xref: /dragonfly/sys/netinet/ip_input.c (revision 9bb2a92d)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
35  * $DragonFly: src/sys/netinet/ip_input.c,v 1.12 2004/03/06 07:30:43 hsu Exp $
36  */
37 
38 #define	_IP_VHL
39 
40 #include "opt_bootp.h"
41 #include "opt_ipfw.h"
42 #include "opt_ipdn.h"
43 #include "opt_ipdivert.h"
44 #include "opt_ipfilter.h"
45 #include "opt_ipstealth.h"
46 #include "opt_ipsec.h"
47 #include "opt_pfil_hooks.h"
48 #include "opt_random_ip_id.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/domain.h>
55 #include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <sys/time.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/sysctl.h>
61 #include <sys/in_cksum.h>
62 
63 #include <net/if.h>
64 #include <net/if_types.h>
65 #include <net/if_var.h>
66 #include <net/if_dl.h>
67 #ifdef PFIL_HOOKS
68 #include <net/pfil.h>
69 #endif
70 #include <net/route.h>
71 #include <net/netisr.h>
72 #include <net/intrq.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_icmp.h>
81 
82 #include <netinet/ipprotosw.h>
83 
84 #include <sys/socketvar.h>
85 
86 #include <net/ipfw/ip_fw.h>
87 #include <net/dummynet/ip_dummynet.h>
88 
89 #ifdef IPSEC
90 #include <netinet6/ipsec.h>
91 #include <netproto/key/key.h>
92 #endif
93 
94 #ifdef FAST_IPSEC
95 #include <netipsec/ipsec.h>
96 #include <netipsec/key.h>
97 #endif
98 
99 int rsvp_on = 0;
100 static int ip_rsvp_on;
101 struct socket *ip_rsvpd;
102 
103 int	ipforwarding = 0;
104 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
105     &ipforwarding, 0, "Enable IP forwarding between interfaces");
106 
107 static int	ipsendredirects = 1; /* XXX */
108 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
109     &ipsendredirects, 0, "Enable sending IP redirects");
110 
111 int	ip_defttl = IPDEFTTL;
112 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
113     &ip_defttl, 0, "Maximum TTL on IP packets");
114 
115 static int	ip_dosourceroute = 0;
116 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
117     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
118 
119 static int	ip_acceptsourceroute = 0;
120 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
121     CTLFLAG_RW, &ip_acceptsourceroute, 0,
122     "Enable accepting source routed IP packets");
123 
124 static int	ip_keepfaith = 0;
125 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
126 	&ip_keepfaith,	0,
127 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
128 
129 static int	nipq = 0;	/* total # of reass queues */
130 static int	maxnipq;
131 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
132 	&maxnipq, 0,
133 	"Maximum number of IPv4 fragment reassembly queue entries");
134 
135 static int    maxfragsperpacket;
136 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
137 	&maxfragsperpacket, 0,
138 	"Maximum number of IPv4 fragments allowed per packet");
139 
140 static int	ip_sendsourcequench = 0;
141 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
142 	&ip_sendsourcequench, 0,
143 	"Enable the transmission of source quench packets");
144 
145 /*
146  * XXX - Setting ip_checkinterface mostly implements the receive side of
147  * the Strong ES model described in RFC 1122, but since the routing table
148  * and transmit implementation do not implement the Strong ES model,
149  * setting this to 1 results in an odd hybrid.
150  *
151  * XXX - ip_checkinterface currently must be disabled if you use ipnat
152  * to translate the destination address to another local interface.
153  *
154  * XXX - ip_checkinterface must be disabled if you add IP aliases
155  * to the loopback interface instead of the interface where the
156  * packets for those addresses are received.
157  */
158 static int	ip_checkinterface = 0;
159 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
160     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
161 
162 #ifdef DIAGNOSTIC
163 static int	ipprintfs = 0;
164 #endif
165 
166 static struct ifqueue ipintrq;
167 static int	ipqmaxlen = IFQ_MAXLEN;
168 
169 extern	struct domain inetdomain;
170 extern	struct ipprotosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
173 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
174 u_long	in_ifaddrhmask;				/* mask for hash table */
175 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
176     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
177 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
178     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
179 
180 struct ipstat ipstat;
181 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
182     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
183 
184 /* Packet reassembly stuff */
185 #define IPREASS_NHASH_LOG2      6
186 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
187 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
188 #define IPREASS_HASH(x,y) \
189 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
190 
191 static struct ipq ipq[IPREASS_NHASH];
192 const  int    ipintrq_present = 1;
193 
194 #ifdef IPCTL_DEFMTU
195 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
196     &ip_mtu, 0, "Default MTU");
197 #endif
198 
199 #ifdef IPSTEALTH
200 static int	ipstealth = 0;
201 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
202     &ipstealth, 0, "");
203 #endif
204 
205 
206 /* Firewall hooks */
207 ip_fw_chk_t *ip_fw_chk_ptr;
208 int fw_enable = 1 ;
209 int fw_one_pass = 1;
210 
211 /* Dummynet hooks */
212 ip_dn_io_t *ip_dn_io_ptr;
213 
214 #ifdef PFIL_HOOKS
215 struct pfil_head inet_pfil_hook;
216 #endif /* PFIL_HOOKS */
217 
218 /*
219  * XXX this is ugly -- the following two global variables are
220  * used to store packet state while it travels through the stack.
221  * Note that the code even makes assumptions on the size and
222  * alignment of fields inside struct ip_srcrt so e.g. adding some
223  * fields will break the code. This needs to be fixed.
224  *
225  * We need to save the IP options in case a protocol wants to respond
226  * to an incoming packet over the same route if the packet got here
227  * using IP source routing.  This allows connection establishment and
228  * maintenance when the remote end is on a network that is not known
229  * to us.
230  */
231 static int	ip_nhops = 0;
232 static	struct ip_srcrt {
233 	struct	in_addr dst;			/* final destination */
234 	char	nop;				/* one NOP to align */
235 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
236 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
237 } ip_srcrt;
238 
239 static void	save_rte(u_char *, struct in_addr);
240 static int	ip_dooptions(struct mbuf *m, int,
241 			struct sockaddr_in *next_hop);
242 static void	ip_forward(struct mbuf *m, int srcrt,
243 			struct sockaddr_in *next_hop);
244 static void	ip_freef(struct ipq *);
245 static struct	mbuf *ip_reass(struct mbuf *, struct ipq *,
246 		struct ipq *, u_int32_t *, u_int16_t *);
247 
248 /*
249  * IP initialization: fill in IP protocol switch table.
250  * All protocols not implemented in kernel go to raw IP protocol handler.
251  */
252 void
253 ip_init()
254 {
255 	struct ipprotosw *pr;
256 	int i;
257 
258 	TAILQ_INIT(&in_ifaddrhead);
259 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
260 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
261 	if (pr == 0)
262 		panic("ip_init");
263 	for (i = 0; i < IPPROTO_MAX; i++)
264 		ip_protox[i] = pr - inetsw;
265 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
266 	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
267 		if (pr->pr_domain->dom_family == PF_INET &&
268 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
269 			ip_protox[pr->pr_protocol] = pr - inetsw;
270 
271 #ifdef PFIL_HOOKS
272 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
273 	inet_pfil_hook.ph_af = AF_INET;
274 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
275 		printf("%s: WARNING: unable to register pfil hook, "
276 			"error %d\n", __func__, i);
277 #endif /* PFIL_HOOKS */
278 
279 	for (i = 0; i < IPREASS_NHASH; i++)
280 	    ipq[i].next = ipq[i].prev = &ipq[i];
281 
282 	maxnipq = nmbclusters / 32;
283 	maxfragsperpacket = 16;
284 
285 #ifndef RANDOM_IP_ID
286 	ip_id = time_second & 0xffff;
287 #endif
288 	ipintrq.ifq_maxlen = ipqmaxlen;
289 
290 	netisr_register(NETISR_IP, ip_mport, ip_input);
291 }
292 
293 /*
294  * XXX watch out this one. It is perhaps used as a cache for
295  * the most recently used route ? it is cleared in in_addroute()
296  * when a new route is successfully created.
297  */
298 struct	route ipforward_rt;
299 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
300 
301 /*
302  * Ip input routine.  Checksum and byte swap header.  If fragmented
303  * try to reassemble.  Process options.  Pass to next level.
