xref: /dragonfly/sys/net/vlan/if_vlan.c (revision fcf53d9b)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/net/if_vlan.c,v 1.15.2.13 2003/02/14 22:25:58 fenner Exp $
30  * $DragonFly: src/sys/net/vlan/if_vlan.c,v 1.43 2008/11/22 04:00:53 sephe Exp $
31  */
32 
33 /*
34  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
35  * Might be extended some day to also handle IEEE 802.1p priority
36  * tagging.  This is sort of sneaky in the implementation, since
37  * we need to pretend to be enough of an Ethernet implementation
38  * to make arp work.  The way we do this is by telling everyone
39  * that we are an Ethernet, and then catch the packets that
40  * ether_output() left on our output queue queue when it calls
41  * if_start(), rewrite them for use by the real outgoing interface,
42  * and ask it to send them.
43  */
44 
45 #ifndef NVLAN
46 #include "use_vlan.h"
47 #endif
48 #include "opt_inet.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/module.h>
56 #include <sys/queue.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/sysctl.h>
60 #include <sys/bus.h>
61 #include <sys/thread2.h>
62 
63 #include <net/bpf.h>
64 #include <net/ethernet.h>
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/if_dl.h>
68 #include <net/if_types.h>
69 #include <net/ifq_var.h>
70 #include <net/if_clone.h>
71 #include <net/netmsg2.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/if_ether.h>
76 #endif
77 
78 #include <net/vlan/if_vlan_var.h>
79 #include <net/vlan/if_vlan_ether.h>
80 
81 struct ifvlan;
82 
83 struct vlan_mc_entry {
84 	struct ether_addr		mc_addr;
85 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
86 };
87 
88 struct vlan_entry {
89 	struct ifvlan		*ifv;
90 	LIST_ENTRY(vlan_entry)	ifv_link;
91 };
92 
93 struct	ifvlan {
94 	struct	arpcom ifv_ac;	/* make this an interface */
95 	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
96 	int ifv_pflags;		/* special flags we have set on parent */
97 	struct	ifv_linkmib {
98 		int	ifvm_parent;
99 		uint16_t ifvm_proto; /* encapsulation ethertype */
100 		uint16_t ifvm_tag; /* tag to apply on packets leaving if */
101 	}	ifv_mib;
102 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
103 	LIST_ENTRY(ifvlan) ifv_list;
104 	struct vlan_entry ifv_entries[1];
105 };
106 #define	ifv_if	ifv_ac.ac_if
107 #define	ifv_tag	ifv_mib.ifvm_tag
108 
109 struct vlan_trunk {
110 	LIST_HEAD(, vlan_entry) vlan_list;
111 };
112 
113 struct netmsg_vlan {
114 	struct netmsg_base base;
115 	struct ifvlan	*nv_ifv;
116 	struct ifnet	*nv_ifp_p;
117 	const char	*nv_parent_name;
118 	uint16_t	nv_vlantag;
119 };
120 
121 #define VLANNAME	"vlan"
122 
123 SYSCTL_DECL(_net_link);
124 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
125 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
126 
127 static MALLOC_DEFINE(M_VLAN, "vlan", "802.1Q Virtual LAN Interface");
128 static LIST_HEAD(, ifvlan) ifv_list;
129 
130 static int	vlan_clone_create(struct if_clone *, int, caddr_t);
131 static int	vlan_clone_destroy(struct ifnet *);
132 static void	vlan_ifdetach(void *, struct ifnet *);
133 
134 static void	vlan_init(void *);
135 static void	vlan_start(struct ifnet *);
136 static int	vlan_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
137 static void	vlan_input(struct mbuf *);
138 
139 static int	vlan_setflags(struct ifvlan *, struct ifnet *, int);
140 static int	vlan_setflag(struct ifvlan *, struct ifnet *, int, int,
141 			     int (*)(struct ifnet *, int));
142 static int	vlan_config_flags(struct ifvlan *ifv);
143 static void	vlan_clrmulti(struct ifvlan *, struct ifnet *);
144 static int	vlan_setmulti(struct ifvlan *, struct ifnet *);
145 static int	vlan_config_multi(struct ifvlan *);
146 static int	vlan_config(struct ifvlan *, const char *, uint16_t);
147 static int	vlan_unconfig(struct ifvlan *);
148 static void	vlan_link(struct ifvlan *, struct ifnet *);
149 static void	vlan_unlink(struct ifvlan *, struct ifnet *);
150 
151 static void	vlan_config_dispatch(netmsg_t);
152 static void	vlan_unconfig_dispatch(netmsg_t);
153 static void	vlan_link_dispatch(netmsg_t);
154 static void	vlan_unlink_dispatch(netmsg_t);
155 static void	vlan_multi_dispatch(netmsg_t);
156 static void	vlan_flags_dispatch(netmsg_t);
157 static void	vlan_ifdetach_dispatch(netmsg_t);
158 
159 /* Special flags we should propagate to parent */
160 static struct {
161 	int flag;
162 	int (*func)(struct ifnet *, int);
163 } vlan_pflags[] = {
164 	{ IFF_PROMISC, ifpromisc },
165 	{ IFF_ALLMULTI, if_allmulti },
166 	{ 0, NULL }
167 };
168 
169 static eventhandler_tag vlan_ifdetach_cookie;
170 static struct if_clone vlan_cloner =
171 	IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy,
172 			     NVLAN, IF_MAXUNIT);
173 
174 /*
175  * Handle IFF_* flags that require certain changes on the parent:
176  * if "set" is true, update parent's flags respective to our if_flags;
177  * if "set" is false, forcedly clear the flags set on parent.
