYSCTL_NODE */
216 
217 /**
218  * dummynet needs a reference to the default rule, because rules can be
219  * deleted while packets hold a reference to them. When this happens,
220  * dummynet changes the reference to the default rule (it could well be a
221  * NULL pointer, but this way we do not need to check for the special
222  * case, plus here he have info on the default behaviour).
223  */
224 struct ip_fw *ip_fw_default_rule;
225 
226 static ip_fw_chk_t	ipfw_chk;
227 
228 static __inline int
229 ipfw_free_rule(struct ip_fw *rule)
230 {
231 	KASSERT(rule->refcnt > 0, ("invalid refcnt %u\n", rule->refcnt));
232 	atomic_subtract_int(&rule->refcnt, 1);
233 	if (atomic_cmpset_int(&rule->refcnt, 0, 1)) {
234 		kfree(rule, M_IPFW);
235 		return 1;
236 	}
237 	return 0;
238 }
239 
240 static void
241 ipfw_unref_rule(void *priv)
242 {
243 	ipfw_free_rule(priv);
244 #ifdef KLD_MODULE
245 	atomic_subtract_int(&ipfw_refcnt, 1);
246 #endif
247 }
248 
249 static __inline void
250 ipfw_ref_rule(struct ip_fw *rule)
251 {
252 #ifdef KLD_MODULE
253 	atomic_add_int(&ipfw_refcnt, 1);
254 #endif
255 	atomic_add_int(&rule->refcnt, 1);
256 }
257 
258 /*
259  * This macro maps an ip pointer into a layer3 header pointer of type T
260  */
261 #define	L3HDR(T, ip) ((T *)((uint32_t *)(ip) + (ip)->ip_hl))
262 
263 static __inline int
264 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
265 {
266 	int type = L3HDR(struct icmp,ip)->icmp_type;
267 
268 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
269 }
270 
271 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
272     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
273 
274 static int
275 is_icmp_query(struct ip *ip)
276 {
277 	int type = L3HDR(struct icmp, ip)->icmp_type;
278 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
279 }
280 #undef TT
281 
282 /*
283  * The following checks use two arrays of 8 or 16 bits to store the
284  * bits that we want set or clear, respectively. They are in the
285  * low and high half of cmd->arg1 or cmd->d[0].
286  *
287  * We scan options and store the bits we find set. We succeed if
288  *
289  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
290  *
291  * The code is sometimes optimized not to store additional variables.
292  */
293 
294 static int
295 flags_match(ipfw_insn *cmd, uint8_t bits)
296 {
297 	u_char want_clear;
298 	bits = ~bits;
299 
300 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
301 		return 0; /* some bits we want set were clear */
302 	want_clear = (cmd->arg1 >> 8) & 0xff;
303 	if ( (want_clear & bits) != want_clear)
304 		return 0; /* some bits we want clear were set */
305 	return 1;
306 }
307 
308 static int
309 ipopts_match(struct ip *ip, ipfw_insn *cmd)
310 {
311 	int optlen, bits = 0;
312 	u_char *cp = (u_char *)(ip + 1);
313 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
314 
315 	for (; x > 0; x -= optlen, cp += optlen) {
316 		int opt = cp[IPOPT_OPTVAL];
317 
318 		if (opt == IPOPT_EOL)
319 			break;
320 		if (opt == IPOPT_NOP)
321 			optlen = 1;
322 		else {
323 			optlen = cp[IPOPT_OLEN];
324 			if (optlen <= 0 || optlen > x)
325 				return 0; /* invalid or truncated */
326 		}
327 		switch (opt) {
328 
329 		default:
330 			break;
331 
332 		case IPOPT_LSRR:
333 			bits |= IP_FW_IPOPT_LSRR;
334 			break;
335 
336 		case IPOPT_SSRR:
337 			bits |= IP_FW_IPOPT_SSRR;
338 			break;
339 
340 		case IPOPT_RR:
341 			bits |= IP_FW_IPOPT_RR;
342 			break;
343 
344 		case IPOPT_TS:
345 			bits |= IP_FW_IPOPT_TS;
346 			break;
347 		}
348 	}
349 	return (flags_match(cmd, bits));
350 }
351 
352 static int
353 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
354 {
355 	int optlen, bits = 0;
356 	struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
357 	u_char *cp = (u_char *)(tcp + 1);
358 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
359 
360 	for (; x > 0; x -= optlen, cp += optlen) {
361 		int opt = cp[0];
362 		if (opt == TCPOPT_EOL)
363 			break;
364 		if (opt == TCPOPT_NOP)
365 			optlen = 1;
366 		else {
367 			optlen = cp[1];
368 			if (optlen <= 0)
369 				break;
370 		}
371 
372 		switch (opt) {
373 
374 		default:
375 			break;
376 
377 		case TCPOPT_MAXSEG:
378 			bits |= IP_FW_TCPOPT_MSS;
379 			break;
380 
381 		case TCPOPT_WINDOW:
382 			bits |= IP_FW_TCPOPT_WINDOW;
383 			break;
384 
385 		case TCPOPT_SACK_PERMITTED:
386 		case TCPOPT_SACK:
387 			bits |= IP_FW_TCPOPT_SACK;
388 			break;
389 
390 		case TCPOPT_TIMESTAMP:
391 			bits |= IP_FW_TCPOPT_TS;
392 			break;
393 
394 		case TCPOPT_CC:
395 		case TCPOPT_CCNEW:
396 		case TCPOPT_CCECHO:
397 			bits |= IP_FW_TCPOPT_CC;
398 			break;
399 		}
400 	}
401 	return (flags_match(cmd, bits));
402 }
403 
404 static int
405 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
406 {
407 	if (ifp == NULL)	/* no iface with this packet, match fails */
408 		return 0;
409 	/* Check by name or by IP address */
410 	if (cmd->name[0] != '\0') { /* match by name */
411 		/* Check name */
412 		if (cmd->p.glob) {
413 			if (kfnmatch(cmd->name, ifp->if_xname, 0) == 0)
414 				return(1);
415 		} else {
416 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
417 				return(1);
418 		}
419 	} else {
420 		struct ifaddr_container *ifac;
421 
422 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
423 			struct ifaddr *ia = ifac->ifa;
424 
425 			if (ia->ifa_addr == NULL)
426 				continue;
427 			if (ia->ifa_addr->sa_family != AF_INET)
428 				continue;
429 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
430 			    (ia->ifa_addr))->sin_addr.s_addr)
431 				return(1);	/* match */
432 		}
433 	}
434 	return(0);	/* no match, fail ... */
435 }
436 
437 static uint64_t norule_counter;	/* counter for ipfw_log(NULL...) */
438 
439 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
440 #define SNP(buf) buf, sizeof(buf)
441 
442 /*
443  * We enter here when we have a rule with O_LOG.
444  * XXX this function alone takes about 2Kbytes of code!
445  */
446 static void
447 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
448 	struct mbuf *m, struct ifnet *oif)
449 {
450 	char *action;
451 	int limit_reached = 0;
452 	char action2[40], proto[48], fragment[28];
453 
454 	fragment[0] = '\0';
455 	proto[0] = '\0';
456 
457 	if (f == NULL) {	/* bogus pkt */
458 		if (verbose_limit != 0 && norule_counter >= verbose_limit)
459 			return;
460 		norule_counter++;
461 		if (norule_counter == verbose_limit)
462 			limit_reached = verbose_limit;
463 		action = "Refuse";
464 	} else {	/* O_LOG is the first action, find the real one */
465 		ipfw_insn *cmd = ACTION_PTR(f);
466 		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
467 
468 		if (l->max_log != 0 && l->log_left == 0)
469 			return;
470 		l->log_left--;
471 		if (l->log_left == 0)
472 			limit_reached = l->max_log;
473 		cmd += F_LEN(cmd);	/* point to first action */
474 		if (cmd->opcode == O_PROB)
475 			cmd += F_LEN(cmd);
476 
477 		action = action2;
478 		switch (cmd->opcode) {
479 		case O_DENY:
480 			action = "Deny";
481 			break;
482 
483 		case O_REJECT:
484 			if (cmd->arg1==ICMP_REJECT_RST)
485 				action = "Reset";
486 			else if (cmd->arg1==ICMP_UNREACH_HOST)
487 				action = "Reject";
488 			else
489 				ksnprintf(SNPARGS(action2, 0), "Unreach %d",
490 					cmd->arg1);
491 			break;
492 
493 		case O_ACCEPT:
494 			action = "Accept";
495 			break;
496 		case O_COUNT:
497 			action = "Count";
498 			break;
499 		case O_DIVERT:
500 			ksnprintf(SNPARGS(action2, 0), "Divert %d",
501 				cmd->arg1);
502 			break;
503 		case O_TEE:
504 			ksnprintf(SNPARGS(action2, 0), "Tee %d",
505 				cmd->arg1);
506 			break;
507 		case O_SKIPTO:
508 			ksnprintf(SNPARGS(action2, 0), "SkipTo %d",
509 				cmd->arg1);
510 			break;
511 		case O_PIPE:
512 			ksnprintf(SNPARGS(action2, 0), "Pipe %d",
513 				cmd->arg1);
514 			break;
515 		case O_QUEUE:
516 			ksnprintf(SNPARGS(action2, 0), "Queue %d",
517 				cmd->arg1);
518 			break;
519 		case O_FORWARD_IP: {
520 			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
521 			int len;
522 
523 			len = ksnprintf(SNPARGS(action2, 0), "Forward to %s",
524 				inet_ntoa(sa->sa.sin_addr));
525 			if (sa->sa.sin_port)
526 				ksnprintf(SNPARGS(action2, len), ":%d",
527 				    sa->sa.sin_port);
528 			}
529 			break;
530 		default:
531 			action = "UNKNOWN";
532 			break;
533 		}
534 	}
535 
536 	if (hlen == 0) {	/* non-ip */
537 		ksnprintf(SNPARGS(proto, 0), "MAC");
538 	} else {
539 		struct ip *ip = mtod(m, struct ip *);
540 		/* these three are all aliases to the same thing */
541 		struct icmp *const icmp = L3HDR(struct icmp, ip);
542 		struct tcphdr *const tcp = (struct tcphdr *)icmp;
543 		struct udphdr *const udp = (struct udphdr *)icmp;
544 
545 		int ip_off, offset, ip_len;
546 
547 		int len;
548 
549 		if (eh != NULL) { /* layer 2 packets are as on the wire */
550 			ip_off = ntohs(ip->ip_off);
551 			ip_len = ntohs(ip->ip_len);
552 		} else {
553 			ip_off = ip->ip_off;
554 			ip_len = ip->ip_len;
555 		}
556 		offset = ip_off & IP_OFFMASK;
557 		switch (ip->ip_p) {
558 		case IPPROTO_TCP:
559 			len = ksnprintf(SNPARGS(proto, 0), "TCP %s",
560 			    inet_ntoa(ip->ip_src));
561 			if (offset == 0)
562 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
563 				    ntohs(tcp->th_sport),
564 				    inet_ntoa(ip->ip_dst),
565 				    ntohs(tcp->th_dport));
566 			else
567 				ksnprintf(SNPARGS(proto, len), " %s",
568 				    inet_ntoa(ip->ip_dst));
569 			break;
570 
571 		case IPPROTO_UDP:
572 			len = ksnprintf(SNPARGS(proto, 0), "UDP %s",
573 				inet_ntoa(ip->ip_src));
574 			if (offset == 0)
575 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
576 				    ntohs(udp->uh_sport),
577 				    inet_ntoa(ip->ip_dst),
578 				    ntohs(udp->uh_dport));
579 			else
580 				ksnprintf(SNPARGS(proto, len), " %s",
581 				    inet_ntoa(ip->ip_dst));
582 			break;
583 
584 		case IPPROTO_ICMP:
585 			if (offset == 0)
586 				len = ksnprintf(SNPARGS(proto, 0),
587 				    "ICMP:%u.%u ",
588 				    icmp->icmp_type, icmp->icmp_code);
589 			else
590 				len = ksnprintf(SNPARGS(proto, 0), "ICMP ");
591 			len += ksnprintf(SNPARGS(proto, len), "%s",
592 			    inet_ntoa(ip->ip_src));
593 			ksnprintf(SNPARGS(proto, len), " %s",
594 			    inet_ntoa(ip->ip_dst));
595 			break;
596 
597 		default:
598 			len = ksnprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
599 			    inet_ntoa(ip->ip_src));
600 			ksnprintf(SNPARGS(proto, len), " %s",
601 			    inet_ntoa(ip->ip_dst));
602 			break;
603 		}
604 
605 		if (ip_off & (IP_MF | IP_OFFMASK))
606 			ksnprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
607 			     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
608 			     offset << 3,
609 			     (ip_off & IP_MF) ? "+" : "");
610 	}
611 	if (oif || m->m_pkthdr.rcvif)
612 		log(LOG_SECURITY | LOG_INFO,
613 		    "ipfw: %d %s %s %s via %s%s\n",
614 		    f ? f->rulenum : -1,
615 		    action, proto, oif ? "out" : "in",
616 		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
617 		    fragment);
618 	else
619 		log(LOG_SECURITY | LOG_INFO,
620 		    "ipfw: %d %s %s [no if info]%s\n",
621 		    f ? f->rulenum : -1,
622 		    action, proto, fragment);
623 	if (limit_reached)
624 		log(LOG_SECURITY | LOG_NOTICE,
625 		    "ipfw: limit %d reached on entry %d\n",
626 		    limit_reached, f ? f->rulenum : -1);
627 }
628 
629 /*
630  * IMPORTANT: the hash function for dynamic rules must be commutative
631  * in source and destination (ip,port), because rules are bidirectional
632  * and we want to find both in the same bucket.
