xref: /dragonfly/sys/netinet/ip_input.c (revision 43b4d1bd)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.34 2004/07/18 16:26:43 dillon Exp $
86  */
87 
88 #define	_IP_VHL
89 
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97 #include "opt_random_ip_id.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/mbuf.h>
102 #include <sys/malloc.h>
103 #include <sys/mpipe.h>
104 #include <sys/domain.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/time.h>
108 #include <sys/globaldata.h>
109 #include <sys/thread.h>
110 #include <sys/kernel.h>
111 #include <sys/syslog.h>
112 #include <sys/sysctl.h>
113 #include <sys/in_cksum.h>
114 
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 
118 #include <machine/stdarg.h>
119 
120 #include <net/if.h>
121 #include <net/if_types.h>
122 #include <net/if_var.h>
123 #include <net/if_dl.h>
124 #include <net/pfil.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <net/intrq.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/in_var.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/ip_icmp.h>
136 
137 #include <netinet/ipprotosw.h>
138 
139 #include <sys/socketvar.h>
140 
141 #include <net/ipfw/ip_fw.h>
142 #include <net/dummynet/ip_dummynet.h>
143 
144 #ifdef IPSEC
145 #include <netinet6/ipsec.h>
146 #include <netproto/key/key.h>
147 #endif
148 
149 #ifdef FAST_IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/key.h>
152 #endif
153 
154 int rsvp_on = 0;
155 static int ip_rsvp_on;
156 struct socket *ip_rsvpd;
157 
158 int ipforwarding = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
160     &ipforwarding, 0, "Enable IP forwarding between interfaces");
161 
162 static int ipsendredirects = 1; /* XXX */
163 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
164     &ipsendredirects, 0, "Enable sending IP redirects");
165 
166 int ip_defttl = IPDEFTTL;
167 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
168     &ip_defttl, 0, "Maximum TTL on IP packets");
169 
170 static int ip_dosourceroute = 0;
171 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
172     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
173 
174 static int ip_acceptsourceroute = 0;
175 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
176     CTLFLAG_RW, &ip_acceptsourceroute, 0,
177     "Enable accepting source routed IP packets");
178 
179 static int ip_keepfaith = 0;
180 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
181     &ip_keepfaith, 0,
182     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
183 
184 static int nipq = 0;	/* total # of reass queues */
185 static int maxnipq;
186 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
187     &maxnipq, 0,
188     "Maximum number of IPv4 fragment reassembly queue entries");
189 
190 static int maxfragsperpacket;
191 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
192     &maxfragsperpacket, 0,
193     "Maximum number of IPv4 fragments allowed per packet");
194 
195 static int ip_sendsourcequench = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
197     &ip_sendsourcequench, 0,
198     "Enable the transmission of source quench packets");
199 
200 /*
201  * XXX - Setting ip_checkinterface mostly implements the receive side of
202  * the Strong ES model described in RFC 1122, but since the routing table
203  * and transmit implementation do not implement the Strong ES model,
204  * setting this to 1 results in an odd hybrid.
205  *
206  * XXX - ip_checkinterface currently must be disabled if you use ipnat
207  * to translate the destination address to another local interface.
208  *
209  * XXX - ip_checkinterface must be disabled if you add IP aliases
210  * to the loopback interface instead of the interface where the
211  * packets for those addresses are received.
212  */
213 static int ip_checkinterface = 0;
214 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
215     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 static struct ifqueue ipintrq;
222 static int ipqmaxlen = IFQ_MAXLEN;
223 
224 extern	struct domain inetdomain;
225 extern	struct ipprotosw inetsw[];
226 u_char	ip_protox[IPPROTO_MAX];
227 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
228 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
229 u_long	in_ifaddrhmask;				/* mask for hash table */
230 
231 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
232     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
233 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
234     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
235 
236 struct ip_stats ipstats_ary[MAXCPU];
237 #ifdef SMP
238 static int
239 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
240 {
241 	int cpu, error = 0;
242 
243 	for (cpu = 0; cpu < ncpus; ++cpu) {
244 		if ((error = SYSCTL_OUT(req, (void *)&ipstats_ary[cpu],
245 					sizeof(struct ip_stats))))
246 			break;
247 		if ((error = SYSCTL_IN(req, (void *)&ipstats_ary[cpu],
248 				       sizeof(struct ip_stats))))
249 			break;
250 	}
251 
252 	return (error);
253 }
254 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
255     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
256 #else
257 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
258     &ipstat, ip_stats, "IP statistics");
259 #endif
260 
261 /* Packet reassembly stuff */
262 #define	IPREASS_NHASH_LOG2	6
263 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
264 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
265 #define	IPREASS_HASH(x,y)						\
266     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
267 
268 static struct ipq ipq[IPREASS_NHASH];
269 const  int    ipintrq_present = 1;
270 
271 #ifdef IPCTL_DEFMTU
272 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
273     &ip_mtu, 0, "Default MTU");
274 #endif
275 
276 #ifdef IPSTEALTH
277 static int ipstealth = 0;
278 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
279 #else
280 static const int ipstealth = 0;
281 #endif
282 
283 
284 /* Firewall hooks */
285 ip_fw_chk_t *ip_fw_chk_ptr;
286 int fw_enable = 1;
287 int fw_one_pass = 1;
288 
289 /* Dummynet hooks */
290 ip_dn_io_t *ip_dn_io_ptr;
291 
292 struct pfil_head inet_pfil_hook;
293 
294 /*
295  * XXX this is ugly -- the following two global variables are
296  * used to store packet state while it travels through the stack.
297  * Note that the code even makes assumptions on the size and
298  * alignment of fields inside struct ip_srcrt so e.g. adding some
299  * fields will break the code. This needs to be fixed.
300  *
301  * We need to save the IP options in case a protocol wants to respond
302  * to an incoming packet over the same route if the packet got here
303  * using IP source routing.  This allows connection establishment and
304  * maintenance when the remote end is on a network that is not known
305  * to us.
306  */
307 static int ip_nhops = 0;
308 
309 static	struct ip_srcrt {
310 	struct	in_addr dst;			/* final destination */
311 	char	nop;				/* one NOP to align */
312 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
313 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
314 } ip_srcrt;
315 
316 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
317 static struct malloc_pipe ipq_mpipe;
318 
319 static void		save_rte (u_char *, struct in_addr);
320 static int		ip_dooptions (struct mbuf *m, int,
321 					struct sockaddr_in *next_hop);
322 static void		ip_forward (struct mbuf *m, int srcrt,
323 					struct sockaddr_in *next_hop);
324 static void		ip_freef (struct ipq *);
325 static int		ip_input_handler (struct netmsg *);
326 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
327 					struct ipq *, u_int32_t *, u_int16_t *);
328 
329 /*
330  * IP initialization: fill in IP protocol switch table.
331  * All protocols not implemented in kernel go to raw IP protocol handler.
332  */
333 void
334 ip_init(void)
335 {
336 	struct ipprotosw *pr;
337 	int i;
338 #ifdef SMP
339 	int cpu;
340 #endif
341 
342 	/*
343 	 * Make sure we can handle a reasonable number of fragments but
344 	 * cap it at 4000 (XXX).
345 	 */
346 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
347 		    IFQ_MAXLEN, 4000, 0, NULL);
348 	TAILQ_INIT(&in_ifaddrhead);
349 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
350 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
351 	if (pr == NULL)
352 		panic("ip_init");
353 	for (i = 0; i < IPPROTO_MAX; i++)
354 		ip_protox[i] = pr - inetsw;
355 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
356 	     pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
357 		if (pr->pr_domain->dom_family == PF_INET &&
358 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
359 			ip_protox[pr->pr_protocol] = pr - inetsw;
360 
361 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
362 	inet_pfil_hook.ph_af = AF_INET;
363 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
364 		printf("%s: WARNING: unable to register pfil hook, "
365 			"error %d\n", __func__, i);
366 	}
367 
368 	for (i = 0; i < IPREASS_NHASH; i++)
369 	    ipq[i].next = ipq[i].prev = &ipq[i];
370 
371 	maxnipq = nmbclusters / 32;
372 	maxfragsperpacket = 16;
373 
374 #ifndef RANDOM_IP_ID
375 	ip_id = time_second & 0xffff;
376 #endif
377 	ipintrq.ifq_maxlen = ipqmaxlen;
378 
379 	/*
380 	 * Initialize IP statistics.
381 	 *
382 	 * It is layed out as an array which is has one element for UP,
383 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
384 	 * the access mechanism from userland for both UP and SMP.
385 	 */
386 #ifdef SMP
387 	for (cpu = 0; cpu < ncpus; ++cpu) {
388 		bzero(&ipstats_ary[cpu], sizeof(struct ip_stats));
389 	}
390 #else
391 	bzero(&ipstat, sizeof(struct ip_stats));
392 #endif
393 
394 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
395 }
396 
397 /*
398  * XXX watch out this one. It is perhaps used as a cache for
399  * the most recently used route ? it is cleared in in_addroute()
400  * when a new route is successfully created.