304  */
305 void
306 ip_input(struct netmsg *msg)
307 {
308 	struct mbuf *m = ((struct netmsg_packet *)msg)->nm_packet;
309 	struct ip *ip;
310 	struct ipq *fp;
311 	struct in_ifaddr *ia = NULL;
312 	struct ifaddr *ifa;
313 	int    i, hlen, checkif;
314 	u_short sum;
315 	struct in_addr pkt_dst;
316 	u_int32_t divert_info = 0;		/* packet divert/tee info */
317 	struct ip_fw_args args;
318 	int srcrt = 0;				/* forward (by PFIL_HOOKS) */
319 #ifdef PFIL_HOOKS
320 	struct in_addr odst;			/* original dst address(NAT) */
321 #endif
322 #ifdef FAST_IPSEC
323 	struct m_tag *mtag;
324 	struct tdb_ident *tdbi;
325 	struct secpolicy *sp;
326 	int s, error;
327 #endif /* FAST_IPSEC */
328 
329 	args.eh = NULL;
330 	args.oif = NULL;
331 	args.rule = NULL;
332 	args.divert_rule = 0;			/* divert cookie */
333 	args.next_hop = NULL;
334 
335 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
336 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
337 		switch(m->_m_tag_id) {
338 		default:
339 			printf("ip_input: unrecognised MT_TAG tag %d\n",
340 			    m->_m_tag_id);
341 			break;
342 
343 		case PACKET_TAG_DUMMYNET:
344 			args.rule = ((struct dn_pkt *)m)->rule;
345 			break;
346 
347 		case PACKET_TAG_DIVERT:
348 			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
349 			break;
350 
351 		case PACKET_TAG_IPFORWARD:
352 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
353 			break;
354 		}
355 	}
356 
357 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
358 	    ("ip_input: no HDR"));
359 
360 	if (args.rule) {	/* dummynet already filtered us */
361 		ip = mtod(m, struct ip *);
362 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
363 		goto iphack ;
364 	}
365 
366 	ipstat.ips_total++;
367 
368 	if (m->m_pkthdr.len < sizeof(struct ip))
369 		goto tooshort;
370 
371 	if (m->m_len < sizeof (struct ip) &&
372 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
373 		ipstat.ips_toosmall++;
374 		return;
375 	}
376 	ip = mtod(m, struct ip *);
377 
378 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
379 		ipstat.ips_badvers++;
380 		goto bad;
381 	}
382 
383 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
384 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
385 		ipstat.ips_badhlen++;
386 		goto bad;
387 	}
388 	if (hlen > m->m_len) {
389 		if ((m = m_pullup(m, hlen)) == 0) {
390 			ipstat.ips_badhlen++;
391 			return;
392 		}
393 		ip = mtod(m, struct ip *);
394 	}
395 
396 	/* 127/8 must not appear on wire - RFC1122 */
397 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
398 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
399 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
400 			ipstat.ips_badaddr++;
401 			goto bad;
402 		}
403 	}
404 
405 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
406 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
407 	} else {
408 		if (hlen == sizeof(struct ip)) {
409 			sum = in_cksum_hdr(ip);
410 		} else {
411 			sum = in_cksum(m, hlen);
412 		}
413 	}
414 	if (sum) {
415 		ipstat.ips_badsum++;
416 		goto bad;
417 	}
418 
419 	/*
420 	 * Convert fields to host representation.
421 	 */
422 	ip->ip_len = ntohs(ip->ip_len);
423 	if (ip->ip_len < hlen) {
424 		ipstat.ips_badlen++;
425 		goto bad;
426 	}
427 	ip->ip_off = ntohs(ip->ip_off);
428 
429 	/*
430 	 * Check that the amount of data in the buffers
431 	 * is as at least much as the IP header would have us expect.
432 	 * Trim mbufs if longer than we expect.
433 	 * Drop packet if shorter than we expect.
434 	 */
435 	if (m->m_pkthdr.len < ip->ip_len) {
436 tooshort:
437 		ipstat.ips_tooshort++;
438 		goto bad;
439 	}
440 	if (m->m_pkthdr.len > ip->ip_len) {
441 		if (m->m_len == m->m_pkthdr.len) {
442 			m->m_len = ip->ip_len;
443 			m->m_pkthdr.len = ip->ip_len;
444 		} else
445 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
446 	}
447 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
448 	/*
449 	 * Bypass packet filtering for packets from a tunnel (gif).
450 	 */
451 	if (ipsec_gethist(m, NULL))
452 		goto pass;
453 #endif
454 
455 	/*
456 	 * IpHack's section.
457 	 * Right now when no processing on packet has done
458 	 * and it is still fresh out of network we do our black
459 	 * deals with it.
460 	 * - Firewall: deny/allow/divert
461 	 * - Xlate: translate packet's addr/port (NAT).
462 	 * - Pipe: pass pkt through dummynet.
463 	 * - Wrap: fake packet's addr/port <unimpl.>
464 	 * - Encapsulate: put it in another IP and send out. <unimp.>
465  	 */
466 
467 iphack:
468 #ifdef PFIL_HOOKS
469 	/*
470 	 * Run through list of hooks for input packets.
471 	 *
472 	 * NB: Beware of the destination address changing (e.g.
473 	 *     by NAT rewriting). When this happens, tell
474 	 *     ip_forward to do the right thing.
475 	 */
476 	odst = ip->ip_dst;
477 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
478 	    PFIL_IN) != 0)
479 	    	return;
480 	if (m == NULL)			/* consumed by filter */
481 		return;
482 	ip = mtod(m, struct ip *);
483 	srcrt = (odst.s_addr != ip->ip_dst.s_addr);
484 #endif /* PFIL_HOOKS */
485 	if (fw_enable && IPFW_LOADED) {
486 		/*
487 		 * If we've been forwarded from the output side, then
488 		 * skip the firewall a second time
489 		 */
490 		if (args.next_hop)
491 			goto ours;
492 
493 		args.m = m;
494 		i = ip_fw_chk_ptr(&args);
495 		m = args.m;
496 
497 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
498 			if (m)
499 				m_freem(m);
500 			return;
501 		}
502 		ip = mtod(m, struct ip *); /* just in case m changed */
503 		if (i == 0 && args.next_hop == NULL)	/* common case */
504 			goto pass;
505                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
506 			/* Send packet to the appropriate pipe */
507 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
508 			return;
509 		}
510 #ifdef IPDIVERT
511 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
512 			/* Divert or tee packet */
513 			divert_info = i;
514 			goto ours;
515 		}
516 #endif
517 		if (i == 0 && args.next_hop != NULL)
518 			goto pass;
519 		/*
520 		 * if we get here, the packet must be dropped
521 		 */
522 		m_freem(m);
523 		return;
524 	}
525 pass:
526 
527 	/*
528 	 * Process options and, if not destined for us,
529 	 * ship it on.  ip_dooptions returns 1 when an
530 	 * error was detected (causing an icmp message
531 	 * to be sent and the original packet to be freed).
532 	 */
533 	ip_nhops = 0;		/* for source routed packets */
534 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
535 		return;
536 
537         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
538          * matter if it is destined to another node, or whether it is
539          * a multicast one, RSVP wants it! and prevents it from being forwarded
540          * anywhere else. Also checks if the rsvp daemon is running before
541 	 * grabbing the packet.
542          */
543 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
544 		goto ours;
545 
546 	/*
547 	 * Check our list of addresses, to see if the packet is for us.
548 	 * If we don't have any addresses, assume any unicast packet
549 	 * we receive might be for us (and let the upper layers deal
550 	 * with it).
551 	 */
552 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
553 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
554 		goto ours;
555 
556 	/*
557 	 * Cache the destination address of the packet; this may be
558 	 * changed by use of 'ipfw fwd'.
559 	 */
560 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
561 
562 	/*
563 	 * Enable a consistency check between the destination address
564 	 * and the arrival interface for a unicast packet (the RFC 1122
565 	 * strong ES model) if IP forwarding is disabled and the packet
566 	 * is not locally generated and the packet is not subject to
567 	 * 'ipfw fwd'.
568 	 *
569 	 * XXX - Checking also should be disabled if the destination
570 	 * address is ipnat'ed to a different interface.
571 	 *
572 	 * XXX - Checking is incompatible with IP aliases added
573 	 * to the loopback interface instead of the interface where
574 	 * the packets are received.
575 	 */
576 	checkif = ip_checkinterface && (ipforwarding == 0) &&
577 	    m->m_pkthdr.rcvif != NULL &&
578 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
579 	    (args.next_hop == NULL);
580 
581 	/*
582 	 * Check for exact addresses in the hash bucket.
583 	 */
584 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
585 		/*
586 		 * If the address matches, verify that the packet
587 		 * arrived via the correct interface if checking is
588 		 * enabled.