633  */
634 static __inline int
635 hash_packet(struct ipfw_flow_id *id)
636 {
637 	uint32_t i;
638 
639 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
640 	i &= (curr_dyn_buckets - 1);
641 	return i;
642 }
643 
644 /**
645  * unlink a dynamic rule from a chain. prev is a pointer to
646  * the previous one, q is a pointer to the rule to delete,
647  * head is a pointer to the head of the queue.
648  * Modifies q and potentially also head.
649  */
650 #define UNLINK_DYN_RULE(prev, head, q) {				\
651 	ipfw_dyn_rule *old_q = q;					\
652 									\
653 	/* remove a refcount to the parent */				\
654 	if (q->dyn_type == O_LIMIT)					\
655 		q->parent->count--;					\
656 	DEB(kprintf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",	\
657 		(q->id.src_ip), (q->id.src_port),			\
658 		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
659 	if (prev != NULL)						\
660 		prev->next = q = q->next;				\
661 	else								\
662 		head = q = q->next;					\
663 	KASSERT(dyn_count > 0, ("invalid dyn count %u\n", dyn_count));	\
664 	dyn_count--;							\
665 	kfree(old_q, M_IPFW); }
666 
667 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
668 
669 /**
670  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
671  *
672  * If keep_me == NULL, rules are deleted even if not expired,
673  * otherwise only expired rules are removed.
674  *
675  * The value of the second parameter is also used to point to identify
676  * a rule we absolutely do not want to remove (e.g. because we are
677  * holding a reference to it -- this is the case with O_LIMIT_PARENT
678  * rules). The pointer is only used for comparison, so any non-null
679  * value will do.
680  */
681 static void
682 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
683 {
684 	static uint32_t last_remove = 0;
685 
686 #define FORCE (keep_me == NULL)
687 
688 	ipfw_dyn_rule *prev, *q;
689 	int i, pass = 0, max_pass = 0;
690 
691 	if (ipfw_dyn_v == NULL || dyn_count == 0)
692 		return;
693 	/* do not expire more than once per second, it is useless */
694 	if (!FORCE && last_remove == time_second)
695 		return;
696 	last_remove = time_second;
697 
698 	/*
699 	 * because O_LIMIT refer to parent rules, during the first pass only
700 	 * remove child and mark any pending LIMIT_PARENT, and remove
701 	 * them in a second pass.
702 	 */
703 next_pass:
704 	for (i = 0 ; i < curr_dyn_buckets ; i++) {
705 		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
706 			/*
707 			 * Logic can become complex here, so we split tests.
708 			 */
709 			if (q == keep_me)
710 				goto next;
711 			if (rule != NULL && rule != q->rule)
712 				goto next; /* not the one we are looking for */
713 			if (q->dyn_type == O_LIMIT_PARENT) {
714 				/*
715 				 * handle parent in the second pass,
716 				 * record we need one.
717 				 */
718 				max_pass = 1;
719 				if (pass == 0)
720 					goto next;
721 				if (FORCE && q->count != 0 ) {
722 					/* XXX should not happen! */
723 					kprintf( "OUCH! cannot remove rule,"
724 					     " count %d\n", q->count);
725 				}
726 			} else {
727 				if (!FORCE &&
728 				    !TIME_LEQ( q->expire, time_second ))
729 					goto next;
730 			}
731 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
732 			continue;
733 next:
734 			prev=q;
735 			q=q->next;
736 		}
737 	}
738 	if (pass++ < max_pass)
739 		goto next_pass;
740 }
741 
742 
743 /**
744  * lookup a dynamic rule.
745  */
746 static ipfw_dyn_rule *
747 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
748 	struct tcphdr *tcp)
749 {
750 	/*
751 	 * stateful ipfw extensions.
752 	 * Lookup into dynamic session queue
753 	 */
754 #define MATCH_REVERSE	0
755 #define MATCH_FORWARD	1
756 #define MATCH_NONE	2
757 #define MATCH_UNKNOWN	3
758 	int i, dir = MATCH_NONE;
759 	ipfw_dyn_rule *prev, *q=NULL;
760 
761 	if (ipfw_dyn_v == NULL)
762 		goto done;	/* not found */
763 	i = hash_packet( pkt );
764 	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
765 		if (q->dyn_type == O_LIMIT_PARENT)
766 			goto next;
767 		if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
768 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
769 			continue;
770 		}
771 		if ( pkt->proto == q->id.proto) {
772 			if (pkt->src_ip == q->id.src_ip &&
773 			    pkt->dst_ip == q->id.dst_ip &&
774 			    pkt->src_port == q->id.src_port &&
775 			    pkt->dst_port == q->id.dst_port ) {
776 				dir = MATCH_FORWARD;
777 				break;
778 			}
779 			if (pkt->src_ip == q->id.dst_ip &&
780 			    pkt->dst_ip == q->id.src_ip &&
781 			    pkt->src_port == q->id.dst_port &&
782 			    pkt->dst_port == q->id.src_port ) {
783 				dir = MATCH_REVERSE;
784 				break;
785 			}
786 		}
787 next:
788 		prev = q;
789 		q = q->next;
790 	}
791 	if (q == NULL)
792 		goto done; /* q = NULL, not found */
793 
794 	if ( prev != NULL) { /* found and not in front */
795 		prev->next = q->next;
796 		q->next = ipfw_dyn_v[i];
797 		ipfw_dyn_v[i] = q;
798 	}
799 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
800 		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
801 
802 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
803 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
804 		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
805 		switch (q->state) {
806 		case TH_SYN:				/* opening */
807 			q->expire = time_second + dyn_syn_lifetime;
808 			break;
809 
810 		case BOTH_SYN:			/* move to established */
811 		case BOTH_SYN | TH_FIN :	/* one side tries to close */
812 		case BOTH_SYN | (TH_FIN << 8) :
813  			if (tcp) {
814 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
815 			    uint32_t ack = ntohl(tcp->th_ack);
816 			    if (dir == MATCH_FORWARD) {
817 				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
818 				    q->ack_fwd = ack;
819 				else { /* ignore out-of-sequence */
820 				    break;
821 				}
822 			    } else {
823 				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
824 				    q->ack_rev = ack;
825 				else { /* ignore out-of-sequence */
826 				    break;
827 				}
828 			    }
829 			}
830 			q->expire = time_second + dyn_ack_lifetime;
831 			break;
832 
833 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
834 			if (dyn_fin_lifetime >= dyn_keepalive_period)
835 				dyn_fin_lifetime = dyn_keepalive_period - 1;
836 			q->expire = time_second + dyn_fin_lifetime;
837 			break;
838 
839 		default:
840 #if 0
841 			/*
842 			 * reset or some invalid combination, but can also
843 			 * occur if we use keep-state the wrong way.
844 			 */
845 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
846 				kprintf("invalid state: 0x%x\n", q->state);
847 #endif
848 			if (dyn_rst_lifetime >= dyn_keepalive_period)
849 				dyn_rst_lifetime = dyn_keepalive_period - 1;
850 			q->expire = time_second + dyn_rst_lifetime;
851 			break;
852 		}
853 	} else if (pkt->proto == IPPROTO_UDP) {
854 		q->expire = time_second + dyn_udp_lifetime;
855 	} else {
856 		/* other protocols */
857 		q->expire = time_second + dyn_short_lifetime;
858 	}
859 done:
860 	if (match_direction)
861 		*match_direction = dir;
862 	return q;
863 }
864 
865 static void
866 realloc_dynamic_table(void)
867 {
868 	/*
869 	 * Try reallocation, make sure we have a power of 2 and do
870 	 * not allow more than 64k entries. In case of overflow,
871 	 * default to 1024.
872 	 */
873 
874 	if (dyn_buckets > 65536)
875 		dyn_buckets = 1024;
876 	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
877 		dyn_buckets = curr_dyn_buckets; /* reset */
878 		return;
879 	}
880 	curr_dyn_buckets = dyn_buckets;
881 	if (ipfw_dyn_v != NULL)
882 		kfree(ipfw_dyn_v, M_IPFW);
883 	for (;;) {
884 		ipfw_dyn_v = kmalloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
885 		       M_IPFW, M_INTWAIT | M_NULLOK | M_ZERO);
886 		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
887 			break;
888 		curr_dyn_buckets /= 2;
889 	}
890 }
891 
892 /**
893  * Install state of type 'type' for a dynamic session.
894  * The hash table contains two type of rules:
895  * - regular rules (O_KEEP_STATE)
896  * - rules for sessions with limited number of sess per user
897  *   (O_LIMIT). When they are created, the parent is
898  *   increased by 1, and decreased on delete. In this case,
899  *   the third parameter is the parent rule and not the chain.
900  * - "parent" rules for the above (O_LIMIT_PARENT).
901  */
902 static ipfw_dyn_rule *
903 add_dyn_rule(struct ipfw_flow_id *id, uint8_t dyn_type, struct ip_fw *rule)
904 {
905 	ipfw_dyn_rule *r;
906 	int i;
907 
908 	if (ipfw_dyn_v == NULL ||
909 	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
910 		realloc_dynamic_table();
911 		if (ipfw_dyn_v == NULL)
912 			return NULL; /* failed ! */
913 	}
914 	i = hash_packet(id);
915 
916 	r = kmalloc(sizeof *r, M_IPFW, M_INTWAIT | M_NULLOK | M_ZERO);
917 	if (r == NULL) {
918 		kprintf ("sorry cannot allocate state\n");
919 		return NULL;
920 	}
921 
922 	/* increase refcount on parent, and set pointer */
923 	if (dyn_type == O_LIMIT) {
924 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
925 		if ( parent->dyn_type != O_LIMIT_PARENT)
926 			panic("invalid parent");
927 		parent->count++;
928 		r->parent = parent;
929 		rule = parent->rule;
930 	}
931 
932 	r->id = *id;
933 	r->expire = time_second + dyn_syn_lifetime;
934 	r->rule = rule;
935 	r->dyn_type = dyn_type;
936 	r->pcnt = r->bcnt = 0;
937 	r->count = 0;
938 
939 	r->bucket = i;
940 	r->next = ipfw_dyn_v[i];
941 	ipfw_dyn_v[i] = r;
942 	dyn_count++;
943 	DEB(kprintf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
944 	   dyn_type,
945 	   (r->id.src_ip), (r->id.src_port),
946 	   (r->id.dst_ip), (r->id.dst_port),
947 	   dyn_count ); )
948 	return r;
949 }
950 
951 /**
952  * lookup dynamic parent rule using pkt and rule as search keys.