401  */
402 struct route ipforward_rt;
403 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
404 
405 /* Do transport protocol processing. */
406 static void
407 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
408 			   struct sockaddr_in *nexthop)
409 {
410 	/*
411 	 * Switch out to protocol's input routine.
412 	 */
413 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
414 		/* TCP needs IPFORWARD info if available */
415 		struct m_hdr tag;
416 
417 		tag.mh_type = MT_TAG;
418 		tag.mh_flags = PACKET_TAG_IPFORWARD;
419 		tag.mh_data = (caddr_t)nexthop;
420 		tag.mh_next = m;
421 
422 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
423 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
424 	} else {
425 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
426 	}
427 }
428 
429 struct netmsg_transport_packet {
430 	struct lwkt_msg		nm_lmsg;
431 	struct mbuf		*nm_mbuf;
432 	int			nm_hlen;
433 	boolean_t		nm_hasnexthop;
434 	struct sockaddr_in	nm_nexthop;
435 };
436 
437 static int
438 transport_processing_handler(lwkt_msg_t lmsg)
439 {
440 	struct netmsg_transport_packet *msg = (void *)lmsg;
441 	struct sockaddr_in *nexthop;
442 	struct ip *ip;
443 
444 	ip = mtod(msg->nm_mbuf, struct ip *);
445 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
446 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
447 	lwkt_replymsg(lmsg, 0);
448 	return(EASYNC);
449 }
450 
451 static int
452 ip_input_handler(struct netmsg *msg0)
453 {
454 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
455 
456 	ip_input(m);
457 	lwkt_replymsg(&msg0->nm_lmsg, 0);
458 	return(EASYNC);
459 }
460 
461 /*
462  * Ip input routine.  Checksum and byte swap header.  If fragmented
463  * try to reassemble.  Process options.  Pass to next level.
464  */
465 void
466 ip_input(struct mbuf *m)
467 {
468 	struct ip *ip;
469 	struct ipq *fp;
470 	struct in_ifaddr *ia = NULL;
471 	struct ifaddr *ifa;
472 	int i, hlen, checkif;
473 	u_short sum;
474 	struct in_addr pkt_dst;
475 	u_int32_t divert_info = 0;		/* packet divert/tee info */
476 	struct ip_fw_args args;
477 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
478 	boolean_t needredispatch = FALSE;
479 	struct in_addr odst;			/* original dst address(NAT) */
480 #ifdef FAST_IPSEC
481 	struct m_tag *mtag;
482 	struct tdb_ident *tdbi;
483 	struct secpolicy *sp;
484 	int s, error;
485 #endif
486 
487 	args.eh = NULL;
488 	args.oif = NULL;
489 	args.rule = NULL;
490 	args.divert_rule = 0;			/* divert cookie */
491 	args.next_hop = NULL;
492 
493 	/* Grab info from MT_TAG mbufs prepended to the chain. */
494 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
495 		switch(m->_m_tag_id) {
496 		default:
497 			printf("ip_input: unrecognised MT_TAG tag %d\n",
498 			    m->_m_tag_id);
499 			break;
500 
501 		case PACKET_TAG_DUMMYNET:
502 			args.rule = ((struct dn_pkt *)m)->rule;
503 			break;
504 
505 		case PACKET_TAG_DIVERT:
506 			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
507 			break;
508 
509 		case PACKET_TAG_IPFORWARD:
510 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
511 			break;
512 		}
513 	}
514 
515 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
516 	    ("ip_input: no HDR"));
517 
518 	if (args.rule) {	/* dummynet already filtered us */
519 		ip = mtod(m, struct ip *);
520 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
521 		goto iphack;
522 	}
523 
524 	ipstat.ips_total++;
525 
526 	/* length checks already done in ip_demux() */
527 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
528 
529 	ip = mtod(m, struct ip *);
530 
531 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
532 		ipstat.ips_badvers++;
533 		goto bad;
534 	}
535 
536 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
537 	/* length checks already done in ip_demux() */
538 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
539 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
540 
541 	/* 127/8 must not appear on wire - RFC1122 */
542 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
543 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
544 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
545 			ipstat.ips_badaddr++;
546 			goto bad;
547 		}
548 	}
549 
550 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
551 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
552 	} else {
553 		if (hlen == sizeof(struct ip)) {
554 			sum = in_cksum_hdr(ip);
555 		} else {
556 			sum = in_cksum(m, hlen);
557 		}
558 	}
559 	if (sum) {
560 		ipstat.ips_badsum++;
561 		goto bad;
562 	}
563 
564 	/*
565 	 * Convert fields to host representation.
566 	 */
567 	ip->ip_len = ntohs(ip->ip_len);
568 	if (ip->ip_len < hlen) {
569 		ipstat.ips_badlen++;
570 		goto bad;
571 	}
572 	ip->ip_off = ntohs(ip->ip_off);
573 
574 	/*
575 	 * Check that the amount of data in the buffers
576 	 * is as at least much as the IP header would have us expect.
577 	 * Trim mbufs if longer than we expect.
578 	 * Drop packet if shorter than we expect.
579 	 */
580 	if (m->m_pkthdr.len < ip->ip_len) {
581 		ipstat.ips_tooshort++;
582 		goto bad;
583 	}
584 	if (m->m_pkthdr.len > ip->ip_len) {
585 		if (m->m_len == m->m_pkthdr.len) {
586 			m->m_len = ip->ip_len;
587 			m->m_pkthdr.len = ip->ip_len;
588 		} else
589 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
590 	}
591 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
592 	/*
593 	 * Bypass packet filtering for packets from a tunnel (gif).
594 	 */
595 	if (ipsec_gethist(m, NULL))
596 		goto pass;
597 #endif
598 
599 	/*
600 	 * IpHack's section.
601 	 * Right now when no processing on packet has done
602 	 * and it is still fresh out of network we do our black
603 	 * deals with it.
604 	 * - Firewall: deny/allow/divert
605 	 * - Xlate: translate packet's addr/port (NAT).
606 	 * - Pipe: pass pkt through dummynet.
607 	 * - Wrap: fake packet's addr/port <unimpl.>
608 	 * - Encapsulate: put it in another IP and send out. <unimp.>
609 	 */
610 
611 iphack:
612 
613 	/*
614 	 * Run through list of hooks for input packets.
615 	 *
616 	 * NB: Beware of the destination address changing (e.g.
617 	 *     by NAT rewriting). When this happens, tell
618 	 *     ip_forward to do the right thing.
619 	 */
620 	if (pfil_has_hooks(&inet_pfil_hook)) {
621 		odst = ip->ip_dst;
622 		if (pfil_run_hooks(&inet_pfil_hook, &m,
623 		    m->m_pkthdr.rcvif, PFIL_IN)) {
624 			return;
625 		}
626 		if (m == NULL)			/* consumed by filter */
627 			return;
628 		ip = mtod(m, struct ip *);
629 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
630 	}
631 
632 	if (fw_enable && IPFW_LOADED) {
633 		/*
634 		 * If we've been forwarded from the output side, then
635 		 * skip the firewall a second time
636 		 */
637 		if (args.next_hop)
638 			goto ours;
639 
640 		args.m = m;
641 		i = ip_fw_chk_ptr(&args);
642 		m = args.m;
643 
644 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
645 			if (m)
646 				m_freem(m);
647 			return;
648 		}
649 		ip = mtod(m, struct ip *); /* just in case m changed */
650 		if (i == 0 && args.next_hop == NULL)	/* common case */
651 			goto pass;
652 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
653 			/* Send packet to the appropriate pipe */
654 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
655 			return;
656 		}
657 #ifdef IPDIVERT
658 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
659 			/* Divert or tee packet */
660 			divert_info = i;
661 			goto ours;
662 		}
663 #endif
664 		if (i == 0 && args.next_hop != NULL)
665 			goto pass;
666 		/*
667 		 * if we get here, the packet must be dropped
668 		 */
669 		m_freem(m);
670 		return;
671 	}
672 pass:
673 
674 	/*
675 	 * Process options and, if not destined for us,
676 	 * ship it on.  ip_dooptions returns 1 when an
677 	 * error was detected (causing an icmp message
678 	 * to be sent and the original packet to be freed).
679 	 */
680 	ip_nhops = 0;		/* for source routed packets */
681 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
682 		return;
683 
684 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
685 	 * matter if it is destined to another node, or whether it is
686 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
687 	 * anywhere else. Also checks if the rsvp daemon is running before
688 	 * grabbing the packet.
689 	 */
690 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
691 		goto ours;
692 
693 	/*
694 	 * Check our list of addresses, to see if the packet is for us.