178  */
179 static int
180 vlan_setflags(struct ifvlan *ifv, struct ifnet *ifp_p, int set)
181 {
182 	int error, i;
183 
184 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
185 
186 	for (i = 0; vlan_pflags[i].func != NULL; i++) {
187 		error = vlan_setflag(ifv, ifp_p, vlan_pflags[i].flag,
188 				     set, vlan_pflags[i].func);
189 		if (error)
190 			return error;
191 	}
192 	return 0;
193 }
194 
195 /* Handle a reference counted flag that should be set on the parent as well */
196 static int
197 vlan_setflag(struct ifvlan *ifv, struct ifnet *ifp_p, int flag, int set,
198 	     int (*func)(struct ifnet *, int))
199 {
200 	struct ifnet *ifp = &ifv->ifv_if;
201 	int error, ifv_flag;
202 
203 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
204 
205 	ifv_flag = set ? (ifp->if_flags & flag) : 0;
206 
207 	/*
208 	 * See if recorded parent's status is different from what
209 	 * we want it to be.  If it is, flip it.  We record parent's
210 	 * status in ifv_pflags so that we won't clear parent's flag
211 	 * we haven't set.  In fact, we don't clear or set parent's
212 	 * flags directly, but get or release references to them.
213 	 * That's why we can be sure that recorded flags still are
214 	 * in accord with actual parent's flags.
215 	 */
216 	if (ifv_flag != (ifv->ifv_pflags & flag)) {
217 		error = func(ifp_p, ifv_flag);
218 		if (error)
219 			return error;
220 		ifv->ifv_pflags &= ~flag;
221 		ifv->ifv_pflags |= ifv_flag;
222 	}
223 	return 0;
224 }
225 
226 /*
227  * Program our multicast filter. What we're actually doing is
228  * programming the multicast filter of the parent. This has the
229  * side effect of causing the parent interface to receive multicast
230  * traffic that it doesn't really want, which ends up being discarded
231  * later by the upper protocol layers. Unfortunately, there's no way
232  * to avoid this: there really is only one physical interface.
233  */
234 static int
235 vlan_setmulti(struct ifvlan *ifv, struct ifnet *ifp_p)
236 {
237 	struct ifmultiaddr *ifma, *rifma = NULL;
238 	struct vlan_mc_entry *mc = NULL;
239 	struct sockaddr_dl sdl;
240 	struct ifnet *ifp = &ifv->ifv_if;
241 
242 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
243 
244 	/*
245 	 * First, remove any existing filter entries.
246 	 */
247 	vlan_clrmulti(ifv, ifp_p);
248 
249 	/*
250 	 * Now program new ones.
