xref: /dragonfly/sys/netinet/ip_input.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.70 2007/08/14 13:30:35 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 
97 #include <machine/stdarg.h>
98 
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 #include <net/intrq.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115 
116 #include <sys/thread2.h>
117 #include <sys/msgport2.h>
118 #include <net/netmsg2.h>
119 
120 #include <sys/socketvar.h>
121 
122 #include <net/ipfw/ip_fw.h>
123 #include <net/dummynet/ip_dummynet.h>
124 
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #include <netproto/key/key.h>
128 #endif
129 
130 #ifdef FAST_IPSEC
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #endif
134 
135 int rsvp_on = 0;
136 static int ip_rsvp_on;
137 struct socket *ip_rsvpd;
138 
139 int ipforwarding = 0;
140 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
141     &ipforwarding, 0, "Enable IP forwarding between interfaces");
142 
143 static int ipsendredirects = 1; /* XXX */
144 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
145     &ipsendredirects, 0, "Enable sending IP redirects");
146 
147 int ip_defttl = IPDEFTTL;
148 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
149     &ip_defttl, 0, "Maximum TTL on IP packets");
150 
151 static int ip_dosourceroute = 0;
152 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
153     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
154 
155 static int ip_acceptsourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
157     CTLFLAG_RW, &ip_acceptsourceroute, 0,
158     "Enable accepting source routed IP packets");
159 
160 static int ip_keepfaith = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
162     &ip_keepfaith, 0,
163     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
164 
165 static int nipq = 0;	/* total # of reass queues */
166 static int maxnipq;
167 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
168     &maxnipq, 0,
169     "Maximum number of IPv4 fragment reassembly queue entries");
170 
171 static int maxfragsperpacket;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
173     &maxfragsperpacket, 0,
174     "Maximum number of IPv4 fragments allowed per packet");
175 
176 static int ip_sendsourcequench = 0;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
178     &ip_sendsourcequench, 0,
179     "Enable the transmission of source quench packets");
180 
181 int ip_do_randomid = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
183     &ip_do_randomid, 0,
184     "Assign random ip_id values");
185 /*
186  * XXX - Setting ip_checkinterface mostly implements the receive side of
187  * the Strong ES model described in RFC 1122, but since the routing table
188  * and transmit implementation do not implement the Strong ES model,
189  * setting this to 1 results in an odd hybrid.
190  *
191  * XXX - ip_checkinterface currently must be disabled if you use ipnat
192  * to translate the destination address to another local interface.
193  *
194  * XXX - ip_checkinterface must be disabled if you add IP aliases
195  * to the loopback interface instead of the interface where the
196  * packets for those addresses are received.
197  */
198 static int ip_checkinterface = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
200     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
201 
202 #ifdef DIAGNOSTIC
203 static int ipprintfs = 0;
204 #endif
205 
206 static struct ifqueue ipintrq;
207 static int ipqmaxlen = IFQ_MAXLEN;
208 
209 extern	struct domain inetdomain;
210 extern	struct protosw inetsw[];
211 u_char	ip_protox[IPPROTO_MAX];
212 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
213 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
214 u_long	in_ifaddrhmask;				/* mask for hash table */
215 
216 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
217     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
218 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
219     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
220 
221 struct ip_stats ipstats_percpu[MAXCPU];
222 #ifdef SMP
223 static int
224 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
225 {
226 	int cpu, error = 0;
227 
228 	for (cpu = 0; cpu < ncpus; ++cpu) {
229 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
230 					sizeof(struct ip_stats))))
231 			break;
232 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
233 				       sizeof(struct ip_stats))))
234 			break;
235 	}
236 
237 	return (error);
238 }
239 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
240     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
241 #else
242 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
243     &ipstat, ip_stats, "IP statistics");
244 #endif
245 
246 /* Packet reassembly stuff */
247 #define	IPREASS_NHASH_LOG2	6
248 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
249 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
250 #define	IPREASS_HASH(x,y)						\
251     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
252 
253 static struct ipq ipq[IPREASS_NHASH];
254 const  int    ipintrq_present = 1;
255 
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258     &ip_mtu, 0, "Default MTU");
259 #endif
260 
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
267 
268 
269 /* Firewall hooks */
270 ip_fw_chk_t *ip_fw_chk_ptr;
271 int fw_enable = 1;
272 int fw_one_pass = 1;
273 
274 /* Dummynet hooks */
275 ip_dn_io_t *ip_dn_io_ptr;
276 
277 struct pfil_head inet_pfil_hook;
278 
279 /*
280  * XXX this is ugly -- the following two global variables are
281  * used to store packet state while it travels through the stack.
282  * Note that the code even makes assumptions on the size and
283  * alignment of fields inside struct ip_srcrt so e.g. adding some
284  * fields will break the code. This needs to be fixed.
285  *
286  * We need to save the IP options in case a protocol wants to respond
287  * to an incoming packet over the same route if the packet got here
288  * using IP source routing.  This allows connection establishment and
289  * maintenance when the remote end is on a network that is not known
290  * to us.
291  */
292 static int ip_nhops = 0;
293 
294 static	struct ip_srcrt {
295 	struct	in_addr dst;			/* final destination */
296 	char	nop;				/* one NOP to align */
297 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
298 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 } ip_srcrt;
300 
301 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
302 static struct malloc_pipe ipq_mpipe;
303 
304 static void		save_rte (u_char *, struct in_addr);
305 static int		ip_dooptions (struct mbuf *m, int,
306 					struct sockaddr_in *next_hop);
307 static void		ip_forward (struct mbuf *m, boolean_t using_srcrt,
308 					struct sockaddr_in *next_hop);
309 static void		ip_freef (struct ipq *);
310 static void		ip_input_handler (struct netmsg *);
311 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
312 					struct ipq *, u_int32_t *);
313 
314 /*
315  * IP initialization: fill in IP protocol switch table.
316  * All protocols not implemented in kernel go to raw IP protocol handler.
317  */
318 void
319 ip_init(void)
320 {
321 	struct protosw *pr;
322 	int i;
323 #ifdef SMP
324 	int cpu;
325 #endif
326 
327 	/*
328 	 * Make sure we can handle a reasonable number of fragments but
329 	 * cap it at 4000 (XXX).
330 	 */
331 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
332 		    IFQ_MAXLEN, 4000, 0, NULL);
333 	TAILQ_INIT(&in_ifaddrhead);
334 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
336 	if (pr == NULL)
337 		panic("ip_init");
338 	for (i = 0; i < IPPROTO_MAX; i++)
339 		ip_protox[i] = pr - inetsw;
340 	for (pr = inetdomain.dom_protosw;
341 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
342 		if (pr->pr_domain->dom_family == PF_INET &&
343 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
344 			ip_protox[pr->pr_protocol] = pr - inetsw;
345 
346 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
347 	inet_pfil_hook.ph_af = AF_INET;
348 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
349 		kprintf("%s: WARNING: unable to register pfil hook, "
350 			"error %d\n", __func__, i);
351 	}
352 
353 	for (i = 0; i < IPREASS_NHASH; i++)
354 	    ipq[i].next = ipq[i].prev = &ipq[i];
355 
356 	maxnipq = nmbclusters / 32;
357 	maxfragsperpacket = 16;
358 
359 	ip_id = time_second & 0xffff;
360 	ipintrq.ifq_maxlen = ipqmaxlen;
361 
362 	/*
363 	 * Initialize IP statistics counters for each CPU.