695 	 * If we don't have any addresses, assume any unicast packet
696 	 * we receive might be for us (and let the upper layers deal
697 	 * with it).
698 	 */
699 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
700 		goto ours;
701 
702 	/*
703 	 * Cache the destination address of the packet; this may be
704 	 * changed by use of 'ipfw fwd'.
705 	 */
706 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
707 
708 	/*
709 	 * Enable a consistency check between the destination address
710 	 * and the arrival interface for a unicast packet (the RFC 1122
711 	 * strong ES model) if IP forwarding is disabled and the packet
712 	 * is not locally generated and the packet is not subject to
713 	 * 'ipfw fwd'.
714 	 *
715 	 * XXX - Checking also should be disabled if the destination
716 	 * address is ipnat'ed to a different interface.
717 	 *
718 	 * XXX - Checking is incompatible with IP aliases added
719 	 * to the loopback interface instead of the interface where
720 	 * the packets are received.
721 	 */
722 	checkif = ip_checkinterface &&
723 		  !ipforwarding &&
724 		  m->m_pkthdr.rcvif != NULL &&
725 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
726 		  (args.next_hop == NULL);
727 
728 	/*
729 	 * Check for exact addresses in the hash bucket.
730 	 */
731 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
732 		/*
733 		 * If the address matches, verify that the packet
734 		 * arrived via the correct interface if checking is
735 		 * enabled.
736 		 */
737 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
738 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
739 			goto ours;
740 	}
741 	/*
742 	 * Check for broadcast addresses.
743 	 *
744 	 * Only accept broadcast packets that arrive via the matching
745 	 * interface.  Reception of forwarded directed broadcasts would
746 	 * be handled via ip_forward() and ether_output() with the loopback
747 	 * into the stack for SIMPLEX interfaces handled by ether_output().
748 	 */
749 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
750 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
751 			if (ifa->ifa_addr->sa_family != AF_INET)
752 				continue;
753 			ia = ifatoia(ifa);
754 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
755 								pkt_dst.s_addr)
756 				goto ours;
757 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
758 				goto ours;
759 #ifdef BOOTP_COMPAT
760 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
761 				goto ours;
762 #endif
763 		}
764 	}
765 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
766 		struct in_multi *inm;
767 		if (ip_mrouter) {
768 			/*
769 			 * If we are acting as a multicast router, all
770 			 * incoming multicast packets are passed to the
771 			 * kernel-level multicast forwarding function.
772 			 * The packet is returned (relatively) intact; if
773 			 * ip_mforward() returns a non-zero value, the packet
774 			 * must be discarded, else it may be accepted below.
775 			 */
776 			if (ip_mforward &&
777 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
778 				ipstat.ips_cantforward++;
779 				m_freem(m);
780 				return;
781 			}
782 
783 			/*
784 			 * The process-level routing daemon needs to receive
785 			 * all multicast IGMP packets, whether or not this
786 			 * host belongs to their destination groups.
787 			 */
788 			if (ip->ip_p == IPPROTO_IGMP)
789 				goto ours;
790 			ipstat.ips_forward++;
791 		}
792 		/*
793 		 * See if we belong to the destination multicast group on the
794 		 * arrival interface.
795 		 */
796 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
797 		if (inm == NULL) {
798 			ipstat.ips_notmember++;
799 			m_freem(m);
800 			return;
801 		}
802 		goto ours;
803 	}
804 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
805 		goto ours;
806 	if (ip->ip_dst.s_addr == INADDR_ANY)
807 		goto ours;
808 
809 	/*
810 	 * FAITH(Firewall Aided Internet Translator)
811 	 */
812 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
813 		if (ip_keepfaith) {
814 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
815 				goto ours;
816 		}
817 		m_freem(m);
818 		return;
819 	}
820 
821 	/*
822 	 * Not for us; forward if possible and desirable.
823 	 */
824 	if (!ipforwarding) {
825 		ipstat.ips_cantforward++;
826 		m_freem(m);
827 	} else {
828 #ifdef IPSEC
829 		/*
830 		 * Enforce inbound IPsec SPD.
831 		 */
832 		if (ipsec4_in_reject(m, NULL)) {
833 			ipsecstat.in_polvio++;
834 			goto bad;
835 		}
836 #endif
837 #ifdef FAST_IPSEC
838 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
839 		s = splnet();
840 		if (mtag != NULL) {
841 			tdbi = (struct tdb_ident *)(mtag + 1);
842 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
843 		} else {
844 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
845 						   IP_FORWARDING, &error);
846 		}
847 		if (sp == NULL) {	/* NB: can happen if error */
848 			splx(s);
849 			/*XXX error stat???*/
850 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
851 			goto bad;
852 		}
853 
854 		/*
855 		 * Check security policy against packet attributes.
856 		 */
857 		error = ipsec_in_reject(sp, m);
858 		KEY_FREESP(&sp);
859 		splx(s);
860 		if (error) {
861 			ipstat.ips_cantforward++;
862 			goto bad;
863 		}
864 #endif
865 		ip_forward(m, using_srcrt, args.next_hop);
866 	}
867 	return;
868 
869 ours:
870 
871 	/*
872 	 * IPSTEALTH: Process non-routing options only
873 	 * if the packet is destined for us.
874 	 */
875 	if (ipstealth &&
876 	    hlen > sizeof(struct ip) &&
877 	    ip_dooptions(m, 1, args.next_hop))
878 		return;
879 
880 	/* Count the packet in the ip address stats */
881 	if (ia != NULL) {
882 		ia->ia_ifa.if_ipackets++;
883 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
884 	}
885 
886 	/*
887 	 * If offset or IP_MF are set, must reassemble.
888 	 * Otherwise, nothing need be done.
889 	 * (We could look in the reassembly queue to see
890 	 * if the packet was previously fragmented,
891 	 * but it's not worth the time; just let them time out.)
892 	 */
893 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
894 
895 		/* If maxnipq is 0, never accept fragments. */
896 		if (maxnipq == 0) {
897 			ipstat.ips_fragments++;
898 			ipstat.ips_fragdropped++;
899 			goto bad;
900 		}
901 
902 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
903 		/*
904 		 * Look for queue of fragments
905 		 * of this datagram.
906 		 */
907 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
908 			if (ip->ip_id == fp->ipq_id &&
909 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
910 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
911 			    ip->ip_p == fp->ipq_p)
912 				goto found;
913 
914 		fp = NULL;
915 
916 		/*
917 		 * Enforce upper bound on number of fragmented packets
918 		 * for which we attempt reassembly;
919 		 * If maxnipq is -1, accept all fragments without limitation.
920 		 */
921 		if ((nipq > maxnipq) && (maxnipq > 0)) {
922 			/*
923 			 * drop something from the tail of the current queue
924 			 * before proceeding further
925 			 */
926 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
927 				for (i = 0; i < IPREASS_NHASH; i++) {
928 					if (ipq[i].prev != &ipq[i]) {
929 						ipstat.ips_fragtimeout +=
930 						    ipq[i].prev->ipq_nfrags;
931 						ip_freef(ipq[i].prev);
932 						break;
933 					}
934 				}
935 			} else {
936 				ipstat.ips_fragtimeout +=
937 				    ipq[sum].prev->ipq_nfrags;
938 				ip_freef(ipq[sum].prev);
939 			}
940 		}
941 found:
942 		/*
943 		 * Adjust ip_len to not reflect header,
944 		 * convert offset of this to bytes.
945 		 */
946 		ip->ip_len -= hlen;
947 		if (ip->ip_off & IP_MF) {
948 			/*
949 			 * Make sure that fragments have a data length
950 			 * that's a non-zero multiple of 8 bytes.
951 			 */
952 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
953 				ipstat.ips_toosmall++; /* XXX */
954 				goto bad;
955 			}
956 			m->m_flags |= M_FRAG;
957 		} else
958 			m->m_flags &= ~M_FRAG;
959 		ip->ip_off <<= 3;
960 
961 		/*
962 		 * Attempt reassembly; if it succeeds, proceed.
963 		 * ip_reass() will return a different mbuf, and update
964 		 * the divert info in divert_info and args.divert_rule.
965 		 */
966 		ipstat.ips_fragments++;
967 		m->m_pkthdr.header = ip;
968 		m = ip_reass(m, fp, &ipq[sum], &divert_info, &args.divert_rule);
969 		if (m == NULL)
970 			return;
971 		ipstat.ips_reassembled++;
972 		needredispatch = TRUE;
973 		ip = mtod(m, struct ip *);
974 		/* Get the header length of the reassembled packet */
975 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
976 #ifdef IPDIVERT
977 		/* Restore original checksum before diverting packet */
978 		if (divert_info != 0) {
979 			ip->ip_len += hlen;
980 			ip->ip_len = htons(ip->ip_len);
981 			ip->ip_off = htons(ip->ip_off);
982 			ip->ip_sum = 0;
983 			if (hlen == sizeof(struct ip))
984 				ip->ip_sum = in_cksum_hdr(ip);
985 			else
986 				ip->ip_sum = in_cksum(m, hlen);
987 			ip->ip_off = ntohs(ip->ip_off);
988 			ip->ip_len = ntohs(ip->ip_len);
989 			ip->ip_len -= hlen;
990 		}
991 #endif
992 	} else {
993 		ip->ip_len -= hlen;
994 	}
995 
996 #ifdef IPDIVERT
997 	/*
998 	 * Divert or tee packet to the divert protocol if required.
