xref: /dragonfly/sys/netinet/ip_input.c (revision 1fe7e945)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165     &maxnipq, 0,
166     "Maximum number of IPv4 fragment reassembly queue entries");
167 
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170     &maxfragsperpacket, 0,
171     "Maximum number of IPv4 fragments allowed per packet");
172 
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175     &ip_sendsourcequench, 0,
176     "Enable the transmission of source quench packets");
177 
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180     &ip_do_randomid, 0,
181     "Assign random ip_id values");
182 /*
183  * XXX - Setting ip_checkinterface mostly implements the receive side of
184  * the Strong ES model described in RFC 1122, but since the routing table
185  * and transmit implementation do not implement the Strong ES model,
186  * setting this to 1 results in an odd hybrid.
187  *
188  * XXX - ip_checkinterface currently must be disabled if you use ipnat
189  * to translate the destination address to another local interface.
190  *
191  * XXX - ip_checkinterface must be disabled if you add IP aliases
192  * to the loopback interface instead of the interface where the
193  * packets for those addresses are received.
194  */
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
198 
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201     &ip_hash_count, 0, "Number of packets hashed by IP");
202 
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206     &ip_rehash_count, 0, "Number of packets rehashed by IP");
207 
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
211 
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 extern	struct domain inetdomain;
222 extern	struct protosw inetsw[];
223 u_char	ip_protox[IPPROTO_MAX];
224 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
225 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 						/* inet addr hash table */
227 u_long	in_ifaddrhmask;				/* mask for hash table */
228 
229 static struct mbuf *ipforward_mtemp[MAXCPU];
230 
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
232 
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
235 {
236 	int cpu, error = 0;
237 
238 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
239 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 					sizeof(struct ip_stats))))
241 			break;
242 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 				       sizeof(struct ip_stats))))
244 			break;
245 	}
246 
247 	return (error);
248 }
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
251 
252 /* Packet reassembly stuff */
253 #define	IPREASS_NHASH_LOG2	6
254 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
255 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
256 #define	IPREASS_HASH(x,y)						\
257     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 	int			nipq;
262 	volatile int		draining;
263 	struct netmsg_base	timeo_netmsg;
264 	struct callout		timeo_ch;
265 	struct netmsg_base	drain_netmsg;
266 	struct ipqhead		ipq[IPREASS_NHASH];
267 } __cachealign;
268 
269 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
270 
271 #ifdef IPCTL_DEFMTU
272 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
273     &ip_mtu, 0, "Default MTU");
274 #endif
275 
276 #ifdef IPSTEALTH
277 static int ipstealth = 0;
278 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
279 #else
280 static const int ipstealth = 0;
281 #endif
282 
283 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
284 
285 struct pfil_head inet_pfil_hook;
286 
287 /*
288  * struct ip_srcrt_opt is used to store packet state while it travels
289  * through the stack.
290  *
291  * XXX Note that the code even makes assumptions on the size and
292  * alignment of fields inside struct ip_srcrt so e.g. adding some
293  * fields will break the code.  This needs to be fixed.
294  *
295  * We need to save the IP options in case a protocol wants to respond
296  * to an incoming packet over the same route if the packet got here
297  * using IP source routing.  This allows connection establishment and
298  * maintenance when the remote end is on a network that is not known
299  * to us.
300  */
301 struct ip_srcrt {
302 	struct	in_addr dst;			/* final destination */
303 	char	nop;				/* one NOP to align */
304 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
305 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
306 };
307 
308 struct ip_srcrt_opt {
309 	int		ip_nhops;
310 	struct ip_srcrt	ip_srcrt;
311 };
312 
313 #define IPFRAG_MPIPE_MAX	4096
314 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
315 
316 #define IPFRAG_TIMEO		(hz / PR_SLOWHZ)
317 
318 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
319 static struct malloc_pipe ipq_mpipe;
320 
321 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
322 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
323 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
324 			    struct ipq *);
325 static void		ip_input_handler(netmsg_t);
326 
327 static void		ipfrag_timeo_dispatch(netmsg_t);
328 static void		ipfrag_timeo(void *);
329 static void		ipfrag_drain_dispatch(netmsg_t);
330 
331 /*
332  * IP initialization: fill in IP protocol switch table.
333  * All protocols not implemented in kernel go to raw IP protocol handler.
334  */
335 void
336 ip_init(void)
337 {
338 	struct ipfrag_queue *fragq;
339 	struct protosw *pr;
340 	int cpu, i;
341 
342 	/*
343 	 * Make sure we can handle a reasonable number of fragments but
344 	 * cap it at IPFRAG_MPIPE_MAX.
345 	 */
346 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
347 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
348 
349 	/*
350 	 * Make in_ifaddrhead and in_ifaddrhashtbl available on all CPUs,
351 	 * since they could be accessed by any threads.
352 	 */
353 	for (cpu = 0; cpu < ncpus; ++cpu) {
354 		TAILQ_INIT(&in_ifaddrheads[cpu]);
355 		in_ifaddrhashtbls[cpu] =
356 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
357 	}
358 
359 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
360 	if (pr == NULL)
361 		panic("ip_init");
362 	for (i = 0; i < IPPROTO_MAX; i++)
363 		ip_protox[i] = pr - inetsw;
364 	for (pr = inetdomain.dom_protosw;
365 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
366 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
367 			if (pr->pr_protocol != IPPROTO_RAW)
368 				ip_protox[pr->pr_protocol] = pr - inetsw;
369 		}
370 	}
371 
372 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
373 	inet_pfil_hook.ph_af = AF_INET;
374 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
375 		kprintf("%s: WARNING: unable to register pfil hook, "
376 			"error %d\n", __func__, i);
377 	}
378 
379 	maxnipq = (nmbclusters / 32) / netisr_ncpus;
380 	if (maxnipq < MAXIPFRAG_MIN)
381 		maxnipq = MAXIPFRAG_MIN;
382 	maxfragsperpacket = 16;
383 
384 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
385 
386 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
387 		/*
388 		 * Initialize IP statistics counters for each CPU.
389 		 */
390 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
391 
392 		/*
393 		 * Preallocate mbuf template for forwarding
394 		 */
395 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
396 
397 		/*
398 		 * Initialize per-cpu ip fragments queues
399 		 */
400 		fragq = &ipfrag_queue_pcpu[cpu];
401 		for (i = 0; i < IPREASS_NHASH; i++)
402 			TAILQ_INIT(&fragq->ipq[i]);
403 
404 		callout_init_mp(&fragq->timeo_ch);
405 		netmsg_init(&fragq->timeo_netmsg, NULL, &netisr_adone_rport,
406 		    MSGF_PRIORITY, ipfrag_timeo_dispatch);
407 		netmsg_init(&fragq->drain_netmsg, NULL, &netisr_adone_rport,
408 		    MSGF_PRIORITY, ipfrag_drain_dispatch);
409 	}
410 
411 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
412 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
413 
414 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
415 		fragq = &ipfrag_queue_pcpu[cpu];
416 		callout_reset_bycpu(&fragq->timeo_ch, IPFRAG_TIMEO,
417 		    ipfrag_timeo, NULL, cpu);
418 	}
419 }
420 
421 /* Do transport protocol processing. */
422 static void
423 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
424 {
425 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
426 
427 	/*
428 	 * Switch out to protocol's input routine.
429 	 */
430 	PR_GET_MPLOCK(pr);
431 	pr->pr_input(&m, &hlen, ip->ip_p);
432 	PR_REL_MPLOCK(pr);
433 }
434 
435 static void
436 transport_processing_handler(netmsg_t msg)
437 {
438 	struct netmsg_packet *pmsg = &msg->packet;
439 	struct ip *ip;
440 	int hlen;
441 
442 	ip = mtod(pmsg->nm_packet, struct ip *);
443 	hlen = pmsg->base.lmsg.u.ms_result;
444 
445 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
446 	/* msg was embedded in the mbuf, do not reply! */
447 }
448 
449 static void
450 ip_input_handler(netmsg_t msg)
451 {
452 	ip_input(msg->packet.nm_packet);
453 	/* msg was embedded in the mbuf, do not reply! */
454 }
455 
456 /*
457  * IP input routine.  Checksum and byte swap header.  If fragmented
458  * try to reassemble.  Process options.  Pass to next level.