364 	 *
365 	 */
366 #ifdef SMP
367 	for (cpu = 0; cpu < ncpus; ++cpu) {
368 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
369 	}
370 #else
371 	bzero(&ipstat, sizeof(struct ip_stats));
372 #endif
373 
374 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
375 }
376 
377 /*
378  * XXX watch out this one. It is perhaps used as a cache for
379  * the most recently used route ? it is cleared in in_addroute()
380  * when a new route is successfully created.
381  */
382 struct route ipforward_rt[MAXCPU];
383 
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
387 			   struct sockaddr_in *nexthop)
388 {
389 	/*
390 	 * Switch out to protocol's input routine.
391 	 */
392 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
393 		/* TCP needs IPFORWARD info if available */
394 		struct m_hdr tag;
395 
396 		tag.mh_type = MT_TAG;
397 		tag.mh_flags = PACKET_TAG_IPFORWARD;
398 		tag.mh_data = (caddr_t)nexthop;
399 		tag.mh_next = m;
400 
401 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
402 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
403 	} else {
404 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
405 	}
406 }
407 
408 struct netmsg_transport_packet {
409 	struct netmsg		nm_netmsg;
410 	struct mbuf		*nm_mbuf;
411 	int			nm_hlen;
412 	boolean_t		nm_hasnexthop;
413 	struct sockaddr_in	nm_nexthop;
414 };
415 
416 static void
417 transport_processing_handler(netmsg_t netmsg)
418 {
419 	struct netmsg_transport_packet *msg = (void *)netmsg;
420 	struct sockaddr_in *nexthop;
421 	struct ip *ip;
422 
423 	ip = mtod(msg->nm_mbuf, struct ip *);
424 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
425 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
426 	lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
427 }
428 
429 static void
430 ip_input_handler(struct netmsg *msg0)
431 {
432 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
433 
434 	ip_input(m);
435 	/* msg0 was embedded in the mbuf, do not reply! */
436 }
437 
438 /*
439  * IP input routine.  Checksum and byte swap header.  If fragmented
440  * try to reassemble.  Process options.  Pass to next level.
441  */
442 void
443 ip_input(struct mbuf *m)
444 {
445 	struct ip *ip;
446 	struct ipq *fp;
447 	struct in_ifaddr *ia = NULL;
448 	struct ifaddr *ifa;
449 	int i, hlen, checkif;
450 	u_short sum;
451 	struct in_addr pkt_dst;
452 	u_int32_t divert_info = 0;		/* packet divert/tee info */
453 	struct ip_fw_args args;
454 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
455 	boolean_t needredispatch = FALSE;
456 	struct in_addr odst;			/* original dst address(NAT) */
457 #if defined(FAST_IPSEC) || defined(IPDIVERT)
458 	struct m_tag *mtag;
459 #endif
460 #ifdef FAST_IPSEC
461 	struct tdb_ident *tdbi;
462 	struct secpolicy *sp;
463 	int error;
464 #endif
465 
466 	args.eh = NULL;
467 	args.oif = NULL;
468 	args.rule = NULL;
469 	args.next_hop = NULL;
470 
471 	/* Grab info from MT_TAG mbufs prepended to the chain. */
472 	while (m != NULL && m->m_type == MT_TAG) {
473 		switch(m->_m_tag_id) {
474 		case PACKET_TAG_DUMMYNET:
475 			args.rule = ((struct dn_pkt *)m)->rule;
476 			break;
477 		case PACKET_TAG_IPFORWARD:
478 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
479 			break;
480 		default:
481 			kprintf("ip_input: unrecognised MT_TAG tag %d\n",
482 			    m->_m_tag_id);
483 			break;
484 		}
485 		m = m->m_next;
486 	}
487 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
488 
489 	if (args.rule != NULL) {	/* dummynet already filtered us */
490 		ip = mtod(m, struct ip *);
491 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
492 		goto iphack;
493 	}
494 
495 	ipstat.ips_total++;
496 
497 	/* length checks already done in ip_demux() */
498 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
499 
500 	ip = mtod(m, struct ip *);
501 
502 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
503 		ipstat.ips_badvers++;
504 		goto bad;
505 	}
506 
507 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
508 	/* length checks already done in ip_demux() */
509 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
510 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
511 
512 	/* 127/8 must not appear on wire - RFC1122 */
513 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
514 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
515 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
516 			ipstat.ips_badaddr++;
517 			goto bad;
518 		}
519 	}
520 
521 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
522 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
523 	} else {
524 		if (hlen == sizeof(struct ip)) {
525 			sum = in_cksum_hdr(ip);
526 		} else {
527 			sum = in_cksum(m, hlen);
528 		}
529 	}
530 	if (sum != 0) {
531 		ipstat.ips_badsum++;
532 		goto bad;
533 	}
534 
535 #ifdef ALTQ
536 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
537 		/* packet is dropped by traffic conditioner */
538 		return;
539 	}
540 #endif
541 	/*
542 	 * Convert fields to host representation.
543 	 */
544 	ip->ip_len = ntohs(ip->ip_len);
545 	if (ip->ip_len < hlen) {
546 		ipstat.ips_badlen++;
547 		goto bad;
548 	}
549 	ip->ip_off = ntohs(ip->ip_off);
550 
551 	/*
552 	 * Check that the amount of data in the buffers
553 	 * is as at least much as the IP header would have us expect.
554 	 * Trim mbufs if longer than we expect.
555 	 * Drop packet if shorter than we expect.
556 	 */
557 	if (m->m_pkthdr.len < ip->ip_len) {
558 		ipstat.ips_tooshort++;
559 		goto bad;
560 	}
561 	if (m->m_pkthdr.len > ip->ip_len) {
562 		if (m->m_len == m->m_pkthdr.len) {
563 			m->m_len = ip->ip_len;
564 			m->m_pkthdr.len = ip->ip_len;
565 		} else
566 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
567 	}
568 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
569 	/*
570 	 * Bypass packet filtering for packets from a tunnel (gif).
571 	 */
572 	if (ipsec_gethist(m, NULL))
573 		goto pass;
574 #endif
575 
576 	/*
577 	 * IpHack's section.
578 	 * Right now when no processing on packet has done
579 	 * and it is still fresh out of network we do our black
580 	 * deals with it.
581 	 * - Firewall: deny/allow/divert
582 	 * - Xlate: translate packet's addr/port (NAT).
583 	 * - Pipe: pass pkt through dummynet.
584 	 * - Wrap: fake packet's addr/port <unimpl.>
585 	 * - Encapsulate: put it in another IP and send out. <unimp.>
586 	 */
587 
588 iphack:
589 
590 	/*
591 	 * Run through list of hooks for input packets.
592 	 *
593 	 * NB: Beware of the destination address changing (e.g.
594 	 *     by NAT rewriting). When this happens, tell
595 	 *     ip_forward to do the right thing.