251 	 */
252 	bzero(&sdl, sizeof(sdl));
253 	sdl.sdl_len = sizeof(sdl);
254 	sdl.sdl_family = AF_LINK;
255 	sdl.sdl_index = ifp_p->if_index;
256 	sdl.sdl_type = IFT_ETHER;
257 	sdl.sdl_alen = ETHER_ADDR_LEN;
258 
259 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
260 		int error;
261 
262 		if (ifma->ifma_addr->sa_family != AF_LINK)
263 			continue;
264 
265 		/* Save a copy */
266 		mc = kmalloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
267 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
268 		      &mc->mc_addr, ETHER_ADDR_LEN);
269 		SLIST_INSERT_HEAD(&ifv->vlan_mc_listhead, mc, mc_entries);
270 
271 		/* Program the parent multicast filter */
272 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
273 		      LLADDR(&sdl), ETHER_ADDR_LEN);
274 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
275 		if (error)
276 			return error;
277 	}
278 	return 0;
279 }
280 
281 static void
282 vlan_clrmulti(struct ifvlan *ifv, struct ifnet *ifp_p)
283 {
284 	struct vlan_mc_entry *mc;
285 	struct sockaddr_dl sdl;
286 
287 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
288 
289 	bzero(&sdl, sizeof(sdl));
290 	sdl.sdl_len = sizeof(sdl);
291 	sdl.sdl_family = AF_LINK;
292 	sdl.sdl_index = ifp_p->if_index;
293 	sdl.sdl_type = IFT_ETHER;
294 	sdl.sdl_alen = ETHER_ADDR_LEN;
295 
296 	while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
297 		bcopy(&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
298 		if_delmulti(ifp_p, (struct sockaddr *)&sdl); /* ignore error */
299 
300 		SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
301 		kfree(mc, M_VLAN);
302 	}
303 }
304 
305 static int
306 vlan_modevent(module_t mod, int type, void *data)
307 {
308 	switch (type) {
309 	case MOD_LOAD:
310 		LIST_INIT(&ifv_list);
311 		vlan_input_p = vlan_input;
312 		vlan_ifdetach_cookie =
313 		EVENTHANDLER_REGISTER(ifnet_detach_event,
314 				      vlan_ifdetach, NULL,
315 				      EVENTHANDLER_PRI_ANY);
316 		if_clone_attach(&vlan_cloner);
317 		break;
318 
319 	case MOD_UNLOAD:
320 		if_clone_detach(&vlan_cloner);
321 
322 		vlan_input_p = NULL;
323 		/*
324 		 * Make that all protocol threads see vlan_input_p change.
325 		 */
326 		netmsg_service_sync();
327 
328 		EVENTHANDLER_DEREGISTER(ifnet_detach_event,
329 					vlan_ifdetach_cookie);
330 		while (!LIST_EMPTY(&ifv_list))
331 			vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
332 		break;
333 	}
334 	return 0;
335 }
336 
337 static moduledata_t vlan_mod = {
338 	"if_vlan",
339 	vlan_modevent,
340 	0
341 };
342 
343 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
344 
345 static void
346 vlan_ifdetach_dispatch(netmsg_t msg)
347 {
348 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
349 	struct ifnet *ifp_p = vmsg->nv_ifp_p;
350 	struct vlan_trunk *vlantrunks, *trunk;
351 	struct vlan_entry *ifve;
352 
353 	vlantrunks = ifp_p->if_vlantrunks;
354 	if (vlantrunks == NULL)
355 		goto reply;
356 	trunk = &vlantrunks[mycpuid];
357 
358 	while (ifp_p->if_vlantrunks &&
359 	       (ifve = LIST_FIRST(&trunk->vlan_list)) != NULL)
360 		vlan_unconfig(ifve->ifv);
361 reply:
362 	lwkt_replymsg(&vmsg->base.lmsg, 0);
363 }
364 
365 static void
366 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
367 {
368 	struct netmsg_vlan vmsg;
369 