953  * If the lookup fails, then install one.
954  */
955 static ipfw_dyn_rule *
956 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
957 {
958 	ipfw_dyn_rule *q;
959 	int i;
960 
961 	if (ipfw_dyn_v) {
962 		i = hash_packet( pkt );
963 		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
964 			if (q->dyn_type == O_LIMIT_PARENT &&
965 			    rule== q->rule &&
966 			    pkt->proto == q->id.proto &&
967 			    pkt->src_ip == q->id.src_ip &&
968 			    pkt->dst_ip == q->id.dst_ip &&
969 			    pkt->src_port == q->id.src_port &&
970 			    pkt->dst_port == q->id.dst_port) {
971 				q->expire = time_second + dyn_short_lifetime;
972 				DEB(kprintf("lookup_dyn_parent found 0x%p\n",q);)
973 				return q;
974 			}
975 	}
976 	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
977 }
978 
979 /**
980  * Install dynamic state for rule type cmd->o.opcode
981  *
982  * Returns 1 (failure) if state is not installed because of errors or because
983  * session limitations are enforced.
984  */
985 static int
986 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
987 	struct ip_fw_args *args)
988 {
989 	static int last_log;
990 
991 	ipfw_dyn_rule *q;
992 
993 	DEB(kprintf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
994 	    cmd->o.opcode,
995 	    (args->f_id.src_ip), (args->f_id.src_port),
996 	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
997 
998 	q = lookup_dyn_rule(&args->f_id, NULL, NULL);
999 
1000 	if (q != NULL) { /* should never occur */
1001 		if (last_log != time_second) {
1002 			last_log = time_second;
1003 			kprintf(" install_state: entry already present, done\n");
1004 		}
1005 		return 0;
1006 	}
1007 
1008 	if (dyn_count >= dyn_max)
1009 		/*
1010 		 * Run out of slots, try to remove any expired rule.
1011 		 */
1012 		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1013 
1014 	if (dyn_count >= dyn_max) {
1015 		if (last_log != time_second) {
1016 			last_log = time_second;
1017 			kprintf("install_state: Too many dynamic rules\n");
1018 		}
1019 		return 1; /* cannot install, notify caller */
1020 	}
1021 
1022 	switch (cmd->o.opcode) {
1023 	case O_KEEP_STATE: /* bidir rule */
1024 		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1025 		break;
1026 
1027 	case O_LIMIT: /* limit number of sessions */
1028 	    {
1029 		uint16_t limit_mask = cmd->limit_mask;
1030 		struct ipfw_flow_id id;
1031 		ipfw_dyn_rule *parent;
1032 
1033 		DEB(kprintf("installing dyn-limit rule %d\n", cmd->conn_limit);)
1034 
1035 		id.dst_ip = id.src_ip = 0;
1036 		id.dst_port = id.src_port = 0;
1037 		id.proto = args->f_id.proto;
1038 
1039 		if (limit_mask & DYN_SRC_ADDR)
1040 			id.src_ip = args->f_id.src_ip;
1041 		if (limit_mask & DYN_DST_ADDR)
1042 			id.dst_ip = args->f_id.dst_ip;
1043 		if (limit_mask & DYN_SRC_PORT)
1044 			id.src_port = args->f_id.src_port;
1045 		if (limit_mask & DYN_DST_PORT)
1046 			id.dst_port = args->f_id.dst_port;
1047 		parent = lookup_dyn_parent(&id, rule);
1048 		if (parent == NULL) {
1049 			kprintf("add parent failed\n");
1050 			return 1;
1051 		}
1052 		if (parent->count >= cmd->conn_limit) {
1053 			/*
1054 			 * See if we can remove some expired rule.
1055 			 */
1056 			remove_dyn_rule(rule, parent);
1057 			if (parent->count >= cmd->conn_limit) {
1058 				if (fw_verbose && last_log != time_second) {
1059 					last_log = time_second;
1060 					log(LOG_SECURITY | LOG_DEBUG,
1061 					    "drop session, too many entries\n");
1062 				}
1063 				return 1;
1064 			}
1065 		}
1066 		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1067 	    }
1068 		break;
1069 	default:
1070 		kprintf("unknown dynamic rule type %u\n", cmd->o.opcode);
1071 		return 1;
1072 	}
1073 	lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Transmit a TCP packet, containing either a RST or a keepalive.
1079  * When flags & TH_RST, we are sending a RST packet, because of a
1080  * "reset" action matched the packet.
1081  * Otherwise we are sending a keepalive, and flags & TH_
1082  */
1083 static void
1084 send_pkt(struct ipfw_flow_id *id, uint32_t seq, uint32_t ack, int flags)
1085 {
1086 	struct mbuf *m;
1087 	struct ip *ip;
1088 	struct tcphdr *tcp;
1089 	struct route sro;	/* fake route */
1090 
1091 	MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1092 	if (m == 0)
1093 		return;
1094 	m->m_pkthdr.rcvif = (struct ifnet *)0;
1095 	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1096 	m->m_data += max_linkhdr;
1097 
1098 	ip = mtod(m, struct ip *);
1099 	bzero(ip, m->m_len);
1100 	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1101 	ip->ip_p = IPPROTO_TCP;
1102 	tcp->th_off = 5;
1103 	/*
1104 	 * Assume we are sending a RST (or a keepalive in the reverse
1105 	 * direction), swap src and destination addresses and ports.
1106 	 */
1107 	ip->ip_src.s_addr = htonl(id->dst_ip);
1108 	ip->ip_dst.s_addr = htonl(id->src_ip);
1109 	tcp->th_sport = htons(id->dst_port);
1110 	tcp->th_dport = htons(id->src_port);
1111 	if (flags & TH_RST) {	/* we are sending a RST */
1112 		if (flags & TH_ACK) {
1113 			tcp->th_seq = htonl(ack);
1114 			tcp->th_ack = htonl(0);
1115 			tcp->th_flags = TH_RST;
1116 		} else {
1117 			if (flags & TH_SYN)
1118 				seq++;
1119 			tcp->th_seq = htonl(0);
1120 			tcp->th_ack = htonl(seq);
1121 			tcp->th_flags = TH_RST | TH_ACK;
1122 		}
1123 	} else {
1124 		/*
1125 		 * We are sending a keepalive. flags & TH_SYN determines
1126 		 * the direction, forward if set, reverse if clear.
1127 		 * NOTE: seq and ack are always assumed to be correct
1128 		 * as set by the caller. This may be confusing...
1129 		 */
1130 		if (flags & TH_SYN) {
1131 			/*
1132 			 * we have to rewrite the correct addresses!
1133 			 */
1134 			ip->ip_dst.s_addr = htonl(id->dst_ip);
1135 			ip->ip_src.s_addr = htonl(id->src_ip);
1136 			tcp->th_dport = htons(id->dst_port);
1137 			tcp->th_sport = htons(id->src_port);
1138 		}
1139 		tcp->th_seq = htonl(seq);
1140 		tcp->th_ack = htonl(ack);
1141 		tcp->th_flags = TH_ACK;
1142 	}
1143 	/*
1144 	 * set ip_len to the payload size so we can compute
1145 	 * the tcp checksum on the pseudoheader
1146 	 * XXX check this, could save a couple of words ?
1147 	 */
1148 	ip->ip_len = htons(sizeof(struct tcphdr));
1149 	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1150 	/*
1151 	 * now fill fields left out earlier
1152 	 */
1153 	ip->ip_ttl = ip_defttl;
1154 	ip->ip_len = m->m_pkthdr.len;
1155 	bzero (&sro, sizeof (sro));
1156 	ip_rtaddr(ip->ip_dst, &sro);
1157 	m->m_pkthdr.fw_flags |= IPFW_MBUF_GENERATED;
1158 	ip_output(m, NULL, &sro, 0, NULL, NULL);
1159 	if (sro.ro_rt)
1160 		RTFREE(sro.ro_rt);
1161 }
1162 
1163 /*
1164  * sends a reject message, consuming the mbuf passed as an argument.
1165  */
1166 static void
1167 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1168 {
1169 
1170 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1171 		/* We need the IP header in host order for icmp_error(). */
1172 		if (args->eh != NULL) {
1173 			struct ip *ip = mtod(args->m, struct ip *);
1174 			ip->ip_len = ntohs(ip->ip_len);
1175 			ip->ip_off = ntohs(ip->ip_off);
1176 		}
1177 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1178 	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1179 		struct tcphdr *const tcp =
1180 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1181 		if ( (tcp->th_flags & TH_RST) == 0)
1182 			send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1183 				ntohl(tcp->th_ack),
1184 				tcp->th_flags | TH_RST);
1185 		m_freem(args->m);
1186 	} else
1187 		m_freem(args->m);
1188 	args->m = NULL;
1189 }
1190 
1191 /**
1192  *
1193  * Given an ip_fw *, lookup_next_rule will return a pointer
1194  * to the next rule, which can be either the jump
1195  * target (for skipto instructions) or the next one in the list (in
1196  * all other cases including a missing jump target).
1197  * The result is also written in the "next_rule" field of the rule.
1198  * Backward jumps are not allowed, so start looking from the next
1199  * rule...
1200  *
1201  * This never returns NULL -- in case we do not have an exact match,
1202  * the next rule is returned. When the ruleset is changed,
1203  * pointers are flushed so we are always correct.
1204  */
1205 
1206 static struct ip_fw *
1207 lookup_next_rule(struct ip_fw *me)
1208 {
1209 	struct ip_fw *rule = NULL;
1210 	ipfw_insn *cmd;
1211 
1212 	/* look for action, in case it is a skipto */
1213 	cmd = ACTION_PTR(me);
1214 	if (cmd->opcode == O_LOG)
1215 		cmd += F_LEN(cmd);
1216 	if ( cmd->opcode == O_SKIPTO )
1217 		for (rule = me->next; rule ; rule = rule->next)
1218 			if (rule->rulenum >= cmd->arg1)
1219 				break;
1220 	if (rule == NULL)			/* failure or not a skipto */
1221 		rule = me->next;
1222 	me->next_rule = rule;
1223 	return rule;
1224 }
1225 
1226 /*
1227  * The main check routine for the firewall.
1228  *
1229  * All arguments are in args so we can modify them and return them
1230  * back to the caller.
1231  *
1232  * Parameters:
1233  *
1234  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1235  *		Starts with the IP header.
1236  *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1237  *	args->oif	Outgoing interface, or NULL if packet is incoming.
1238  *		The incoming interface is in the mbuf. (in)
1239  *
1240  *	args->rule	Pointer to the last matching rule (in/out)
1241  *	args->next_hop	Socket we are forwarding to (out).
1242  *	args->f_id	Addresses grabbed from the packet (out)
1243  *
1244  * Return value:
1245  *
1246  *	IP_FW_PORT_DENY_FLAG	the packet must be dropped.
1247  *	0	The packet is to be accepted and routed normally OR
1248  *      	the packet was denied/rejected and has been dropped;
1249  *		in the latter case, *m is equal to NULL upon return.
1250  *	port	Divert the packet to port, with these caveats:
1251  *
1252  *		- If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1253  *		  of diverting it (ie, 'ipfw tee').
1254  *
1255  *		- If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1256  *		  16 bits as a dummynet pipe number instead of diverting
1257  */
1258 
1259 static int
1260 ipfw_chk(struct ip_fw_args *args)
1261 {
1262 	/*
1263 	 * Local variables hold state during the processing of a packet.
1264 	 *
1265 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1266 	 * are some assumption on the values of the variables, which
1267 	 * are documented here. Should you change them, please check
1268 	 * the implementation of the various instructions to make sure
1269 	 * that they still work.
1270 	 *
1271 	 * args->eh	The MAC header. It is non-null for a layer2
1272 	 *	packet, it is NULL for a layer-3 packet.
1273 	 *
1274 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1275 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1276 	 *	consumes the packet because it calls send_reject().
1277 	 *	XXX This has to change, so that ipfw_chk() never modifies
1278 	 *	or consumes the buffer.
1279 	 * ip	is simply an alias of the value of m, and it is kept
1280 	 *	in sync with it (the packet is	supposed to start with
1281 	 *	the ip header).