999 	 */
1000 	if (divert_info != 0) {
1001 		struct mbuf *clone = NULL;
1002 
1003 		/* Clone packet if we're doing a 'tee' */
1004 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1005 			clone = m_dup(m, MB_DONTWAIT);
1006 
1007 		/* Restore packet header fields to original values */
1008 		ip->ip_len += hlen;
1009 		ip->ip_len = htons(ip->ip_len);
1010 		ip->ip_off = htons(ip->ip_off);
1011 
1012 		/* Deliver packet to divert input routine */
1013 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
1014 		ipstat.ips_delivered++;
1015 
1016 		/* If 'tee', continue with original packet */
1017 		if (clone == NULL)
1018 			return;
1019 		m = clone;
1020 		ip = mtod(m, struct ip *);
1021 		ip->ip_len += hlen;
1022 		/*
1023 		 * Jump backwards to complete processing of the
1024 		 * packet. But first clear divert_info to avoid
1025 		 * entering this block again.
1026 		 * We do not need to clear args.divert_rule
1027 		 * or args.next_hop as they will not be used.
1028 		 */
1029 		divert_info = 0;
1030 		goto pass;
1031 	}
1032 #endif
1033 
1034 #ifdef IPSEC
1035 	/*
1036 	 * enforce IPsec policy checking if we are seeing last header.
1037 	 * note that we do not visit this with protocols with pcb layer
1038 	 * code - like udp/tcp/raw ip.
1039 	 */
1040 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1041 	    ipsec4_in_reject(m, NULL)) {
1042 		ipsecstat.in_polvio++;
1043 		goto bad;
1044 	}
1045 #endif
1046 #if FAST_IPSEC
1047 	/*
1048 	 * enforce IPsec policy checking if we are seeing last header.
1049 	 * note that we do not visit this with protocols with pcb layer
1050 	 * code - like udp/tcp/raw ip.
1051 	 */
1052 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1053 		/*
1054 		 * Check if the packet has already had IPsec processing
1055 		 * done.  If so, then just pass it along.  This tag gets
1056 		 * set during AH, ESP, etc. input handling, before the
1057 		 * packet is returned to the ip input queue for delivery.
1058 		 */
1059 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1060 		s = splnet();
1061 		if (mtag != NULL) {
1062 			tdbi = (struct tdb_ident *)(mtag + 1);
1063 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1064 		} else {
1065 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1066 						   IP_FORWARDING, &error);
1067 		}
1068 		if (sp != NULL) {
1069 			/*
1070 			 * Check security policy against packet attributes.
1071 			 */
1072 			error = ipsec_in_reject(sp, m);
1073 			KEY_FREESP(&sp);
1074 		} else {
1075 			/* XXX error stat??? */
1076 			error = EINVAL;
1077 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1078 			goto bad;
1079 		}
1080 		splx(s);
1081 		if (error)
1082 			goto bad;
1083 	}
1084 #endif /* FAST_IPSEC */
1085 
1086 	ipstat.ips_delivered++;
1087 	if (needredispatch) {
1088 		struct netmsg_transport_packet *msg;
1089 		lwkt_port_t port;
1090 
1091 		msg = malloc(sizeof(struct netmsg_transport_packet),
1092 				M_LWKTMSG, M_INTWAIT | M_NULLOK);
1093 		if (msg == NULL)
1094 			goto bad;
1095 
1096 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1097 			lwkt_cmd_func(transport_processing_handler),
1098 			lwkt_cmd_op_none);
1099 		msg->nm_hlen = hlen;
1100 		msg->nm_hasnexthop = (args.next_hop != NULL);
1101 		if (msg->nm_hasnexthop)
1102 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1103 
1104 		ip->ip_off = htons(ip->ip_off);
1105 		ip->ip_len = htons(ip->ip_len);
1106 		port = ip_mport(&m);
1107 		if (port) {
1108 		    msg->nm_mbuf = m;
1109 		    ip = mtod(m, struct ip *);
1110 		    ip->ip_len = ntohs(ip->ip_len);
1111 		    ip->ip_off = ntohs(ip->ip_off);
1112 		    lwkt_sendmsg(port, &msg->nm_lmsg);
1113 		}
1114 	} else {
1115 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1116 	}
1117 	return;
1118 
1119 bad:
1120 	m_freem(m);
1121 }
1122 
1123 /*
1124  * Take incoming datagram fragment and try to reassemble it into
1125  * whole datagram.  If a chain for reassembly of this datagram already
1126  * exists, then it is given as fp; otherwise have to make a chain.
1127  *
1128  * When IPDIVERT enabled, keep additional state with each packet that
1129  * tells us if we need to divert or tee the packet we're building.
1130  * In particular, *divinfo includes the port and TEE flag,
1131  * *divert_rule is the number of the matching rule.
1132  */
1133 
1134 static struct mbuf *
1135 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1136 	 u_int32_t *divinfo, u_int16_t *divert_rule)
1137 {
1138 	struct ip *ip = mtod(m, struct ip *);
1139 	struct mbuf *p = NULL, *q, *nq;
1140 	struct mbuf *n;
1141 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1142 	int i, next;
1143 
1144 	/*
1145 	 * Presence of header sizes in mbufs
1146 	 * would confuse code below.
1147 	 */
1148 	m->m_data += hlen;
1149 	m->m_len -= hlen;
1150 
1151 	/*
1152 	 * If first fragment to arrive, create a reassembly queue.
1153 	 */
1154 	if (fp == NULL) {
1155 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1156 			goto dropfrag;
1157 		insque(fp, where);
1158 		nipq++;
1159 		fp->ipq_nfrags = 1;
1160 		fp->ipq_ttl = IPFRAGTTL;
1161 		fp->ipq_p = ip->ip_p;
1162 		fp->ipq_id = ip->ip_id;
1163 		fp->ipq_src = ip->ip_src;
1164 		fp->ipq_dst = ip->ip_dst;
1165 		fp->ipq_frags = m;
1166 		m->m_nextpkt = NULL;
1167 #ifdef IPDIVERT
1168 		fp->ipq_div_info = 0;
1169 		fp->ipq_div_cookie = 0;
1170 #endif
1171 		goto inserted;
1172 	} else {
1173 		fp->ipq_nfrags++;
1174 	}
1175 
1176 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1177 
1178 	/*
1179 	 * Find a segment which begins after this one does.
1180 	 */
1181 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1182 		if (GETIP(q)->ip_off > ip->ip_off)
1183 			break;
1184 
1185 	/*
1186 	 * If there is a preceding segment, it may provide some of
1187 	 * our data already.  If so, drop the data from the incoming
1188 	 * segment.  If it provides all of our data, drop us, otherwise
1189 	 * stick new segment in the proper place.
1190 	 *
1191 	 * If some of the data is dropped from the the preceding
1192 	 * segment, then it's checksum is invalidated.
1193 	 */
1194 	if (p) {
1195 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1196 		if (i > 0) {
1197 			if (i >= ip->ip_len)
1198 				goto dropfrag;
1199 			m_adj(m, i);
1200 			m->m_pkthdr.csum_flags = 0;
1201 			ip->ip_off += i;
1202 			ip->ip_len -= i;
1203 		}
1204 		m->m_nextpkt = p->m_nextpkt;
1205 		p->m_nextpkt = m;
1206 	} else {
1207 		m->m_nextpkt = fp->ipq_frags;
1208 		fp->ipq_frags = m;
1209 	}
1210 
1211 	/*
1212 	 * While we overlap succeeding segments trim them or,
1213 	 * if they are completely covered, dequeue them.
1214 	 */
1215 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1216 	     q = nq) {
1217 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1218 		if (i < GETIP(q)->ip_len) {
1219 			GETIP(q)->ip_len -= i;
1220 			GETIP(q)->ip_off += i;
1221 			m_adj(q, i);
1222 			q->m_pkthdr.csum_flags = 0;
1223 			break;
1224 		}
1225 		nq = q->m_nextpkt;
1226 		m->m_nextpkt = nq;
1227 		ipstat.ips_fragdropped++;
1228 		fp->ipq_nfrags--;
1229 		m_freem(q);
1230 	}
1231 
1232 inserted:
1233 
1234 #ifdef IPDIVERT
1235 	/*
1236 	 * Transfer firewall instructions to the fragment structure.