370 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
371 
372 	bzero(&vmsg, sizeof(vmsg));
373 
374 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
375 		    0, vlan_ifdetach_dispatch);
376 	vmsg.nv_ifp_p = ifp;
377 
378 	lwkt_domsg(cpu_portfn(0), &vmsg.base.lmsg, 0);
379 }
380 
381 static int
382 vlan_clone_create(struct if_clone *ifc, int unit, caddr_t param __unused)
383 {
384 	struct ifvlan *ifv;
385 	struct ifnet *ifp;
386 	int vlan_size, i;
387 
388 	vlan_size = sizeof(struct ifvlan)
389 		  + ((ncpus - 1) * sizeof(struct vlan_entry));
390 	ifv = kmalloc(vlan_size, M_VLAN, M_WAITOK | M_ZERO);
391 	SLIST_INIT(&ifv->vlan_mc_listhead);
392 	for (i = 0; i < ncpus; ++i)
393 		ifv->ifv_entries[i].ifv = ifv;
394 
395 	crit_enter();	/* XXX not MP safe */
396 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
397 	crit_exit();
398 
399 	ifp = &ifv->ifv_if;
400 	ifp->if_softc = ifv;
401 	if_initname(ifp, "vlan", unit);
402 	/* NB: flags are not set here */
403 	ifp->if_linkmib = &ifv->ifv_mib;
404 	ifp->if_linkmiblen = sizeof ifv->ifv_mib;
405 	/* NB: mtu is not set here */
406 
407 	ifp->if_init = vlan_init;
408 	ifp->if_start = vlan_start;
409 	ifp->if_ioctl = vlan_ioctl;
410 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
411 	ifq_set_ready(&ifp->if_snd);
412 	ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr, NULL);
413 	/* Now undo some of the damage... */
414 	ifp->if_data.ifi_type = IFT_L2VLAN;
415 	ifp->if_data.ifi_hdrlen = EVL_ENCAPLEN;
416 
417 	return (0);
418 }
419 
420 static int
421 vlan_clone_destroy(struct ifnet *ifp)
422 {
423 	struct ifvlan *ifv = ifp->if_softc;
424 
425 	crit_enter();	/* XXX not MP safe */
426 	LIST_REMOVE(ifv, ifv_list);
427 	crit_exit();
428 
429 	vlan_unconfig(ifv);
430 	ether_ifdetach(ifp);
431 
432 	kfree(ifv, M_VLAN);
433 
434 	return 0;
435 }
436 
437 static void
438 vlan_init(void *xsc)
439 {
440 	struct ifvlan *ifv = xsc;
441 	struct ifnet *ifp = &ifv->ifv_if;
442 
443 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
444 
445 	if (ifv->ifv_p != NULL)
446 		ifp->if_flags |= IFF_RUNNING;
447 }
448 
449 static void
450 vlan_start(struct ifnet *ifp)
451 {
452 	struct ifvlan *ifv = ifp->if_softc;
453 	struct ifnet *ifp_p = ifv->ifv_p;
454 	struct mbuf *m;
455 
456 	ASSERT_IFNET_SERIALIZED_TX(ifp);
457 
458 	if (ifp_p == NULL) {
459 		ifq_purge(&ifp->if_snd);
460 		return;
461 	}
462 
463 	if ((ifp->if_flags & IFF_RUNNING) == 0)
464 		return;
465 
466 	for (;;) {
467 		struct netmsg_packet *nmp;
468 		struct lwkt_port *port;
469 
470 		m = ifq_dequeue(&ifp->if_snd, NULL);
471 		if (m == NULL)
472 			break;
473 		BPF_MTAP(ifp, m);
474 
475 		/*
476 		 * Do not run parent's if_start() if the parent is not up,
477 		 * or parent's driver will cause a system crash.
478 		 */
479 		if ((ifp_p->if_flags & (IFF_UP | IFF_RUNNING)) !=
480 		    (IFF_UP | IFF_RUNNING)) {
481 			m_freem(m);
482 			ifp->if_data.ifi_collisions++;
483 			continue;
484 		}
485 
486 		/*
487 		 * We need some way to tell the interface where the packet
488 		 * came from so that it knows how to find the VLAN tag to
489 		 * use, so we set the ether_vlantag in the mbuf packet header
490 		 * to our vlan tag.  We also set the M_VLANTAG flag in the
491 		 * mbuf to let the parent driver know that the ether_vlantag
492 		 * is really valid.