1282 	 */
1283 	struct mbuf *m = args->m;
1284 	struct ip *ip = mtod(m, struct ip *);
1285 
1286 	/*
1287 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1288 	 *	inbound path (ether_input, ip_input).
1289 	 *	If non-NULL, ipfw_chk has been called on the outbound path
1290 	 *	(ether_output, ip_output).
1291 	 */
1292 	struct ifnet *oif = args->oif;
1293 
1294 	struct ip_fw *f = NULL;		/* matching rule */
1295 	int retval = 0;
1296 	struct m_tag *mtag;
1297 
1298 	/*
1299 	 * hlen	The length of the IPv4 header.
1300 	 *	hlen >0 means we have an IPv4 packet.
1301 	 */
1302 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1303 
1304 	/*
1305 	 * offset	The offset of a fragment. offset != 0 means that
1306 	 *	we have a fragment at this offset of an IPv4 packet.
1307 	 *	offset == 0 means that (if this is an IPv4 packet)
1308 	 *	this is the first or only fragment.
1309 	 */
1310 	u_short offset = 0;
1311 
1312 	/*
1313 	 * Local copies of addresses. They are only valid if we have
1314 	 * an IP packet.
1315 	 *
1316 	 * proto	The protocol. Set to 0 for non-ip packets,
1317 	 *	or to the protocol read from the packet otherwise.
1318 	 *	proto != 0 means that we have an IPv4 packet.
1319 	 *
1320 	 * src_port, dst_port	port numbers, in HOST format. Only
1321 	 *	valid for TCP and UDP packets.
1322 	 *
1323 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1324 	 *	Only valid for IPv4 packets.
1325 	 */
1326 	uint8_t proto;
1327 	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1328 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1329 	uint16_t ip_len=0;
1330 	int dyn_dir = MATCH_UNKNOWN;
1331 	ipfw_dyn_rule *q = NULL;
1332 
1333 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_GENERATED)
1334 		return 0;	/* accept */
1335 	/*
1336 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1337 	 * 	MATCH_NONE when checked and not matched (q = NULL),
1338 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1339 	 */
1340 
1341 	if (args->eh == NULL ||		/* layer 3 packet */
1342 		( m->m_pkthdr.len >= sizeof(struct ip) &&
1343 		    ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1344 			hlen = ip->ip_hl << 2;
1345 
1346 	/*
1347 	 * Collect parameters into local variables for faster matching.
1348 	 */
1349 	if (hlen == 0) {	/* do not grab addresses for non-ip pkts */
1350 		proto = args->f_id.proto = 0;	/* mark f_id invalid */
1351 		goto after_ip_checks;
1352 	}
1353 
1354 	proto = args->f_id.proto = ip->ip_p;
1355 	src_ip = ip->ip_src;
1356 	dst_ip = ip->ip_dst;
1357 	if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1358 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1359 		ip_len = ntohs(ip->ip_len);
1360 	} else {
1361 		offset = ip->ip_off & IP_OFFMASK;
1362 		ip_len = ip->ip_len;
1363 	}
1364 
1365 #define PULLUP_TO(len)						\
1366 		do {						\
1367 			if ((m)->m_len < (len)) {		\
1368 			    args->m = m = m_pullup(m, (len));	\
1369 			    if (m == 0)				\
1370 				goto pullup_failed;		\
1371 			    ip = mtod(m, struct ip *);		\
1372 			}					\
1373 		} while (0)
1374 
1375 	if (offset == 0) {
1376 		switch (proto) {
1377 		case IPPROTO_TCP:
1378 		    {
1379 			struct tcphdr *tcp;
1380 
1381 			PULLUP_TO(hlen + sizeof(struct tcphdr));
1382 			tcp = L3HDR(struct tcphdr, ip);
1383 			dst_port = tcp->th_dport;
1384 			src_port = tcp->th_sport;
1385 			args->f_id.flags = tcp->th_flags;
1386 			}
1387 			break;
1388 
1389 		case IPPROTO_UDP:
1390 		    {
1391 			struct udphdr *udp;
1392 
1393 			PULLUP_TO(hlen + sizeof(struct udphdr));
1394 			udp = L3HDR(struct udphdr, ip);
1395 			dst_port = udp->uh_dport;
1396 			src_port = udp->uh_sport;
1397 			}
1398 			break;
1399 
1400 		case IPPROTO_ICMP:
1401 			PULLUP_TO(hlen + 4);	/* type, code and checksum. */
1402 			args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1403 			break;
1404 
1405 		default:
1406 			break;
1407 		}
1408 #undef PULLUP_TO
1409 	}
1410 
1411 	args->f_id.src_ip = ntohl(src_ip.s_addr);
1412 	args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1413 	args->f_id.src_port = src_port = ntohs(src_port);
1414 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1415 
1416 after_ip_checks:
1417 	if (args->rule) {
1418 		/*
1419 		 * Packet has already been tagged. Look for the next rule
1420 		 * to restart processing.
1421 		 *
1422 		 * If fw_one_pass != 0 then just accept it.
1423 		 * XXX should not happen here, but optimized out in
1424 		 * the caller.
1425 		 */
1426 		if (fw_one_pass)
1427 			return 0;
1428 
1429 		/* This rule was deleted */
1430 		if (args->rule->rule_flags & IPFW_RULE_F_INVALID)
1431 			return IP_FW_PORT_DENY_FLAG;
1432 
1433 		f = args->rule->next_rule;
1434 		if (f == NULL)
1435 			f = lookup_next_rule(args->rule);
1436 	} else {
1437 		/*
1438 		 * Find the starting rule. It can be either the first
1439 		 * one, or the one after divert_rule if asked so.
1440 		 */
1441 		int skipto;
1442 
1443 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1444 		if (mtag != NULL)
1445 			skipto = *(uint16_t *)m_tag_data(mtag);
1446 		else
1447 			skipto = 0;
1448 
1449 		f = layer3_chain;
1450 		if (args->eh == NULL && skipto != 0) {
1451 			if (skipto >= IPFW_DEFAULT_RULE)
1452 				return(IP_FW_PORT_DENY_FLAG); /* invalid */
1453 			while (f && f->rulenum <= skipto)
1454 				f = f->next;
1455 			if (f == NULL)	/* drop packet */
1456 				return(IP_FW_PORT_DENY_FLAG);
1457 		}
1458 	}
1459 	if ((mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
1460 		m_tag_delete(m, mtag);
1461 
1462 	/*
1463 	 * Now scan the rules, and parse microinstructions for each rule.
1464 	 */
1465 	for (; f; f = f->next) {
1466 		int l, cmdlen;
1467 		ipfw_insn *cmd;
1468 		int skip_or; /* skip rest of OR block */
1469 
1470 again:
1471 		if (set_disable & (1 << f->set) )
1472 			continue;
1473 
1474 		skip_or = 0;
1475 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1476 		    l -= cmdlen, cmd += cmdlen) {
1477 			int match;
1478 
1479 			/*
1480 			 * check_body is a jump target used when we find a
1481 			 * CHECK_STATE, and need to jump to the body of
1482 			 * the target rule.
1483 			 */
1484 
1485 check_body:
1486 			cmdlen = F_LEN(cmd);
1487 			/*
1488 			 * An OR block (insn_1 || .. || insn_n) has the
1489 			 * F_OR bit set in all but the last instruction.
1490 			 * The first match will set "skip_or", and cause
1491 			 * the following instructions to be skipped until
1492 			 * past the one with the F_OR bit clear.
1493 			 */
1494 			if (skip_or) {		/* skip this instruction */
1495 				if ((cmd->len & F_OR) == 0)
1496 					skip_or = 0;	/* next one is good */
1497 				continue;
1498 			}
1499 			match = 0; /* set to 1 if we succeed */
1500 
1501 			switch (cmd->opcode) {
1502 			/*
1503 			 * The first set of opcodes compares the packet's
1504 			 * fields with some pattern, setting 'match' if a
1505 			 * match is found. At the end of the loop there is
1506 			 * logic to deal with F_NOT and F_OR flags associated
1507 			 * with the opcode.
1508 			 */
1509 			case O_NOP:
1510 				match = 1;
1511 				break;
1512 
1513 			case O_FORWARD_MAC:
1514 				kprintf("ipfw: opcode %d unimplemented\n",
1515 				    cmd->opcode);
1516 				break;
1517 
1518 			case O_GID:
1519 			case O_UID:
1520 				/*
1521 				 * We only check offset == 0 && proto != 0,
1522 				 * as this ensures that we have an IPv4
1523 				 * packet with the ports info.
1524 				 */
1525 				if (offset!=0)
1526 					break;
1527 			    {
1528 				struct inpcbinfo *pi;
1529 				int wildcard;
1530 				struct inpcb *pcb;
1531 
1532 				if (proto == IPPROTO_TCP) {
1533 					wildcard = 0;
1534 					pi = &tcbinfo[mycpu->gd_cpuid];
1535 				} else if (proto == IPPROTO_UDP) {
1536 					wildcard = 1;
1537 					pi = &udbinfo;
1538 				} else
1539 					break;
1540 
1541 				pcb =  (oif) ?
1542 					in_pcblookup_hash(pi,
1543 					    dst_ip, htons(dst_port),
1544 					    src_ip, htons(src_port),
1545 					    wildcard, oif) :
1546 					in_pcblookup_hash(pi,
1547 					    src_ip, htons(src_port),
1548 					    dst_ip, htons(dst_port),
1549 					    wildcard, NULL);
1550 
1551 				if (pcb == NULL || pcb->inp_socket == NULL)
1552 					break;
1553 #if defined(__DragonFly__) || (defined(__FreeBSD__) && __FreeBSD_version < 500034)
1554 #define socheckuid(a,b)	((a)->so_cred->cr_uid != (b))
1555 #endif
1556 				if (cmd->opcode == O_UID) {
1557 					match =
1558 					  !socheckuid(pcb->inp_socket,
1559 					   (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
1560 				} else  {
1561 					match = groupmember(
1562 					    (uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1563 					    pcb->inp_socket->so_cred);
1564 				}
1565 			    }
1566 				break;
1567 
1568 			case O_RECV:
1569 				match = iface_match(m->m_pkthdr.rcvif,
1570 				    (ipfw_insn_if *)cmd);
1571 				break;
1572 
1573 			case O_XMIT:
1574 				match = iface_match(oif, (ipfw_insn_if *)cmd);
1575 				break;
1576 
1577 			case O_VIA:
1578 				match = iface_match(oif ? oif :
1579 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1580 				break;
1581 
1582 			case O_MACADDR2:
1583 				if (args->eh != NULL) {	/* have MAC header */
1584 					uint32_t *want = (uint32_t *)
1585 						((ipfw_insn_mac *)cmd)->addr;
1586 					uint32_t *mask = (uint32_t *)
1587 						((ipfw_insn_mac *)cmd)->mask;
1588 					uint32_t *hdr = (uint32_t *)args->eh;
1589 
1590 					match =
1591 					    ( want[0] == (hdr[0] & mask[0]) &&
1592 					      want[1] == (hdr[1] & mask[1]) &&
1593 					      want[2] == (hdr[2] & mask[2]) );
1594 				}
1595 				break;
1596 
1597 			case O_MAC_TYPE:
1598 				if (args->eh != NULL) {
1599 					uint16_t t =
1600 					    ntohs(args->eh->ether_type);
1601 					uint16_t *p =
1602 					    ((ipfw_insn_u16 *)cmd)->ports;
1603 					int i;
1604 
1605 					for (i = cmdlen - 1; !match && i>0;
1606 					    i--, p += 2)
1607 						match = (t>=p[0] && t<=p[1]);
1608 				}
1609 				break;
1610 
1611 			case O_FRAG:
1612 				match = (hlen > 0 && offset != 0);
1613 				break;
1614 
1615 			case O_IN:	/* "out" is "not in" */
1616 				match = (oif == NULL);
1617 				break;
1618 
1619 			case O_LAYER2:
1620 				match = (args->eh != NULL);
1621 				break;
1622 
1623 			case O_PROTO:
1624 				/*
1625 				 * We do not allow an arg of 0 so the
1626 				 * check of "proto" only suffices.