596 	 */
597 	if (pfil_has_hooks(&inet_pfil_hook)) {
598 		odst = ip->ip_dst;
599 		if (pfil_run_hooks(&inet_pfil_hook, &m,
600 		    m->m_pkthdr.rcvif, PFIL_IN)) {
601 			return;
602 		}
603 		if (m == NULL)			/* consumed by filter */
604 			return;
605 		ip = mtod(m, struct ip *);
606 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
607 	}
608 
609 	if (fw_enable && IPFW_LOADED) {
610 		/*
611 		 * If we've been forwarded from the output side, then
612 		 * skip the firewall a second time
613 		 */
614 		if (args.next_hop != NULL)
615 			goto ours;
616 
617 		args.m = m;
618 		i = ip_fw_chk_ptr(&args);
619 		m = args.m;
620 
621 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
622 			if (m != NULL)
623 				m_freem(m);
624 			return;
625 		}
626 		ip = mtod(m, struct ip *);	/* just in case m changed */
627 		if (i == 0 && args.next_hop == NULL)	/* common case */
628 			goto pass;
629 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
630 			/* Send packet to the appropriate pipe */
631 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
632 			return;
633 		}
634 #ifdef IPDIVERT
635 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
636 			/* Divert or tee packet */
637 			divert_info = i;
638 			goto ours;
639 		}
640 #endif
641 		if (i == 0 && args.next_hop != NULL)
642 			goto pass;
643 		/*
644 		 * if we get here, the packet must be dropped
645 		 */
646 		m_freem(m);
647 		return;
648 	}
649 pass:
650 
651 	/*
652 	 * Process options and, if not destined for us,
653 	 * ship it on.  ip_dooptions returns 1 when an
654 	 * error was detected (causing an icmp message
655 	 * to be sent and the original packet to be freed).
656 	 */
657 	ip_nhops = 0;		/* for source routed packets */
658 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
659 		return;
660 
661 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
662 	 * matter if it is destined to another node, or whether it is
663 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
664 	 * anywhere else. Also checks if the rsvp daemon is running before
665 	 * grabbing the packet.
666 	 */
667 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
668 		goto ours;
669 
670 	/*
671 	 * Check our list of addresses, to see if the packet is for us.
672 	 * If we don't have any addresses, assume any unicast packet
673 	 * we receive might be for us (and let the upper layers deal
674 	 * with it).
675 	 */
676 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
677 		goto ours;
678 
679 	/*
680 	 * Cache the destination address of the packet; this may be
681 	 * changed by use of 'ipfw fwd'.
682 	 */
683 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
684 
685 	/*
686 	 * Enable a consistency check between the destination address
687 	 * and the arrival interface for a unicast packet (the RFC 1122
688 	 * strong ES model) if IP forwarding is disabled and the packet
689 	 * is not locally generated and the packet is not subject to
690 	 * 'ipfw fwd'.
691 	 *
692 	 * XXX - Checking also should be disabled if the destination
693 	 * address is ipnat'ed to a different interface.
694 	 *
695 	 * XXX - Checking is incompatible with IP aliases added
696 	 * to the loopback interface instead of the interface where
697 	 * the packets are received.
698 	 */
699 	checkif = ip_checkinterface &&
700 		  !ipforwarding &&
701 		  m->m_pkthdr.rcvif != NULL &&
702 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
703 		  (args.next_hop == NULL);
704 
705 	/*
706 	 * Check for exact addresses in the hash bucket.
707 	 */
708 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
709 		/*
710 		 * If the address matches, verify that the packet
711 		 * arrived via the correct interface if checking is
712 		 * enabled.
713 		 */
714 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
715 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
716 			goto ours;
717 	}
718 	/*
719 	 * Check for broadcast addresses.
720 	 *
721 	 * Only accept broadcast packets that arrive via the matching
722 	 * interface.  Reception of forwarded directed broadcasts would
723 	 * be handled via ip_forward() and ether_output() with the loopback
724 	 * into the stack for SIMPLEX interfaces handled by ether_output().
725 	 */
726 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
727 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
728 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
729 				continue;
730 			if (ifa->ifa_addr->sa_family != AF_INET)
731 				continue;
732 			ia = ifatoia(ifa);
733 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
734 								pkt_dst.s_addr)
735 				goto ours;
736 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
737 				goto ours;
738 #ifdef BOOTP_COMPAT
739 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
740 				goto ours;
741 #endif
742 		}
743 	}
744 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
745 		struct in_multi *inm;
746 
747 		if (ip_mrouter != NULL) {
748 			/*
749 			 * If we are acting as a multicast router, all
750 			 * incoming multicast packets are passed to the
751 			 * kernel-level multicast forwarding function.
752 			 * The packet is returned (relatively) intact; if
753 			 * ip_mforward() returns a non-zero value, the packet
754 			 * must be discarded, else it may be accepted below.
755 			 */
756 			if (ip_mforward != NULL &&
757 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
758 				ipstat.ips_cantforward++;
759 				m_freem(m);
760 				return;
761 			}
762 
763 			/*
764 			 * The process-level routing daemon needs to receive
765 			 * all multicast IGMP packets, whether or not this
766 			 * host belongs to their destination groups.
767 			 */
768 			if (ip->ip_p == IPPROTO_IGMP)
769 				goto ours;
770 			ipstat.ips_forward++;
771 		}
772 		/*
773 		 * See if we belong to the destination multicast group on the
774 		 * arrival interface.
775 		 */
776 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
777 		if (inm == NULL) {
778 			ipstat.ips_notmember++;
779 			m_freem(m);
780 			return;
781 		}
782 		goto ours;
783 	}
784 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
785 		goto ours;
786 	if (ip->ip_dst.s_addr == INADDR_ANY)
787 		goto ours;
788 
789 	/*
790 	 * FAITH(Firewall Aided Internet Translator)
791 	 */
792 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
793 		if (ip_keepfaith) {
794 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
795 				goto ours;
796 		}
797 		m_freem(m);
798 		return;
799 	}
800 
801 	/*
802 	 * Not for us; forward if possible and desirable.
803 	 */
804 	if (!ipforwarding) {
805 		ipstat.ips_cantforward++;
806 		m_freem(m);
807 	} else {
808 #ifdef IPSEC
809 		/*
810 		 * Enforce inbound IPsec SPD.
811 		 */
812 		if (ipsec4_in_reject(m, NULL)) {
813 			ipsecstat.in_polvio++;
814 			goto bad;
815 		}
816 #endif
817 #ifdef FAST_IPSEC
818 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
819 		crit_enter();
820 		if (mtag != NULL) {
821 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
822 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
823 		} else {
824 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
825 						   IP_FORWARDING, &error);
826 		}
827 		if (sp == NULL) {	/* NB: can happen if error */
828 			crit_exit();
829 			/*XXX error stat???*/
830 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
831 			goto bad;
832 		}
833 
834 		/*
835 		 * Check security policy against packet attributes.
836 		 */
837 		error = ipsec_in_reject(sp, m);
838 		KEY_FREESP(&sp);
839 		crit_exit();
840 		if (error) {
841 			ipstat.ips_cantforward++;
842 			goto bad;
843 		}
844 #endif
845 		ip_forward(m, using_srcrt, args.next_hop);
846 	}
847 	return;
848 
849 ours:
850 
851 	/*
852 	 * IPSTEALTH: Process non-routing options only
853 	 * if the packet is destined for us.
854 	 */
855 	if (ipstealth &&
856 	    hlen > sizeof(struct ip) &&
857 	    ip_dooptions(m, 1, args.next_hop))
858 		return;
859 
860 	/* Count the packet in the ip address stats */
861 	if (ia != NULL) {
862 		ia->ia_ifa.if_ipackets++;
863 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
864 	}
865 
866 	/*
867 	 * If offset or IP_MF are set, must reassemble.
868 	 * Otherwise, nothing need be done.
869 	 * (We could look in the reassembly queue to see
870 	 * if the packet was previously fragmented,
871 	 * but it's not worth the time; just let them time out.)