493 		 */
494 		m->m_pkthdr.ether_vlantag = ifv->ifv_tag;
495 		m->m_flags |= M_VLANTAG;
496 
497 		nmp = &m->m_hdr.mh_netmsg;
498 
499 		netmsg_init(&nmp->base, NULL, &netisr_apanic_rport,
500 			    0, vlan_start_dispatch);
501 		nmp->nm_packet = m;
502 		nmp->base.lmsg.u.ms_resultp = ifp_p;
503 
504 		port = cpu_portfn(ifp_p->if_index % ncpus /* XXX */);
505 		lwkt_sendmsg(port, &nmp->base.lmsg);
506 		ifp->if_opackets++;
507 	}
508 }
509 
510 static void
511 vlan_input(struct mbuf *m)
512 {
513 	struct ifvlan *ifv = NULL;
514 	struct ifnet *rcvif;
515 	struct vlan_trunk *vlantrunks;
516 	struct vlan_entry *entry;
517 
518 	rcvif = m->m_pkthdr.rcvif;
519 	KKASSERT(m->m_flags & M_VLANTAG);
520 
521 	vlantrunks = rcvif->if_vlantrunks;
522 	if (vlantrunks == NULL) {
523 		rcvif->if_noproto++;
524 		m_freem(m);
525 		return;
526 	}
527 
528 	crit_enter();	/* XXX Necessary? */
529 	LIST_FOREACH(entry, &vlantrunks[mycpuid].vlan_list, ifv_link) {
530 		if (entry->ifv->ifv_tag ==
531 		    EVL_VLANOFTAG(m->m_pkthdr.ether_vlantag)) {
532 			ifv = entry->ifv;
533 			break;
534 		}
535 	}
536 	crit_exit();
537 
538 	/*
539 	 * Packet is discarded if:
540 	 * - no corresponding vlan(4) interface
541 	 * - vlan(4) interface has not been completely set up yet,
542 	 *   or is being destroyed (ifv->ifv_p != rcvif)
543 	 */
544 	if (ifv == NULL || ifv->ifv_p != rcvif) {
545 		rcvif->if_noproto++;
546 		m_freem(m);
547 		return;
548 	}
549 
550 	/*
551 	 * Clear M_VLANTAG, before the packet is handed to
552 	 * vlan(4) interface
553 	 */
554 	m->m_flags &= ~M_VLANTAG;
555 
556 	ether_reinput_oncpu(&ifv->ifv_if, m, REINPUT_RUNBPF);
557 }
558 
559 static void
560 vlan_link_dispatch(netmsg_t msg)
561 {
562 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
563 	struct ifvlan *ifv = vmsg->nv_ifv;
564 	struct ifnet *ifp_p = vmsg->nv_ifp_p;
565 	struct vlan_entry *entry;
566 	struct vlan_trunk *vlantrunks, *trunk;
567 	int cpu = mycpuid;
568 
569 	vlantrunks = ifp_p->if_vlantrunks;
570 	KASSERT(vlantrunks != NULL,
571 		("vlan trunk has not been initialized yet\n"));
572 
573 	entry = &ifv->ifv_entries[cpu];
574 	trunk = &vlantrunks[cpu];
575 
576 	crit_enter();
577 	LIST_INSERT_HEAD(&trunk->vlan_list, entry, ifv_link);
578 	crit_exit();
579 
580 	ifnet_forwardmsg(&vmsg->base.lmsg, cpu + 1);
581 }
582 
583 static void
584 vlan_link(struct ifvlan *ifv, struct ifnet *ifp_p)
585 {
586 	struct netmsg_vlan vmsg;
587 
588 	/* Assert in netisr0 */
589 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
590 
591 	if (ifp_p->if_vlantrunks == NULL) {
592 		struct vlan_trunk *vlantrunks;
593 		int i;
594 
595 		vlantrunks = kmalloc(sizeof(*vlantrunks) * ncpus, M_VLAN,
596 				     M_WAITOK | M_ZERO);
597 		for (i = 0; i < ncpus; ++i)
598 			LIST_INIT(&vlantrunks[i].vlan_list);
599 
600 		ifp_p->if_vlantrunks = vlantrunks;
601 	}
602 
603 	bzero(&vmsg, sizeof(vmsg));
604 
605 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
606 		    0, vlan_link_dispatch);
607 	vmsg.nv_ifv = ifv;
608 	vmsg.nv_ifp_p = ifp_p;
609 
610 	ifnet_domsg(&vmsg.base.lmsg, 0);
611 }
612 
613 static void
614 vlan_config_dispatch(netmsg_t msg)
615 {
616 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
617 	struct ifvlan *ifv;
618 	struct ifnet *ifp_p, *ifp;
619 	struct sockaddr_dl *sdl1, *sdl2;
620 	int error;
621 
622 	/* Assert in netisr0 */
623 
624 	ifp_p = ifunit(vmsg->nv_parent_name);
625 	if (ifp_p == NULL) {
626 		error = ENOENT;
627 		goto reply;
628 	}
629 
630 	if (ifp_p->if_data.ifi_type != IFT_ETHER) {
631 		error = EPROTONOSUPPORT;
632 		goto reply;
633 	}
634 
635 	ifv = vmsg->nv_ifv;
636 	ifp = &ifv->ifv_if;
637 
638 	if (ifv->ifv_p) {
639 		error = EBUSY;
640 		goto reply;
641 	}
642 
643 	/* Link vlan into parent's vlantrunk */
644 	vlan_link(ifv, ifp_p);
645 
646 	ifnet_serialize_all(ifp);
647 
648 	ifv->ifv_tag = vmsg->nv_vlantag;
649 	if (ifp_p->if_capenable & IFCAP_VLAN_MTU)
650 		ifp->if_mtu = ifp_p->if_mtu;
651 	else
652 		ifp->if_mtu = ifp_p->if_data.ifi_mtu - EVL_ENCAPLEN;
653 
654 	/*
655 	 * Copy only a selected subset of flags from the parent.