1627 				 */
1628 				match = (proto == cmd->arg1);
1629 				break;
1630 
1631 			case O_IP_SRC:
1632 				match = (hlen > 0 &&
1633 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1634 				    src_ip.s_addr);
1635 				break;
1636 
1637 			case O_IP_SRC_MASK:
1638 				match = (hlen > 0 &&
1639 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1640 				     (src_ip.s_addr &
1641 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
1642 				break;
1643 
1644 			case O_IP_SRC_ME:
1645 				if (hlen > 0) {
1646 					struct ifnet *tif;
1647 
1648 					INADDR_TO_IFP(src_ip, tif);
1649 					match = (tif != NULL);
1650 				}
1651 				break;
1652 
1653 			case O_IP_DST_SET:
1654 			case O_IP_SRC_SET:
1655 				if (hlen > 0) {
1656 					uint32_t *d = (uint32_t *)(cmd+1);
1657 					uint32_t addr =
1658 					    cmd->opcode == O_IP_DST_SET ?
1659 						args->f_id.dst_ip :
1660 						args->f_id.src_ip;
1661 
1662 					    if (addr < d[0])
1663 						    break;
1664 					    addr -= d[0]; /* subtract base */
1665 					    match = (addr < cmd->arg1) &&
1666 						( d[ 1 + (addr>>5)] &
1667 						  (1<<(addr & 0x1f)) );
1668 				}
1669 				break;
1670 
1671 			case O_IP_DST:
1672 				match = (hlen > 0 &&
1673 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1674 				    dst_ip.s_addr);
1675 				break;
1676 
1677 			case O_IP_DST_MASK:
1678 				match = (hlen > 0) &&
1679 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1680 				     (dst_ip.s_addr &
1681 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
1682 				break;
1683 
1684 			case O_IP_DST_ME:
1685 				if (hlen > 0) {
1686 					struct ifnet *tif;
1687 
1688 					INADDR_TO_IFP(dst_ip, tif);
1689 					match = (tif != NULL);
1690 				}
1691 				break;
1692 
1693 			case O_IP_SRCPORT:
1694 			case O_IP_DSTPORT:
1695 				/*
1696 				 * offset == 0 && proto != 0 is enough
1697 				 * to guarantee that we have an IPv4
1698 				 * packet with port info.
1699 				 */
1700 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1701 				    && offset == 0) {
1702 					uint16_t x =
1703 					    (cmd->opcode == O_IP_SRCPORT) ?
1704 						src_port : dst_port ;
1705 					uint16_t *p =
1706 					    ((ipfw_insn_u16 *)cmd)->ports;
1707 					int i;
1708 
1709 					for (i = cmdlen - 1; !match && i>0;
1710 					    i--, p += 2)
1711 						match = (x>=p[0] && x<=p[1]);
1712 				}
1713 				break;
1714 
1715 			case O_ICMPTYPE:
1716 				match = (offset == 0 && proto==IPPROTO_ICMP &&
1717 				    icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
1718 				break;
1719 
1720 			case O_IPOPT:
1721 				match = (hlen > 0 && ipopts_match(ip, cmd) );
1722 				break;
1723 
1724 			case O_IPVER:
1725 				match = (hlen > 0 && cmd->arg1 == ip->ip_v);
1726 				break;
1727 
1728 			case O_IPTTL:
1729 				match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
1730 				break;
1731 
1732 			case O_IPID:
1733 				match = (hlen > 0 &&
1734 				    cmd->arg1 == ntohs(ip->ip_id));
1735 				break;
1736 
1737 			case O_IPLEN:
1738 				match = (hlen > 0 && cmd->arg1 == ip_len);
1739 				break;
1740 
1741 			case O_IPPRECEDENCE:
1742 				match = (hlen > 0 &&
1743 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1744 				break;
1745 
1746 			case O_IPTOS:
1747 				match = (hlen > 0 &&
1748 				    flags_match(cmd, ip->ip_tos));
1749 				break;
1750 
1751 			case O_TCPFLAGS:
1752 				match = (proto == IPPROTO_TCP && offset == 0 &&
1753 				    flags_match(cmd,
1754 					L3HDR(struct tcphdr,ip)->th_flags));
1755 				break;
1756 
1757 			case O_TCPOPTS:
1758 				match = (proto == IPPROTO_TCP && offset == 0 &&
1759 				    tcpopts_match(ip, cmd));
1760 				break;
1761 
1762 			case O_TCPSEQ:
1763 				match = (proto == IPPROTO_TCP && offset == 0 &&
1764 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1765 					L3HDR(struct tcphdr,ip)->th_seq);
1766 				break;
1767 
1768 			case O_TCPACK:
1769 				match = (proto == IPPROTO_TCP && offset == 0 &&
1770 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1771 					L3HDR(struct tcphdr,ip)->th_ack);
1772 				break;
1773 
1774 			case O_TCPWIN:
1775 				match = (proto == IPPROTO_TCP && offset == 0 &&
1776 				    cmd->arg1 ==
1777 					L3HDR(struct tcphdr,ip)->th_win);
1778 				break;
1779 
1780 			case O_ESTAB:
1781 				/* reject packets which have SYN only */
1782 				/* XXX should i also check for TH_ACK ? */
1783 				match = (proto == IPPROTO_TCP && offset == 0 &&
1784 				    (L3HDR(struct tcphdr,ip)->th_flags &
1785 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1786 				break;
1787 
1788 			case O_LOG:
1789 				if (fw_verbose)
1790 					ipfw_log(f, hlen, args->eh, m, oif);
1791 				match = 1;
1792 				break;
1793 
1794 			case O_PROB:
1795 				match = (krandom() <
1796 					((ipfw_insn_u32 *)cmd)->d[0]);
1797 				break;
1798 
1799 			/*
1800 			 * The second set of opcodes represents 'actions',
1801 			 * i.e. the terminal part of a rule once the packet
1802 			 * matches all previous patterns.
1803 			 * Typically there is only one action for each rule,
1804 			 * and the opcode is stored at the end of the rule
1805 			 * (but there are exceptions -- see below).
1806 			 *
1807 			 * In general, here we set retval and terminate the
1808 			 * outer loop (would be a 'break 3' in some language,
1809 			 * but we need to do a 'goto done').
1810 			 *
1811 			 * Exceptions:
1812 			 * O_COUNT and O_SKIPTO actions:
1813 			 *   instead of terminating, we jump to the next rule
1814 			 *   ('goto next_rule', equivalent to a 'break 2'),
1815 			 *   or to the SKIPTO target ('goto again' after
1816 			 *   having set f, cmd and l), respectively.
1817 			 *
1818 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1819 			 *   not real 'actions', and are stored right
1820 			 *   before the 'action' part of the rule.
1821 			 *   These opcodes try to install an entry in the
1822 			 *   state tables; if successful, we continue with
1823 			 *   the next opcode (match=1; break;), otherwise
1824 			 *   the packet *   must be dropped
1825 			 *   ('goto done' after setting retval);
1826 			 *
1827 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1828 			 *   cause a lookup of the state table, and a jump
1829 			 *   to the 'action' part of the parent rule
1830 			 *   ('goto check_body') if an entry is found, or
1831 			 *   (CHECK_STATE only) a jump to the next rule if
1832 			 *   the entry is not found ('goto next_rule').
1833 			 *   The result of the lookup is cached to make
1834 			 *   further instances of these opcodes are
1835 			 *   effectively NOPs.
1836 			 */
1837 			case O_LIMIT:
1838 			case O_KEEP_STATE:
1839 				if (install_state(f,
1840 				    (ipfw_insn_limit *)cmd, args)) {
1841 					retval = IP_FW_PORT_DENY_FLAG;
1842 					goto done; /* error/limit violation */
1843 				}
1844 				match = 1;
1845 				break;
1846 
1847 			case O_PROBE_STATE:
1848 			case O_CHECK_STATE:
1849 				/*
1850 				 * dynamic rules are checked at the first
1851 				 * keep-state or check-state occurrence,
1852 				 * with the result being stored in dyn_dir.
1853 				 * The compiler introduces a PROBE_STATE
1854 				 * instruction for us when we have a
1855 				 * KEEP_STATE (because PROBE_STATE needs
1856 				 * to be run first).
1857 				 */
1858 				if (dyn_dir == MATCH_UNKNOWN &&
1859 				    (q = lookup_dyn_rule(&args->f_id,
1860 				     &dyn_dir, proto == IPPROTO_TCP ?
1861 					L3HDR(struct tcphdr, ip) : NULL))
1862 					!= NULL) {
1863 					/*
1864 					 * Found dynamic entry, update stats
1865 					 * and jump to the 'action' part of
1866 					 * the parent rule.
1867 					 */
1868 					q->pcnt++;
1869 					q->bcnt += ip_len;
1870 					f = q->rule;
1871 					cmd = ACTION_PTR(f);
1872 					l = f->cmd_len - f->act_ofs;
1873 					goto check_body;
1874 				}
1875 				/*
1876 				 * Dynamic entry not found. If CHECK_STATE,
1877 				 * skip to next rule, if PROBE_STATE just
1878 				 * ignore and continue with next opcode.
1879 				 */
1880 				if (cmd->opcode == O_CHECK_STATE)
1881 					goto next_rule;
1882 				match = 1;
1883 				break;
1884 
1885 			case O_ACCEPT:
1886 				retval = 0;	/* accept */
1887 				goto done;
1888 
1889 			case O_PIPE:
1890 			case O_QUEUE:
1891 				args->rule = f; /* report matching rule */
1892 				retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
1893 				goto done;
1894 
1895 			case O_DIVERT:
1896 			case O_TEE:
1897 				if (args->eh) /* not on layer 2 */
1898 					break;
1899 
1900 				mtag = m_tag_get(PACKET_TAG_IPFW_DIVERT,
1901 						 sizeof(uint16_t), MB_DONTWAIT);
1902 				if (mtag == NULL) {
1903 					retval = IP_FW_PORT_DENY_FLAG;
1904 					goto done;
1905 				}
1906 				*(uint16_t *)m_tag_data(mtag) = f->rulenum;
1907 				m_tag_prepend(m, mtag);
1908 				retval = (cmd->opcode == O_DIVERT) ?
1909 				    cmd->arg1 :
1910 				    cmd->arg1 | IP_FW_PORT_TEE_FLAG;
1911 				goto done;
1912 
1913 			case O_COUNT:
1914 			case O_SKIPTO:
1915 				f->pcnt++;	/* update stats */
1916 				f->bcnt += ip_len;
1917 				f->timestamp = time_second;
1918 				if (cmd->opcode == O_COUNT)
1919 					goto next_rule;
1920 				/* handle skipto */
1921 				if (f->next_rule == NULL)
1922 					lookup_next_rule(f);
1923 				f = f->next_rule;
1924 				goto again;
1925 
1926 			case O_REJECT:
1927 				/*
1928 				 * Drop the packet and send a reject notice
1929 				 * if the packet is not ICMP (or is an ICMP
1930 				 * query), and it is not multicast/broadcast.