872 	 */
873 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
874 
875 		/* If maxnipq is 0, never accept fragments. */
876 		if (maxnipq == 0) {
877 			ipstat.ips_fragments++;
878 			ipstat.ips_fragdropped++;
879 			goto bad;
880 		}
881 
882 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
883 		/*
884 		 * Look for queue of fragments
885 		 * of this datagram.
886 		 */
887 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
888 			if (ip->ip_id == fp->ipq_id &&
889 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
890 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
891 			    ip->ip_p == fp->ipq_p)
892 				goto found;
893 
894 		fp = NULL;
895 
896 		/*
897 		 * Enforce upper bound on number of fragmented packets
898 		 * for which we attempt reassembly;
899 		 * If maxnipq is -1, accept all fragments without limitation.
900 		 */
901 		if ((nipq > maxnipq) && (maxnipq > 0)) {
902 			/*
903 			 * drop something from the tail of the current queue
904 			 * before proceeding further
905 			 */
906 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
907 				for (i = 0; i < IPREASS_NHASH; i++) {
908 					if (ipq[i].prev != &ipq[i]) {
909 						ipstat.ips_fragtimeout +=
910 						    ipq[i].prev->ipq_nfrags;
911 						ip_freef(ipq[i].prev);
912 						break;
913 					}
914 				}
915 			} else {
916 				ipstat.ips_fragtimeout +=
917 				    ipq[sum].prev->ipq_nfrags;
918 				ip_freef(ipq[sum].prev);
919 			}
920 		}
921 found:
922 		/*
923 		 * Adjust ip_len to not reflect header,
924 		 * convert offset of this to bytes.
925 		 */
926 		ip->ip_len -= hlen;
927 		if (ip->ip_off & IP_MF) {
928 			/*
929 			 * Make sure that fragments have a data length
930 			 * that's a non-zero multiple of 8 bytes.
931 			 */
932 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
933 				ipstat.ips_toosmall++; /* XXX */
934 				goto bad;
935 			}
936 			m->m_flags |= M_FRAG;
937 		} else
938 			m->m_flags &= ~M_FRAG;
939 		ip->ip_off <<= 3;
940 
941 		/*
942 		 * Attempt reassembly; if it succeeds, proceed.
943 		 * ip_reass() will return a different mbuf, and update
944 		 * the divert info in divert_info.
945 		 */
946 		ipstat.ips_fragments++;
947 		m->m_pkthdr.header = ip;
948 		m = ip_reass(m, fp, &ipq[sum], &divert_info);
949 		if (m == NULL)
950 			return;
951 		ipstat.ips_reassembled++;
952 		needredispatch = TRUE;
953 		ip = mtod(m, struct ip *);
954 		/* Get the header length of the reassembled packet */
955 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
956 #ifdef IPDIVERT
957 		/* Restore original checksum before diverting packet */
958 		if (divert_info != 0) {
959 			ip->ip_len += hlen;
960 			ip->ip_len = htons(ip->ip_len);
961 			ip->ip_off = htons(ip->ip_off);
962 			ip->ip_sum = 0;
963 			if (hlen == sizeof(struct ip))
964 				ip->ip_sum = in_cksum_hdr(ip);
965 			else
966 				ip->ip_sum = in_cksum(m, hlen);
967 			ip->ip_off = ntohs(ip->ip_off);
968 			ip->ip_len = ntohs(ip->ip_len);
969 			ip->ip_len -= hlen;
970 		}
971 #endif
972 	} else {
973 		ip->ip_len -= hlen;
974 	}
975 
976 #ifdef IPDIVERT
977 	/*
978 	 * Divert or tee packet to the divert protocol if required.
979 	 */
980 	if (divert_info != 0) {
981 		struct mbuf *clone = NULL;
982 
983 		/* Clone packet if we're doing a 'tee' */
984 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
985 			clone = m_dup(m, MB_DONTWAIT);
986 
987 		/* Restore packet header fields to original values */
988 		ip->ip_len += hlen;
989 		ip->ip_len = htons(ip->ip_len);
990 		ip->ip_off = htons(ip->ip_off);
991 
992 		/* Deliver packet to divert input routine */
993 		divert_packet(m, 1, divert_info & 0xffff);
994 		ipstat.ips_delivered++;
995 
996 		/* If 'tee', continue with original packet */
997 		if (clone == NULL)
998 			return;
999 		m = clone;
1000 		ip = mtod(m, struct ip *);
1001 		ip->ip_len += hlen;
1002 		/*
1003 		 * Jump backwards to complete processing of the
1004 		 * packet. But first clear divert_info to avoid
1005 		 * entering this block again.
1006 		 * We do not need to clear args.divert_rule
1007 		 * or args.next_hop as they will not be used.
1008 		 *
1009 		 * XXX Better safe than sorry, remove the DIVERT tag.
1010 		 */
1011 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1012 		if (mtag != NULL)
1013 			m_tag_delete(m, mtag);
1014 
1015 		divert_info = 0;
1016 		goto pass;
1017 	}
1018 #endif
1019 
1020 #ifdef IPSEC
1021 	/*
1022 	 * enforce IPsec policy checking if we are seeing last header.
1023 	 * note that we do not visit this with protocols with pcb layer
1024 	 * code - like udp/tcp/raw ip.
1025 	 */
1026 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1027 	    ipsec4_in_reject(m, NULL)) {
1028 		ipsecstat.in_polvio++;
1029 		goto bad;
1030 	}
1031 #endif
1032 #if FAST_IPSEC
1033 	/*
1034 	 * enforce IPsec policy checking if we are seeing last header.
1035 	 * note that we do not visit this with protocols with pcb layer
1036 	 * code - like udp/tcp/raw ip.
1037 	 */
1038 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1039 		/*
1040 		 * Check if the packet has already had IPsec processing
1041 		 * done.  If so, then just pass it along.  This tag gets
1042 		 * set during AH, ESP, etc. input handling, before the
1043 		 * packet is returned to the ip input queue for delivery.
1044 		 */
1045 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1046 		crit_enter();
1047 		if (mtag != NULL) {
1048 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
1049 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1050 		} else {
1051 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1052 						   IP_FORWARDING, &error);
1053 		}
1054 		if (sp != NULL) {
1055 			/*
1056 			 * Check security policy against packet attributes.
1057 			 */
1058 			error = ipsec_in_reject(sp, m);
1059 			KEY_FREESP(&sp);
1060 		} else {
1061 			/* XXX error stat??? */
1062 			error = EINVAL;
1063 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1064 			goto bad;
1065 		}
1066 		crit_exit();
1067 		if (error)
1068 			goto bad;
1069 	}
1070 #endif /* FAST_IPSEC */
1071 
1072 	ipstat.ips_delivered++;
1073 	if (needredispatch) {
1074 		struct netmsg_transport_packet *msg;
1075 		lwkt_port_t port;
1076 
1077 		ip->ip_off = htons(ip->ip_off);
1078 		ip->ip_len = htons(ip->ip_len);
1079 		port = ip_mport(&m);
1080 		if (port == NULL)
1081 			return;
1082 
1083 		msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1084 			     M_INTWAIT | M_NULLOK);
1085 		if (msg == NULL)
1086 			goto bad;
1087 
1088 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1089 			    transport_processing_handler);
1090 		msg->nm_hlen = hlen;
1091 		msg->nm_hasnexthop = (args.next_hop != NULL);
1092 		if (msg->nm_hasnexthop)
1093 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1094 
1095 		msg->nm_mbuf = m;
1096 		ip = mtod(m, struct ip *);
1097 		ip->ip_len = ntohs(ip->ip_len);
1098 		ip->ip_off = ntohs(ip->ip_off);
1099 		lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1100 	} else {
1101 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1102 	}
1103 	return;
1104 
1105 bad:
1106 	m_freem(m);
1107 }
1108 
1109 /*
1110  * Take incoming datagram fragment and try to reassemble it into
1111  * whole datagram.  If a chain for reassembly of this datagram already
1112  * exists, then it is given as fp; otherwise have to make a chain.