459  */
460 void
461 ip_input(struct mbuf *m)
462 {
463 	struct ip *ip;
464 	struct in_ifaddr *ia = NULL;
465 	struct in_ifaddr_container *iac;
466 	int hlen, checkif;
467 	u_short sum;
468 	struct in_addr pkt_dst;
469 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
470 	struct in_addr odst;			/* original dst address(NAT) */
471 	struct m_tag *mtag;
472 	struct sockaddr_in *next_hop = NULL;
473 	lwkt_port_t port;
474 #ifdef FAST_IPSEC
475 	struct tdb_ident *tdbi;
476 	struct secpolicy *sp;
477 	int error;
478 #endif
479 
480 	ASSERT_NETISR_NCPUS(mycpuid);
481 	M_ASSERTPKTHDR(m);
482 
483 	/* length checks already done in ip_hashfn() */
484 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
485 
486 	/*
487 	 * This routine is called from numerous places which may not have
488 	 * characterized the packet.
489 	 */
490 	ip = mtod(m, struct ip *);
491 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
492 	    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) {
493 		/*
494 		 * Force hash recalculation for fragments and multicast
495 		 * packets; hardware may not do it correctly.
496 		 * XXX add flag to indicate the hash is from hardware
497 		 */
498 		m->m_flags &= ~M_HASH;
499 	}
500 	if ((m->m_flags & M_HASH) == 0) {
501 		ip_hashfn(&m, 0);
502 		if (m == NULL)
503 			return;
504 		KKASSERT(m->m_flags & M_HASH);
505 
506 		if (&curthread->td_msgport !=
507 		    netisr_hashport(m->m_pkthdr.hash)) {
508 			netisr_queue(NETISR_IP, m);
509 			/* Requeued to other netisr msgport; done */
510 			return;
511 		}
512 
513 		/* mbuf could have been changed */
514 		ip = mtod(m, struct ip *);
515 	}
516 
517 	/*
518 	 * Pull out certain tags
519 	 */
520 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
521 		/* Next hop */
522 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
523 		KKASSERT(mtag != NULL);
524 		next_hop = m_tag_data(mtag);
525 	}
526 
527 	if (m->m_pkthdr.fw_flags &
528 	    (DUMMYNET_MBUF_TAGGED | IPFW_MBUF_CONTINUE)) {
529 		/*
530 		 * - Dummynet already filtered this packet.
531 		 * - This packet was processed by ipfw on another
532 		 *   cpu, and the rest of the ipfw processing should
533 		 *   be carried out on this cpu.
534 		 */
535 		ip = mtod(m, struct ip *);
536 		ip->ip_len = ntohs(ip->ip_len);
537 		ip->ip_off = ntohs(ip->ip_off);
538 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
539 		goto iphack;
540 	}
541 
542 	ipstat.ips_total++;
543 
544 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
545 		ipstat.ips_badvers++;
546 		goto bad;
547 	}
548 
549 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
550 	/* length checks already done in ip_hashfn() */
551 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
552 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
553 
554 	/* 127/8 must not appear on wire - RFC1122 */
555 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
556 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
557 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
558 			ipstat.ips_badaddr++;
559 			goto bad;
560 		}
561 	}
562 
563 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
564 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
565 	} else {
566 		if (hlen == sizeof(struct ip))
567 			sum = in_cksum_hdr(ip);
568 		else
569 			sum = in_cksum(m, hlen);
570 	}
571 	if (sum != 0) {
572 		ipstat.ips_badsum++;
573 		goto bad;
574 	}
575 
576 #ifdef ALTQ
577 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
578 		/* packet is dropped by traffic conditioner */
579 		return;
580 	}
581 #endif
582 	/*
583 	 * Convert fields to host representation.
584 	 */
585 	ip->ip_len = ntohs(ip->ip_len);
586 	ip->ip_off = ntohs(ip->ip_off);
587 
588 	/* length checks already done in ip_hashfn() */
589 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
590 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
591 
592 	/*
593 	 * Trim mbufs if longer than the IP header would have us expect.
594 	 */
595 	if (m->m_pkthdr.len > ip->ip_len) {
596 		if (m->m_len == m->m_pkthdr.len) {
597 			m->m_len = ip->ip_len;
598 			m->m_pkthdr.len = ip->ip_len;
599 		} else {
600 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
601 		}
602 	}
603 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
604 	/*
605 	 * Bypass packet filtering for packets from a tunnel (gif).
606 	 */
607 	if (ipsec_gethist(m, NULL))
608 		goto pass;
609 #endif
610 
611 	/*
612 	 * IpHack's section.
613 	 * Right now when no processing on packet has done
614 	 * and it is still fresh out of network we do our black
615 	 * deals with it.
616 	 * - Firewall: deny/allow/divert
617 	 * - Xlate: translate packet's addr/port (NAT).
618 	 * - Pipe: pass pkt through dummynet.
619 	 * - Wrap: fake packet's addr/port <unimpl.>
620 	 * - Encapsulate: put it in another IP and send out. <unimp.>
621 	 */
622 
623 iphack:
624 	/*
625 	 * If we've been forwarded from the output side, then
626 	 * skip the firewall a second time
627 	 */
628 	if (next_hop != NULL)
629 		goto ours;
630 
631 	/* No pfil hooks */
632 	if (!pfil_has_hooks(&inet_pfil_hook)) {
633 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
634 			/*
635 			 * Strip dummynet tags from stranded packets
636 			 */
637 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
638 			KKASSERT(mtag != NULL);
639 			m_tag_delete(m, mtag);
640 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
641 		}
642 		goto pass;
643 	}
644 
645 	/*
646 	 * Run through list of hooks for input packets.
647 	 *
648 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
649 	 *	  clear M_HASH.
650 	 */
651 	odst = ip->ip_dst;
652 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
653 		return;
654 	if (m == NULL)	/* consumed by filter */
655 		return;
656 	ip = mtod(m, struct ip *);
657 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
658 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
659 
660 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
661 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
662 		KKASSERT(mtag != NULL);
663 		next_hop = m_tag_data(mtag);
664 	}
665 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
666 		ip_dn_queue(m);
667 		return;
668 	}
669 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH)
670 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
671 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_CONTINUE) {
672 		/* ipfw was disabled/unloaded. */
673 		goto bad;
674 	}
675 pass:
676 	/*
677 	 * Process options and, if not destined for us,
678 	 * ship it on.  ip_dooptions returns 1 when an
679 	 * error was detected (causing an icmp message
680 	 * to be sent and the original packet to be freed).
681 	 */
682 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
683 		return;
684 
685 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
686 	 * matter if it is destined to another node, or whether it is
687 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
688 	 * anywhere else. Also checks if the rsvp daemon is running before
689 	 * grabbing the packet.
690 	 */
691 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
692 		goto ours;
693 
694 	/*
695 	 * Check our list of addresses, to see if the packet is for us.
696 	 * If we don't have any addresses, assume any unicast packet
697 	 * we receive might be for us (and let the upper layers deal
698 	 * with it).
699 	 */
700 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
701 	    !(m->m_flags & (M_MCAST | M_BCAST)))
702 		goto ours;
703 
704 	/*
705 	 * Cache the destination address of the packet; this may be
706 	 * changed by use of 'ipfw fwd'.
707 	 */
708 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
709 
710 	/*
711 	 * Enable a consistency check between the destination address
712 	 * and the arrival interface for a unicast packet (the RFC 1122
713 	 * strong ES model) if IP forwarding is disabled and the packet
714 	 * is not locally generated and the packet is not subject to
715 	 * 'ipfw fwd'.
716 	 *
717 	 * XXX - Checking also should be disabled if the destination
718 	 * address is ipnat'ed to a different interface.
719 	 *
720 	 * XXX - Checking is incompatible with IP aliases added
721 	 * to the loopback interface instead of the interface where
722 	 * the packets are received.
723 	 */
724 	checkif = ip_checkinterface &&
725 		  !ipforwarding &&
726 		  m->m_pkthdr.rcvif != NULL &&
727 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
728 		  next_hop == NULL;
729 
730 	/*
731 	 * Check for exact addresses in the hash bucket.
732 	 */
733 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
734 		ia = iac->ia;
735 
736 		/*
737 		 * If the address matches, verify that the packet
738 		 * arrived via the correct interface if checking is
739 		 * enabled.
740 		 */
741 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
742 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
743 			goto ours;
744 	}
745 	ia = NULL;
746 
747 	/*
748 	 * Check for broadcast addresses.
749 	 *
750 	 * Only accept broadcast packets that arrive via the matching
751 	 * interface.  Reception of forwarded directed broadcasts would
752 	 * be handled via ip_forward() and ether_output() with the loopback
753 	 * into the stack for SIMPLEX interfaces handled by ether_output().