1931 				 */
1932 				if (hlen > 0 &&
1933 				    (proto != IPPROTO_ICMP ||
1934 				     is_icmp_query(ip)) &&
1935 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
1936 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
1937 					send_reject(args, cmd->arg1,
1938 					    offset,ip_len);
1939 					m = args->m;
1940 				}
1941 				/* FALLTHROUGH */
1942 			case O_DENY:
1943 				retval = IP_FW_PORT_DENY_FLAG;
1944 				goto done;
1945 
1946 			case O_FORWARD_IP:
1947 				if (args->eh)	/* not valid on layer2 pkts */
1948 					break;
1949 				if (!q || dyn_dir == MATCH_FORWARD)
1950 					args->next_hop =
1951 					    &((ipfw_insn_sa *)cmd)->sa;
1952 				retval = 0;
1953 				goto done;
1954 
1955 			default:
1956 				panic("-- unknown opcode %d\n", cmd->opcode);
1957 			} /* end of switch() on opcodes */
1958 
1959 			if (cmd->len & F_NOT)
1960 				match = !match;
1961 
1962 			if (match) {
1963 				if (cmd->len & F_OR)
1964 					skip_or = 1;
1965 			} else {
1966 				if (!(cmd->len & F_OR)) /* not an OR block, */
1967 					break;		/* try next rule    */
1968 			}
1969 
1970 		}	/* end of inner for, scan opcodes */
1971 
1972 next_rule:;		/* try next rule		*/
1973 
1974 	}		/* end of outer for, scan rules */
1975 	kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
1976 	return(IP_FW_PORT_DENY_FLAG);
1977 
1978 done:
1979 	/* Update statistics */
1980 	f->pcnt++;
1981 	f->bcnt += ip_len;
1982 	f->timestamp = time_second;
1983 	return retval;
1984 
1985 pullup_failed:
1986 	if (fw_verbose)
1987 		kprintf("pullup failed\n");
1988 	return(IP_FW_PORT_DENY_FLAG);
1989 }
1990 
1991 static void
1992 ipfw_dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1993 {
1994 	struct m_tag *mtag;
1995 	struct dn_pkt *pkt;
1996 	ipfw_insn *cmd;
1997 	const struct ipfw_flow_id *id;
1998 	struct dn_flow_id *fid;
1999 
2000 	M_ASSERTPKTHDR(m);
2001 
2002 	mtag = m_tag_get(PACKET_TAG_DUMMYNET, sizeof(*pkt), MB_DONTWAIT);
2003 	if (mtag == NULL) {
2004 		m_freem(m);
2005 		return;
2006 	}
2007 	m_tag_prepend(m, mtag);
2008 
2009 	pkt = m_tag_data(mtag);
2010 	bzero(pkt, sizeof(*pkt));
2011 
2012 	cmd = fwa->rule->cmd + fwa->rule->act_ofs;
2013 	if (cmd->opcode == O_LOG)
2014 		cmd += F_LEN(cmd);
2015 	KASSERT(cmd->opcode == O_PIPE || cmd->opcode == O_QUEUE,
2016 		("Rule is not PIPE or QUEUE, opcode %d\n", cmd->opcode));
2017 
2018 	pkt->dn_m = m;
2019 	pkt->dn_flags = (dir & DN_FLAGS_DIR_MASK);
2020 	pkt->ifp = fwa->oif;
2021 	pkt->cpuid = mycpu->gd_cpuid;
2022 	pkt->pipe_nr = pipe_nr;
2023 
2024 	id = &fwa->f_id;
2025 	fid = &pkt->id;
2026 	fid->fid_dst_ip = id->dst_ip;
2027 	fid->fid_src_ip = id->src_ip;
2028 	fid->fid_dst_port = id->dst_port;
2029 	fid->fid_src_port = id->src_port;
2030 	fid->fid_proto = id->proto;
2031 	fid->fid_flags = id->flags;
2032 
2033 	ipfw_ref_rule(fwa->rule);
2034 	pkt->dn_priv = fwa->rule;
2035 	pkt->dn_unref_priv = ipfw_unref_rule;
2036 
2037 	if (cmd->opcode == O_PIPE)
2038 		pkt->dn_flags |= DN_FLAGS_IS_PIPE;
2039 
2040 	if (dir == DN_TO_IP_OUT) {
2041 		/*
2042 		 * We need to copy *ro because for ICMP pkts (and maybe
2043 		 * others) the caller passed a pointer into the stack;
2044 		 * dst might also be a pointer into *ro so it needs to
2045 		 * be updated.
2046 		 */
2047 		pkt->ro = *(fwa->ro);
2048 		if (fwa->ro->ro_rt)
2049 			fwa->ro->ro_rt->rt_refcnt++;
2050 		if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) {
2051 			/* 'dst' points into 'ro' */
2052 			fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst);
2053 		}
2054 		pkt->dn_dst = fwa->dst;
2055 		pkt->flags = fwa->flags;
2056 	}
2057 
2058 	m->m_pkthdr.fw_flags |= DUMMYNET_MBUF_TAGGED;
2059 	ip_dn_queue(m);
2060 }
2061 
2062 /*
2063  * When a rule is added/deleted, clear the next_rule pointers in all rules.
2064  * These will be reconstructed on the fly as packets are matched.
2065  * Must be called at splimp().
2066  */
2067 static void
2068 flush_rule_ptrs(void)
2069 {
2070 	struct ip_fw *rule;
2071 
2072 	for (rule = layer3_chain; rule; rule = rule->next)
2073 		rule->next_rule = NULL;
2074 }
2075 
2076 static __inline void
2077 ipfw_inc_static_count(struct ip_fw *rule)
2078 {
2079 	static_count++;
2080 	static_ioc_len += IOC_RULESIZE(rule);
2081 }
2082 
2083 static __inline void
2084 ipfw_dec_static_count(struct ip_fw *rule)
2085 {
2086 	int l = IOC_RULESIZE(rule);
2087 
2088 	KASSERT(static_count > 0, ("invalid static count %u\n", static_count));
2089 	static_count--;
2090 
2091 	KASSERT(static_ioc_len >= l,
2092 		("invalid static len %u\n", static_ioc_len));
2093 	static_ioc_len -= l;
2094 }
2095 
2096 static struct ip_fw *
2097 ipfw_create_rule(const struct ipfw_ioc_rule *ioc_rule)
2098 {
2099 	struct ip_fw *rule;
2100 
2101 	rule = kmalloc(RULESIZE(ioc_rule), M_IPFW, M_WAITOK | M_ZERO);
2102 
2103 	rule->act_ofs = ioc_rule->act_ofs;
2104 	rule->cmd_len = ioc_rule->cmd_len;
2105 	rule->rulenum = ioc_rule->rulenum;
2106 	rule->set = ioc_rule->set;
2107 	rule->usr_flags = ioc_rule->usr_flags;
2108 
2109 	bcopy(ioc_rule->cmd, rule->cmd, rule->cmd_len * 4 /* XXX */);
2110 
2111 	rule->refcnt = 1;
2112 
2113 	return rule;
2114 }
2115 
2116 /*
2117  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2118  * possibly create a rule number and add the rule to the list.
2119  * Update the rule_number in the input struct so the caller knows it as well.
2120  */
2121 static int
2122 ipfw_add_rule(struct ip_fw **head, struct ipfw_ioc_rule *ioc_rule)
2123 {
2124 	struct ip_fw *rule, *f, *prev;
2125 
2126 	KKASSERT(*head != NULL);
2127 
2128 	rule = ipfw_create_rule(ioc_rule);
2129 
2130 	crit_enter();
2131 
2132 	/*
2133 	 * If rulenum is 0, find highest numbered rule before the
2134 	 * default rule, and add autoinc_step
2135 	 */
2136 	if (autoinc_step < 1)
2137 		autoinc_step = 1;
2138 	else if (autoinc_step > 1000)
2139 		autoinc_step = 1000;
2140 	if (rule->rulenum == 0) {
2141 		/*
2142 		 * locate the highest numbered rule before default
2143 		 */
2144 		for (f = *head; f; f = f->next) {
2145 			if (f->rulenum == IPFW_DEFAULT_RULE)
2146 				break;
2147 			rule->rulenum = f->rulenum;
2148 		}
2149 		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2150 			rule->rulenum += autoinc_step;
2151 		ioc_rule->rulenum = rule->rulenum;
2152 	}
2153 
2154 	/*
2155 	 * Now insert the new rule in the right place in the sorted list.
2156 	 */
2157 	for (prev = NULL, f = *head; f; prev = f, f = f->next) {
2158 		if (f->rulenum > rule->rulenum) { /* found the location */
2159 			if (prev) {
2160 				rule->next = f;
2161 				prev->next = rule;
2162 			} else { /* head insert */
2163 				rule->next = *head;
2164 				*head = rule;
2165 			}
2166 			break;
2167 		}
2168 	}
2169 
2170 	flush_rule_ptrs();
2171 	ipfw_inc_static_count(rule);
2172 
2173 	crit_exit();
2174 
2175 	DEB(kprintf("++ installed rule %d, static count now %d\n",
2176 		rule->rulenum, static_count);)
2177 	return (0);
2178 }
2179 
2180 /**
2181  * Free storage associated with a static rule (including derived
2182  * dynamic rules).
2183  * The caller is in charge of clearing rule pointers to avoid
2184  * dangling pointers.
2185  * @return a pointer to the next entry.
2186  * Arguments are not checked, so they better be correct.
2187  * Must be called at splimp().
2188  */
2189 static struct ip_fw *
2190 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
2191 {
2192 	struct ip_fw *n;
2193 
2194 	n = rule->next;
2195 	remove_dyn_rule(rule, NULL /* force removal */);
2196 	if (prev == NULL)
2197 		*head = n;
2198 	else
2199 		prev->next = n;
2200 	ipfw_dec_static_count(rule);
2201 
2202 	/* Mark the rule as invalid */
2203 	rule->rule_flags |= IPFW_RULE_F_INVALID;
2204 	rule->next_rule = NULL;
2205 
2206 	/* Try to free this rule */
2207 	ipfw_free_rule(rule);
2208 
2209 	return n;
2210 }
2211 
2212 /*
2213  * Deletes all rules from a chain (including the default rule
2214  * if the second argument is set).
2215  * Must be called at splimp().
2216  */
2217 static void
2218 free_chain(struct ip_fw **chain, int kill_default)
2219 {
2220 	struct ip_fw *rule;
2221 
2222 	flush_rule_ptrs(); /* more efficient to do outside the loop */
2223 
2224 	while ( (rule = *chain) != NULL &&
2225 	    (kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
2226 		delete_rule(chain, NULL, rule);
2227 
2228 	KASSERT(dyn_count == 0, ("%u dyn rule remains\n", dyn_count));
2229 
2230 	if (kill_default) {
2231 		ip_fw_default_rule = NULL;	/* Reset default rule */
2232 
2233 		if (ipfw_dyn_v != NULL) {
2234 			/*
2235 			 * Free dynamic rules(state) hash table
2236 			 */
2237 			kfree(ipfw_dyn_v, M_IPFW);
2238 			ipfw_dyn_v = NULL;
2239 		}
2240 
2241 		KASSERT(static_count == 0,
2242 			("%u static rules remains\n", static_count));
2243 		KASSERT(static_ioc_len == 0,
2244 			("%u bytes of static rules remains\n", static_ioc_len));
2245 	} else {
2246 		KASSERT(static_count == 1,
2247 			("%u static rules remains\n", static_count));
2248 		KASSERT(static_ioc_len == IOC_RULESIZE(ip_fw_default_rule),
2249 			("%u bytes of static rules remains, should be %u\n",
2250 			 static_ioc_len, IOC_RULESIZE(ip_fw_default_rule)));
2251 	}
2252 }
2253 
2254 /**
2255  * Remove all rules with given number, and also do set manipulation.
2256  *
2257  * The argument is an uint32_t. The low 16 bit are the rule or set number,
2258  * the next 8 bits are the new set, the top 8 bits are the command:
2259  *
2260  *	0	delete rules with given number
2261  *	1	delete rules with given set number
2262  *	2	move rules with given number to new set
2263  *	3	move rules with given set number to new set
2264  *	4	swap sets with given numbers
2265  */
2266 static int
2267 del_entry(struct ip_fw **chain, uint32_t arg)
2268 {
2269 	struct ip_fw *prev, *rule;
2270 	uint16_t rulenum;
2271 	uint8_t cmd, new_set;
2272 
2273 	rulenum = arg & 0xffff;
2274 	cmd = (arg >> 24) & 0xff;
2275 	new_set = (arg >> 16) & 0xff;
2276 
2277 	if (cmd > 4)
2278 		return EINVAL;
2279 	if (new_set > 30)
2280 		return EINVAL;
2281 	if (cmd == 0 || cmd == 2) {
2282 		if (rulenum == IPFW_DEFAULT_RULE)
2283 			return EINVAL;
2284 	} else {
2285 		if (rulenum > 30)
2286 			return EINVAL;
2287 	}
2288 
2289 	switch (cmd) {
2290 	case 0:	/* delete rules with given number */
2291 		/*
2292 		 * locate first rule to delete
2293 		 */
2294 		for (prev = NULL, rule = *chain;
2295 		    rule && rule->rulenum < rulenum;
2296 		     prev = rule, rule = rule->next)
2297 			;
2298 		if (rule->rulenum != rulenum)
2299 			return EINVAL;
2300 
2301 		crit_enter(); /* no access to rules while removing */
2302 		/*
2303 		 * flush pointers outside the loop, then delete all matching
2304 		 * rules. prev remains the same throughout the cycle.