1237 	 * Only trust info in the fragment at offset 0.
1238 	 */
1239 	if (ip->ip_off == 0) {
1240 		fp->ipq_div_info = *divinfo;
1241 		fp->ipq_div_cookie = *divert_rule;
1242 	}
1243 	*divinfo = 0;
1244 	*divert_rule = 0;
1245 #endif
1246 
1247 	/*
1248 	 * Check for complete reassembly and perform frag per packet
1249 	 * limiting.
1250 	 *
1251 	 * Frag limiting is performed here so that the nth frag has
1252 	 * a chance to complete the packet before we drop the packet.
1253 	 * As a result, n+1 frags are actually allowed per packet, but
1254 	 * only n will ever be stored. (n = maxfragsperpacket.)
1255 	 *
1256 	 */
1257 	next = 0;
1258 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1259 		if (GETIP(q)->ip_off != next) {
1260 			if (fp->ipq_nfrags > maxfragsperpacket) {
1261 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1262 				ip_freef(fp);
1263 			}
1264 			return (NULL);
1265 		}
1266 		next += GETIP(q)->ip_len;
1267 	}
1268 	/* Make sure the last packet didn't have the IP_MF flag */
1269 	if (p->m_flags & M_FRAG) {
1270 		if (fp->ipq_nfrags > maxfragsperpacket) {
1271 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1272 			ip_freef(fp);
1273 		}
1274 		return (NULL);
1275 	}
1276 
1277 	/*
1278 	 * Reassembly is complete.  Make sure the packet is a sane size.
1279 	 */
1280 	q = fp->ipq_frags;
1281 	ip = GETIP(q);
1282 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1283 		ipstat.ips_toolong++;
1284 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1285 		ip_freef(fp);
1286 		return (NULL);
1287 	}
1288 
1289 	/*
1290 	 * Concatenate fragments.
1291 	 */
1292 	m = q;
1293 	n = m->m_next;
1294 	m->m_next = NULL;
1295 	m_cat(m, n);
1296 	nq = q->m_nextpkt;
1297 	q->m_nextpkt = NULL;
1298 	for (q = nq; q != NULL; q = nq) {
1299 		nq = q->m_nextpkt;
1300 		q->m_nextpkt = NULL;
1301 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1302 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1303 		m_cat(m, q);
1304 	}
1305 
1306 #ifdef IPDIVERT
1307 	/*
1308 	 * Extract firewall instructions from the fragment structure.
1309 	 */
1310 	*divinfo = fp->ipq_div_info;
1311 	*divert_rule = fp->ipq_div_cookie;
1312 #endif
1313 
1314 	/*
1315 	 * Create header for new ip packet by
1316 	 * modifying header of first packet;
1317 	 * dequeue and discard fragment reassembly header.
1318 	 * Make header visible.
1319 	 */
1320 	ip->ip_len = next;
1321 	ip->ip_src = fp->ipq_src;
1322 	ip->ip_dst = fp->ipq_dst;
1323 	remque(fp);
1324 	nipq--;
1325 	mpipe_free(&ipq_mpipe, fp);
1326 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1327 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1328 	/* some debugging cruft by sklower, below, will go away soon */
1329 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1330 		int plen = 0;
1331 
1332 		for (n = m; n; n = n->m_next)
1333 			plen += n->m_len;
1334 		m->m_pkthdr.len = plen;
1335 	}
1336 	return (m);
1337 
1338 dropfrag:
1339 #ifdef IPDIVERT
1340 	*divinfo = 0;
1341 	*divert_rule = 0;
1342 #endif
1343 	ipstat.ips_fragdropped++;
1344 	if (fp != NULL)
1345 		fp->ipq_nfrags--;
1346 	m_freem(m);
1347 	return (NULL);
1348 
1349 #undef GETIP
1350 }
1351 
1352 /*
1353  * Free a fragment reassembly header and all
1354  * associated datagrams.
1355  */
1356 static void
1357 ip_freef(struct ipq *fp)
1358 {
1359 	struct mbuf *q;
1360 
1361 	while (fp->ipq_frags) {
1362 		q = fp->ipq_frags;
1363 		fp->ipq_frags = q->m_nextpkt;
1364 		m_freem(q);
1365 	}
1366 	remque(fp);
1367 	mpipe_free(&ipq_mpipe, fp);
1368 	nipq--;
1369 }
1370 
1371 /*
1372  * IP timer processing;
1373  * if a timer expires on a reassembly
1374  * queue, discard it.
1375  */
1376 void
1377 ip_slowtimo(void)
1378 {
1379 	struct ipq *fp;
1380 	int s = splnet();
1381 	int i;
1382 
1383 	for (i = 0; i < IPREASS_NHASH; i++) {
1384 		fp = ipq[i].next;
1385 		if (fp == NULL)
1386 			continue;
1387 		while (fp != &ipq[i]) {
1388 			--fp->ipq_ttl;
1389 			fp = fp->next;
1390 			if (fp->prev->ipq_ttl == 0) {
1391 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1392 				ip_freef(fp->prev);
1393 			}
1394 		}
1395 	}
1396 	/*
1397 	 * If we are over the maximum number of fragments
1398 	 * (due to the limit being lowered), drain off
1399 	 * enough to get down to the new limit.
1400 	 */
1401 	if (maxnipq >= 0 && nipq > maxnipq) {
1402 		for (i = 0; i < IPREASS_NHASH; i++) {
1403 			while (nipq > maxnipq &&
1404 				(ipq[i].next != &ipq[i])) {
1405 				ipstat.ips_fragdropped +=
1406 				    ipq[i].next->ipq_nfrags;
1407 				ip_freef(ipq[i].next);
1408 			}
1409 		}
1410 	}
1411 	ipflow_slowtimo();
1412 	splx(s);
1413 }
1414 
1415 /*
1416  * Drain off all datagram fragments.
1417  */
1418 void
1419 ip_drain(void)
1420 {
1421 	int i;
1422 
1423 	for (i = 0; i < IPREASS_NHASH; i++) {
1424 		while (ipq[i].next != &ipq[i]) {
1425 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1426 			ip_freef(ipq[i].next);
1427 		}
1428 	}
1429 	in_rtqdrain();
1430 }
1431 
1432 /*
1433  * Do option processing on a datagram,
1434  * possibly discarding it if bad options are encountered,
1435  * or forwarding it if source-routed.
1436  * The pass argument is used when operating in the IPSTEALTH
1437  * mode to tell what options to process:
1438  * [LS]SRR (pass 0) or the others (pass 1).
1439  * The reason for as many as two passes is that when doing IPSTEALTH,
1440  * non-routing options should be processed only if the packet is for us.
1441  * Returns 1 if packet has been forwarded/freed,
1442  * 0 if the packet should be processed further.
1443  */
1444 static int
1445 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1446 {
1447 	struct ip *ip = mtod(m, struct ip *);
1448 	u_char *cp;
1449 	struct in_ifaddr *ia;
1450 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1451 	boolean_t forward = FALSE;
1452 	struct in_addr *sin, dst;
1453 	n_time ntime;
1454 
1455 	dst = ip->ip_dst;
1456 	cp = (u_char *)(ip + 1);
1457 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1458 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1459 		opt = cp[IPOPT_OPTVAL];
1460 		if (opt == IPOPT_EOL)
1461 			break;
1462 		if (opt == IPOPT_NOP)
1463 			optlen = 1;
1464 		else {
1465 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1466 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1467 				goto bad;
1468 			}
1469 			optlen = cp[IPOPT_OLEN];
1470 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1471 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1472 				goto bad;
1473 			}
1474 		}
1475 		switch (opt) {
1476 
1477 		default:
1478 			break;
1479 
1480 		/*
1481 		 * Source routing with record.
1482 		 * Find interface with current destination address.
1483 		 * If none on this machine then drop if strictly routed,
1484 		 * or do nothing if loosely routed.
1485 		 * Record interface address and bring up next address
1486 		 * component.  If strictly routed make sure next
1487 		 * address is on directly accessible net.
1488 		 */
1489 		case IPOPT_LSRR:
1490 		case IPOPT_SSRR:
1491 			if (ipstealth && pass > 0)
1492 				break;
1493 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1494 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495 				goto bad;
1496 			}
1497 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1498 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1499 				goto bad;
1500 			}
1501 			ipaddr.sin_addr = ip->ip_dst;
1502 			ia = (struct in_ifaddr *)
1503 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1504 			if (ia == NULL) {
1505 				if (opt == IPOPT_SSRR) {
1506 					type = ICMP_UNREACH;
1507 					code = ICMP_UNREACH_SRCFAIL;
1508 					goto bad;
1509 				}
1510 				if (!ip_dosourceroute)
1511 					goto nosourcerouting;
1512 				/*
1513 				 * Loose routing, and not at next destination
1514 				 * yet; nothing to do except forward.