589 		 */
590 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
591 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
592 			goto ours;
593 	}
594 	/*
595 	 * Check for broadcast addresses.
596 	 *
597 	 * Only accept broadcast packets that arrive via the matching
598 	 * interface.  Reception of forwarded directed broadcasts would
599 	 * be handled via ip_forward() and ether_output() with the loopback
600 	 * into the stack for SIMPLEX interfaces handled by ether_output().
601 	 */
602 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
603 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
604 			if (ifa->ifa_addr->sa_family != AF_INET)
605 				continue;
606 			ia = ifatoia(ifa);
607 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
608 			    pkt_dst.s_addr)
609 				goto ours;
610 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
611 				goto ours;
612 #ifdef BOOTP_COMPAT
613 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
614 				goto ours;
615 #endif
616 		}
617 	}
618 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
619 		struct in_multi *inm;
620 		if (ip_mrouter) {
621 			/*
622 			 * If we are acting as a multicast router, all
623 			 * incoming multicast packets are passed to the
624 			 * kernel-level multicast forwarding function.
625 			 * The packet is returned (relatively) intact; if
626 			 * ip_mforward() returns a non-zero value, the packet
627 			 * must be discarded, else it may be accepted below.
628 			 */
629 			if (ip_mforward &&
630 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
631 				ipstat.ips_cantforward++;
632 				m_freem(m);
633 				return;
634 			}
635 
636 			/*
637 			 * The process-level routing daemon needs to receive
638 			 * all multicast IGMP packets, whether or not this
639 			 * host belongs to their destination groups.
640 			 */
641 			if (ip->ip_p == IPPROTO_IGMP)
642 				goto ours;
643 			ipstat.ips_forward++;
644 		}
645 		/*
646 		 * See if we belong to the destination multicast group on the
647 		 * arrival interface.
648 		 */
649 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
650 		if (inm == NULL) {
651 			ipstat.ips_notmember++;
652 			m_freem(m);
653 			return;
654 		}
655 		goto ours;
656 	}
657 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
658 		goto ours;
659 	if (ip->ip_dst.s_addr == INADDR_ANY)
660 		goto ours;
661 
662 	/*
663 	 * FAITH(Firewall Aided Internet Translator)
664 	 */
665 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
666 		if (ip_keepfaith) {
667 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
668 				goto ours;
669 		}
670 		m_freem(m);
671 		return;
672 	}
673 
674 	/*
675 	 * Not for us; forward if possible and desirable.
676 	 */
677 	if (ipforwarding == 0) {
678 		ipstat.ips_cantforward++;
679 		m_freem(m);
680 	} else {
681 #ifdef IPSEC
682 		/*
683 		 * Enforce inbound IPsec SPD.
684 		 */
685 		if (ipsec4_in_reject(m, NULL)) {
686 			ipsecstat.in_polvio++;
687 			goto bad;
688 		}
689 #endif /* IPSEC */
690 #ifdef FAST_IPSEC
691 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
692 		s = splnet();
693 		if (mtag != NULL) {
694 			tdbi = (struct tdb_ident *)(mtag + 1);
695 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
696 		} else {
697 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
698 						   IP_FORWARDING, &error);
699 		}
700 		if (sp == NULL) {	/* NB: can happen if error */
701 			splx(s);
702 			/*XXX error stat???*/
703 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
704 			goto bad;
705 		}
706 
707 		/*
708 		 * Check security policy against packet attributes.
709 		 */
710 		error = ipsec_in_reject(sp, m);
711 		KEY_FREESP(&sp);
712 		splx(s);
713 		if (error) {
714 			ipstat.ips_cantforward++;
715 			goto bad;
716 		}
717 #endif /* FAST_IPSEC */
718 		ip_forward(m, srcrt, args.next_hop);
719 	}
720 	return;
721 
722 ours:
723 #ifdef IPSTEALTH
724 	/*
725 	 * IPSTEALTH: Process non-routing options only
726 	 * if the packet is destined for us.
727 	 */
728 	if (ipstealth && hlen > sizeof (struct ip) &&
729 	    ip_dooptions(m, 1, args.next_hop))
730 		return;
731 #endif /* IPSTEALTH */
732 
733 	/* Count the packet in the ip address stats */
734 	if (ia != NULL) {
735 		ia->ia_ifa.if_ipackets++;
736 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
737 	}
738 
739 	/*
740 	 * If offset or IP_MF are set, must reassemble.
741 	 * Otherwise, nothing need be done.
742 	 * (We could look in the reassembly queue to see
743 	 * if the packet was previously fragmented,
744 	 * but it's not worth the time; just let them time out.)
745 	 */
746 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
747 
748 		/* If maxnipq is 0, never accept fragments. */
749 		if (maxnipq == 0) {
750                 	ipstat.ips_fragments++;
751 			ipstat.ips_fragdropped++;
752 			goto bad;
753 		}
754 
755 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
756 		/*
757 		 * Look for queue of fragments
758 		 * of this datagram.
759 		 */
760 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
761 			if (ip->ip_id == fp->ipq_id &&
762 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
763 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
764 			    ip->ip_p == fp->ipq_p)
765 				goto found;
766 
767 		fp = 0;
768 
769 		/*
770 		 * Enforce upper bound on number of fragmented packets
771 		 * for which we attempt reassembly;
772 		 * If maxnipq is -1, accept all fragments without limitation.
773 		 */
774 		if ((nipq > maxnipq) && (maxnipq > 0)) {
775 		    /*
776 		     * drop something from the tail of the current queue
777 		     * before proceeding further
778 		     */
779 		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
780 			for (i = 0; i < IPREASS_NHASH; i++) {
781 			    if (ipq[i].prev != &ipq[i]) {
782 				ipstat.ips_fragtimeout +=
783 				    ipq[i].prev->ipq_nfrags;
784 				ip_freef(ipq[i].prev);
785 				break;
786 			    }
787 			}
788 		    } else {
789 			ipstat.ips_fragtimeout += ipq[sum].prev->ipq_nfrags;
790 			ip_freef(ipq[sum].prev);
791 		    }
792 		}
793 found:
794 		/*
795 		 * Adjust ip_len to not reflect header,
796 		 * convert offset of this to bytes.
797 		 */
798 		ip->ip_len -= hlen;
799 		if (ip->ip_off & IP_MF) {
800 		        /*
801 		         * Make sure that fragments have a data length
802 			 * that's a non-zero multiple of 8 bytes.
803 		         */
804 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
805 				ipstat.ips_toosmall++; /* XXX */
806 				goto bad;
807 			}
808 			m->m_flags |= M_FRAG;
809 		} else
810 			m->m_flags &= ~M_FRAG;
811 		ip->ip_off <<= 3;
812 
813 		/*
814 		 * Attempt reassembly; if it succeeds, proceed.
815 		 * ip_reass() will return a different mbuf, and update
816 		 * the divert info in divert_info and args.divert_rule.
817 		 */
818 		ipstat.ips_fragments++;
819 		m->m_pkthdr.header = ip;
820 		m = ip_reass(m,
821 		    fp, &ipq[sum], &divert_info, &args.divert_rule);
822 		if (m == 0)
823 			return;
824 		ipstat.ips_reassembled++;
825 		ip = mtod(m, struct ip *);
826 		/* Get the header length of the reassembled packet */
827 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
828 #ifdef IPDIVERT
829 		/* Restore original checksum before diverting packet */
830 		if (divert_info != 0) {
831 			ip->ip_len += hlen;
832 			ip->ip_len = htons(ip->ip_len);
833 			ip->ip_off = htons(ip->ip_off);
834 			ip->ip_sum = 0;
835 			if (hlen == sizeof(struct ip))
836 				ip->ip_sum = in_cksum_hdr(ip);
837 			else
838 				ip->ip_sum = in_cksum(m, hlen);
839 			ip->ip_off = ntohs(ip->ip_off);
840 			ip->ip_len = ntohs(ip->ip_len);
841 			ip->ip_len -= hlen;
842 		}
843 #endif
844 	} else {
845 		ip->ip_len -= hlen;
846 	}
847 
848 #ifdef IPDIVERT
849 	/*
850 	 * Divert or tee packet to the divert protocol if required.