1113  *
1114  * When IPDIVERT enabled, keep additional state with each packet that
1115  * tells us if we need to divert or tee the packet we're building.
1116  * In particular, *divinfo includes the port and TEE flag.
1117  */
1118 
1119 static struct mbuf *
1120 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1121 	 u_int32_t *divinfo)
1122 {
1123 	struct ip *ip = mtod(m, struct ip *);
1124 	struct mbuf *p = NULL, *q, *nq;
1125 	struct mbuf *n;
1126 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1127 	int i, next;
1128 #ifdef IPDIVERT
1129 	struct m_tag *mtag;
1130 #endif
1131 
1132 	/*
1133 	 * If the hardware has not done csum over this fragment
1134 	 * then csum_data is not valid at all.
1135 	 */
1136 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1137 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1138 		m->m_pkthdr.csum_data = 0;
1139 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1140 	}
1141 
1142 	/*
1143 	 * Presence of header sizes in mbufs
1144 	 * would confuse code below.
1145 	 */
1146 	m->m_data += hlen;
1147 	m->m_len -= hlen;
1148 
1149 	/*
1150 	 * If first fragment to arrive, create a reassembly queue.
1151 	 */
1152 	if (fp == NULL) {
1153 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1154 			goto dropfrag;
1155 		insque(fp, where);
1156 		nipq++;
1157 		fp->ipq_nfrags = 1;
1158 		fp->ipq_ttl = IPFRAGTTL;
1159 		fp->ipq_p = ip->ip_p;
1160 		fp->ipq_id = ip->ip_id;
1161 		fp->ipq_src = ip->ip_src;
1162 		fp->ipq_dst = ip->ip_dst;
1163 		fp->ipq_frags = m;
1164 		m->m_nextpkt = NULL;
1165 #ifdef IPDIVERT
1166 		fp->ipq_div_info = 0;
1167 #endif
1168 		goto inserted;
1169 	} else {
1170 		fp->ipq_nfrags++;
1171 	}
1172 
1173 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1174 
1175 	/*
1176 	 * Find a segment which begins after this one does.
1177 	 */
1178 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1179 		if (GETIP(q)->ip_off > ip->ip_off)
1180 			break;
1181 
1182 	/*
1183 	 * If there is a preceding segment, it may provide some of
1184 	 * our data already.  If so, drop the data from the incoming
1185 	 * segment.  If it provides all of our data, drop us, otherwise
1186 	 * stick new segment in the proper place.
1187 	 *
1188 	 * If some of the data is dropped from the the preceding
1189 	 * segment, then it's checksum is invalidated.
1190 	 */
1191 	if (p) {
1192 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1193 		if (i > 0) {
1194 			if (i >= ip->ip_len)
1195 				goto dropfrag;
1196 			m_adj(m, i);
1197 			m->m_pkthdr.csum_flags = 0;
1198 			ip->ip_off += i;
1199 			ip->ip_len -= i;
1200 		}
1201 		m->m_nextpkt = p->m_nextpkt;
1202 		p->m_nextpkt = m;
1203 	} else {
1204 		m->m_nextpkt = fp->ipq_frags;
1205 		fp->ipq_frags = m;
1206 	}
1207 
1208 	/*
1209 	 * While we overlap succeeding segments trim them or,
1210 	 * if they are completely covered, dequeue them.
1211 	 */
1212 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1213 	     q = nq) {
1214 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1215 		if (i < GETIP(q)->ip_len) {
1216 			GETIP(q)->ip_len -= i;
1217 			GETIP(q)->ip_off += i;
1218 			m_adj(q, i);
1219 			q->m_pkthdr.csum_flags = 0;
1220 			break;
1221 		}
1222 		nq = q->m_nextpkt;
1223 		m->m_nextpkt = nq;
1224 		ipstat.ips_fragdropped++;
1225 		fp->ipq_nfrags--;
1226 		q->m_nextpkt = NULL;
1227 		m_freem(q);
1228 	}
1229 
1230 inserted:
1231 
1232 #ifdef IPDIVERT
1233 	/*
1234 	 * Transfer firewall instructions to the fragment structure.
1235 	 * Only trust info in the fragment at offset 0.
1236 	 */
1237 	if (ip->ip_off == 0) {
1238 		fp->ipq_div_info = *divinfo;
1239 	} else {
1240 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1241 		if (mtag != NULL)
1242 			m_tag_delete(m, mtag);
1243 	}
1244 	*divinfo = 0;
1245 #endif
1246 
1247 	/*
1248 	 * Check for complete reassembly and perform frag per packet
1249 	 * limiting.
1250 	 *
1251 	 * Frag limiting is performed here so that the nth frag has
1252 	 * a chance to complete the packet before we drop the packet.
1253 	 * As a result, n+1 frags are actually allowed per packet, but
1254 	 * only n will ever be stored. (n = maxfragsperpacket.)
1255 	 *
1256 	 */
1257 	next = 0;
1258 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1259 		if (GETIP(q)->ip_off != next) {
1260 			if (fp->ipq_nfrags > maxfragsperpacket) {
1261 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1262 				ip_freef(fp);
1263 			}
1264 			return (NULL);
1265 		}
1266 		next += GETIP(q)->ip_len;
1267 	}
1268 	/* Make sure the last packet didn't have the IP_MF flag */
1269 	if (p->m_flags & M_FRAG) {
1270 		if (fp->ipq_nfrags > maxfragsperpacket) {
1271 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1272 			ip_freef(fp);
1273 		}
1274 		return (NULL);
1275 	}
1276 
1277 	/*
1278 	 * Reassembly is complete.  Make sure the packet is a sane size.
1279 	 */
1280 	q = fp->ipq_frags;
1281 	ip = GETIP(q);
1282 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1283 		ipstat.ips_toolong++;
1284 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1285 		ip_freef(fp);
1286 		return (NULL);
1287 	}
1288 
1289 	/*
1290 	 * Concatenate fragments.
1291 	 */
1292 	m = q;
1293 	n = m->m_next;
1294 	m->m_next = NULL;
1295 	m_cat(m, n);
1296 	nq = q->m_nextpkt;
1297 	q->m_nextpkt = NULL;
1298 	for (q = nq; q != NULL; q = nq) {
1299 		nq = q->m_nextpkt;
1300 		q->m_nextpkt = NULL;
1301 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1302 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1303 		m_cat(m, q);
1304 	}
1305 
1306 	/*
1307 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1308 	 * be added back.  This assumes no more then 65535 packet fragments
1309 	 * were reassembled.  A second carry can also occur (but not a third).
1310 	 */
1311 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1312 				(m->m_pkthdr.csum_data >> 16);
1313 	if (m->m_pkthdr.csum_data > 0xFFFF)
1314 		m->m_pkthdr.csum_data -= 0xFFFF;
1315 
1316 
1317 #ifdef IPDIVERT
1318 	/*
1319 	 * Extract firewall instructions from the fragment structure.