754 	 */
755 	if (m->m_pkthdr.rcvif != NULL &&
756 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
757 		struct ifaddr_container *ifac;
758 
759 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
760 			      ifa_link) {
761 			struct ifaddr *ifa = ifac->ifa;
762 
763 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
764 				continue;
765 			if (ifa->ifa_addr->sa_family != AF_INET)
766 				continue;
767 			ia = ifatoia(ifa);
768 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
769 								pkt_dst.s_addr)
770 				goto ours;
771 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
772 				goto ours;
773 #ifdef BOOTP_COMPAT
774 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
775 				goto ours;
776 #endif
777 		}
778 	}
779 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
780 		struct in_multi *inm;
781 
782 		if (ip_mrouter != NULL) {
783 			/* XXX Multicast routing is not MPSAFE yet */
784 			get_mplock();
785 
786 			/*
787 			 * If we are acting as a multicast router, all
788 			 * incoming multicast packets are passed to the
789 			 * kernel-level multicast forwarding function.
790 			 * The packet is returned (relatively) intact; if
791 			 * ip_mforward() returns a non-zero value, the packet
792 			 * must be discarded, else it may be accepted below.
793 			 */
794 			if (ip_mforward != NULL &&
795 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
796 				rel_mplock();
797 				ipstat.ips_cantforward++;
798 				m_freem(m);
799 				return;
800 			}
801 
802 			rel_mplock();
803 
804 			/*
805 			 * The process-level routing daemon needs to receive
806 			 * all multicast IGMP packets, whether or not this
807 			 * host belongs to their destination groups.
808 			 */
809 			if (ip->ip_p == IPPROTO_IGMP)
810 				goto ours;
811 			ipstat.ips_forward++;
812 		}
813 		/*
814 		 * See if we belong to the destination multicast group on the
815 		 * arrival interface.
816 		 */
817 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
818 		if (inm == NULL) {
819 			ipstat.ips_notmember++;
820 			m_freem(m);
821 			return;
822 		}
823 		goto ours;
824 	}
825 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
826 		goto ours;
827 	if (ip->ip_dst.s_addr == INADDR_ANY)
828 		goto ours;
829 
830 	/*
831 	 * FAITH(Firewall Aided Internet Translator)
832 	 */
833 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
834 		if (ip_keepfaith) {
835 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
836 				goto ours;
837 		}
838 		m_freem(m);
839 		return;
840 	}
841 
842 	/*
843 	 * Not for us; forward if possible and desirable.
844 	 */
845 	if (!ipforwarding) {
846 		ipstat.ips_cantforward++;
847 		m_freem(m);
848 	} else {
849 #ifdef IPSEC
850 		/*
851 		 * Enforce inbound IPsec SPD.
852 		 */
853 		if (ipsec4_in_reject(m, NULL)) {
854 			ipsecstat.in_polvio++;
855 			goto bad;
856 		}
857 #endif
858 #ifdef FAST_IPSEC
859 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
860 		crit_enter();
861 		if (mtag != NULL) {
862 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
863 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
864 		} else {
865 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
866 						   IP_FORWARDING, &error);
867 		}
868 		if (sp == NULL) {	/* NB: can happen if error */
869 			crit_exit();
870 			/*XXX error stat???*/
871 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
872 			goto bad;
873 		}
874 
875 		/*
876 		 * Check security policy against packet attributes.
877 		 */
878 		error = ipsec_in_reject(sp, m);
879 		KEY_FREESP(&sp);
880 		crit_exit();
881 		if (error) {
882 			ipstat.ips_cantforward++;
883 			goto bad;
884 		}
885 #endif
886 		ip_forward(m, using_srcrt, next_hop);
887 	}
888 	return;
889 
890 ours:
891 
892 	/*
893 	 * IPSTEALTH: Process non-routing options only
894 	 * if the packet is destined for us.
895 	 */
896 	if (ipstealth &&
897 	    hlen > sizeof(struct ip) &&
898 	    ip_dooptions(m, 1, next_hop))
899 		return;
900 
901 	/* Count the packet in the ip address stats */
902 	if (ia != NULL) {
903 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
904 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
905 	}
906 
907 	/*
908 	 * If offset or IP_MF are set, must reassemble.
909 	 * Otherwise, nothing need be done.
910 	 * (We could look in the reassembly queue to see
911 	 * if the packet was previously fragmented,
912 	 * but it's not worth the time; just let them time out.)
913 	 */
914 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
915 		/*
916 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
917 		 * will return a different mbuf.
918 		 *
919 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
920 		 *	 us to recharacterize the packet.
921 		 */
922 		m = ip_reass(m);
923 		if (m == NULL)
924 			return;
925 		ip = mtod(m, struct ip *);
926 
927 		/* Get the header length of the reassembled packet */
928 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
929 	} else {
930 		ip->ip_len -= hlen;
931 	}
932 
933 #ifdef IPSEC
934 	/*
935 	 * enforce IPsec policy checking if we are seeing last header.
936 	 * note that we do not visit this with protocols with pcb layer
937 	 * code - like udp/tcp/raw ip.
938 	 */
939 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
940 	    ipsec4_in_reject(m, NULL)) {
941 		ipsecstat.in_polvio++;
942 		goto bad;
943 	}
944 #endif
945 #ifdef FAST_IPSEC
946 	/*
947 	 * enforce IPsec policy checking if we are seeing last header.
948 	 * note that we do not visit this with protocols with pcb layer
949 	 * code - like udp/tcp/raw ip.
950 	 */
951 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
952 		/*
953 		 * Check if the packet has already had IPsec processing
954 		 * done.  If so, then just pass it along.  This tag gets
955 		 * set during AH, ESP, etc. input handling, before the
956 		 * packet is returned to the ip input queue for delivery.
957 		 */
958 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
959 		crit_enter();
960 		if (mtag != NULL) {
961 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
962 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
963 		} else {
964 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
965 						   IP_FORWARDING, &error);
966 		}
967 		if (sp != NULL) {
968 			/*
969 			 * Check security policy against packet attributes.
970 			 */
971 			error = ipsec_in_reject(sp, m);
972 			KEY_FREESP(&sp);
973 		} else {
974 			/* XXX error stat??? */
975 			error = EINVAL;
976 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
977 			crit_exit();
978 			goto bad;
979 		}
980 		crit_exit();
981 		if (error)
982 			goto bad;
983 	}
984 #endif /* FAST_IPSEC */
985 
986 	/*
987 	 * We must forward the packet to the correct protocol thread if
988 	 * we are not already in it.
989 	 *
990 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
991 	 *	 further for protocol processing, instead we pass hlen
992 	 *	 to the protosw and let it deal with it.
993 	 */
994 	ipstat.ips_delivered++;
995 
996 	if ((m->m_flags & M_HASH) == 0) {
997 #ifdef RSS_DEBUG
998 		atomic_add_long(&ip_rehash_count, 1);
999 #endif
1000 		ip->ip_len = htons(ip->ip_len + hlen);
1001 		ip->ip_off = htons(ip->ip_off);
1002 
1003 		ip_hashfn(&m, 0);
1004 		if (m == NULL)
1005 			return;
1006 
1007 		ip = mtod(m, struct ip *);
1008 		ip->ip_len = ntohs(ip->ip_len) - hlen;
1009 		ip->ip_off = ntohs(ip->ip_off);
1010 		KKASSERT(m->m_flags & M_HASH);
1011 	}
1012 	port = netisr_hashport(m->m_pkthdr.hash);
1013 
1014 	if (port != &curthread->td_msgport) {
1015 		struct netmsg_packet *pmsg;
1016 
1017 #ifdef RSS_DEBUG
1018 		atomic_add_long(&ip_dispatch_slow, 1);
1019 #endif
1020 
1021 		pmsg = &m->m_hdr.mh_netmsg;
1022 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1023 			    0, transport_processing_handler);
1024 		pmsg->nm_packet = m;
1025 		pmsg->base.lmsg.u.ms_result = hlen;
1026 		lwkt_sendmsg(port, &pmsg->base.lmsg);
1027 	} else {
1028 #ifdef RSS_DEBUG
1029 		atomic_add_long(&ip_dispatch_fast, 1);
1030 #endif
1031 		transport_processing_oncpu(m, hlen, ip);
1032 	}
1033 	return;
1034 
1035 bad:
1036 	m_freem(m);
1037 }
1038 
1039 /*
1040  * Take incoming datagram fragment and try to reassemble it into
1041  * whole datagram.  If a chain for reassembly of this datagram already
1042  * exists, then it is given as fp; otherwise have to make a chain.
1043  */
1044 struct mbuf *
1045 ip_reass(struct mbuf *m)
1046 {
1047 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1048 	struct ip *ip = mtod(m, struct ip *);
1049 	struct mbuf *p = NULL, *q, *nq;
1050 	struct mbuf *n;
1051 	struct ipq *fp = NULL;
1052 	struct ipqhead *head;
1053 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1054 	int i, next;
1055 	u_short sum;
1056 
1057 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1058 	if (maxnipq == 0 || maxfragsperpacket == 0) {
1059 		ipstat.ips_fragments++;
1060 		ipstat.ips_fragdropped++;
1061 		m_freem(m);
1062 		return NULL;
1063 	}
1064 
1065 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1066 	/*
1067 	 * Look for queue of fragments of this datagram.