851 	 */
852 	if (divert_info != 0) {
853 		struct mbuf *clone = NULL;
854 
855 		/* Clone packet if we're doing a 'tee' */
856 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
857 			clone = m_dup(m, M_DONTWAIT);
858 
859 		/* Restore packet header fields to original values */
860 		ip->ip_len += hlen;
861 		ip->ip_len = htons(ip->ip_len);
862 		ip->ip_off = htons(ip->ip_off);
863 
864 		/* Deliver packet to divert input routine */
865 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
866 		ipstat.ips_delivered++;
867 
868 		/* If 'tee', continue with original packet */
869 		if (clone == NULL)
870 			return;
871 		m = clone;
872 		ip = mtod(m, struct ip *);
873 		ip->ip_len += hlen;
874 		/*
875 		 * Jump backwards to complete processing of the
876 		 * packet. But first clear divert_info to avoid
877 		 * entering this block again.
878 		 * We do not need to clear args.divert_rule
879 		 * or args.next_hop as they will not be used.
880 		 */
881 		divert_info = 0;
882 		goto pass;
883 	}
884 #endif
885 
886 #ifdef IPSEC
887 	/*
888 	 * enforce IPsec policy checking if we are seeing last header.
889 	 * note that we do not visit this with protocols with pcb layer
890 	 * code - like udp/tcp/raw ip.
891 	 */
892 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
893 	    ipsec4_in_reject(m, NULL)) {
894 		ipsecstat.in_polvio++;
895 		goto bad;
896 	}
897 #endif
898 #if FAST_IPSEC
899 	/*
900 	 * enforce IPsec policy checking if we are seeing last header.
901 	 * note that we do not visit this with protocols with pcb layer
902 	 * code - like udp/tcp/raw ip.
903 	 */
904 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
905 		/*
906 		 * Check if the packet has already had IPsec processing
907 		 * done.  If so, then just pass it along.  This tag gets
908 		 * set during AH, ESP, etc. input handling, before the
909 		 * packet is returned to the ip input queue for delivery.
910 		 */
911 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
912 		s = splnet();
913 		if (mtag != NULL) {
914 			tdbi = (struct tdb_ident *)(mtag + 1);
915 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
916 		} else {
917 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
918 						   IP_FORWARDING, &error);
919 		}
920 		if (sp != NULL) {
921 			/*
922 			 * Check security policy against packet attributes.
923 			 */
924 			error = ipsec_in_reject(sp, m);
925 			KEY_FREESP(&sp);
926 		} else {
927 			/* XXX error stat??? */
928 			error = EINVAL;
929 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
930 			goto bad;
931 		}
932 		splx(s);
933 		if (error)
934 			goto bad;
935 	}
936 #endif /* FAST_IPSEC */
937 
938 	/*
939 	 * Switch out to protocol's input routine.
940 	 *
941 	 * XXX queue packet to protocol's message port.
942 	 */
943 	ipstat.ips_delivered++;
944 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
945 		/* TCP needs IPFORWARD info if available */
946 		struct m_hdr tag;
947 
948 		tag.mh_type = MT_TAG;
949 		tag.mh_flags = PACKET_TAG_IPFORWARD;
950 		tag.mh_data = (caddr_t)args.next_hop;
951 		tag.mh_next = m;
952 
953 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
954 			(struct mbuf *)&tag, hlen, ip->ip_p);
955     	} else {
956 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
957 	}
958 	return;
959 bad:
960 	m_freem(m);
961 }
962 
963 /*
964  * Take incoming datagram fragment and try to reassemble it into
965  * whole datagram.  If a chain for reassembly of this datagram already
966  * exists, then it is given as fp; otherwise have to make a chain.
967  *
968  * When IPDIVERT enabled, keep additional state with each packet that
969  * tells us if we need to divert or tee the packet we're building.
970  * In particular, *divinfo includes the port and TEE flag,
971  * *divert_rule is the number of the matching rule.
972  */
973 
974 static struct mbuf *
975 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
976 	u_int32_t *divinfo, u_int16_t *divert_rule)
977 {
978 	struct ip *ip = mtod(m, struct ip *);
979 	struct mbuf *p = 0, *q, *nq;
980 	struct mbuf *t;
981 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
982 	int i, next;
983 
984 	/*
985 	 * Presence of header sizes in mbufs
986 	 * would confuse code below.
987 	 */
988 	m->m_data += hlen;
989 	m->m_len -= hlen;
990 
991 	/*
992 	 * If first fragment to arrive, create a reassembly queue.
993 	 */
994 	if (fp == 0) {
995 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
996 			goto dropfrag;
997 		fp = mtod(t, struct ipq *);
998 		insque(fp, where);
999 		nipq++;
1000 		fp->ipq_nfrags = 1;
1001 		fp->ipq_ttl = IPFRAGTTL;
1002 		fp->ipq_p = ip->ip_p;
1003 		fp->ipq_id = ip->ip_id;
1004 		fp->ipq_src = ip->ip_src;
1005 		fp->ipq_dst = ip->ip_dst;
1006 		fp->ipq_frags = m;
1007 		m->m_nextpkt = NULL;
1008 #ifdef IPDIVERT
1009 		fp->ipq_div_info = 0;
1010 		fp->ipq_div_cookie = 0;
1011 #endif
1012 		goto inserted;
1013 	} else {
1014 		fp->ipq_nfrags++;
1015 	}
1016 
1017 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1018 
1019 	/*
1020 	 * Find a segment which begins after this one does.
1021 	 */
1022 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1023 		if (GETIP(q)->ip_off > ip->ip_off)
1024 			break;
1025 
1026 	/*
1027 	 * If there is a preceding segment, it may provide some of
1028 	 * our data already.  If so, drop the data from the incoming
1029 	 * segment.  If it provides all of our data, drop us, otherwise
1030 	 * stick new segment in the proper place.
1031 	 *
1032 	 * If some of the data is dropped from the the preceding
1033 	 * segment, then it's checksum is invalidated.
1034 	 */
1035 	if (p) {
1036 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1037 		if (i > 0) {
1038 			if (i >= ip->ip_len)
1039 				goto dropfrag;
1040 			m_adj(m, i);
1041 			m->m_pkthdr.csum_flags = 0;
1042 			ip->ip_off += i;
1043 			ip->ip_len -= i;
1044 		}
1045 		m->m_nextpkt = p->m_nextpkt;
1046 		p->m_nextpkt = m;
1047 	} else {
1048 		m->m_nextpkt = fp->ipq_frags;
1049 		fp->ipq_frags = m;
1050 	}
1051 
1052 	/*
1053 	 * While we overlap succeeding segments trim them or,
1054 	 * if they are completely covered, dequeue them.
1055 	 */
1056 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1057 	     q = nq) {
1058 		i = (ip->ip_off + ip->ip_len) -
1059 		    GETIP(q)->ip_off;
1060 		if (i < GETIP(q)->ip_len) {
1061 			GETIP(q)->ip_len -= i;
1062 			GETIP(q)->ip_off += i;
1063 			m_adj(q, i);
1064 			q->m_pkthdr.csum_flags = 0;
1065 			break;
1066 		}
1067 		nq = q->m_nextpkt;
1068 		m->m_nextpkt = nq;
1069 		ipstat.ips_fragdropped++;
1070 		fp->ipq_nfrags--;
1071 		m_freem(q);
1072 	}
1073 
1074 inserted:
1075 
1076 #ifdef IPDIVERT
1077 	/*
1078 	 * Transfer firewall instructions to the fragment structure.
1079 	 * Only trust info in the fragment at offset 0.
1080 	 */
1081 	if (ip->ip_off == 0) {
1082 		fp->ipq_div_info = *divinfo;
1083 		fp->ipq_div_cookie = *divert_rule;
1084 	}
1085 	*divinfo = 0;
1086 	*divert_rule = 0;
1087 #endif
1088 
1089 	/*
1090 	 * Check for complete reassembly and perform frag per packet
1091 	 * limiting.
1092 	 *
1093 	 * Frag limiting is performed here so that the nth frag has
1094 	 * a chance to complete the packet before we drop the packet.
1095 	 * As a result, n+1 frags are actually allowed per packet, but
1096 	 * only n will ever be stored. (n = maxfragsperpacket.)
1097 	 *
1098 	 */
1099 	next = 0;
1100 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1101 		if (GETIP(q)->ip_off != next) {
1102 			if (fp->ipq_nfrags > maxfragsperpacket) {
1103 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1104 				ip_freef(fp);
1105 			}
1106 			return (0);
1107 		}
1108 		next += GETIP(q)->ip_len;
1109 	}
1110 	/* Make sure the last packet didn't have the IP_MF flag */
1111 	if (p->m_flags & M_FRAG) {
1112 		if (fp->ipq_nfrags > maxfragsperpacket) {
1113 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1114 			ip_freef(fp);
1115 		}
1116 		return (0);
1117 	}
1118 
1119 	/*
1120 	 * Reassembly is complete.  Make sure the packet is a sane size.