1515 				 */
1516 				break;
1517 			}
1518 			off--;			/* 0 origin */
1519 			if (off > optlen - (int)sizeof(struct in_addr)) {
1520 				/*
1521 				 * End of source route.  Should be for us.
1522 				 */
1523 				if (!ip_acceptsourceroute)
1524 					goto nosourcerouting;
1525 				save_rte(cp, ip->ip_src);
1526 				break;
1527 			}
1528 			if (ipstealth)
1529 				goto dropit;
1530 			if (!ip_dosourceroute) {
1531 				if (ipforwarding) {
1532 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1533 					/*
1534 					 * Acting as a router, so generate ICMP
1535 					 */
1536 nosourcerouting:
1537 					strcpy(buf, inet_ntoa(ip->ip_dst));
1538 					log(LOG_WARNING,
1539 					    "attempted source route from %s to %s\n",
1540 					    inet_ntoa(ip->ip_src), buf);
1541 					type = ICMP_UNREACH;
1542 					code = ICMP_UNREACH_SRCFAIL;
1543 					goto bad;
1544 				} else {
1545 					/*
1546 					 * Not acting as a router,
1547 					 * so silently drop.
1548 					 */
1549 dropit:
1550 					ipstat.ips_cantforward++;
1551 					m_freem(m);
1552 					return (1);
1553 				}
1554 			}
1555 
1556 			/*
1557 			 * locate outgoing interface
1558 			 */
1559 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1560 			    sizeof(ipaddr.sin_addr));
1561 
1562 			if (opt == IPOPT_SSRR) {
1563 #define	INA	struct in_ifaddr *
1564 #define	SA	struct sockaddr *
1565 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1566 									== NULL)
1567 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1568 			} else
1569 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1570 			if (ia == NULL) {
1571 				type = ICMP_UNREACH;
1572 				code = ICMP_UNREACH_SRCFAIL;
1573 				goto bad;
1574 			}
1575 			ip->ip_dst = ipaddr.sin_addr;
1576 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1577 			    sizeof(struct in_addr));
1578 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1579 			/*
1580 			 * Let ip_intr's mcast routing check handle mcast pkts
1581 			 */
1582 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1583 			break;
1584 
1585 		case IPOPT_RR:
1586 			if (ipstealth && pass == 0)
1587 				break;
1588 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1589 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1590 				goto bad;
1591 			}
1592 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1593 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1594 				goto bad;
1595 			}
1596 			/*
1597 			 * If no space remains, ignore.
1598 			 */
1599 			off--;			/* 0 origin */
1600 			if (off > optlen - (int)sizeof(struct in_addr))
1601 				break;
1602 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1603 			    sizeof(ipaddr.sin_addr));
1604 			/*
1605 			 * locate outgoing interface; if we're the destination,
1606 			 * use the incoming interface (should be same).
1607 			 */
1608 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1609 			    (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1610 								     == NULL) {
1611 				type = ICMP_UNREACH;
1612 				code = ICMP_UNREACH_HOST;
1613 				goto bad;
1614 			}
1615 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1616 			    sizeof(struct in_addr));
1617 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1618 			break;
1619 
1620 		case IPOPT_TS:
1621 			if (ipstealth && pass == 0)
1622 				break;
1623 			code = cp - (u_char *)ip;
1624 			if (optlen < 4 || optlen > 40) {
1625 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1626 				goto bad;
1627 			}
1628 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1629 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1630 				goto bad;
1631 			}
1632 			if (off > optlen - (int)sizeof(int32_t)) {
1633 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1634 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1635 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1636 					goto bad;
1637 				}
1638 				break;
1639 			}
1640 			off--;				/* 0 origin */
1641 			sin = (struct in_addr *)(cp + off);
1642 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1643 
1644 			case IPOPT_TS_TSONLY:
1645 				break;
1646 
1647 			case IPOPT_TS_TSANDADDR:
1648 				if (off + sizeof(n_time) +
1649 				    sizeof(struct in_addr) > optlen) {
1650 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1651 					goto bad;
1652 				}
1653 				ipaddr.sin_addr = dst;
1654 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1655 							    m->m_pkthdr.rcvif);
1656 				if (ia == NULL)
1657 					continue;
1658 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1659 				    sizeof(struct in_addr));
1660 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1661 				off += sizeof(struct in_addr);
1662 				break;
1663 
1664 			case IPOPT_TS_PRESPEC:
1665 				if (off + sizeof(n_time) +
1666 				    sizeof(struct in_addr) > optlen) {
1667 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1668 					goto bad;
1669 				}
1670 				(void)memcpy(&ipaddr.sin_addr, sin,
1671 				    sizeof(struct in_addr));
1672 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1673 					continue;
1674 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1675 				off += sizeof(struct in_addr);
1676 				break;
1677 
1678 			default:
1679 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1680 				goto bad;
1681 			}
1682 			ntime = iptime();
1683 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1684 			cp[IPOPT_OFFSET] += sizeof(n_time);
1685 		}
1686 	}
1687 	if (forward && ipforwarding) {
1688 		ip_forward(m, 1, next_hop);
1689 		return (1);
1690 	}
1691 	return (0);
1692 bad:
1693 	icmp_error(m, type, code, 0, NULL);
1694 	ipstat.ips_badoptions++;
1695 	return (1);
1696 }
1697 
1698 /*
1699  * Given address of next destination (final or next hop),
1700  * return internet address info of interface to be used to get there.
1701  */
1702 struct in_ifaddr *
1703 ip_rtaddr(struct in_addr dst, struct route *rt)
1704 {
1705 	struct sockaddr_in *sin;
1706 
1707 	sin = (struct sockaddr_in *)&rt->ro_dst;
1708 
1709 	if (rt->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1710 		if (rt->ro_rt != NULL) {
1711 			RTFREE(rt->ro_rt);
1712 			rt->ro_rt = NULL;
1713 		}
1714 		sin->sin_family = AF_INET;
1715 		sin->sin_len = sizeof(*sin);
1716 		sin->sin_addr = dst;
1717 		rtalloc_ign(rt, RTF_PRCLONING);
1718 	}
1719 
1720 	if (rt->ro_rt == NULL)
1721 		return (NULL);
1722 
1723 	return (ifatoia(rt->ro_rt->rt_ifa));
1724 }
1725 
1726 /*
1727  * Save incoming source route for use in replies,
1728  * to be picked up later by ip_srcroute if the receiver is interested.
1729  */
1730 void
1731 save_rte(u_char *option, struct in_addr dst)
1732 {
1733 	unsigned olen;
1734 
1735 	olen = option[IPOPT_OLEN];
1736 #ifdef DIAGNOSTIC
1737 	if (ipprintfs)
1738 		printf("save_rte: olen %d\n", olen);
1739 #endif
1740 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1741 		return;
1742 	bcopy(option, ip_srcrt.srcopt, olen);
1743 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1744 	ip_srcrt.dst = dst;
1745 }
1746 
1747 /*
1748  * Retrieve incoming source route for use in replies,
1749  * in the same form used by setsockopt.
1750  * The first hop is placed before the options, will be removed later.
1751  */
1752 struct mbuf *
1753 ip_srcroute(void)
1754 {
1755 	struct in_addr *p, *q;
1756 	struct mbuf *m;
1757 
1758 	if (ip_nhops == 0)
1759 		return (NULL);
1760 	m = m_get(MB_DONTWAIT, MT_HEADER);
1761 	if (m == NULL)
1762 		return (NULL);
1763 
1764 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1765 
1766 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1767 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1768 	    OPTSIZ;
1769 #ifdef DIAGNOSTIC
1770 	if (ipprintfs)
1771 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1772 #endif
1773 
1774 	/*
1775 	 * First save first hop for return route
1776 	 */
1777 	p = &ip_srcrt.route[ip_nhops - 1];
1778 	*(mtod(m, struct in_addr *)) = *p--;
1779 #ifdef DIAGNOSTIC
1780 	if (ipprintfs)
1781 		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
1782 #endif
1783 
1784 	/*
1785 	 * Copy option fields and padding (nop) to mbuf.
1786 	 */
1787 	ip_srcrt.nop = IPOPT_NOP;
1788 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1789 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1790 	    OPTSIZ);
1791 	q = (struct in_addr *)(mtod(m, caddr_t) +
1792 	    sizeof(struct in_addr) + OPTSIZ);
1793 #undef OPTSIZ
1794 	/*
1795 	 * Record return path as an IP source route,
1796 	 * reversing the path (pointers are now aligned).
1797 	 */
1798 	while (p >= ip_srcrt.route) {
1799 #ifdef DIAGNOSTIC
1800 		if (ipprintfs)
1801 			printf(" %lx", ntohl(q->s_addr));
1802 #endif
1803 		*q++ = *p--;
1804 	}
1805 	/*
1806 	 * Last hop goes to final destination.