1068 	 */
1069 	head = &fragq->ipq[sum];
1070 	TAILQ_FOREACH(fp, head, ipq_list) {
1071 		if (ip->ip_id == fp->ipq_id &&
1072 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1073 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1074 		    ip->ip_p == fp->ipq_p)
1075 			goto found;
1076 	}
1077 
1078 	fp = NULL;
1079 
1080 	/*
1081 	 * Enforce upper bound on number of fragmented packets
1082 	 * for which we attempt reassembly;
1083 	 * If maxnipq is -1, accept all fragments without limitation.
1084 	 */
1085 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1086 		/*
1087 		 * drop something from the tail of the current queue
1088 		 * before proceeding further
1089 		 */
1090 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1091 		if (q == NULL) {
1092 			/*
1093 			 * The current queue is empty,
1094 			 * so drop from one of the others.
1095 			 */
1096 			for (i = 0; i < IPREASS_NHASH; i++) {
1097 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1098 				    ipqhead);
1099 				if (r) {
1100 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1101 					ip_freef(fragq, &fragq->ipq[i], r);
1102 					break;
1103 				}
1104 			}
1105 		} else {
1106 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1107 			ip_freef(fragq, head, q);
1108 		}
1109 	}
1110 found:
1111 	/*
1112 	 * Adjust ip_len to not reflect header,
1113 	 * convert offset of this to bytes.
1114 	 */
1115 	ip->ip_len -= hlen;
1116 	if (ip->ip_off & IP_MF) {
1117 		/*
1118 		 * Make sure that fragments have a data length
1119 		 * that's a non-zero multiple of 8 bytes.
1120 		 */
1121 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1122 			ipstat.ips_toosmall++; /* XXX */
1123 			m_freem(m);
1124 			goto done;
1125 		}
1126 		m->m_flags |= M_FRAG;
1127 	} else {
1128 		m->m_flags &= ~M_FRAG;
1129 	}
1130 	ip->ip_off <<= 3;
1131 
1132 	ipstat.ips_fragments++;
1133 	m->m_pkthdr.header = ip;
1134 
1135 	/*
1136 	 * If the hardware has not done csum over this fragment
1137 	 * then csum_data is not valid at all.
1138 	 */
1139 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1140 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1141 		m->m_pkthdr.csum_data = 0;
1142 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1143 	}
1144 
1145 	/*
1146 	 * Presence of header sizes in mbufs
1147 	 * would confuse code below.
1148 	 */
1149 	m->m_data += hlen;
1150 	m->m_len -= hlen;
1151 
1152 	/*
1153 	 * If first fragment to arrive, create a reassembly queue.
1154 	 */
1155 	if (fp == NULL) {
1156 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1157 			goto dropfrag;
1158 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1159 		fragq->nipq++;
1160 		fp->ipq_nfrags = 1;
1161 		fp->ipq_ttl = IPFRAGTTL;
1162 		fp->ipq_p = ip->ip_p;
1163 		fp->ipq_id = ip->ip_id;
1164 		fp->ipq_src = ip->ip_src;
1165 		fp->ipq_dst = ip->ip_dst;
1166 		fp->ipq_frags = m;
1167 		m->m_nextpkt = NULL;
1168 		goto inserted;
1169 	}
1170 	fp->ipq_nfrags++;
1171 
1172 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1173 
1174 	/*
1175 	 * Find a segment which begins after this one does.
1176 	 */
1177 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1178 		if (GETIP(q)->ip_off > ip->ip_off)
1179 			break;
1180 	}
1181 
1182 	/*
1183 	 * If there is a preceding segment, it may provide some of
1184 	 * our data already.  If so, drop the data from the incoming
1185 	 * segment.  If it provides all of our data, drop us, otherwise
1186 	 * stick new segment in the proper place.
1187 	 *
1188 	 * If some of the data is dropped from the the preceding
1189 	 * segment, then it's checksum is invalidated.
1190 	 */
1191 	if (p) {
1192 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1193 		if (i > 0) {
1194 			if (i >= ip->ip_len)
1195 				goto dropfrag;
1196 			m_adj(m, i);
1197 			m->m_pkthdr.csum_flags = 0;
1198 			ip->ip_off += i;
1199 			ip->ip_len -= i;
1200 		}
1201 		m->m_nextpkt = p->m_nextpkt;
1202 		p->m_nextpkt = m;
1203 	} else {
1204 		m->m_nextpkt = fp->ipq_frags;
1205 		fp->ipq_frags = m;
1206 	}
1207 
1208 	/*
1209 	 * While we overlap succeeding segments trim them or,
1210 	 * if they are completely covered, dequeue them.
1211 	 */
1212 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1213 	     q = nq) {
1214 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1215 		if (i < GETIP(q)->ip_len) {
1216 			GETIP(q)->ip_len -= i;
1217 			GETIP(q)->ip_off += i;
1218 			m_adj(q, i);
1219 			q->m_pkthdr.csum_flags = 0;
1220 			break;
1221 		}
1222 		nq = q->m_nextpkt;
1223 		m->m_nextpkt = nq;
1224 		ipstat.ips_fragdropped++;
1225 		fp->ipq_nfrags--;
1226 		q->m_nextpkt = NULL;
1227 		m_freem(q);
1228 	}
1229 
1230 inserted:
1231 	/*
1232 	 * Check for complete reassembly and perform frag per packet
1233 	 * limiting.
1234 	 *
1235 	 * Frag limiting is performed here so that the nth frag has
1236 	 * a chance to complete the packet before we drop the packet.
1237 	 * As a result, n+1 frags are actually allowed per packet, but
1238 	 * only n will ever be stored. (n = maxfragsperpacket.)
1239 	 *
1240 	 */
1241 	next = 0;
1242 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1243 		if (GETIP(q)->ip_off != next) {
1244 			if (fp->ipq_nfrags > maxfragsperpacket) {
1245 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1246 				ip_freef(fragq, head, fp);
1247 			}
1248 			goto done;
1249 		}
1250 		next += GETIP(q)->ip_len;
1251 	}
1252 	/* Make sure the last packet didn't have the IP_MF flag */
1253 	if (p->m_flags & M_FRAG) {
1254 		if (fp->ipq_nfrags > maxfragsperpacket) {
1255 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1256 			ip_freef(fragq, head, fp);
1257 		}
1258 		goto done;
1259 	}
1260 
1261 	/*
1262 	 * Reassembly is complete.  Make sure the packet is a sane size.
1263 	 */
1264 	q = fp->ipq_frags;
1265 	ip = GETIP(q);
1266 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1267 		ipstat.ips_toolong++;
1268 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1269 		ip_freef(fragq, head, fp);
1270 		goto done;
1271 	}
1272 
1273 	/*
1274 	 * Concatenate fragments.
1275 	 */
1276 	m = q;
1277 	n = m->m_next;
1278 	m->m_next = NULL;
1279 	m_cat(m, n);
1280 	nq = q->m_nextpkt;
1281 	q->m_nextpkt = NULL;
1282 	for (q = nq; q != NULL; q = nq) {
1283 		nq = q->m_nextpkt;
1284 		q->m_nextpkt = NULL;
1285 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1286 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1287 		m_cat(m, q);
1288 	}
1289 
1290 	/*
1291 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1292 	 * be added back.  This assumes no more then 65535 packet fragments
1293 	 * were reassembled.  A second carry can also occur (but not a third).
1294 	 */
1295 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1296 				(m->m_pkthdr.csum_data >> 16);
1297 	if (m->m_pkthdr.csum_data > 0xFFFF)
1298 		m->m_pkthdr.csum_data -= 0xFFFF;
1299 
1300 	/*
1301 	 * Create header for new ip packet by
1302 	 * modifying header of first packet;
1303 	 * dequeue and discard fragment reassembly header.
1304 	 * Make header visible.
1305 	 */
1306 	ip->ip_len = next;
1307 	ip->ip_src = fp->ipq_src;
1308 	ip->ip_dst = fp->ipq_dst;
1309 	TAILQ_REMOVE(head, fp, ipq_list);
1310 	fragq->nipq--;
1311 	mpipe_free(&ipq_mpipe, fp);
1312 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1313 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1314 	/* some debugging cruft by sklower, below, will go away soon */
1315 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1316 		int plen = 0;
1317 
1318 		for (n = m; n; n = n->m_next)
1319 			plen += n->m_len;
1320 		m->m_pkthdr.len = plen;
1321 	}
1322 
1323 	/*
1324 	 * Reassembly complete, return the next protocol.