1121 	 */
1122 	q = fp->ipq_frags;
1123 	ip = GETIP(q);
1124 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1125 		ipstat.ips_toolong++;
1126 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1127 		ip_freef(fp);
1128 		return (0);
1129 	}
1130 
1131 	/*
1132 	 * Concatenate fragments.
1133 	 */
1134 	m = q;
1135 	t = m->m_next;
1136 	m->m_next = 0;
1137 	m_cat(m, t);
1138 	nq = q->m_nextpkt;
1139 	q->m_nextpkt = 0;
1140 	for (q = nq; q != NULL; q = nq) {
1141 		nq = q->m_nextpkt;
1142 		q->m_nextpkt = NULL;
1143 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1144 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1145 		m_cat(m, q);
1146 	}
1147 
1148 #ifdef IPDIVERT
1149 	/*
1150 	 * Extract firewall instructions from the fragment structure.
1151 	 */
1152 	*divinfo = fp->ipq_div_info;
1153 	*divert_rule = fp->ipq_div_cookie;
1154 #endif
1155 
1156 	/*
1157 	 * Create header for new ip packet by
1158 	 * modifying header of first packet;
1159 	 * dequeue and discard fragment reassembly header.
1160 	 * Make header visible.
1161 	 */
1162 	ip->ip_len = next;
1163 	ip->ip_src = fp->ipq_src;
1164 	ip->ip_dst = fp->ipq_dst;
1165 	remque(fp);
1166 	nipq--;
1167 	(void) m_free(dtom(fp));
1168 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1169 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1170 	/* some debugging cruft by sklower, below, will go away soon */
1171 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1172 		int plen = 0;
1173 		for (t = m; t; t = t->m_next)
1174 			plen += t->m_len;
1175 		m->m_pkthdr.len = plen;
1176 	}
1177 	return (m);
1178 
1179 dropfrag:
1180 #ifdef IPDIVERT
1181 	*divinfo = 0;
1182 	*divert_rule = 0;
1183 #endif
1184 	ipstat.ips_fragdropped++;
1185 	if (fp != 0)
1186 		fp->ipq_nfrags--;
1187 	m_freem(m);
1188 	return (0);
1189 
1190 #undef GETIP
1191 }
1192 
1193 /*
1194  * Free a fragment reassembly header and all
1195  * associated datagrams.
1196  */
1197 static void
1198 ip_freef(fp)
1199 	struct ipq *fp;
1200 {
1201 	struct mbuf *q;
1202 
1203 	while (fp->ipq_frags) {
1204 		q = fp->ipq_frags;
1205 		fp->ipq_frags = q->m_nextpkt;
1206 		m_freem(q);
1207 	}
1208 	remque(fp);
1209 	(void) m_free(dtom(fp));
1210 	nipq--;
1211 }
1212 
1213 /*
1214  * IP timer processing;
1215  * if a timer expires on a reassembly
1216  * queue, discard it.
1217  */
1218 void
1219 ip_slowtimo()
1220 {
1221 	struct ipq *fp;
1222 	int s = splnet();
1223 	int i;
1224 
1225 	for (i = 0; i < IPREASS_NHASH; i++) {
1226 		fp = ipq[i].next;
1227 		if (fp == 0)
1228 			continue;
1229 		while (fp != &ipq[i]) {
1230 			--fp->ipq_ttl;
1231 			fp = fp->next;
1232 			if (fp->prev->ipq_ttl == 0) {
1233 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1234 				ip_freef(fp->prev);
1235 			}
1236 		}
1237 	}
1238 	/*
1239 	 * If we are over the maximum number of fragments
1240 	 * (due to the limit being lowered), drain off
1241 	 * enough to get down to the new limit.
1242 	 */
1243 	if (maxnipq >= 0 && nipq > maxnipq) {
1244 		for (i = 0; i < IPREASS_NHASH; i++) {
1245 			while (nipq > maxnipq &&
1246 				(ipq[i].next != &ipq[i])) {
1247 				ipstat.ips_fragdropped +=
1248 				    ipq[i].next->ipq_nfrags;
1249 				ip_freef(ipq[i].next);
1250 			}
1251 		}
1252 	}
1253 	ipflow_slowtimo();
1254 	splx(s);
1255 }
1256 
1257 /*
1258  * Drain off all datagram fragments.
1259  */
1260 void
1261 ip_drain()
1262 {
1263 	int     i;
1264 
1265 	for (i = 0; i < IPREASS_NHASH; i++) {
1266 		while (ipq[i].next != &ipq[i]) {
1267 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1268 			ip_freef(ipq[i].next);
1269 		}
1270 	}
1271 	in_rtqdrain();
1272 }
1273 
1274 /*
1275  * Do option processing on a datagram,
1276  * possibly discarding it if bad options are encountered,
1277  * or forwarding it if source-routed.
1278  * The pass argument is used when operating in the IPSTEALTH
1279  * mode to tell what options to process:
1280  * [LS]SRR (pass 0) or the others (pass 1).
1281  * The reason for as many as two passes is that when doing IPSTEALTH,
1282  * non-routing options should be processed only if the packet is for us.
1283  * Returns 1 if packet has been forwarded/freed,
1284  * 0 if the packet should be processed further.
1285  */
1286 static int
1287 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1288 {
1289 	struct ip *ip = mtod(m, struct ip *);
1290 	u_char *cp;
1291 	struct in_ifaddr *ia;
1292 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1293 	struct in_addr *sin, dst;
1294 	n_time ntime;
1295 
1296 	dst = ip->ip_dst;
1297 	cp = (u_char *)(ip + 1);
1298 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1299 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1300 		opt = cp[IPOPT_OPTVAL];
1301 		if (opt == IPOPT_EOL)
1302 			break;
1303 		if (opt == IPOPT_NOP)
1304 			optlen = 1;
1305 		else {
1306 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1307 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1308 				goto bad;
1309 			}
1310 			optlen = cp[IPOPT_OLEN];
1311 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1312 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1313 				goto bad;
1314 			}
1315 		}
1316 		switch (opt) {
1317 
1318 		default:
1319 			break;
1320 
1321 		/*
1322 		 * Source routing with record.
1323 		 * Find interface with current destination address.
1324 		 * If none on this machine then drop if strictly routed,
1325 		 * or do nothing if loosely routed.
1326 		 * Record interface address and bring up next address
1327 		 * component.  If strictly routed make sure next
1328 		 * address is on directly accessible net.
1329 		 */
1330 		case IPOPT_LSRR:
1331 		case IPOPT_SSRR:
1332 #ifdef IPSTEALTH
1333 			if (ipstealth && pass > 0)
1334 				break;
1335 #endif
1336 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1337 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1338 				goto bad;
1339 			}
1340 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1341 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1342 				goto bad;
1343 			}
1344 			ipaddr.sin_addr = ip->ip_dst;
1345 			ia = (struct in_ifaddr *)
1346 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1347 			if (ia == 0) {
1348 				if (opt == IPOPT_SSRR) {
1349 					type = ICMP_UNREACH;
1350 					code = ICMP_UNREACH_SRCFAIL;
1351 					goto bad;
1352 				}
1353 				if (!ip_dosourceroute)
1354 					goto nosourcerouting;
1355 				/*
1356 				 * Loose routing, and not at next destination
1357 				 * yet; nothing to do except forward.
1358 				 */
1359 				break;
1360 			}
1361 			off--;			/* 0 origin */
1362 			if (off > optlen - (int)sizeof(struct in_addr)) {
1363 				/*
1364 				 * End of source route.  Should be for us.
1365 				 */
1366 				if (!ip_acceptsourceroute)
1367 					goto nosourcerouting;
1368 				save_rte(cp, ip->ip_src);
1369 				break;
1370 			}
1371 #ifdef IPSTEALTH
1372 			if (ipstealth)
1373 				goto dropit;
1374 #endif
1375 			if (!ip_dosourceroute) {
1376 				if (ipforwarding) {
1377 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1378 					/*
1379 					 * Acting as a router, so generate ICMP
1380 					 */
1381 nosourcerouting:
1382 					strcpy(buf, inet_ntoa(ip->ip_dst));
1383 					log(LOG_WARNING,
1384 					    "attempted source route from %s to %s\n",
1385 					    inet_ntoa(ip->ip_src), buf);
1386 					type = ICMP_UNREACH;
1387 					code = ICMP_UNREACH_SRCFAIL;
1388 					goto bad;
1389 				} else {
1390 					/*
1391 					 * Not acting as a router, so silently drop.