1807 	 */
1808 	*q = ip_srcrt.dst;
1809 #ifdef DIAGNOSTIC
1810 	if (ipprintfs)
1811 		printf(" %lx\n", ntohl(q->s_addr));
1812 #endif
1813 	return (m);
1814 }
1815 
1816 /*
1817  * Strip out IP options.
1818  */
1819 void
1820 ip_stripoptions(struct mbuf *m)
1821 {
1822 	int datalen;
1823 	struct ip *ip = mtod(m, struct ip *);
1824 	caddr_t opts;
1825 	int optlen;
1826 
1827 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1828 	opts = (caddr_t)(ip + 1);
1829 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1830 	bcopy(opts + optlen, opts, datalen);
1831 	m->m_len -= optlen;
1832 	if (m->m_flags & M_PKTHDR)
1833 		m->m_pkthdr.len -= optlen;
1834 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1835 }
1836 
1837 u_char inetctlerrmap[PRC_NCMDS] = {
1838 	0,		0,		0,		0,
1839 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1840 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1841 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1842 	0,		0,		0,		0,
1843 	ENOPROTOOPT,	ECONNREFUSED
1844 };
1845 
1846 /*
1847  * Forward a packet.  If some error occurs return the sender
1848  * an icmp packet.  Note we can't always generate a meaningful
1849  * icmp message because icmp doesn't have a large enough repertoire
1850  * of codes and types.
1851  *
1852  * If not forwarding, just drop the packet.  This could be confusing
1853  * if ipforwarding was zero but some routing protocol was advancing
1854  * us as a gateway to somewhere.  However, we must let the routing
1855  * protocol deal with that.
1856  *
1857  * The using_srcrt parameter indicates whether the packet is being forwarded
1858  * via a source route.
1859  */
1860 static void
1861 ip_forward(struct mbuf *m, int using_srcrt, struct sockaddr_in *next_hop)
1862 {
1863 	struct ip *ip = mtod(m, struct ip *);
1864 	struct sockaddr_in *sin;
1865 	struct rtentry *rt;
1866 	int error, type = 0, code = 0;
1867 	struct mbuf *mcopy;
1868 	n_long dest;
1869 	struct in_addr pkt_dst;
1870 	struct ifnet *destifp;
1871 	struct m_hdr tag;
1872 #if defined(IPSEC) || defined(FAST_IPSEC)
1873 	struct ifnet dummyifp;
1874 #endif
1875 
1876 	dest = 0;
1877 	/*
1878 	 * Cache the destination address of the packet; this may be
1879 	 * changed by use of 'ipfw fwd'.
1880 	 */
1881 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1882 
1883 #ifdef DIAGNOSTIC
1884 	if (ipprintfs)
1885 		printf("forward: src %x dst %x ttl %x\n",
1886 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1887 #endif
1888 
1889 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1890 		ipstat.ips_cantforward++;
1891 		m_freem(m);
1892 		return;
1893 	}
1894 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1895 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1896 		return;
1897 	}
1898 
1899 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1900 	if ((rt = ipforward_rt.ro_rt) == NULL ||
1901 	    pkt_dst.s_addr != sin->sin_addr.s_addr) {
1902 		if (ipforward_rt.ro_rt != NULL) {
1903 			RTFREE(ipforward_rt.ro_rt);
1904 			ipforward_rt.ro_rt = NULL;
1905 		}
1906 		sin->sin_family = AF_INET;
1907 		sin->sin_len = sizeof(*sin);
1908 		sin->sin_addr = pkt_dst;
1909 
1910 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1911 		if (ipforward_rt.ro_rt == NULL) {
1912 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1913 				   NULL);
1914 			return;
1915 		}
1916 		rt = ipforward_rt.ro_rt;
1917 	}
1918 
1919 	/*
1920 	 * Save the IP header and at most 8 bytes of the payload,
1921 	 * in case we need to generate an ICMP message to the src.
1922 	 *
1923 	 * XXX this can be optimized a lot by saving the data in a local
1924 	 * buffer on the stack (72 bytes at most), and only allocating the
1925 	 * mbuf if really necessary. The vast majority of the packets
1926 	 * are forwarded without having to send an ICMP back (either
1927 	 * because unnecessary, or because rate limited), so we are
1928 	 * really we are wasting a lot of work here.
1929 	 *
1930 	 * We don't use m_copy() because it might return a reference
1931 	 * to a shared cluster. Both this function and ip_output()
1932 	 * assume exclusive access to the IP header in `m', so any
1933 	 * data in a cluster may change before we reach icmp_error().
1934 	 */
1935 	MGET(mcopy, MB_DONTWAIT, m->m_type);
1936 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1937 		/*
1938 		 * It's probably ok if the pkthdr dup fails (because
1939 		 * the deep copy of the tag chain failed), but for now
1940 		 * be conservative and just discard the copy since
1941 		 * code below may some day want the tags.
1942 		 */
1943 		m_free(mcopy);
1944 		mcopy = NULL;
1945 	}
1946 	if (mcopy != NULL) {
1947 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1948 		    (int)ip->ip_len);
1949 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1950 	}
1951 
1952 	if (!ipstealth)
1953 		ip->ip_ttl -= IPTTLDEC;
1954 
1955 	/*
1956 	 * If forwarding packet using same interface that it came in on,
1957 	 * perhaps should send a redirect to sender to shortcut a hop.
1958 	 * Only send redirect if source is sending directly to us,
1959 	 * and if packet was not source routed (or has any options).
1960 	 * Also, don't send redirect if forwarding using a default route
1961 	 * or a route modified by a redirect.
1962 	 */
1963 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1964 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1965 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1966 	    ipsendredirects && !using_srcrt && next_hop != NULL) {
1967 		u_long src = ntohl(ip->ip_src.s_addr);
1968 
1969 #define	RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1970 		if (RTA(rt) != NULL &&
1971 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1972 			if (rt->rt_flags & RTF_GATEWAY)
1973 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1974 			else
1975 				dest = pkt_dst.s_addr;
1976 			/*
1977 			 * Router requirements says to only send
1978 			 * host redirects.
1979 			 */
1980 			type = ICMP_REDIRECT;
1981 			code = ICMP_REDIRECT_HOST;
1982 #ifdef DIAGNOSTIC
1983 			if (ipprintfs)
1984 				printf("redirect (%d) to %x\n", code, dest);
1985 #endif
1986 		}
1987 	}
1988 
1989 	if (next_hop) {
1990 		/* Pass IPFORWARD info if available */
1991 		tag.mh_type = MT_TAG;
1992 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1993 		tag.mh_data = (caddr_t)next_hop;
1994 		tag.mh_next = m;
1995 		m = (struct mbuf *)&tag;
1996 	}
1997 
1998 	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
1999 
2000 	if (error)
2001 		ipstat.ips_cantforward++;
2002 	else {
2003 		ipstat.ips_forward++;
2004 		if (type)
2005 			ipstat.ips_redirectsent++;
2006 		else {
2007 			if (mcopy) {
2008 				ipflow_create(&ipforward_rt, mcopy);
2009 				m_freem(mcopy);
2010 			}
2011 			return;
2012 		}
2013 	}
2014 	if (mcopy == NULL)
2015 		return;
2016 	destifp = NULL;
2017 
2018 	switch (error) {
2019 
2020 	case 0:				/* forwarded, but need redirect */
2021 		/* type, code set above */
2022 		break;
2023 
2024 	case ENETUNREACH:		/* shouldn't happen, checked above */
2025 	case EHOSTUNREACH:
2026 	case ENETDOWN:
2027 	case EHOSTDOWN:
2028 	default:
2029 		type = ICMP_UNREACH;
2030 		code = ICMP_UNREACH_HOST;
2031 		break;
2032 
2033 	case EMSGSIZE:
2034 		type = ICMP_UNREACH;
2035 		code = ICMP_UNREACH_NEEDFRAG;
2036 #ifdef IPSEC
2037 		/*
2038 		 * If the packet is routed over IPsec tunnel, tell the
2039 		 * originator the tunnel MTU.
2040 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2041 		 * XXX quickhack!!!
2042 		 */
2043 		if (ipforward_rt.ro_rt != NULL) {
2044 			struct secpolicy *sp = NULL;
2045 			int ipsecerror;
2046 			int ipsechdr;
2047 			struct route *ro;
2048 
2049 			sp = ipsec4_getpolicybyaddr(mcopy,
2050 						    IPSEC_DIR_OUTBOUND,
2051 						    IP_FORWARDING,
2052 						    &ipsecerror);
2053 
2054 			if (sp == NULL)
2055 				destifp = ipforward_rt.ro_rt->rt_ifp;
2056 			else {
2057 				/* count IPsec header size */
2058 				ipsechdr = ipsec4_hdrsiz(mcopy,
2059 							 IPSEC_DIR_OUTBOUND,
2060 							 NULL);
2061 
2062 				/*
2063 				 * find the correct route for outer IPv4
2064 				 * header, compute tunnel MTU.