656 	 * Other flags are none of our business.
657 	 */
658 #define VLAN_INHERIT_FLAGS	(IFF_BROADCAST | IFF_MULTICAST | \
659 				 IFF_SIMPLEX | IFF_POINTOPOINT)
660 
661 	ifp->if_flags &= ~VLAN_INHERIT_FLAGS;
662 	ifp->if_flags |= (ifp_p->if_flags & VLAN_INHERIT_FLAGS);
663 
664 #undef VLAN_INHERIT_FLAGS
665 
666 	/*
667 	 * Set up our ``Ethernet address'' to reflect the underlying
668 	 * physical interface's.
669 	 */
670 	sdl1 = IF_LLSOCKADDR(ifp);
671 	sdl2 = IF_LLSOCKADDR(ifp_p);
672 	sdl1->sdl_type = IFT_ETHER;
673 	sdl1->sdl_alen = ETHER_ADDR_LEN;
674 	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
675 	bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
676 
677 	/*
678 	 * Release vlan's serializer before reprogramming parent's
679 	 * multicast filter to avoid possible dead lock.
680 	 */
681 	ifnet_deserialize_all(ifp);
682 
683 	/*
684 	 * Configure multicast addresses that may already be
685 	 * joined on the vlan device.
686 	 */
687 	vlan_setmulti(ifv, ifp_p);
688 
689 	/*
690 	 * Set flags on the parent, if necessary.
691 	 */
692 	vlan_setflags(ifv, ifp_p, 1);
693 
694 	/*
695 	 * Connect to parent after everything have been set up,
696 	 * so input/output could know that vlan is ready to go
697 	 */
698 	ifv->ifv_p = ifp_p;
699 	error = 0;
700 reply:
701 	lwkt_replymsg(&vmsg->base.lmsg, error);
702 }
703 
704 static int
705 vlan_config(struct ifvlan *ifv, const char *parent_name, uint16_t vlantag)
706 {
707 	struct netmsg_vlan vmsg;
708 
709 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
710 
711 	bzero(&vmsg, sizeof(vmsg));
712 
713 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
714 		    0, vlan_config_dispatch);
715 	vmsg.nv_ifv = ifv;
716 	vmsg.nv_parent_name = parent_name;
717 	vmsg.nv_vlantag = vlantag;
718 
719 	return lwkt_domsg(cpu_portfn(0), &vmsg.base.lmsg, 0);
720 }
721 
722 static void
723 vlan_unlink_dispatch(netmsg_t msg)
724 {
725 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
726 	struct ifvlan *ifv = vmsg->nv_ifv;
727 	struct vlan_entry *entry;
728 	int cpu = mycpuid;
729 
730 	KASSERT(vmsg->nv_ifp_p->if_vlantrunks != NULL,
731 		("vlan trunk has not been initialized yet\n"));
732 	entry = &ifv->ifv_entries[cpu];
733 
734 	crit_enter();
735 	LIST_REMOVE(entry, ifv_link);
736 	crit_exit();
737 
738 	ifnet_forwardmsg(&vmsg->base.lmsg, cpu + 1);
739 }
740 
741 static void
742 vlan_unlink(struct ifvlan *ifv, struct ifnet *ifp_p)
743 {
744 	struct vlan_trunk *vlantrunks = ifp_p->if_vlantrunks;
745 	struct netmsg_vlan vmsg;
746 
747 	/* Assert in netisr0 */
748 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
749 
750 	KASSERT(ifp_p->if_vlantrunks != NULL,
751 		("vlan trunk has not been initialized yet\n"));
752 
753 	bzero(&vmsg, sizeof(vmsg));
754 
755 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
756 		    0, vlan_unlink_dispatch);
757 	vmsg.nv_ifv = ifv;
758 	vmsg.nv_ifp_p = ifp_p;
759 
760 	ifnet_domsg(&vmsg.base.lmsg, 0);
761 
762 	crit_enter();
763 	if (LIST_EMPTY(&vlantrunks[mycpuid].vlan_list)) {
764 		ifp_p->if_vlantrunks = NULL;
765 
766 		/*
767 		 * Make that all protocol threads see if_vlantrunks change.