1392 					 */
1393 #ifdef IPSTEALTH
1394 dropit:
1395 #endif
1396 					ipstat.ips_cantforward++;
1397 					m_freem(m);
1398 					return (1);
1399 				}
1400 			}
1401 
1402 			/*
1403 			 * locate outgoing interface
1404 			 */
1405 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1406 			    sizeof(ipaddr.sin_addr));
1407 
1408 			if (opt == IPOPT_SSRR) {
1409 #define	INA	struct in_ifaddr *
1410 #define	SA	struct sockaddr *
1411 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1412 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1413 			} else
1414 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1415 			if (ia == 0) {
1416 				type = ICMP_UNREACH;
1417 				code = ICMP_UNREACH_SRCFAIL;
1418 				goto bad;
1419 			}
1420 			ip->ip_dst = ipaddr.sin_addr;
1421 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1422 			    sizeof(struct in_addr));
1423 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1424 			/*
1425 			 * Let ip_intr's mcast routing check handle mcast pkts
1426 			 */
1427 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1428 			break;
1429 
1430 		case IPOPT_RR:
1431 #ifdef IPSTEALTH
1432 			if (ipstealth && pass == 0)
1433 				break;
1434 #endif
1435 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1436 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1437 				goto bad;
1438 			}
1439 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1440 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1441 				goto bad;
1442 			}
1443 			/*
1444 			 * If no space remains, ignore.
1445 			 */
1446 			off--;			/* 0 origin */
1447 			if (off > optlen - (int)sizeof(struct in_addr))
1448 				break;
1449 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1450 			    sizeof(ipaddr.sin_addr));
1451 			/*
1452 			 * locate outgoing interface; if we're the destination,
1453 			 * use the incoming interface (should be same).
1454 			 */
1455 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1456 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1457 			    &ipforward_rt)) == 0) {
1458 				type = ICMP_UNREACH;
1459 				code = ICMP_UNREACH_HOST;
1460 				goto bad;
1461 			}
1462 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1463 			    sizeof(struct in_addr));
1464 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1465 			break;
1466 
1467 		case IPOPT_TS:
1468 #ifdef IPSTEALTH
1469 			if (ipstealth && pass == 0)
1470 				break;
1471 #endif
1472 			code = cp - (u_char *)ip;
1473 			if (optlen < 4 || optlen > 40) {
1474 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1475 				goto bad;
1476 			}
1477 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1478 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1479 				goto bad;
1480 			}
1481 			if (off > optlen - (int)sizeof(int32_t)) {
1482 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1483 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1484 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1485 					goto bad;
1486 				}
1487 				break;
1488 			}
1489 			off--;				/* 0 origin */
1490 			sin = (struct in_addr *)(cp + off);
1491 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1492 
1493 			case IPOPT_TS_TSONLY:
1494 				break;
1495 
1496 			case IPOPT_TS_TSANDADDR:
1497 				if (off + sizeof(n_time) +
1498 				    sizeof(struct in_addr) > optlen) {
1499 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1500 					goto bad;
1501 				}
1502 				ipaddr.sin_addr = dst;
1503 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1504 							    m->m_pkthdr.rcvif);
1505 				if (ia == 0)
1506 					continue;
1507 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1508 				    sizeof(struct in_addr));
1509 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1510 				off += sizeof(struct in_addr);
1511 				break;
1512 
1513 			case IPOPT_TS_PRESPEC:
1514 				if (off + sizeof(n_time) +
1515 				    sizeof(struct in_addr) > optlen) {
1516 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1517 					goto bad;
1518 				}
1519 				(void)memcpy(&ipaddr.sin_addr, sin,
1520 				    sizeof(struct in_addr));
1521 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1522 					continue;
1523 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1524 				off += sizeof(struct in_addr);
1525 				break;
1526 
1527 			default:
1528 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1529 				goto bad;
1530 			}
1531 			ntime = iptime();
1532 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1533 			cp[IPOPT_OFFSET] += sizeof(n_time);
1534 		}
1535 	}
1536 	if (forward && ipforwarding) {
1537 		ip_forward(m, 1, next_hop);
1538 		return (1);
1539 	}
1540 	return (0);
1541 bad:
1542 	icmp_error(m, type, code, 0, 0);
1543 	ipstat.ips_badoptions++;
1544 	return (1);
1545 }
1546 
1547 /*
1548  * Given address of next destination (final or next hop),
1549  * return internet address info of interface to be used to get there.
1550  */
1551 struct in_ifaddr *
1552 ip_rtaddr(dst, rt)
1553 	struct in_addr dst;
1554 	struct route *rt;
1555 {
1556 	struct sockaddr_in *sin;
1557 
1558 	sin = (struct sockaddr_in *)&rt->ro_dst;
1559 
1560 	if (rt->ro_rt == 0 ||
1561 	    dst.s_addr != sin->sin_addr.s_addr) {
1562 		if (rt->ro_rt) {
1563 			RTFREE(rt->ro_rt);
1564 			rt->ro_rt = 0;
1565 		}
1566 		sin->sin_family = AF_INET;
1567 		sin->sin_len = sizeof(*sin);
1568 		sin->sin_addr = dst;
1569 
1570 		rtalloc_ign(rt, RTF_PRCLONING);
1571 	}
1572 	if (rt->ro_rt == 0)
1573 		return ((struct in_ifaddr *)0);
1574 	return (ifatoia(rt->ro_rt->rt_ifa));
1575 }
1576 
1577 /*
1578  * Save incoming source route for use in replies,
1579  * to be picked up later by ip_srcroute if the receiver is interested.
1580  */
1581 void
1582 save_rte(option, dst)
1583 	u_char *option;
1584 	struct in_addr dst;
1585 {
1586 	unsigned olen;
1587 
1588 	olen = option[IPOPT_OLEN];
1589 #ifdef DIAGNOSTIC
1590 	if (ipprintfs)
1591 		printf("save_rte: olen %d\n", olen);
1592 #endif
1593 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1594 		return;
1595 	bcopy(option, ip_srcrt.srcopt, olen);
1596 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1597 	ip_srcrt.dst = dst;
1598 }
1599 
1600 /*
1601  * Retrieve incoming source route for use in replies,
1602  * in the same form used by setsockopt.
1603  * The first hop is placed before the options, will be removed later.
1604  */
1605 struct mbuf *
1606 ip_srcroute()
1607 {
1608 	struct in_addr *p, *q;
1609 	struct mbuf *m;
1610 
1611 	if (ip_nhops == 0)
1612 		return ((struct mbuf *)0);
1613 	m = m_get(M_DONTWAIT, MT_HEADER);
1614 	if (m == 0)
1615 		return ((struct mbuf *)0);
1616 
1617 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1618 
1619 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1620 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1621 	    OPTSIZ;
1622 #ifdef DIAGNOSTIC
1623 	if (ipprintfs)
1624 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1625 #endif
1626 
1627 	/*
1628 	 * First save first hop for return route
1629 	 */
1630 	p = &ip_srcrt.route[ip_nhops - 1];
1631 	*(mtod(m, struct in_addr *)) = *p--;
1632 #ifdef DIAGNOSTIC
1633 	if (ipprintfs)
1634 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1635 #endif
1636 
1637 	/*
1638 	 * Copy option fields and padding (nop) to mbuf.
1639 	 */
1640 	ip_srcrt.nop = IPOPT_NOP;
1641 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1642 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1643 	    &ip_srcrt.nop, OPTSIZ);
1644 	q = (struct in_addr *)(mtod(m, caddr_t) +
1645 	    sizeof(struct in_addr) + OPTSIZ);
1646 #undef OPTSIZ
1647 	/*
1648 	 * Record return path as an IP source route,
1649 	 * reversing the path (pointers are now aligned).
1650 	 */
1651 	while (p >= ip_srcrt.route) {
1652 #ifdef DIAGNOSTIC
1653 		if (ipprintfs)
1654 			printf(" %lx", (u_long)ntohl(q->s_addr));
1655 #endif
1656 		*q++ = *p--;
1657 	}
1658 	/*
1659 	 * Last hop goes to final destination.
1660 	 */
1661 	*q = ip_srcrt.dst;
1662 #ifdef DIAGNOSTIC
1663 	if (ipprintfs)
1664 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1665 #endif
1666 	return (m);
1667 }
1668 
1669 /*
1670  * Strip out IP options.