1325 	 *
1326 	 * Be sure to clear M_HASH to force the packet
1327 	 * to be re-characterized.
1328 	 *
1329 	 * Clear M_FRAG, we are no longer a fragment.
1330 	 */
1331 	m->m_flags &= ~(M_HASH | M_FRAG);
1332 
1333 	ipstat.ips_reassembled++;
1334 	return (m);
1335 
1336 dropfrag:
1337 	ipstat.ips_fragdropped++;
1338 	if (fp != NULL)
1339 		fp->ipq_nfrags--;
1340 	m_freem(m);
1341 done:
1342 	return (NULL);
1343 
1344 #undef GETIP
1345 }
1346 
1347 /*
1348  * Free a fragment reassembly header and all
1349  * associated datagrams.
1350  */
1351 static void
1352 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1353 {
1354 	struct mbuf *q;
1355 
1356 	/*
1357 	 * Remove first to protect against blocking
1358 	 */
1359 	TAILQ_REMOVE(fhp, fp, ipq_list);
1360 
1361 	/*
1362 	 * Clean out at our leisure
1363 	 */
1364 	while (fp->ipq_frags) {
1365 		q = fp->ipq_frags;
1366 		fp->ipq_frags = q->m_nextpkt;
1367 		q->m_nextpkt = NULL;
1368 		m_freem(q);
1369 	}
1370 	mpipe_free(&ipq_mpipe, fp);
1371 	fragq->nipq--;
1372 }
1373 
1374 /*
1375  * If a timer expires on a reassembly queue, discard it.
1376  */
1377 static void
1378 ipfrag_timeo_dispatch(netmsg_t nmsg)
1379 {
1380 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1381 	struct ipq *fp, *fp_temp;
1382 	struct ipqhead *head;
1383 	int i;
1384 
1385 	crit_enter();
1386 	netisr_replymsg(&nmsg->base, 0);  /* reply ASAP */
1387 	crit_exit();
1388 
1389 	if (fragq->nipq == 0)
1390 		goto done;
1391 
1392 	for (i = 0; i < IPREASS_NHASH; i++) {
1393 		head = &fragq->ipq[i];
1394 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1395 			if (--fp->ipq_ttl == 0) {
1396 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1397 				ip_freef(fragq, head, fp);
1398 			}
1399 		}
1400 	}
1401 	/*
1402 	 * If we are over the maximum number of fragments
1403 	 * (due to the limit being lowered), drain off
1404 	 * enough to get down to the new limit.
1405 	 */
1406 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1407 		for (i = 0; i < IPREASS_NHASH; i++) {
1408 			head = &fragq->ipq[i];
1409 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1410 				ipstat.ips_fragdropped +=
1411 				    TAILQ_FIRST(head)->ipq_nfrags;
1412 				ip_freef(fragq, head, TAILQ_FIRST(head));
1413 			}
1414 		}
1415 	}
1416 done:
1417 	callout_reset(&fragq->timeo_ch, IPFRAG_TIMEO, ipfrag_timeo, NULL);
1418 }
1419 
1420 static void
1421 ipfrag_timeo(void *dummy __unused)
1422 {
1423 	struct netmsg_base *msg = &ipfrag_queue_pcpu[mycpuid].timeo_netmsg;
1424 
1425 	crit_enter();
1426 	if (msg->lmsg.ms_flags & MSGF_DONE)
1427 		netisr_sendmsg_oncpu(msg);
1428 	crit_exit();
1429 }
1430 
1431 /*
1432  * Drain off all datagram fragments.
1433  */
1434 static void
1435 ipfrag_drain_oncpu(struct ipfrag_queue *fragq)
1436 {
1437 	struct ipqhead *head;
1438 	int i;
1439 
1440 	for (i = 0; i < IPREASS_NHASH; i++) {
1441 		head = &fragq->ipq[i];
1442 		while (!TAILQ_EMPTY(head)) {
1443 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1444 			ip_freef(fragq, head, TAILQ_FIRST(head));
1445 		}
1446 	}
1447 }
1448 
1449 static void
1450 ipfrag_drain_dispatch(netmsg_t nmsg)
1451 {
1452 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1453 
1454 	crit_enter();
1455 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1456 	crit_exit();
1457 
1458 	ipfrag_drain_oncpu(fragq);
1459 	fragq->draining = 0;
1460 }
1461 
1462 static void
1463 ipfrag_drain_ipi(void *arg __unused)
1464 {
1465 	int cpu = mycpuid;
1466 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1467 
1468 	crit_enter();
1469 	if (msg->ms_flags & MSGF_DONE)
1470 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1471 	crit_exit();
1472 }
1473 
1474 static void
1475 ipfrag_drain(void)
1476 {
1477 	cpumask_t mask;
1478 	int cpu;
1479 
1480 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1481 	CPUMASK_ANDMASK(mask, smp_active_mask);
1482 
1483 	if (IN_NETISR_NCPUS(mycpuid)) {
1484 		ipfrag_drain_oncpu(&ipfrag_queue_pcpu[mycpuid]);
1485 		CPUMASK_NANDBIT(mask, mycpuid);
1486 	}
1487 
1488 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1489 		struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
1490 
1491 		if (!CPUMASK_TESTBIT(mask, cpu))
1492 			continue;
1493 
1494 		if (fragq->nipq == 0 || fragq->draining) {
1495 			/* No fragments or is draining; skip this cpu. */
1496 			CPUMASK_NANDBIT(mask, cpu);
1497 			continue;
1498 		}
1499 		fragq->draining = 1;
1500 	}
1501 
1502 	if (CPUMASK_TESTNZERO(mask))
1503 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1504 }
1505 
1506 void
1507 ip_drain(void)
1508 {
1509 	ipfrag_drain();
1510 	in_rtqdrain();
1511 }
1512 
1513 /*
1514  * Do option processing on a datagram,
1515  * possibly discarding it if bad options are encountered,
1516  * or forwarding it if source-routed.
1517  * The pass argument is used when operating in the IPSTEALTH
1518  * mode to tell what options to process:
1519  * [LS]SRR (pass 0) or the others (pass 1).
1520  * The reason for as many as two passes is that when doing IPSTEALTH,
1521  * non-routing options should be processed only if the packet is for us.
1522  * Returns 1 if packet has been forwarded/freed,
1523  * 0 if the packet should be processed further.
1524  */
1525 static int
1526 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1527 {
1528 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1529 	struct ip *ip = mtod(m, struct ip *);
1530 	u_char *cp;
1531 	struct in_ifaddr *ia;
1532 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1533 	boolean_t forward = FALSE;
1534 	struct in_addr *sin, dst;
1535 	n_time ntime;
1536 
1537 	dst = ip->ip_dst;
1538 	cp = (u_char *)(ip + 1);
1539 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1540 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1541 		opt = cp[IPOPT_OPTVAL];
1542 		if (opt == IPOPT_EOL)
1543 			break;
1544 		if (opt == IPOPT_NOP)
1545 			optlen = 1;
1546 		else {
1547 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1548 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1549 				goto bad;
1550 			}
1551 			optlen = cp[IPOPT_OLEN];
1552 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1553 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1554 				goto bad;
1555 			}
1556 		}
1557 		switch (opt) {
1558 
1559 		default:
1560 			break;
1561 
1562 		/*
1563 		 * Source routing with record.
1564 		 * Find interface with current destination address.
1565 		 * If none on this machine then drop if strictly routed,
1566 		 * or do nothing if loosely routed.
1567 		 * Record interface address and bring up next address
1568 		 * component.  If strictly routed make sure next
1569 		 * address is on directly accessible net.
1570 		 */
1571 		case IPOPT_LSRR:
1572 		case IPOPT_SSRR:
1573 			if (ipstealth && pass > 0)
1574 				break;
1575 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1576 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1577 				goto bad;
1578 			}
1579 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1580 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1581 				goto bad;
1582 			}
1583 			ipaddr.sin_addr = ip->ip_dst;
1584 			ia = (struct in_ifaddr *)
1585 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1586 			if (ia == NULL) {
1587 				if (opt == IPOPT_SSRR) {
1588 					type = ICMP_UNREACH;
1589 					code = ICMP_UNREACH_SRCFAIL;
1590 					goto bad;
1591 				}
1592 				if (!ip_dosourceroute)
1593 					goto nosourcerouting;
1594 				/*
1595 				 * Loose routing, and not at next destination
1596 				 * yet; nothing to do except forward.
1597 				 */
1598 				break;
1599 			}
1600 			off--;			/* 0 origin */
1601 			if (off > optlen - (int)sizeof(struct in_addr)) {
1602 				/*
1603 				 * End of source route.  Should be for us.