768 		 */
769 		netmsg_service_sync();
770 		kfree(vlantrunks, M_VLAN);
771 	}
772 	crit_exit();
773 }
774 
775 static void
776 vlan_unconfig_dispatch(netmsg_t msg)
777 {
778 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
779 	struct sockaddr_dl *sdl;
780 	struct ifvlan *ifv;
781 	struct ifnet *ifp_p, *ifp;
782 	int error;
783 
784 	/* Assert in netisr0 */
785 
786 	ifv = vmsg->nv_ifv;
787 	ifp = &ifv->ifv_if;
788 
789 	if (ifp->if_flags & IFF_UP)
790 		if_down(ifp);
791 
792 	ifnet_serialize_all(ifp);
793 
794 	ifp->if_flags &= ~IFF_RUNNING;
795 
796 	/*
797 	 * Save parent ifnet pointer and disconnect from parent.
798 	 *
799 	 * This is done early in this function, so input/output could
800 	 * know that we are disconnecting.
801 	 */
802 	ifp_p = ifv->ifv_p;
803 	ifv->ifv_p = NULL;
804 
805 	/*
806 	 * Release vlan's serializer before reprogramming parent's
807 	 * multicast filter to avoid possible dead lock.
808 	 */
809 	ifnet_deserialize_all(ifp);
810 
811 	if (ifp_p) {
812 		/*
813 		 * Since the interface is being unconfigured, we need to
814 		 * empty the list of multicast groups that we may have joined
815 		 * while we were alive from the parent's list.
816 		 */
817 		vlan_clrmulti(ifv, ifp_p);
818 
819 		/* Clear parent's flags which was set by us. */
820 		vlan_setflags(ifv, ifp_p, 0);
821 	}
822 
823 	ifnet_serialize_all(ifp);
824 
825 	ifp->if_mtu = ETHERMTU;
826 
827 	/* Clear our MAC address. */
828 	sdl = IF_LLSOCKADDR(ifp);
829 	sdl->sdl_type = IFT_ETHER;
830 	sdl->sdl_alen = ETHER_ADDR_LEN;
831 	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
832 	bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
833 
834 	ifnet_deserialize_all(ifp);
835 
836 	/* Unlink vlan from parent's vlantrunk */
837 	if (ifp_p != NULL && ifp_p->if_vlantrunks != NULL)
838 		vlan_unlink(ifv, ifp_p);
839 
840 	error = 0;
841 	lwkt_replymsg(&vmsg->base.lmsg, error);
842 }
843 
844 static int
845 vlan_unconfig(struct ifvlan *ifv)
846 {
847 	struct netmsg_vlan vmsg;
848 
849 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
850 
851 	bzero(&vmsg, sizeof(vmsg));
852 
853 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
854 		    0, vlan_unconfig_dispatch);
855 	vmsg.nv_ifv = ifv;
856 
857 	return lwkt_domsg(cpu_portfn(0), &vmsg.base.lmsg, 0);
858 }
859 
860 static int
861 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
862 {
863 	struct ifvlan *ifv = ifp->if_softc;
864 	struct ifreq *ifr = (struct ifreq *)data;
865 	struct ifnet *ifp_p;
866 	struct vlanreq vlr;
867 	int error = 0;
868 
869 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
870 
871 	switch (cmd) {
872 	case SIOCGIFMEDIA:
873 		ifp_p = ifv->ifv_p;
874 		if (ifp_p != NULL) {
875 			/*
876 			 * Release vlan interface's serializer to void
877 			 * possible dead lock.
878 			 */
879 			ifnet_deserialize_all(ifp);
880 
881 			ifnet_serialize_all(ifp_p);
882 			error = ifp_p->if_ioctl(ifp_p, SIOCGIFMEDIA, data, cr);
883 			ifnet_deserialize_all(ifp_p);
884 
885 			ifnet_serialize_all(ifp);
886 
887 			if (ifv->ifv_p == NULL && ifv->ifv_p != ifp_p) {
888 				/*
889 				 * We are disconnected from the original
890 				 * parent interface or the parent interface
891 				 * is changed, after vlan interface's
892 				 * serializer is released.