2305 		 */
2306 		flush_rule_ptrs();
2307 		while (rule && rule->rulenum == rulenum)
2308 			rule = delete_rule(chain, prev, rule);
2309 		crit_exit();
2310 		break;
2311 
2312 	case 1:	/* delete all rules with given set number */
2313 		crit_enter();
2314 		flush_rule_ptrs();
2315 		for (prev = NULL, rule = *chain; rule ; )
2316 			if (rule->set == rulenum)
2317 				rule = delete_rule(chain, prev, rule);
2318 			else {
2319 				prev = rule;
2320 				rule = rule->next;
2321 			}
2322 		crit_exit();
2323 		break;
2324 
2325 	case 2:	/* move rules with given number to new set */
2326 		crit_enter();
2327 		for (rule = *chain; rule ; rule = rule->next)
2328 			if (rule->rulenum == rulenum)
2329 				rule->set = new_set;
2330 		crit_exit();
2331 		break;
2332 
2333 	case 3: /* move rules with given set number to new set */
2334 		crit_enter();
2335 		for (rule = *chain; rule ; rule = rule->next)
2336 			if (rule->set == rulenum)
2337 				rule->set = new_set;
2338 		crit_exit();
2339 		break;
2340 
2341 	case 4: /* swap two sets */
2342 		crit_enter();
2343 		for (rule = *chain; rule ; rule = rule->next)
2344 			if (rule->set == rulenum)
2345 				rule->set = new_set;
2346 			else if (rule->set == new_set)
2347 				rule->set = rulenum;
2348 		crit_exit();
2349 		break;
2350 	}
2351 	return 0;
2352 }
2353 
2354 /*
2355  * Clear counters for a specific rule.
2356  */
2357 static void
2358 clear_counters(struct ip_fw *rule, int log_only)
2359 {
2360 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
2361 
2362 	if (log_only == 0) {
2363 		rule->bcnt = rule->pcnt = 0;
2364 		rule->timestamp = 0;
2365 	}
2366 	if (l->o.opcode == O_LOG)
2367 		l->log_left = l->max_log;
2368 }
2369 
2370 /**
2371  * Reset some or all counters on firewall rules.
2372  * @arg frwl is null to clear all entries, or contains a specific
2373  * rule number.
2374  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
2375  */
2376 static int
2377 zero_entry(int rulenum, int log_only)
2378 {
2379 	struct ip_fw *rule;
2380 	char *msg;
2381 
2382 	if (rulenum == 0) {
2383 		crit_enter();
2384 		norule_counter = 0;
2385 		for (rule = layer3_chain; rule; rule = rule->next)
2386 			clear_counters(rule, log_only);
2387 		crit_exit();
2388 		msg = log_only ? "ipfw: All logging counts reset.\n" :
2389 				"ipfw: Accounting cleared.\n";
2390 	} else {
2391 		int cleared = 0;
2392 		/*
2393 		 * We can have multiple rules with the same number, so we
2394 		 * need to clear them all.
2395 		 */
2396 		for (rule = layer3_chain; rule; rule = rule->next)
2397 			if (rule->rulenum == rulenum) {
2398 				crit_enter();
2399 				while (rule && rule->rulenum == rulenum) {
2400 					clear_counters(rule, log_only);
2401 					rule = rule->next;
2402 				}
2403 				crit_exit();
2404 				cleared = 1;
2405 				break;
2406 			}
2407 		if (!cleared)	/* we did not find any matching rules */
2408 			return (EINVAL);
2409 		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
2410 				"ipfw: Entry %d cleared.\n";
2411 	}
2412 	if (fw_verbose)
2413 		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
2414 	return (0);
2415 }
2416 
2417 /*
2418  * Check validity of the structure before insert.
2419  * Fortunately rules are simple, so this mostly need to check rule sizes.
2420  */
2421 static int
2422 ipfw_ctl_check_rule(struct ipfw_ioc_rule *rule, int size)
2423 {
2424 	int l, cmdlen = 0;
2425 	int have_action = 0;
2426 	ipfw_insn *cmd;
2427 
2428 	/* Check for valid size */
2429 	if (size < sizeof(*rule)) {
2430 		kprintf("ipfw: rule too short\n");
2431 		return EINVAL;
2432 	}
2433 	l = IOC_RULESIZE(rule);
2434 	if (l != size) {
2435 		kprintf("ipfw: size mismatch (have %d want %d)\n", size, l);
2436 		return EINVAL;
2437 	}
2438 
2439 	/*
2440 	 * Now go for the individual checks. Very simple ones, basically only
2441 	 * instruction sizes.
2442 	 */
2443 	for (l = rule->cmd_len, cmd = rule->cmd; l > 0;
2444 	     l -= cmdlen, cmd += cmdlen) {
2445 		cmdlen = F_LEN(cmd);
2446 		if (cmdlen > l) {
2447 			kprintf("ipfw: opcode %d size truncated\n",
2448 			    cmd->opcode);
2449 			return EINVAL;
2450 		}
2451 		DEB(kprintf("ipfw: opcode %d\n", cmd->opcode);)
2452 		switch (cmd->opcode) {
2453 		case O_NOP:
2454 		case O_PROBE_STATE:
2455 		case O_KEEP_STATE:
2456 		case O_PROTO:
2457 		case O_IP_SRC_ME:
2458 		case O_IP_DST_ME:
2459 		case O_LAYER2:
2460 		case O_IN:
2461 		case O_FRAG:
2462 		case O_IPOPT:
2463 		case O_IPLEN:
2464 		case O_IPID:
2465 		case O_IPTOS:
2466 		case O_IPPRECEDENCE:
2467 		case O_IPTTL:
2468 		case O_IPVER:
2469 		case O_TCPWIN:
2470 		case O_TCPFLAGS:
2471 		case O_TCPOPTS:
2472 		case O_ESTAB:
2473 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
2474 				goto bad_size;
2475 			break;
2476 
2477 		case O_UID:
2478 		case O_GID:
2479 		case O_IP_SRC:
2480 		case O_IP_DST:
2481 		case O_TCPSEQ:
2482 		case O_TCPACK:
2483 		case O_PROB:
2484 		case O_ICMPTYPE:
2485 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
2486 				goto bad_size;
2487 			break;
2488 
2489 		case O_LIMIT:
2490 			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
2491 				goto bad_size;
2492 			break;
2493 
2494 		case O_LOG:
2495 			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
2496 				goto bad_size;
2497 
2498 			((ipfw_insn_log *)cmd)->log_left =
2499 			    ((ipfw_insn_log *)cmd)->max_log;
2500 
2501 			break;
2502 
2503 		case O_IP_SRC_MASK:
2504 		case O_IP_DST_MASK:
2505 			if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
2506 				goto bad_size;
2507 			if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
2508 				kprintf("ipfw: opcode %d, useless rule\n",
2509 					cmd->opcode);
2510 				return EINVAL;
2511 			}
2512 			break;
2513 
2514 		case O_IP_SRC_SET:
2515 		case O_IP_DST_SET:
2516 			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
2517 				kprintf("ipfw: invalid set size %d\n",
2518 					cmd->arg1);
2519 				return EINVAL;
2520 			}
2521 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
2522 			    (cmd->arg1+31)/32 )
2523 				goto bad_size;
2524 			break;
2525 
2526 		case O_MACADDR2:
2527 			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
2528 				goto bad_size;
2529 			break;
2530 
2531 		case O_MAC_TYPE:
2532 		case O_IP_SRCPORT:
2533 		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
2534 			if (cmdlen < 2 || cmdlen > 31)
2535 				goto bad_size;
2536 			break;
2537 
2538 		case O_RECV:
2539 		case O_XMIT:
2540 		case O_VIA:
2541 			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
2542 				goto bad_size;
2543 			break;
2544 
2545 		case O_PIPE:
2546 		case O_QUEUE:
2547 			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
2548 				goto bad_size;
2549 			goto check_action;
2550 
2551 		case O_FORWARD_IP:
2552 			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
2553 				goto bad_size;
2554 			goto check_action;
2555 
2556 		case O_FORWARD_MAC: /* XXX not implemented yet */
2557 		case O_CHECK_STATE:
2558 		case O_COUNT:
2559 		case O_ACCEPT:
2560 		case O_DENY:
2561 		case O_REJECT:
2562 		case O_SKIPTO:
2563 		case O_DIVERT:
2564 		case O_TEE:
2565 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
2566 				goto bad_size;
2567 check_action:
2568 			if (have_action) {
2569 				kprintf("ipfw: opcode %d, multiple actions"
2570 					" not allowed\n",
2571 					cmd->opcode);
2572 				return EINVAL;
2573 			}
2574 			have_action = 1;
2575 			if (l != cmdlen) {
2576 				kprintf("ipfw: opcode %d, action must be"
2577 					" last opcode\n",
2578 					cmd->opcode);
2579 				return EINVAL;
2580 			}
2581 			break;
2582 		default:
2583 			kprintf("ipfw: opcode %d, unknown opcode\n",
2584 				cmd->opcode);
2585 			return EINVAL;
2586 		}
2587 	}
2588 	if (have_action == 0) {
2589 		kprintf("ipfw: missing action\n");
2590 		return EINVAL;
2591 	}
2592 	return 0;
2593 
2594 bad_size:
2595 	kprintf("ipfw: opcode %d size %d wrong\n",
2596 		cmd->opcode, cmdlen);
2597 	return EINVAL;
2598 }
2599 
2600 static int
2601 ipfw_ctl_add_rule(struct sockopt *sopt)
2602 {
2603 	struct ipfw_ioc_rule *ioc_rule;
2604 	uint32_t rule_buf[IPFW_RULE_SIZE_MAX];
2605 	size_t size;
2606 	int error;
2607 
2608 	ioc_rule = (struct ipfw_ioc_rule *)rule_buf;
2609 	error = sooptcopyin(sopt, ioc_rule, sizeof(rule_buf),
2610 			    sizeof(*ioc_rule));
2611 	if (error)
2612 		return error;
2613 
2614 	size = sopt->sopt_valsize;
2615 	error = ipfw_ctl_check_rule(ioc_rule, size);
2616 	if (error)
2617 		return error;
2618 
2619 	error = ipfw_add_rule(&layer3_chain, ioc_rule);
2620 	if (error)
2621 		return error;
2622 
2623 	if (sopt->sopt_dir == SOPT_GET)
2624 		error = sooptcopyout(sopt, ioc_rule, IOC_RULESIZE(ioc_rule));
2625 	return error;
2626 }
2627 
2628 static void *
2629 ipfw_copy_rule(const struct ip_fw *rule, struct ipfw_ioc_rule *ioc_rule)
2630 {
2631 	ioc_rule->act_ofs = rule->act_ofs;
2632 	ioc_rule->cmd_len = rule->cmd_len;
2633 	ioc_rule->rulenum = rule->rulenum;
2634 	ioc_rule->set = rule->set;
2635 	ioc_rule->usr_flags = rule->usr_flags;
2636 
2637 	ioc_rule->set_disable = set_disable;
2638 	ioc_rule->static_count = static_count;
2639 	ioc_rule->static_len = static_ioc_len;
2640 
2641 	ioc_rule->pcnt = rule->pcnt;
2642 	ioc_rule->bcnt = rule->bcnt;
2643 	ioc_rule->timestamp = rule->timestamp;
2644 
2645 	bcopy(rule->cmd, ioc_rule->cmd, ioc_rule->cmd_len * 4 /* XXX */);
2646 
2647 	return ((uint8_t *)ioc_rule + IOC_RULESIZE(ioc_rule));
2648 }
2649 
2650 static void
2651 ipfw_copy_state(const ipfw_dyn_rule *dyn_rule,
2652 		struct ipfw_ioc_state *ioc_state)
2653 {
2654 	const struct ipfw_flow_id *id;
2655 	struct ipfw_ioc_flowid *ioc_id;
2656 
2657 	ioc_state->expire = TIME_LEQ(dyn_rule->expire, time_second) ?