1604 				 */
1605 				if (!ip_acceptsourceroute)
1606 					goto nosourcerouting;
1607 				save_rte(m, cp, ip->ip_src);
1608 				break;
1609 			}
1610 			if (ipstealth)
1611 				goto dropit;
1612 			if (!ip_dosourceroute) {
1613 				if (ipforwarding) {
1614 					char sbuf[INET_ADDRSTRLEN];
1615 					char dbuf[INET_ADDRSTRLEN];
1616 
1617 					/*
1618 					 * Acting as a router, so generate ICMP
1619 					 */
1620 nosourcerouting:
1621 					log(LOG_WARNING,
1622 					    "attempted source route from %s to %s\n",
1623 					    kinet_ntoa(ip->ip_src, sbuf),
1624 					    kinet_ntoa(ip->ip_dst, dbuf));
1625 					type = ICMP_UNREACH;
1626 					code = ICMP_UNREACH_SRCFAIL;
1627 					goto bad;
1628 				} else {
1629 					/*
1630 					 * Not acting as a router,
1631 					 * so silently drop.
1632 					 */
1633 dropit:
1634 					ipstat.ips_cantforward++;
1635 					m_freem(m);
1636 					return (1);
1637 				}
1638 			}
1639 
1640 			/*
1641 			 * locate outgoing interface
1642 			 */
1643 			memcpy(&ipaddr.sin_addr, cp + off,
1644 			    sizeof ipaddr.sin_addr);
1645 
1646 			if (opt == IPOPT_SSRR) {
1647 #define	INA	struct in_ifaddr *
1648 #define	SA	struct sockaddr *
1649 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1650 									== NULL)
1651 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1652 			} else {
1653 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1654 			}
1655 			if (ia == NULL) {
1656 				type = ICMP_UNREACH;
1657 				code = ICMP_UNREACH_SRCFAIL;
1658 				goto bad;
1659 			}
1660 			ip->ip_dst = ipaddr.sin_addr;
1661 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1662 			    sizeof(struct in_addr));
1663 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1664 			/*
1665 			 * Let ip_intr's mcast routing check handle mcast pkts
1666 			 */
1667 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1668 			break;
1669 
1670 		case IPOPT_RR:
1671 			if (ipstealth && pass == 0)
1672 				break;
1673 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1674 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1675 				goto bad;
1676 			}
1677 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1678 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1679 				goto bad;
1680 			}
1681 			/*
1682 			 * If no space remains, ignore.
1683 			 */
1684 			off--;			/* 0 origin */
1685 			if (off > optlen - (int)sizeof(struct in_addr))
1686 				break;
1687 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1688 			    sizeof ipaddr.sin_addr);
1689 			/*
1690 			 * locate outgoing interface; if we're the destination,
1691 			 * use the incoming interface (should be same).
1692 			 */
1693 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1694 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1695 				type = ICMP_UNREACH;
1696 				code = ICMP_UNREACH_HOST;
1697 				goto bad;
1698 			}
1699 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1700 			    sizeof(struct in_addr));
1701 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1702 			break;
1703 
1704 		case IPOPT_TS:
1705 			if (ipstealth && pass == 0)
1706 				break;
1707 			code = cp - (u_char *)ip;
1708 			if (optlen < 4 || optlen > 40) {
1709 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1710 				goto bad;
1711 			}
1712 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1713 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1714 				goto bad;
1715 			}
1716 			if (off > optlen - (int)sizeof(int32_t)) {
1717 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1718 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1719 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1720 					goto bad;
1721 				}
1722 				break;
1723 			}
1724 			off--;				/* 0 origin */
1725 			sin = (struct in_addr *)(cp + off);
1726 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1727 
1728 			case IPOPT_TS_TSONLY:
1729 				break;
1730 
1731 			case IPOPT_TS_TSANDADDR:
1732 				if (off + sizeof(n_time) +
1733 				    sizeof(struct in_addr) > optlen) {
1734 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1735 					goto bad;
1736 				}
1737 				ipaddr.sin_addr = dst;
1738 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1739 							    m->m_pkthdr.rcvif);
1740 				if (ia == NULL)
1741 					continue;
1742 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1743 				    sizeof(struct in_addr));
1744 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1745 				off += sizeof(struct in_addr);
1746 				break;
1747 
1748 			case IPOPT_TS_PRESPEC:
1749 				if (off + sizeof(n_time) +
1750 				    sizeof(struct in_addr) > optlen) {
1751 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1752 					goto bad;
1753 				}
1754 				memcpy(&ipaddr.sin_addr, sin,
1755 				    sizeof(struct in_addr));
1756 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1757 					continue;
1758 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1759 				off += sizeof(struct in_addr);
1760 				break;
1761 
1762 			default:
1763 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1764 				goto bad;
1765 			}
1766 			ntime = iptime();
1767 			memcpy(cp + off, &ntime, sizeof(n_time));
1768 			cp[IPOPT_OFFSET] += sizeof(n_time);
1769 		}
1770 	}
1771 	if (forward && ipforwarding) {
1772 		ip_forward(m, TRUE, next_hop);
1773 		return (1);
1774 	}
1775 	return (0);
1776 bad:
1777 	icmp_error(m, type, code, 0, 0);
1778 	ipstat.ips_badoptions++;
1779 	return (1);
1780 }
1781 
1782 /*
1783  * Given address of next destination (final or next hop),
1784  * return internet address info of interface to be used to get there.
1785  */
1786 struct in_ifaddr *
1787 ip_rtaddr(struct in_addr dst, struct route *ro0)
1788 {
1789 	struct route sro, *ro;
1790 	struct sockaddr_in *sin;
1791 	struct in_ifaddr *ia;
1792 
1793 	if (ro0 != NULL) {
1794 		ro = ro0;
1795 	} else {
1796 		bzero(&sro, sizeof(sro));
1797 		ro = &sro;
1798 	}
1799 
1800 	sin = (struct sockaddr_in *)&ro->ro_dst;
1801 
1802 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1803 		if (ro->ro_rt != NULL) {
1804 			RTFREE(ro->ro_rt);
1805 			ro->ro_rt = NULL;
1806 		}
1807 		sin->sin_family = AF_INET;
1808 		sin->sin_len = sizeof *sin;
1809 		sin->sin_addr = dst;
1810 		rtalloc_ign(ro, RTF_PRCLONING);
1811 	}
1812 
1813 	if (ro->ro_rt == NULL)
1814 		return (NULL);
1815 
1816 	ia = ifatoia(ro->ro_rt->rt_ifa);
1817 
1818 	if (ro == &sro)
1819 		RTFREE(ro->ro_rt);
1820 	return ia;
1821 }
1822 
1823 /*
1824  * Save incoming source route for use in replies,
1825  * to be picked up later by ip_srcroute if the receiver is interested.
1826  */
1827 static void
1828 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1829 {
1830 	struct m_tag *mtag;
1831 	struct ip_srcrt_opt *opt;
1832 	unsigned olen;
1833 
1834 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1835 	if (mtag == NULL)
1836 		return;
1837 	opt = m_tag_data(mtag);
1838 
1839 	olen = option[IPOPT_OLEN];
1840 #ifdef DIAGNOSTIC
1841 	if (ipprintfs)
1842 		kprintf("save_rte: olen %d\n", olen);
1843 #endif
1844 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1845 		m_tag_free(mtag);
1846 		return;
1847 	}
1848 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1849 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1850 	opt->ip_srcrt.dst = dst;
1851 	m_tag_prepend(m, mtag);
1852 }
1853 
1854 /*
1855  * Retrieve incoming source route for use in replies,
1856  * in the same form used by setsockopt.
1857  * The first hop is placed before the options, will be removed later.
1858  */
1859 struct mbuf *
1860 ip_srcroute(struct mbuf *m0)
1861 {
1862 	struct in_addr *p, *q;
1863 	struct mbuf *m;
1864 	struct m_tag *mtag;
1865 	struct ip_srcrt_opt *opt;
1866 
1867 	if (m0 == NULL)
1868 		return NULL;
1869 
1870 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1871 	if (mtag == NULL)
1872 		return NULL;
1873 	opt = m_tag_data(mtag);
1874 
1875 	if (opt->ip_nhops == 0)
1876 		return (NULL);
1877 	m = m_get(M_NOWAIT, MT_HEADER);
1878 	if (m == NULL)
1879 		return (NULL);
1880 
1881 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1882 
1883 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1884 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1885 		   sizeof(struct in_addr) + OPTSIZ;
1886 #ifdef DIAGNOSTIC
1887 	if (ipprintfs) {
1888 		kprintf("ip_srcroute: nhops %d mlen %d",
1889 			opt->ip_nhops, m->m_len);
1890 	}
1891 #endif
1892 
1893 	/*
1894 	 * First save first hop for return route
1895 	 */
1896 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1897 	*(mtod(m, struct in_addr *)) = *p--;
1898 #ifdef DIAGNOSTIC
1899 	if (ipprintfs)
1900 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1901 #endif
1902 
1903 	/*
1904 	 * Copy option fields and padding (nop) to mbuf.