1320 	 */
1321 	*divinfo = fp->ipq_div_info;
1322 #endif
1323 
1324 	/*
1325 	 * Create header for new ip packet by
1326 	 * modifying header of first packet;
1327 	 * dequeue and discard fragment reassembly header.
1328 	 * Make header visible.
1329 	 */
1330 	ip->ip_len = next;
1331 	ip->ip_src = fp->ipq_src;
1332 	ip->ip_dst = fp->ipq_dst;
1333 	remque(fp);
1334 	nipq--;
1335 	mpipe_free(&ipq_mpipe, fp);
1336 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1337 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1338 	/* some debugging cruft by sklower, below, will go away soon */
1339 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1340 		int plen = 0;
1341 
1342 		for (n = m; n; n = n->m_next)
1343 			plen += n->m_len;
1344 		m->m_pkthdr.len = plen;
1345 	}
1346 	return (m);
1347 
1348 dropfrag:
1349 #ifdef IPDIVERT
1350 	*divinfo = 0;
1351 #endif
1352 	ipstat.ips_fragdropped++;
1353 	if (fp != NULL)
1354 		fp->ipq_nfrags--;
1355 	m_freem(m);
1356 	return (NULL);
1357 
1358 #undef GETIP
1359 }
1360 
1361 /*
1362  * Free a fragment reassembly header and all
1363  * associated datagrams.
1364  */
1365 static void
1366 ip_freef(struct ipq *fp)
1367 {
1368 	struct mbuf *q;
1369 
1370 	while (fp->ipq_frags) {
1371 		q = fp->ipq_frags;
1372 		fp->ipq_frags = q->m_nextpkt;
1373 		q->m_nextpkt = NULL;
1374 		m_freem(q);
1375 	}
1376 	remque(fp);
1377 	mpipe_free(&ipq_mpipe, fp);
1378 	nipq--;
1379 }
1380 
1381 /*
1382  * IP timer processing;
1383  * if a timer expires on a reassembly
1384  * queue, discard it.
1385  */
1386 void
1387 ip_slowtimo(void)
1388 {
1389 	struct ipq *fp;
1390 	int i;
1391 
1392 	crit_enter();
1393 	for (i = 0; i < IPREASS_NHASH; i++) {
1394 		fp = ipq[i].next;
1395 		if (fp == NULL)
1396 			continue;
1397 		while (fp != &ipq[i]) {
1398 			--fp->ipq_ttl;
1399 			fp = fp->next;
1400 			if (fp->prev->ipq_ttl == 0) {
1401 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1402 				ip_freef(fp->prev);
1403 			}
1404 		}
1405 	}
1406 	/*
1407 	 * If we are over the maximum number of fragments
1408 	 * (due to the limit being lowered), drain off
1409 	 * enough to get down to the new limit.
1410 	 */
1411 	if (maxnipq >= 0 && nipq > maxnipq) {
1412 		for (i = 0; i < IPREASS_NHASH; i++) {
1413 			while (nipq > maxnipq &&
1414 				(ipq[i].next != &ipq[i])) {
1415 				ipstat.ips_fragdropped +=
1416 				    ipq[i].next->ipq_nfrags;
1417 				ip_freef(ipq[i].next);
1418 			}
1419 		}
1420 	}
1421 	ipflow_slowtimo();
1422 	crit_exit();
1423 }
1424 
1425 /*
1426  * Drain off all datagram fragments.
1427  */
1428 void
1429 ip_drain(void)
1430 {
1431 	int i;
1432 
1433 	for (i = 0; i < IPREASS_NHASH; i++) {
1434 		while (ipq[i].next != &ipq[i]) {
1435 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1436 			ip_freef(ipq[i].next);
1437 		}
1438 	}
1439 	in_rtqdrain();
1440 }
1441 
1442 /*
1443  * Do option processing on a datagram,
1444  * possibly discarding it if bad options are encountered,
1445  * or forwarding it if source-routed.
1446  * The pass argument is used when operating in the IPSTEALTH
1447  * mode to tell what options to process:
1448  * [LS]SRR (pass 0) or the others (pass 1).
1449  * The reason for as many as two passes is that when doing IPSTEALTH,
1450  * non-routing options should be processed only if the packet is for us.
1451  * Returns 1 if packet has been forwarded/freed,
1452  * 0 if the packet should be processed further.
1453  */
1454 static int
1455 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1456 {
1457 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1458 	struct ip *ip = mtod(m, struct ip *);
1459 	u_char *cp;
1460 	struct in_ifaddr *ia;
1461 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1462 	boolean_t forward = FALSE;
1463 	struct in_addr *sin, dst;
1464 	n_time ntime;
1465 
1466 	dst = ip->ip_dst;
1467 	cp = (u_char *)(ip + 1);
1468 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1469 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1470 		opt = cp[IPOPT_OPTVAL];
1471 		if (opt == IPOPT_EOL)
1472 			break;
1473 		if (opt == IPOPT_NOP)
1474 			optlen = 1;
1475 		else {
1476 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1477 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1478 				goto bad;
1479 			}
1480 			optlen = cp[IPOPT_OLEN];
1481 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1482 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1483 				goto bad;
1484 			}
1485 		}
1486 		switch (opt) {
1487 
1488 		default:
1489 			break;
1490 
1491 		/*
1492 		 * Source routing with record.
1493 		 * Find interface with current destination address.
1494 		 * If none on this machine then drop if strictly routed,
1495 		 * or do nothing if loosely routed.
1496 		 * Record interface address and bring up next address
1497 		 * component.  If strictly routed make sure next
1498 		 * address is on directly accessible net.
1499 		 */
1500 		case IPOPT_LSRR:
1501 		case IPOPT_SSRR:
1502 			if (ipstealth && pass > 0)
1503 				break;
1504 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1505 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1506 				goto bad;
1507 			}
1508 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1509 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1510 				goto bad;
1511 			}
1512 			ipaddr.sin_addr = ip->ip_dst;
1513 			ia = (struct in_ifaddr *)
1514 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1515 			if (ia == NULL) {
1516 				if (opt == IPOPT_SSRR) {
1517 					type = ICMP_UNREACH;
1518 					code = ICMP_UNREACH_SRCFAIL;
1519 					goto bad;
1520 				}
1521 				if (!ip_dosourceroute)
1522 					goto nosourcerouting;
1523 				/*
1524 				 * Loose routing, and not at next destination
1525 				 * yet; nothing to do except forward.
1526 				 */
1527 				break;
1528 			}
1529 			off--;			/* 0 origin */
1530 			if (off > optlen - (int)sizeof(struct in_addr)) {
1531 				/*
1532 				 * End of source route.  Should be for us.
1533 				 */
1534 				if (!ip_acceptsourceroute)
1535 					goto nosourcerouting;
1536 				save_rte(cp, ip->ip_src);
1537 				break;
1538 			}
1539 			if (ipstealth)
1540 				goto dropit;
1541 			if (!ip_dosourceroute) {
1542 				if (ipforwarding) {
1543 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1544 
1545 					/*
1546 					 * Acting as a router, so generate ICMP
1547 					 */
1548 nosourcerouting:
1549 					strcpy(buf, inet_ntoa(ip->ip_dst));
1550 					log(LOG_WARNING,
1551 					    "attempted source route from %s to %s\n",
1552 					    inet_ntoa(ip->ip_src), buf);
1553 					type = ICMP_UNREACH;
1554 					code = ICMP_UNREACH_SRCFAIL;
1555 					goto bad;
1556 				} else {
1557 					/*
1558 					 * Not acting as a router,
1559 					 * so silently drop.