2065 				 *
2066 				 * XXX BUG ALERT
2067 				 * The "dummyifp" code relies upon the fact
2068 				 * that icmp_error() touches only ifp->if_mtu.
2069 				 */
2070 				/*XXX*/
2071 				destifp = NULL;
2072 				if (sp->req != NULL && sp->req->sav != NULL &&
2073 				    sp->req->sav->sah != NULL) {
2074 					ro = &sp->req->sav->sah->sa_route;
2075 					if (ro->ro_rt != NULL &&
2076 					    ro->ro_rt->rt_ifp != NULL) {
2077 						dummyifp.if_mtu =
2078 						    ro->ro_rt->rt_ifp->if_mtu;
2079 						dummyifp.if_mtu -= ipsechdr;
2080 						destifp = &dummyifp;
2081 					}
2082 				}
2083 
2084 				key_freesp(sp);
2085 			}
2086 		}
2087 #elif FAST_IPSEC
2088 		/*
2089 		 * If the packet is routed over IPsec tunnel, tell the
2090 		 * originator the tunnel MTU.
2091 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2092 		 * XXX quickhack!!!
2093 		 */
2094 		if (ipforward_rt.ro_rt != NULL) {
2095 			struct secpolicy *sp = NULL;
2096 			int ipsecerror;
2097 			int ipsechdr;
2098 			struct route *ro;
2099 
2100 			sp = ipsec_getpolicybyaddr(mcopy,
2101 						   IPSEC_DIR_OUTBOUND,
2102 						   IP_FORWARDING,
2103 						   &ipsecerror);
2104 
2105 			if (sp == NULL)
2106 				destifp = ipforward_rt.ro_rt->rt_ifp;
2107 			else {
2108 				/* count IPsec header size */
2109 				ipsechdr = ipsec4_hdrsiz(mcopy,
2110 							 IPSEC_DIR_OUTBOUND,
2111 							 NULL);
2112 
2113 				/*
2114 				 * find the correct route for outer IPv4
2115 				 * header, compute tunnel MTU.
2116 				 *
2117 				 * XXX BUG ALERT
2118 				 * The "dummyifp" code relies upon the fact
2119 				 * that icmp_error() touches only ifp->if_mtu.
2120 				 */
2121 				/*XXX*/
2122 				destifp = NULL;
2123 				if (sp->req != NULL &&
2124 				    sp->req->sav != NULL &&
2125 				    sp->req->sav->sah != NULL) {
2126 					ro = &sp->req->sav->sah->sa_route;
2127 					if (ro->ro_rt != NULL &&
2128 					    ro->ro_rt->rt_ifp != NULL) {
2129 						dummyifp.if_mtu =
2130 						    ro->ro_rt->rt_ifp->if_mtu;
2131 						dummyifp.if_mtu -= ipsechdr;
2132 						destifp = &dummyifp;
2133 					}
2134 				}
2135 
2136 				KEY_FREESP(&sp);
2137 			}
2138 		}
2139 #else /* !IPSEC && !FAST_IPSEC */
2140 		if (ipforward_rt.ro_rt != NULL)
2141 			destifp = ipforward_rt.ro_rt->rt_ifp;
2142 #endif /*IPSEC*/
2143 		ipstat.ips_cantfrag++;
2144 		break;
2145 
2146 	case ENOBUFS:
2147 		/*
2148 		 * A router should not generate ICMP_SOURCEQUENCH as
2149 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2150 		 * Source quench could be a big problem under DoS attacks,
2151 		 * or if the underlying interface is rate-limited.
2152 		 * Those who need source quench packets may re-enable them
2153 		 * via the net.inet.ip.sendsourcequench sysctl.
2154 		 */
2155 		if (!ip_sendsourcequench) {
2156 			m_freem(mcopy);
2157 			return;
2158 		} else {
2159 			type = ICMP_SOURCEQUENCH;
2160 			code = 0;
2161 		}
2162 		break;
2163 
2164 	case EACCES:			/* ipfw denied packet */
2165 		m_freem(mcopy);
2166 		return;
2167 	}
2168 	icmp_error(mcopy, type, code, dest, destifp);
2169 }
2170 
2171 void
2172 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2173 	       struct mbuf *m)
2174 {
2175 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2176 		struct timeval tv;
2177 
2178 		microtime(&tv);
2179 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2180 		    SCM_TIMESTAMP, SOL_SOCKET);
2181 		if (*mp)
2182 			mp = &(*mp)->m_next;
2183 	}
2184 	if (inp->inp_flags & INP_RECVDSTADDR) {
2185 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2186 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2187 		if (*mp)
2188 			mp = &(*mp)->m_next;
2189 	}
2190 #ifdef notyet
2191 	/* XXX
2192 	 * Moving these out of udp_input() made them even more broken
2193 	 * than they already were.
2194 	 */
2195 	/* options were tossed already */
2196 	if (inp->inp_flags & INP_RECVOPTS) {
2197 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2198 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2199 		if (*mp)
2200 			mp = &(*mp)->m_next;
2201 	}
2202 	/* ip_srcroute doesn't do what we want here, need to fix */
2203 	if (inp->inp_flags & INP_RECVRETOPTS) {
2204 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2205 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2206 		if (*mp)
2207 			mp = &(*mp)->m_next;
2208 	}
2209 #endif
2210 	if (inp->inp_flags & INP_RECVIF) {
2211 		struct ifnet *ifp;
2212 		struct sdlbuf {
2213 			struct sockaddr_dl sdl;
2214 			u_char	pad[32];
2215 		} sdlbuf;
2216 		struct sockaddr_dl *sdp;
2217 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2218 
2219 		if (((ifp = m->m_pkthdr.rcvif)) &&
2220 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2221 			sdp = (struct sockaddr_dl *)
2222 			    ifnet_addrs[ifp->if_index - 1]->ifa_addr;
2223 			/*
2224 			 * Change our mind and don't try copy.
2225 			 */
2226 			if ((sdp->sdl_family != AF_LINK) ||
2227 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2228 				goto makedummy;
2229 			}
2230 			bcopy(sdp, sdl2, sdp->sdl_len);
2231 		} else {
2232 makedummy:
2233 			sdl2->sdl_len =
2234 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2235 			sdl2->sdl_family = AF_LINK;
2236 			sdl2->sdl_index = 0;
2237 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2238 		}
2239 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2240 			IP_RECVIF, IPPROTO_IP);
2241 		if (*mp)
2242 			mp = &(*mp)->m_next;
2243 	}
2244 }
2245 
2246 /*
2247  * XXX these routines are called from the upper part of the kernel.
2248  *
2249  * They could also be moved to ip_mroute.c, since all the RSVP
2250  *  handling is done there already.
2251  */
2252 int
2253 ip_rsvp_init(struct socket *so)
2254 {
2255 	if (so->so_type != SOCK_RAW ||
2256 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2257 		return EOPNOTSUPP;
2258 
2259 	if (ip_rsvpd != NULL)
2260 		return EADDRINUSE;
2261 
2262 	ip_rsvpd = so;
2263 	/*
2264 	 * This may seem silly, but we need to be sure we don't over-increment
2265 	 * the RSVP counter, in case something slips up.
2266 	 */
2267 	if (!ip_rsvp_on) {
2268 		ip_rsvp_on = 1;
2269 		rsvp_on++;
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 int
2276 ip_rsvp_done(void)
2277 {
2278 	ip_rsvpd = NULL;
2279 	/*
2280 	 * This may seem silly, but we need to be sure we don't over-decrement
2281 	 * the RSVP counter, in case something slips up.
2282 	 */
2283 	if (ip_rsvp_on) {
2284 		ip_rsvp_on = 0;
2285 		rsvp_on--;
2286 	}
2287 	return 0;
2288 }
2289 
2290 void
2291 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2292 {
2293 	int off, proto;
2294 	__va_list ap;
2295 
2296 	__va_start(ap, m);
2297 	off = __va_arg(ap, int);
2298 	proto = __va_arg(ap, int);
2299 	__va_end(ap);
2300 
2301 	if (rsvp_input_p) { /* call the real one if loaded */
2302 		rsvp_input_p(m, off, proto);
2303 		return;
2304 	}
2305 
2306 	/* Can still get packets with rsvp_on = 0 if there is a local member
2307 	 * of the group to which the RSVP packet is addressed.  But in this
2308 	 * case we want to throw the packet away.
2309 	 */
2310 
2311 	if (!rsvp_on) {
2312 		m_freem(m);
2313 		return;
2314 	}
2315 
2316 	if (ip_rsvpd != NULL) {
2317 		rip_input(m, off, proto);
2318 		return;
2319 	}
2320 	/* Drop the packet */
2321 	m_freem(m);
2322 }
2323