1671  */
1672 void
1673 ip_stripoptions(struct mbuf *m)
1674 {
1675 	int datalen;
1676 	struct ip *ip = mtod(m, struct ip *);
1677 	caddr_t opts;
1678 	int optlen;
1679 
1680 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1681 	opts = (caddr_t)(ip + 1);
1682 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1683 	bcopy(opts + optlen, opts, datalen);
1684 	m->m_len -= optlen;
1685 	if (m->m_flags & M_PKTHDR)
1686 		m->m_pkthdr.len -= optlen;
1687 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1688 }
1689 
1690 u_char inetctlerrmap[PRC_NCMDS] = {
1691 	0,		0,		0,		0,
1692 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1693 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1694 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1695 	0,		0,		0,		0,
1696 	ENOPROTOOPT,	ECONNREFUSED
1697 };
1698 
1699 /*
1700  * Forward a packet.  If some error occurs return the sender
1701  * an icmp packet.  Note we can't always generate a meaningful
1702  * icmp message because icmp doesn't have a large enough repertoire
1703  * of codes and types.
1704  *
1705  * If not forwarding, just drop the packet.  This could be confusing
1706  * if ipforwarding was zero but some routing protocol was advancing
1707  * us as a gateway to somewhere.  However, we must let the routing
1708  * protocol deal with that.
1709  *
1710  * The srcrt parameter indicates whether the packet is being forwarded
1711  * via a source route.
1712  */
1713 static void
1714 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1715 {
1716 	struct ip *ip = mtod(m, struct ip *);
1717 	struct sockaddr_in *sin;
1718 	struct rtentry *rt;
1719 	int error, type = 0, code = 0;
1720 	struct mbuf *mcopy;
1721 	n_long dest;
1722 	struct in_addr pkt_dst;
1723 	struct ifnet *destifp;
1724 #if defined(IPSEC) || defined(FAST_IPSEC)
1725 	struct ifnet dummyifp;
1726 #endif
1727 
1728 	dest = 0;
1729 	/*
1730 	 * Cache the destination address of the packet; this may be
1731 	 * changed by use of 'ipfw fwd'.
1732 	 */
1733 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1734 
1735 #ifdef DIAGNOSTIC
1736 	if (ipprintfs)
1737 		printf("forward: src %lx dst %lx ttl %x\n",
1738 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1739 		    ip->ip_ttl);
1740 #endif
1741 
1742 
1743 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1744 		ipstat.ips_cantforward++;
1745 		m_freem(m);
1746 		return;
1747 	}
1748 #ifdef IPSTEALTH
1749 	if (!ipstealth) {
1750 #endif
1751 		if (ip->ip_ttl <= IPTTLDEC) {
1752 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1753 			    dest, 0);
1754 			return;
1755 		}
1756 #ifdef IPSTEALTH
1757 	}
1758 #endif
1759 
1760 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1761 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1762 	    pkt_dst.s_addr != sin->sin_addr.s_addr) {
1763 		if (ipforward_rt.ro_rt) {
1764 			RTFREE(ipforward_rt.ro_rt);
1765 			ipforward_rt.ro_rt = 0;
1766 		}
1767 		sin->sin_family = AF_INET;
1768 		sin->sin_len = sizeof(*sin);
1769 		sin->sin_addr = pkt_dst;
1770 
1771 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1772 		if (ipforward_rt.ro_rt == 0) {
1773 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1774 			return;
1775 		}
1776 		rt = ipforward_rt.ro_rt;
1777 	}
1778 
1779 	/*
1780 	 * Save the IP header and at most 8 bytes of the payload,
1781 	 * in case we need to generate an ICMP message to the src.
1782 	 *
1783 	 * XXX this can be optimized a lot by saving the data in a local
1784 	 * buffer on the stack (72 bytes at most), and only allocating the
1785 	 * mbuf if really necessary. The vast majority of the packets
1786 	 * are forwarded without having to send an ICMP back (either
1787 	 * because unnecessary, or because rate limited), so we are
1788 	 * really we are wasting a lot of work here.
1789 	 *
1790 	 * We don't use m_copy() because it might return a reference
1791 	 * to a shared cluster. Both this function and ip_output()
1792 	 * assume exclusive access to the IP header in `m', so any
1793 	 * data in a cluster may change before we reach icmp_error().
1794 	 */
1795 	MGET(mcopy, M_DONTWAIT, m->m_type);
1796 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1797 		/*
1798 		 * It's probably ok if the pkthdr dup fails (because
1799 		 * the deep copy of the tag chain failed), but for now
1800 		 * be conservative and just discard the copy since
1801 		 * code below may some day want the tags.
1802 		 */
1803 		m_free(mcopy);
1804 		mcopy = NULL;
1805 	}
1806 	if (mcopy != NULL) {
1807 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1808 		    (int)ip->ip_len);
1809 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1810 	}
1811 
1812 #ifdef IPSTEALTH
1813 	if (!ipstealth) {
1814 #endif
1815 		ip->ip_ttl -= IPTTLDEC;
1816 #ifdef IPSTEALTH
1817 	}
1818 #endif
1819 
1820 	/*
1821 	 * If forwarding packet using same interface that it came in on,
1822 	 * perhaps should send a redirect to sender to shortcut a hop.
1823 	 * Only send redirect if source is sending directly to us,
1824 	 * and if packet was not source routed (or has any options).
1825 	 * Also, don't send redirect if forwarding using a default route
1826 	 * or a route modified by a redirect.
1827 	 */
1828 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1829 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1830 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1831 	    ipsendredirects && !srcrt && !next_hop) {
1832 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1833 		u_long src = ntohl(ip->ip_src.s_addr);
1834 
1835 		if (RTA(rt) &&
1836 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1837 		    if (rt->rt_flags & RTF_GATEWAY)
1838 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1839 		    else
1840 			dest = pkt_dst.s_addr;
1841 		    /* Router requirements says to only send host redirects */
1842 		    type = ICMP_REDIRECT;
1843 		    code = ICMP_REDIRECT_HOST;
1844 #ifdef DIAGNOSTIC
1845 		    if (ipprintfs)
1846 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1847 #endif
1848 		}
1849 	}
1850 
1851     {
1852 	struct m_hdr tag;
1853 
1854 	if (next_hop) {
1855 		/* Pass IPFORWARD info if available */
1856 
1857 		tag.mh_type = MT_TAG;
1858 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1859 		tag.mh_data = (caddr_t)next_hop;
1860 		tag.mh_next = m;
1861 		m = (struct mbuf *)&tag;
1862 	}
1863 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1864 			  IP_FORWARDING, 0, NULL);
1865     }
1866 	if (error)
1867 		ipstat.ips_cantforward++;
1868 	else {
1869 		ipstat.ips_forward++;
1870 		if (type)
1871 			ipstat.ips_redirectsent++;
1872 		else {
1873 			if (mcopy) {
1874 				ipflow_create(&ipforward_rt, mcopy);
1875 				m_freem(mcopy);
1876 			}
1877 			return;
1878 		}
1879 	}
1880 	if (mcopy == NULL)
1881 		return;
1882 	destifp = NULL;
1883 
1884 	switch (error) {
1885 
1886 	case 0:				/* forwarded, but need redirect */
1887 		/* type, code set above */
1888 		break;
1889 
1890 	case ENETUNREACH:		/* shouldn't happen, checked above */
1891 	case EHOSTUNREACH:
1892 	case ENETDOWN:
1893 	case EHOSTDOWN:
1894 	default:
1895 		type = ICMP_UNREACH;
1896 		code = ICMP_UNREACH_HOST;
1897 		break;
1898 
1899 	case EMSGSIZE:
1900 		type = ICMP_UNREACH;
1901 		code = ICMP_UNREACH_NEEDFRAG;
1902 #ifdef IPSEC
1903 		/*
1904 		 * If the packet is routed over IPsec tunnel, tell the
1905 		 * originator the tunnel MTU.
1906 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1907 		 * XXX quickhack!!!
1908 		 */
1909 		if (ipforward_rt.ro_rt) {
1910 			struct secpolicy *sp = NULL;
1911 			int ipsecerror;
1912 			int ipsechdr;
1913 			struct route *ro;
1914 
1915 			sp = ipsec4_getpolicybyaddr(mcopy,
1916 						    IPSEC_DIR_OUTBOUND,
1917 			                            IP_FORWARDING,
1918 			                            &ipsecerror);
1919 
1920 			if (sp == NULL)
1921 				destifp = ipforward_rt.ro_rt->rt_ifp;
1922 			else {
1923 				/* count IPsec header size */
1924 				ipsechdr = ipsec4_hdrsiz(mcopy,
1925 							 IPSEC_DIR_OUTBOUND,
1926 							 NULL);
1927 
1928 				/*
1929 				 * find the correct route for outer IPv4
1930 				 * header, compute tunnel MTU.