1560 					 */
1561 dropit:
1562 					ipstat.ips_cantforward++;
1563 					m_freem(m);
1564 					return (1);
1565 				}
1566 			}
1567 
1568 			/*
1569 			 * locate outgoing interface
1570 			 */
1571 			memcpy(&ipaddr.sin_addr, cp + off,
1572 			    sizeof ipaddr.sin_addr);
1573 
1574 			if (opt == IPOPT_SSRR) {
1575 #define	INA	struct in_ifaddr *
1576 #define	SA	struct sockaddr *
1577 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1578 									== NULL)
1579 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1580 			} else
1581 				ia = ip_rtaddr(ipaddr.sin_addr,
1582 					       &ipforward_rt[mycpuid]);
1583 			if (ia == NULL) {
1584 				type = ICMP_UNREACH;
1585 				code = ICMP_UNREACH_SRCFAIL;
1586 				goto bad;
1587 			}
1588 			ip->ip_dst = ipaddr.sin_addr;
1589 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1590 			    sizeof(struct in_addr));
1591 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1592 			/*
1593 			 * Let ip_intr's mcast routing check handle mcast pkts
1594 			 */
1595 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1596 			break;
1597 
1598 		case IPOPT_RR:
1599 			if (ipstealth && pass == 0)
1600 				break;
1601 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1602 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1603 				goto bad;
1604 			}
1605 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1606 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1607 				goto bad;
1608 			}
1609 			/*
1610 			 * If no space remains, ignore.
1611 			 */
1612 			off--;			/* 0 origin */
1613 			if (off > optlen - (int)sizeof(struct in_addr))
1614 				break;
1615 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1616 			    sizeof ipaddr.sin_addr);
1617 			/*
1618 			 * locate outgoing interface; if we're the destination,
1619 			 * use the incoming interface (should be same).
1620 			 */
1621 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1622 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1623 			    		    &ipforward_rt[mycpuid]))
1624 								     == NULL) {
1625 				type = ICMP_UNREACH;
1626 				code = ICMP_UNREACH_HOST;
1627 				goto bad;
1628 			}
1629 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1630 			    sizeof(struct in_addr));
1631 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1632 			break;
1633 
1634 		case IPOPT_TS:
1635 			if (ipstealth && pass == 0)
1636 				break;
1637 			code = cp - (u_char *)ip;
1638 			if (optlen < 4 || optlen > 40) {
1639 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1640 				goto bad;
1641 			}
1642 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1643 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1644 				goto bad;
1645 			}
1646 			if (off > optlen - (int)sizeof(int32_t)) {
1647 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1648 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1649 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1650 					goto bad;
1651 				}
1652 				break;
1653 			}
1654 			off--;				/* 0 origin */
1655 			sin = (struct in_addr *)(cp + off);
1656 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1657 
1658 			case IPOPT_TS_TSONLY:
1659 				break;
1660 
1661 			case IPOPT_TS_TSANDADDR:
1662 				if (off + sizeof(n_time) +
1663 				    sizeof(struct in_addr) > optlen) {
1664 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1665 					goto bad;
1666 				}
1667 				ipaddr.sin_addr = dst;
1668 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1669 							    m->m_pkthdr.rcvif);
1670 				if (ia == NULL)
1671 					continue;
1672 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1673 				    sizeof(struct in_addr));
1674 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1675 				off += sizeof(struct in_addr);
1676 				break;
1677 
1678 			case IPOPT_TS_PRESPEC:
1679 				if (off + sizeof(n_time) +
1680 				    sizeof(struct in_addr) > optlen) {
1681 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1682 					goto bad;
1683 				}
1684 				memcpy(&ipaddr.sin_addr, sin,
1685 				    sizeof(struct in_addr));
1686 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1687 					continue;
1688 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1689 				off += sizeof(struct in_addr);
1690 				break;
1691 
1692 			default:
1693 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1694 				goto bad;
1695 			}
1696 			ntime = iptime();
1697 			memcpy(cp + off, &ntime, sizeof(n_time));
1698 			cp[IPOPT_OFFSET] += sizeof(n_time);
1699 		}
1700 	}
1701 	if (forward && ipforwarding) {
1702 		ip_forward(m, TRUE, next_hop);
1703 		return (1);
1704 	}
1705 	return (0);
1706 bad:
1707 	icmp_error(m, type, code, 0, 0);
1708 	ipstat.ips_badoptions++;
1709 	return (1);
1710 }
1711 
1712 /*
1713  * Given address of next destination (final or next hop),
1714  * return internet address info of interface to be used to get there.
1715  */
1716 struct in_ifaddr *
1717 ip_rtaddr(struct in_addr dst, struct route *ro)
1718 {
1719 	struct sockaddr_in *sin;
1720 
1721 	sin = (struct sockaddr_in *)&ro->ro_dst;
1722 
1723 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1724 		if (ro->ro_rt != NULL) {
1725 			RTFREE(ro->ro_rt);
1726 			ro->ro_rt = NULL;
1727 		}
1728 		sin->sin_family = AF_INET;
1729 		sin->sin_len = sizeof *sin;
1730 		sin->sin_addr = dst;
1731 		rtalloc_ign(ro, RTF_PRCLONING);
1732 	}
1733 
1734 	if (ro->ro_rt == NULL)
1735 		return (NULL);
1736 
1737 	return (ifatoia(ro->ro_rt->rt_ifa));
1738 }
1739 
1740 /*
1741  * Save incoming source route for use in replies,
1742  * to be picked up later by ip_srcroute if the receiver is interested.
1743  */
1744 void
1745 save_rte(u_char *option, struct in_addr dst)
1746 {
1747 	unsigned olen;
1748 
1749 	olen = option[IPOPT_OLEN];
1750 #ifdef DIAGNOSTIC
1751 	if (ipprintfs)
1752 		kprintf("save_rte: olen %d\n", olen);
1753 #endif
1754 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1755 		return;
1756 	bcopy(option, ip_srcrt.srcopt, olen);
1757 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1758 	ip_srcrt.dst = dst;
1759 }
1760 
1761 /*
1762  * Retrieve incoming source route for use in replies,
1763  * in the same form used by setsockopt.
1764  * The first hop is placed before the options, will be removed later.
1765  */
1766 struct mbuf *
1767 ip_srcroute(void)
1768 {
1769 	struct in_addr *p, *q;
1770 	struct mbuf *m;
1771 
1772 	if (ip_nhops == 0)
1773 		return (NULL);
1774 	m = m_get(MB_DONTWAIT, MT_HEADER);
1775 	if (m == NULL)
1776 		return (NULL);
1777 
1778 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1779 
1780 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1781 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1782 	    OPTSIZ;
1783 #ifdef DIAGNOSTIC
1784 	if (ipprintfs)
1785 		kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1786 #endif
1787 
1788 	/*
1789 	 * First save first hop for return route
1790 	 */
1791 	p = &ip_srcrt.route[ip_nhops - 1];
1792 	*(mtod(m, struct in_addr *)) = *p--;
1793 #ifdef DIAGNOSTIC
1794 	if (ipprintfs)
1795 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1796 #endif
1797 
1798 	/*
1799 	 * Copy option fields and padding (nop) to mbuf.