893 				 */
894 				error = EINVAL;
895 			}
896 
897 			/* Limit the result to the parent's current config. */
898 			if (error == 0) {
899 				struct ifmediareq *ifmr;
900 
901 				ifmr = (struct ifmediareq *) data;
902 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
903 					ifmr->ifm_count = 1;
904 					error = copyout(&ifmr->ifm_current,
905 						ifmr->ifm_ulist,
906 						sizeof(int));
907 				}
908 			}
909 		} else {
910 			error = EINVAL;
911 		}
912 		break;
913 
914 	case SIOCSIFMEDIA:
915 		error = EINVAL;
916 		break;
917 
918 	case SIOCSETVLAN:
919 		error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
920 		if (error)
921 			break;
922 
923 		ifnet_deserialize_all(ifp);
924 		if (vlr.vlr_parent[0] == '\0')
925 			error = vlan_unconfig(ifv);
926 		else
927 			error = vlan_config(ifv, vlr.vlr_parent, vlr.vlr_tag);
928 		ifnet_serialize_all(ifp);
929 		break;
930 
931 	case SIOCGETVLAN:
932 		bzero(&vlr, sizeof(vlr));
933 		if (ifv->ifv_p) {
934 			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
935 			    sizeof(vlr.vlr_parent));
936 			vlr.vlr_tag = ifv->ifv_tag;
937 		}
938 		error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
939 		break;
940 
941 	case SIOCSIFFLAGS:
942 		if (ifp->if_flags & IFF_UP)
943 			ifp->if_init(ifp);
944 		else
945 			ifp->if_flags &= ~IFF_RUNNING;
946 
947 		/*
948 		 * We should propagate selected flags to the parent,
949 		 * e.g., promiscuous mode.
950 		 */
951 		ifnet_deserialize_all(ifp);
952 		error = vlan_config_flags(ifv);
953 		ifnet_serialize_all(ifp);
954 		break;
955 
956 	case SIOCADDMULTI:
957 	case SIOCDELMULTI:
958 		ifnet_deserialize_all(ifp);
959 		error = vlan_config_multi(ifv);
960 		ifnet_serialize_all(ifp);
961 		break;
962 
963 	default:
964 		error = ether_ioctl(ifp, cmd, data);
965 		break;
966 	}
967 	return error;
968 }
969 
970 static void
971 vlan_multi_dispatch(netmsg_t msg)
972 {
973 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
974 	struct ifvlan *ifv = vmsg->nv_ifv;
975 	int error = 0;
976 
977 	/*
978 	 * If we don't have a parent, just remember the membership for
979 	 * when we do.
980 	 */
981 	if (ifv->ifv_p != NULL)
982 		error = vlan_setmulti(ifv, ifv->ifv_p);
983 	lwkt_replymsg(&vmsg->base.lmsg, error);
984 }
985 
986 static int
987 vlan_config_multi(struct ifvlan *ifv)
988 {
989 	struct netmsg_vlan vmsg;
990 
991 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
992 
993 	bzero(&vmsg, sizeof(vmsg));
994 
995 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
996 		    0, vlan_multi_dispatch);
997 	vmsg.nv_ifv = ifv;
998 
999 	return lwkt_domsg(cpu_portfn(0), &vmsg.base.lmsg, 0);
1000 }
1001 
1002 static void
1003 vlan_flags_dispatch(netmsg_t msg)
1004 {
1005 	struct netmsg_vlan *vmsg = (struct netmsg_vlan *)msg;
1006 	struct ifvlan *ifv = vmsg->nv_ifv;
1007 	int error = 0;
1008 
1009 	/*
1010 	 * If we don't have a parent, just remember the flags for
1011 	 * when we do.
1012 	 */
1013 	if (ifv->ifv_p != NULL)
1014 		error = vlan_setflags(ifv, ifv->ifv_p, 1);
1015 	lwkt_replymsg(&vmsg->base.lmsg, error);
1016 }
1017 
1018 static int
1019 vlan_config_flags(struct ifvlan *ifv)
1020 {
1021 	struct netmsg_vlan vmsg;
1022 
1023 	ASSERT_IFNET_NOT_SERIALIZED_ALL(&ifv->ifv_if);
1024 
1025 	bzero(&vmsg, sizeof(vmsg));
1026 
1027 	netmsg_init(&vmsg.base, NULL, &curthread->td_msgport,
1028 		    0, vlan_flags_dispatch);
1029 	vmsg.nv_ifv = ifv;
1030 
1031 	return lwkt_domsg(cpu_portfn(0), &vmsg.base.lmsg, 0);
1032 }
1033