1931 				 *
1932 				 * XXX BUG ALERT
1933 				 * The "dummyifp" code relies upon the fact
1934 				 * that icmp_error() touches only ifp->if_mtu.
1935 				 */
1936 				/*XXX*/
1937 				destifp = NULL;
1938 				if (sp->req != NULL
1939 				 && sp->req->sav != NULL
1940 				 && sp->req->sav->sah != NULL) {
1941 					ro = &sp->req->sav->sah->sa_route;
1942 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1943 						dummyifp.if_mtu =
1944 						    ro->ro_rt->rt_ifp->if_mtu;
1945 						dummyifp.if_mtu -= ipsechdr;
1946 						destifp = &dummyifp;
1947 					}
1948 				}
1949 
1950 				key_freesp(sp);
1951 			}
1952 		}
1953 #elif FAST_IPSEC
1954 		/*
1955 		 * If the packet is routed over IPsec tunnel, tell the
1956 		 * originator the tunnel MTU.
1957 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1958 		 * XXX quickhack!!!
1959 		 */
1960 		if (ipforward_rt.ro_rt) {
1961 			struct secpolicy *sp = NULL;
1962 			int ipsecerror;
1963 			int ipsechdr;
1964 			struct route *ro;
1965 
1966 			sp = ipsec_getpolicybyaddr(mcopy,
1967 						   IPSEC_DIR_OUTBOUND,
1968 			                           IP_FORWARDING,
1969 			                           &ipsecerror);
1970 
1971 			if (sp == NULL)
1972 				destifp = ipforward_rt.ro_rt->rt_ifp;
1973 			else {
1974 				/* count IPsec header size */
1975 				ipsechdr = ipsec4_hdrsiz(mcopy,
1976 							 IPSEC_DIR_OUTBOUND,
1977 							 NULL);
1978 
1979 				/*
1980 				 * find the correct route for outer IPv4
1981 				 * header, compute tunnel MTU.
1982 				 *
1983 				 * XXX BUG ALERT
1984 				 * The "dummyifp" code relies upon the fact
1985 				 * that icmp_error() touches only ifp->if_mtu.
1986 				 */
1987 				/*XXX*/
1988 				destifp = NULL;
1989 				if (sp->req != NULL
1990 				 && sp->req->sav != NULL
1991 				 && sp->req->sav->sah != NULL) {
1992 					ro = &sp->req->sav->sah->sa_route;
1993 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1994 						dummyifp.if_mtu =
1995 						    ro->ro_rt->rt_ifp->if_mtu;
1996 						dummyifp.if_mtu -= ipsechdr;
1997 						destifp = &dummyifp;
1998 					}
1999 				}
2000 
2001 				KEY_FREESP(&sp);
2002 			}
2003 		}
2004 #else /* !IPSEC && !FAST_IPSEC */
2005 		if (ipforward_rt.ro_rt)
2006 			destifp = ipforward_rt.ro_rt->rt_ifp;
2007 #endif /*IPSEC*/
2008 		ipstat.ips_cantfrag++;
2009 		break;
2010 
2011 	case ENOBUFS:
2012 		/*
2013 		 * A router should not generate ICMP_SOURCEQUENCH as
2014 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2015 		 * Source quench could be a big problem under DoS attacks,
2016 		 * or if the underlying interface is rate-limited.
2017 		 * Those who need source quench packets may re-enable them
2018 		 * via the net.inet.ip.sendsourcequench sysctl.
2019 		 */
2020 		if (ip_sendsourcequench == 0) {
2021 			m_freem(mcopy);
2022 			return;
2023 		} else {
2024 			type = ICMP_SOURCEQUENCH;
2025 			code = 0;
2026 		}
2027 		break;
2028 
2029 	case EACCES:			/* ipfw denied packet */
2030 		m_freem(mcopy);
2031 		return;
2032 	}
2033 	icmp_error(mcopy, type, code, dest, destifp);
2034 }
2035 
2036 void
2037 ip_savecontrol(inp, mp, ip, m)
2038 	struct inpcb *inp;
2039 	struct mbuf **mp;
2040 	struct ip *ip;
2041 	struct mbuf *m;
2042 {
2043 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2044 		struct timeval tv;
2045 
2046 		microtime(&tv);
2047 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2048 			SCM_TIMESTAMP, SOL_SOCKET);
2049 		if (*mp)
2050 			mp = &(*mp)->m_next;
2051 	}
2052 	if (inp->inp_flags & INP_RECVDSTADDR) {
2053 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2054 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2055 		if (*mp)
2056 			mp = &(*mp)->m_next;
2057 	}
2058 #ifdef notyet
2059 	/* XXX
2060 	 * Moving these out of udp_input() made them even more broken
2061 	 * than they already were.
2062 	 */
2063 	/* options were tossed already */
2064 	if (inp->inp_flags & INP_RECVOPTS) {
2065 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2066 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2067 		if (*mp)
2068 			mp = &(*mp)->m_next;
2069 	}
2070 	/* ip_srcroute doesn't do what we want here, need to fix */
2071 	if (inp->inp_flags & INP_RECVRETOPTS) {
2072 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2073 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2074 		if (*mp)
2075 			mp = &(*mp)->m_next;
2076 	}
2077 #endif
2078 	if (inp->inp_flags & INP_RECVIF) {
2079 		struct ifnet *ifp;
2080 		struct sdlbuf {
2081 			struct sockaddr_dl sdl;
2082 			u_char	pad[32];
2083 		} sdlbuf;
2084 		struct sockaddr_dl *sdp;
2085 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2086 
2087 		if (((ifp = m->m_pkthdr.rcvif))
2088 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2089 			sdp = (struct sockaddr_dl *)(ifnet_addrs
2090 					[ifp->if_index - 1]->ifa_addr);
2091 			/*
2092 			 * Change our mind and don't try copy.
2093 			 */
2094 			if ((sdp->sdl_family != AF_LINK)
2095 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2096 				goto makedummy;
2097 			}
2098 			bcopy(sdp, sdl2, sdp->sdl_len);
2099 		} else {
2100 makedummy:
2101 			sdl2->sdl_len
2102 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2103 			sdl2->sdl_family = AF_LINK;
2104 			sdl2->sdl_index = 0;
2105 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2106 		}
2107 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2108 			IP_RECVIF, IPPROTO_IP);
2109 		if (*mp)
2110 			mp = &(*mp)->m_next;
2111 	}
2112 }
2113 
2114 /*
2115  * XXX these routines are called from the upper part of the kernel.
2116  *
2117  * They could also be moved to ip_mroute.c, since all the RSVP
2118  *  handling is done there already.
2119  */
2120 int
2121 ip_rsvp_init(struct socket *so)
2122 {
2123 	if (so->so_type != SOCK_RAW ||
2124 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2125 		return EOPNOTSUPP;
2126 
2127 	if (ip_rsvpd != NULL)
2128 		return EADDRINUSE;
2129 
2130 	ip_rsvpd = so;
2131 	/*
2132 	 * This may seem silly, but we need to be sure we don't over-increment
2133 	 * the RSVP counter, in case something slips up.
2134 	 */
2135 	if (!ip_rsvp_on) {
2136 		ip_rsvp_on = 1;
2137 		rsvp_on++;
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 int
2144 ip_rsvp_done(void)
2145 {
2146 	ip_rsvpd = NULL;
2147 	/*
2148 	 * This may seem silly, but we need to be sure we don't over-decrement
2149 	 * the RSVP counter, in case something slips up.
2150 	 */
2151 	if (ip_rsvp_on) {
2152 		ip_rsvp_on = 0;
2153 		rsvp_on--;
2154 	}
2155 	return 0;
2156 }
2157 
2158 void
2159 rsvp_input(struct mbuf *m, int off, int proto)	/* XXX must fixup manually */
2160 {
2161 	if (rsvp_input_p) { /* call the real one if loaded */
2162 		rsvp_input_p(m, off, proto);
2163 		return;
2164 	}
2165 
2166 	/* Can still get packets with rsvp_on = 0 if there is a local member
2167 	 * of the group to which the RSVP packet is addressed.  But in this
2168 	 * case we want to throw the packet away.
2169 	 */
2170 
2171 	if (!rsvp_on) {
2172 		m_freem(m);
2173 		return;
2174 	}
2175 
2176 	if (ip_rsvpd != NULL) {
2177 		rip_input(m, off, proto);
2178 		return;
2179 	}
2180 	/* Drop the packet */
2181 	m_freem(m);
2182 }
2183 
2184