1905 	 */
1906 	opt->ip_srcrt.nop = IPOPT_NOP;
1907 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1908 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1909 	    OPTSIZ);
1910 	q = (struct in_addr *)(mtod(m, caddr_t) +
1911 	    sizeof(struct in_addr) + OPTSIZ);
1912 #undef OPTSIZ
1913 	/*
1914 	 * Record return path as an IP source route,
1915 	 * reversing the path (pointers are now aligned).
1916 	 */
1917 	while (p >= opt->ip_srcrt.route) {
1918 #ifdef DIAGNOSTIC
1919 		if (ipprintfs)
1920 			kprintf(" %x", ntohl(q->s_addr));
1921 #endif
1922 		*q++ = *p--;
1923 	}
1924 	/*
1925 	 * Last hop goes to final destination.
1926 	 */
1927 	*q = opt->ip_srcrt.dst;
1928 	m_tag_delete(m0, mtag);
1929 #ifdef DIAGNOSTIC
1930 	if (ipprintfs)
1931 		kprintf(" %x\n", ntohl(q->s_addr));
1932 #endif
1933 	return (m);
1934 }
1935 
1936 /*
1937  * Strip out IP options.
1938  */
1939 void
1940 ip_stripoptions(struct mbuf *m)
1941 {
1942 	int datalen;
1943 	struct ip *ip = mtod(m, struct ip *);
1944 	caddr_t opts;
1945 	int optlen;
1946 
1947 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1948 	opts = (caddr_t)(ip + 1);
1949 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1950 	bcopy(opts + optlen, opts, datalen);
1951 	m->m_len -= optlen;
1952 	if (m->m_flags & M_PKTHDR)
1953 		m->m_pkthdr.len -= optlen;
1954 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1955 }
1956 
1957 u_char inetctlerrmap[PRC_NCMDS] = {
1958 	0,		0,		0,		0,
1959 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1960 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1961 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1962 	0,		0,		0,		0,
1963 	ENOPROTOOPT,	ECONNREFUSED
1964 };
1965 
1966 /*
1967  * Forward a packet.  If some error occurs return the sender
1968  * an icmp packet.  Note we can't always generate a meaningful
1969  * icmp message because icmp doesn't have a large enough repertoire
1970  * of codes and types.
1971  *
1972  * If not forwarding, just drop the packet.  This could be confusing
1973  * if ipforwarding was zero but some routing protocol was advancing
1974  * us as a gateway to somewhere.  However, we must let the routing
1975  * protocol deal with that.
1976  *
1977  * The using_srcrt parameter indicates whether the packet is being forwarded
1978  * via a source route.
1979  */
1980 void
1981 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1982 {
1983 	struct ip *ip = mtod(m, struct ip *);
1984 	struct rtentry *rt;
1985 	struct route fwd_ro;
1986 	int error, type = 0, code = 0, destmtu = 0;
1987 	struct mbuf *mcopy, *mtemp = NULL;
1988 	n_long dest;
1989 	struct in_addr pkt_dst;
1990 
1991 	dest = INADDR_ANY;
1992 	/*
1993 	 * Cache the destination address of the packet; this may be
1994 	 * changed by use of 'ipfw fwd'.
1995 	 */
1996 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1997 
1998 #ifdef DIAGNOSTIC
1999 	if (ipprintfs)
2000 		kprintf("forward: src %x dst %x ttl %x\n",
2001 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
2002 #endif
2003 
2004 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
2005 		ipstat.ips_cantforward++;
2006 		m_freem(m);
2007 		return;
2008 	}
2009 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
2010 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
2011 		return;
2012 	}
2013 
2014 	bzero(&fwd_ro, sizeof(fwd_ro));
2015 	ip_rtaddr(pkt_dst, &fwd_ro);
2016 	if (fwd_ro.ro_rt == NULL) {
2017 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2018 		return;
2019 	}
2020 	rt = fwd_ro.ro_rt;
2021 
2022 	if (curthread->td_type == TD_TYPE_NETISR) {
2023 		/*
2024 		 * Save the IP header and at most 8 bytes of the payload,
2025 		 * in case we need to generate an ICMP message to the src.
2026 		 */
2027 		mtemp = ipforward_mtemp[mycpuid];
2028 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2029 		    mtemp->m_data == mtemp->m_pktdat &&
2030 		    m_tag_first(mtemp) == NULL,
2031 		    ("ip_forward invalid mtemp1"));
2032 
2033 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
2034 			/*
2035 			 * It's probably ok if the pkthdr dup fails (because
2036 			 * the deep copy of the tag chain failed), but for now
2037 			 * be conservative and just discard the copy since
2038 			 * code below may some day want the tags.
2039 			 */
2040 			mtemp = NULL;
2041 		} else {
2042 			mtemp->m_type = m->m_type;
2043 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2044 			    (int)ip->ip_len);
2045 			mtemp->m_pkthdr.len = mtemp->m_len;
2046 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2047 		}
2048 	}
2049 
2050 	if (!ipstealth)
2051 		ip->ip_ttl -= IPTTLDEC;
2052 
2053 	/*
2054 	 * If forwarding packet using same interface that it came in on,
2055 	 * perhaps should send a redirect to sender to shortcut a hop.
2056 	 * Only send redirect if source is sending directly to us,
2057 	 * and if packet was not source routed (or has any options).
2058 	 * Also, don't send redirect if forwarding using a default route
2059 	 * or a route modified by a redirect.
2060 	 */
2061 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2062 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2063 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2064 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2065 		u_long src = ntohl(ip->ip_src.s_addr);
2066 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2067 
2068 		if (rt_ifa != NULL &&
2069 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2070 			if (rt->rt_flags & RTF_GATEWAY)
2071 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2072 			else
2073 				dest = pkt_dst.s_addr;
2074 			/*
2075 			 * Router requirements says to only send
2076 			 * host redirects.
2077 			 */
2078 			type = ICMP_REDIRECT;
2079 			code = ICMP_REDIRECT_HOST;
2080 #ifdef DIAGNOSTIC
2081 			if (ipprintfs)
2082 				kprintf("redirect (%d) to %x\n", code, dest);
2083 #endif
2084 		}
2085 	}
2086 
2087 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2088 	if (error == 0) {
2089 		ipstat.ips_forward++;
2090 		if (type == 0) {
2091 			if (mtemp)
2092 				ipflow_create(&fwd_ro, mtemp);
2093 			goto done;
2094 		}
2095 		ipstat.ips_redirectsent++;
2096 	} else {
2097 		ipstat.ips_cantforward++;
2098 	}
2099 
2100 	if (mtemp == NULL)
2101 		goto done;
2102 
2103 	/*
2104 	 * Errors that do not require generating ICMP message
2105 	 */
2106 	switch (error) {
2107 	case ENOBUFS:
2108 		/*
2109 		 * A router should not generate ICMP_SOURCEQUENCH as
2110 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2111 		 * Source quench could be a big problem under DoS attacks,
2112 		 * or if the underlying interface is rate-limited.
2113 		 * Those who need source quench packets may re-enable them
2114 		 * via the net.inet.ip.sendsourcequench sysctl.
2115 		 */
2116 		if (!ip_sendsourcequench)
2117 			goto done;
2118 		break;
2119 
2120 	case EACCES:			/* ipfw denied packet */
2121 		goto done;
2122 	}
2123 
2124 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2125 	    mtemp->m_data == mtemp->m_pktdat,
2126 	    ("ip_forward invalid mtemp2"));
2127 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2128 	if (mcopy == NULL)
2129 		goto done;
2130 
2131 	/*
2132 	 * Send ICMP message.
2133 	 */
2134 	switch (error) {
2135 	case 0:				/* forwarded, but need redirect */
2136 		/* type, code set above */
2137 		break;
2138 
2139 	case ENETUNREACH:		/* shouldn't happen, checked above */
2140 	case EHOSTUNREACH:
2141 	case ENETDOWN:
2142 	case EHOSTDOWN:
2143 	default:
2144 		type = ICMP_UNREACH;
2145 		code = ICMP_UNREACH_HOST;
2146 		break;
2147 
2148 	case EMSGSIZE:
2149 		type = ICMP_UNREACH;
2150 		code = ICMP_UNREACH_NEEDFRAG;
2151 #ifdef IPSEC
2152 		/*
2153 		 * If the packet is routed over IPsec tunnel, tell the
2154 		 * originator the tunnel MTU.
2155 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2156 		 * XXX quickhack!!!