2658 			    0 : dyn_rule->expire - time_second;
2659 	ioc_state->pcnt = dyn_rule->pcnt;
2660 	ioc_state->bcnt = dyn_rule->bcnt;
2661 
2662 	ioc_state->dyn_type = dyn_rule->dyn_type;
2663 	ioc_state->count = dyn_rule->count;
2664 
2665 	ioc_state->rulenum = dyn_rule->rule->rulenum;
2666 
2667 	id = &dyn_rule->id;
2668 	ioc_id = &ioc_state->id;
2669 
2670 	ioc_id->type = ETHERTYPE_IP;
2671 	ioc_id->u.ip.dst_ip = id->dst_ip;
2672 	ioc_id->u.ip.src_ip = id->src_ip;
2673 	ioc_id->u.ip.dst_port = id->dst_port;
2674 	ioc_id->u.ip.src_port = id->src_port;
2675 	ioc_id->u.ip.proto = id->proto;
2676 }
2677 
2678 static int
2679 ipfw_ctl_get_rules(struct sockopt *sopt)
2680 {
2681 	struct ip_fw *rule;
2682 	void *buf, *bp;
2683 	size_t size;
2684 	int error;
2685 
2686 	/*
2687 	 * pass up a copy of the current rules. Static rules
2688 	 * come first (the last of which has number IPFW_DEFAULT_RULE),
2689 	 * followed by a possibly empty list of dynamic rule.
2690 	 */
2691 	crit_enter();
2692 
2693 	size = static_ioc_len;	/* size of static rules */
2694 	if (ipfw_dyn_v)		/* add size of dyn.rules */
2695 		size += (dyn_count * sizeof(struct ipfw_ioc_state));
2696 
2697 	/*
2698 	 * XXX todo: if the user passes a short length just to know
2699 	 * how much room is needed, do not bother filling up the
2700 	 * buffer, just jump to the sooptcopyout.
2701 	 */
2702 	bp = buf = kmalloc(size, M_TEMP, M_WAITOK | M_ZERO);
2703 
2704 	for (rule = layer3_chain; rule; rule = rule->next)
2705 		bp = ipfw_copy_rule(rule, bp);
2706 
2707 	if (ipfw_dyn_v) {
2708 		struct ipfw_ioc_state *ioc_state;
2709 		int i;
2710 
2711 		ioc_state = bp;
2712 		for (i = 0; i < curr_dyn_buckets; i++) {
2713 			ipfw_dyn_rule *p;
2714 
2715 			for (p = ipfw_dyn_v[i]; p != NULL;
2716 			     p = p->next, ioc_state++)
2717 				ipfw_copy_state(p, ioc_state);
2718 		}
2719 	}
2720 
2721 	crit_exit();
2722 
2723 	error = sooptcopyout(sopt, buf, size);
2724 	kfree(buf, M_TEMP);
2725 	return error;
2726 }
2727 
2728 /**
2729  * {set|get}sockopt parser.
2730  */
2731 static int
2732 ipfw_ctl(struct sockopt *sopt)
2733 {
2734 	int error, rulenum;
2735 	uint32_t masks[2];
2736 	size_t size;
2737 
2738 	/*
2739 	 * Disallow modifications in really-really secure mode, but still allow
2740 	 * the logging counters to be reset.
2741 	 */
2742 	if (sopt->sopt_name == IP_FW_ADD ||
2743 	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
2744 		if (securelevel >= 3)
2745 			return EPERM;
2746 	}
2747 
2748 	error = 0;
2749 
2750 	switch (sopt->sopt_name) {
2751 	case IP_FW_GET:
2752 		error = ipfw_ctl_get_rules(sopt);
2753 		break;
2754 
2755 	case IP_FW_FLUSH:
2756 		/*
2757 		 * Normally we cannot release the lock on each iteration.
2758 		 * We could do it here only because we start from the head all
2759 		 * the times so there is no risk of missing some entries.
2760 		 * On the other hand, the risk is that we end up with
2761 		 * a very inconsistent ruleset, so better keep the lock
2762 		 * around the whole cycle.
2763 		 *
2764 		 * XXX this code can be improved by resetting the head of
2765 		 * the list to point to the default rule, and then freeing
2766 		 * the old list without the need for a lock.
2767 		 */
2768 
2769 		crit_enter();
2770 		free_chain(&layer3_chain, 0 /* keep default rule */);
2771 		crit_exit();
2772 		break;
2773 
2774 	case IP_FW_ADD:
2775 		error = ipfw_ctl_add_rule(sopt);
2776 		break;
2777 
2778 	case IP_FW_DEL:
2779 		/*
2780 		 * IP_FW_DEL is used for deleting single rules or sets,
2781 		 * and (ab)used to atomically manipulate sets. Argument size
2782 		 * is used to distinguish between the two:
2783 		 *    sizeof(uint32_t)
2784 		 *	delete single rule or set of rules,
2785 		 *	or reassign rules (or sets) to a different set.
2786 		 *    2*sizeof(uint32_t)
2787 		 *	atomic disable/enable sets.
2788 		 *	first uint32_t contains sets to be disabled,
2789 		 *	second uint32_t contains sets to be enabled.
2790 		 */
2791 		error = sooptcopyin(sopt, masks,
2792 			sizeof(masks), sizeof(masks[0]));
2793 		if (error)
2794 			break;
2795 
2796 		size = sopt->sopt_valsize;
2797 		if (size == sizeof(masks[0])) {
2798 			/*
2799 			 * Delete or reassign static rule
2800 			 */
2801 			error = del_entry(&layer3_chain, masks[0]);
2802 		} else if (size == sizeof(masks)) {
2803 			/*
2804 			 * Set enable/disable
2805 			 */
2806 			crit_enter();
2807 
2808 			set_disable =
2809 			    (set_disable | masks[0]) & ~masks[1] &
2810 			    ~(1 << 31); /* set 31 always enabled */
2811 
2812 			crit_exit();
2813 		} else {
2814 			error = EINVAL;
2815 		}
2816 		break;
2817 
2818 	case IP_FW_ZERO:
2819 	case IP_FW_RESETLOG: /* argument is an int, the rule number */
2820 		rulenum=0;
2821 
2822 		if (sopt->sopt_val != 0) {
2823 		    error = sooptcopyin(sopt, &rulenum,
2824 			    sizeof(int), sizeof(int));
2825 		    if (error)
2826 			break;
2827 		}
2828 		error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
2829 		break;
2830 
2831 	default:
2832 		kprintf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
2833 		error = EINVAL;
2834 	}
2835 
2836 	return error;
2837 }
2838 
2839 /*
2840  * This procedure is only used to handle keepalives. It is invoked
2841  * every dyn_keepalive_period
2842  */
2843 static void
2844 ipfw_tick(void * __unused unused)
2845 {
2846 	int i;
2847 	ipfw_dyn_rule *q;
2848 
2849 	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
2850 		goto done;
2851 
2852 	crit_enter();
2853 	for (i = 0 ; i < curr_dyn_buckets ; i++) {
2854 		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
2855 			if (q->dyn_type == O_LIMIT_PARENT)
2856 				continue;
2857 			if (q->id.proto != IPPROTO_TCP)
2858 				continue;
2859 			if ( (q->state & BOTH_SYN) != BOTH_SYN)
2860 				continue;
2861 			if (TIME_LEQ( time_second+dyn_keepalive_interval,
2862 			    q->expire))
2863 				continue;	/* too early */
2864 			if (TIME_LEQ(q->expire, time_second))
2865 				continue;	/* too late, rule expired */
2866 
2867 			send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
2868 			send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
2869 		}
2870 	}
2871 	crit_exit();
2872 done:
2873 	callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
2874 		      ipfw_tick, NULL);
2875 }
2876 
2877 static void
2878 ipfw_init_default_rule(struct ip_fw **head)
2879 {
2880 	struct ip_fw *def_rule;
2881 
2882 	KKASSERT(*head == NULL);
2883 
2884 	def_rule = kmalloc(sizeof(*def_rule), M_IPFW, M_WAITOK | M_ZERO);
2885 
2886 	def_rule->act_ofs = 0;
2887 	def_rule->rulenum = IPFW_DEFAULT_RULE;
2888 	def_rule->cmd_len = 1;
2889 	def_rule->set = 31;
2890 
2891 	def_rule->cmd[0].len = 1;
2892 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2893 	def_rule->cmd[0].opcode = O_ACCEPT;
2894 #else
2895 	def_rule->cmd[0].opcode = O_DENY;
2896 #endif
2897 
2898 	def_rule->refcnt = 1;
2899 
2900 	*head = def_rule;
2901 	ipfw_inc_static_count(def_rule);
2902 
2903 	/* Install the default rule */
2904 	ip_fw_default_rule = def_rule;
2905 }
2906 
2907 static void
2908 ipfw_init(void)
2909 {
2910 	ip_fw_chk_ptr = ipfw_chk;
2911 	ip_fw_ctl_ptr = ipfw_ctl;
2912 	ip_fw_dn_io_ptr = ipfw_dummynet_io;
2913 
2914 	layer3_chain = NULL;
2915 	ipfw_init_default_rule(&layer3_chain);
2916 
2917 	kprintf("ipfw2 initialized, divert %s, "
2918 		"rule-based forwarding enabled, default to %s, logging ",
2919 #ifdef IPDIVERT
2920 		"enabled",
2921 #else
2922 		"disabled",
2923 #endif
2924 		ip_fw_default_rule->cmd[0].opcode == O_ACCEPT ?
2925 		"accept" : "deny");
2926 
2927 #ifdef IPFIREWALL_VERBOSE
2928 	fw_verbose = 1;
2929 #endif
2930 #ifdef IPFIREWALL_VERBOSE_LIMIT
2931 	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2932 #endif
2933 	if (fw_verbose == 0)
2934 		kprintf("disabled\n");
2935 	else if (verbose_limit == 0)
2936 		kprintf("unlimited\n");
2937 	else
2938 		kprintf("limited to %d packets/entry by default\n",
2939 		    verbose_limit);
2940 	callout_init(&ipfw_timeout_h);
2941 	callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
2942 }
2943 
2944 static int
2945 ipfw_modevent(module_t mod, int type, void *unused)
2946 {
2947 	int err = 0;
2948 
2949 	switch (type) {
2950 	case MOD_LOAD:
2951 		crit_enter();
2952 		if (IPFW_LOADED) {
2953 			crit_exit();
2954 			kprintf("IP firewall already loaded\n");
2955 			err = EEXIST;
2956 		} else {
2957 			ipfw_init();
2958 			crit_exit();
2959 		}
2960 		break;
2961 
2962 	case MOD_UNLOAD:
2963 #ifndef KLD_MODULE
2964 		kprintf("ipfw statically compiled, cannot unload\n");
2965 		err = EBUSY;
2966 #else
2967 		if (ipfw_refcnt != 0) {
2968 			err = EBUSY;
2969 			break;
2970 		}
2971 
2972 		crit_enter();
2973 		callout_stop(&ipfw_timeout_h);
2974 		ip_fw_chk_ptr = NULL;
2975 		ip_fw_ctl_ptr = NULL;
2976 		ip_fw_dn_io_ptr = NULL;
2977 		free_chain(&layer3_chain, 1 /* kill default rule */);
2978 		crit_exit();
2979 		kprintf("IP firewall unloaded\n");
2980 #endif
2981 		break;
2982 	default:
2983 		break;
2984 	}
2985 	return err;
2986 }
2987 
2988 static moduledata_t ipfwmod = {
2989 	"ipfw",
2990 	ipfw_modevent,
2991 	0
2992 };
2993 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PROTO_END, SI_ORDER_ANY);
2994 MODULE_VERSION(ipfw, 1);
2995