2157 		 */
2158 		if (fwd_ro.ro_rt != NULL) {
2159 			struct secpolicy *sp = NULL;
2160 			int ipsecerror;
2161 			int ipsechdr;
2162 			struct route *ro;
2163 
2164 			sp = ipsec4_getpolicybyaddr(mcopy,
2165 						    IPSEC_DIR_OUTBOUND,
2166 						    IP_FORWARDING,
2167 						    &ipsecerror);
2168 
2169 			if (sp == NULL)
2170 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2171 			else {
2172 				/* count IPsec header size */
2173 				ipsechdr = ipsec4_hdrsiz(mcopy,
2174 							 IPSEC_DIR_OUTBOUND,
2175 							 NULL);
2176 
2177 				/*
2178 				 * find the correct route for outer IPv4
2179 				 * header, compute tunnel MTU.
2180 				 *
2181 				 */
2182 				if (sp->req != NULL && sp->req->sav != NULL &&
2183 				    sp->req->sav->sah != NULL) {
2184 					ro = &sp->req->sav->sah->sa_route;
2185 					if (ro->ro_rt != NULL &&
2186 					    ro->ro_rt->rt_ifp != NULL) {
2187 						destmtu =
2188 						    ro->ro_rt->rt_ifp->if_mtu;
2189 						destmtu -= ipsechdr;
2190 					}
2191 				}
2192 
2193 				key_freesp(sp);
2194 			}
2195 		}
2196 #elif defined(FAST_IPSEC)
2197 		/*
2198 		 * If the packet is routed over IPsec tunnel, tell the
2199 		 * originator the tunnel MTU.
2200 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2201 		 * XXX quickhack!!!
2202 		 */
2203 		if (fwd_ro.ro_rt != NULL) {
2204 			struct secpolicy *sp = NULL;
2205 			int ipsecerror;
2206 			int ipsechdr;
2207 			struct route *ro;
2208 
2209 			sp = ipsec_getpolicybyaddr(mcopy,
2210 						   IPSEC_DIR_OUTBOUND,
2211 						   IP_FORWARDING,
2212 						   &ipsecerror);
2213 
2214 			if (sp == NULL)
2215 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2216 			else {
2217 				/* count IPsec header size */
2218 				ipsechdr = ipsec4_hdrsiz(mcopy,
2219 							 IPSEC_DIR_OUTBOUND,
2220 							 NULL);
2221 
2222 				/*
2223 				 * find the correct route for outer IPv4
2224 				 * header, compute tunnel MTU.
2225 				 */
2226 
2227 				if (sp->req != NULL &&
2228 				    sp->req->sav != NULL &&
2229 				    sp->req->sav->sah != NULL) {
2230 					ro = &sp->req->sav->sah->sa_route;
2231 					if (ro->ro_rt != NULL &&
2232 					    ro->ro_rt->rt_ifp != NULL) {
2233 						destmtu =
2234 						    ro->ro_rt->rt_ifp->if_mtu;
2235 						destmtu -= ipsechdr;
2236 					}
2237 				}
2238 
2239 				KEY_FREESP(&sp);
2240 			}
2241 		}
2242 #else /* !IPSEC && !FAST_IPSEC */
2243 		if (fwd_ro.ro_rt != NULL)
2244 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2245 #endif /*IPSEC*/
2246 		ipstat.ips_cantfrag++;
2247 		break;
2248 
2249 	case ENOBUFS:
2250 		type = ICMP_SOURCEQUENCH;
2251 		code = 0;
2252 		break;
2253 
2254 	case EACCES:			/* ipfw denied packet */
2255 		panic("ip_forward EACCES should not reach");
2256 	}
2257 	icmp_error(mcopy, type, code, dest, destmtu);
2258 done:
2259 	if (mtemp != NULL)
2260 		m_tag_delete_chain(mtemp);
2261 	if (fwd_ro.ro_rt != NULL)
2262 		RTFREE(fwd_ro.ro_rt);
2263 }
2264 
2265 void
2266 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2267 	       struct mbuf *m)
2268 {
2269 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2270 		struct timeval tv;
2271 
2272 		microtime(&tv);
2273 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2274 		    SCM_TIMESTAMP, SOL_SOCKET);
2275 		if (*mp)
2276 			mp = &(*mp)->m_next;
2277 	}
2278 	if (inp->inp_flags & INP_RECVDSTADDR) {
2279 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2280 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2281 		if (*mp)
2282 			mp = &(*mp)->m_next;
2283 	}
2284 	if (inp->inp_flags & INP_RECVTTL) {
2285 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2286 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2287 		if (*mp)
2288 			mp = &(*mp)->m_next;
2289 	}
2290 #ifdef notyet
2291 	/* XXX
2292 	 * Moving these out of udp_input() made them even more broken
2293 	 * than they already were.
2294 	 */
2295 	/* options were tossed already */
2296 	if (inp->inp_flags & INP_RECVOPTS) {
2297 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2298 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2299 		if (*mp)
2300 			mp = &(*mp)->m_next;
2301 	}
2302 	/* ip_srcroute doesn't do what we want here, need to fix */
2303 	if (inp->inp_flags & INP_RECVRETOPTS) {
2304 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2305 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2306 		if (*mp)
2307 			mp = &(*mp)->m_next;
2308 	}
2309 #endif
2310 	if (inp->inp_flags & INP_RECVIF) {
2311 		struct ifnet *ifp;
2312 		struct sdlbuf {
2313 			struct sockaddr_dl sdl;
2314 			u_char	pad[32];
2315 		} sdlbuf;
2316 		struct sockaddr_dl *sdp;
2317 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2318 
2319 		if (((ifp = m->m_pkthdr.rcvif)) &&
2320 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2321 			sdp = IF_LLSOCKADDR(ifp);
2322 			/*
2323 			 * Change our mind and don't try copy.
2324 			 */
2325 			if ((sdp->sdl_family != AF_LINK) ||
2326 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2327 				goto makedummy;
2328 			}
2329 			bcopy(sdp, sdl2, sdp->sdl_len);
2330 		} else {
2331 makedummy:
2332 			sdl2->sdl_len =
2333 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2334 			sdl2->sdl_family = AF_LINK;
2335 			sdl2->sdl_index = 0;
2336 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2337 		}
2338 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2339 			IP_RECVIF, IPPROTO_IP);
2340 		if (*mp)
2341 			mp = &(*mp)->m_next;
2342 	}
2343 }
2344 
2345 /*
2346  * XXX these routines are called from the upper part of the kernel.
2347  *
2348  * They could also be moved to ip_mroute.c, since all the RSVP
2349  *  handling is done there already.
2350  */
2351 int
2352 ip_rsvp_init(struct socket *so)
2353 {
2354 	if (so->so_type != SOCK_RAW ||
2355 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2356 		return EOPNOTSUPP;
2357 
2358 	if (ip_rsvpd != NULL)
2359 		return EADDRINUSE;
2360 
2361 	ip_rsvpd = so;
2362 	/*
2363 	 * This may seem silly, but we need to be sure we don't over-increment
2364 	 * the RSVP counter, in case something slips up.
2365 	 */
2366 	if (!ip_rsvp_on) {
2367 		ip_rsvp_on = 1;
2368 		rsvp_on++;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 int
2375 ip_rsvp_done(void)
2376 {
2377 	ip_rsvpd = NULL;
2378 	/*
2379 	 * This may seem silly, but we need to be sure we don't over-decrement
2380 	 * the RSVP counter, in case something slips up.
2381 	 */
2382 	if (ip_rsvp_on) {
2383 		ip_rsvp_on = 0;
2384 		rsvp_on--;
2385 	}
2386 	return 0;
2387 }
2388 
2389 int
2390 rsvp_input(struct mbuf **mp, int *offp, int proto)
2391 {
2392 	struct mbuf *m = *mp;
2393 
2394 	*mp = NULL;
2395 
2396 	if (rsvp_input_p) { /* call the real one if loaded */
2397 		*mp = m;
2398 		rsvp_input_p(mp, offp, proto);
2399 		return(IPPROTO_DONE);
2400 	}
2401 
2402 	/* Can still get packets with rsvp_on = 0 if there is a local member
2403 	 * of the group to which the RSVP packet is addressed.  But in this
2404 	 * case we want to throw the packet away.
2405 	 */
2406 
2407 	if (!rsvp_on) {
2408 		m_freem(m);
2409 		return(IPPROTO_DONE);
2410 	}
2411 
2412 	if (ip_rsvpd != NULL) {
2413 		*mp = m;
2414 		rip_input(mp, offp, proto);
2415 		return(IPPROTO_DONE);
2416 	}
2417 	/* Drop the packet */
2418 	m_freem(m);
2419 	return(IPPROTO_DONE);
2420 }
2421