1800 	 */
1801 	ip_srcrt.nop = IPOPT_NOP;
1802 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1803 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1804 	    OPTSIZ);
1805 	q = (struct in_addr *)(mtod(m, caddr_t) +
1806 	    sizeof(struct in_addr) + OPTSIZ);
1807 #undef OPTSIZ
1808 	/*
1809 	 * Record return path as an IP source route,
1810 	 * reversing the path (pointers are now aligned).
1811 	 */
1812 	while (p >= ip_srcrt.route) {
1813 #ifdef DIAGNOSTIC
1814 		if (ipprintfs)
1815 			kprintf(" %x", ntohl(q->s_addr));
1816 #endif
1817 		*q++ = *p--;
1818 	}
1819 	/*
1820 	 * Last hop goes to final destination.
1821 	 */
1822 	*q = ip_srcrt.dst;
1823 #ifdef DIAGNOSTIC
1824 	if (ipprintfs)
1825 		kprintf(" %x\n", ntohl(q->s_addr));
1826 #endif
1827 	return (m);
1828 }
1829 
1830 /*
1831  * Strip out IP options.
1832  */
1833 void
1834 ip_stripoptions(struct mbuf *m)
1835 {
1836 	int datalen;
1837 	struct ip *ip = mtod(m, struct ip *);
1838 	caddr_t opts;
1839 	int optlen;
1840 
1841 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1842 	opts = (caddr_t)(ip + 1);
1843 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1844 	bcopy(opts + optlen, opts, datalen);
1845 	m->m_len -= optlen;
1846 	if (m->m_flags & M_PKTHDR)
1847 		m->m_pkthdr.len -= optlen;
1848 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1849 }
1850 
1851 u_char inetctlerrmap[PRC_NCMDS] = {
1852 	0,		0,		0,		0,
1853 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1854 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1855 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1856 	0,		0,		0,		0,
1857 	ENOPROTOOPT,	ECONNREFUSED
1858 };
1859 
1860 /*
1861  * Forward a packet.  If some error occurs return the sender
1862  * an icmp packet.  Note we can't always generate a meaningful
1863  * icmp message because icmp doesn't have a large enough repertoire
1864  * of codes and types.
1865  *
1866  * If not forwarding, just drop the packet.  This could be confusing
1867  * if ipforwarding was zero but some routing protocol was advancing
1868  * us as a gateway to somewhere.  However, we must let the routing
1869  * protocol deal with that.
1870  *
1871  * The using_srcrt parameter indicates whether the packet is being forwarded
1872  * via a source route.
1873  */
1874 static void
1875 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1876 {
1877 	struct ip *ip = mtod(m, struct ip *);
1878 	struct sockaddr_in *ipforward_rtaddr;
1879 	struct rtentry *rt;
1880 	int error, type = 0, code = 0, destmtu = 0;
1881 	struct mbuf *mcopy;
1882 	n_long dest;
1883 	struct in_addr pkt_dst;
1884 	struct m_hdr tag;
1885 	struct route *cache_rt = &ipforward_rt[mycpuid];
1886 
1887 	dest = INADDR_ANY;
1888 	/*
1889 	 * Cache the destination address of the packet; this may be
1890 	 * changed by use of 'ipfw fwd'.
1891 	 */
1892 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1893 
1894 #ifdef DIAGNOSTIC
1895 	if (ipprintfs)
1896 		kprintf("forward: src %x dst %x ttl %x\n",
1897 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1898 #endif
1899 
1900 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1901 		ipstat.ips_cantforward++;
1902 		m_freem(m);
1903 		return;
1904 	}
1905 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1906 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1907 		return;
1908 	}
1909 
1910 	ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1911 	if (cache_rt->ro_rt == NULL ||
1912 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1913 		if (cache_rt->ro_rt != NULL) {
1914 			RTFREE(cache_rt->ro_rt);
1915 			cache_rt->ro_rt = NULL;
1916 		}
1917 		ipforward_rtaddr->sin_family = AF_INET;
1918 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1919 		ipforward_rtaddr->sin_addr = pkt_dst;
1920 		rtalloc_ign(cache_rt, RTF_PRCLONING);
1921 		if (cache_rt->ro_rt == NULL) {
1922 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1923 			return;
1924 		}
1925 	}
1926 	rt = cache_rt->ro_rt;
1927 
1928 	/*
1929 	 * Save the IP header and at most 8 bytes of the payload,
1930 	 * in case we need to generate an ICMP message to the src.
1931 	 *
1932 	 * XXX this can be optimized a lot by saving the data in a local
1933 	 * buffer on the stack (72 bytes at most), and only allocating the
1934 	 * mbuf if really necessary. The vast majority of the packets
1935 	 * are forwarded without having to send an ICMP back (either
1936 	 * because unnecessary, or because rate limited), so we are
1937 	 * really we are wasting a lot of work here.
1938 	 *
1939 	 * We don't use m_copy() because it might return a reference
1940 	 * to a shared cluster. Both this function and ip_output()
1941 	 * assume exclusive access to the IP header in `m', so any
1942 	 * data in a cluster may change before we reach icmp_error().
1943 	 */
1944 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1945 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1946 		/*
1947 		 * It's probably ok if the pkthdr dup fails (because
1948 		 * the deep copy of the tag chain failed), but for now
1949 		 * be conservative and just discard the copy since
1950 		 * code below may some day want the tags.
1951 		 */
1952 		m_free(mcopy);
1953 		mcopy = NULL;
1954 	}
1955 	if (mcopy != NULL) {
1956 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1957 		    (int)ip->ip_len);
1958 		mcopy->m_pkthdr.len = mcopy->m_len;
1959 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1960 	}
1961 
1962 	if (!ipstealth)
1963 		ip->ip_ttl -= IPTTLDEC;
1964 
1965 	/*
1966 	 * If forwarding packet using same interface that it came in on,
1967 	 * perhaps should send a redirect to sender to shortcut a hop.
1968 	 * Only send redirect if source is sending directly to us,
1969 	 * and if packet was not source routed (or has any options).
1970 	 * Also, don't send redirect if forwarding using a default route
1971 	 * or a route modified by a redirect.
1972 	 */
1973 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1974 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1975 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1976 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1977 		u_long src = ntohl(ip->ip_src.s_addr);
1978 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1979 
1980 		if (rt_ifa != NULL &&
1981 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1982 			if (rt->rt_flags & RTF_GATEWAY)
1983 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1984 			else
1985 				dest = pkt_dst.s_addr;
1986 			/*
1987 			 * Router requirements says to only send
1988 			 * host redirects.
1989 			 */
1990 			type = ICMP_REDIRECT;
1991 			code = ICMP_REDIRECT_HOST;
1992 #ifdef DIAGNOSTIC
1993 			if (ipprintfs)
1994 				kprintf("redirect (%d) to %x\n", code, dest);
1995 #endif
1996 		}
1997 	}
1998 
1999 	if (next_hop != NULL) {
2000 		/* Pass IPFORWARD info if available */
2001 		tag.mh_type = MT_TAG;
2002 		tag.mh_flags = PACKET_TAG_IPFORWARD;
2003 		tag.mh_data = (caddr_t)next_hop;
2004 		tag.mh_next = m;
2005 		m = (struct mbuf *)&tag;
2006 	}
2007 
2008 	error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
2009 			  NULL);
2010 	if (error == 0) {
2011 		ipstat.ips_forward++;
2012 		if (type == 0) {
2013 			if (mcopy) {
2014 				ipflow_create(cache_rt, mcopy);
2015 				m_freem(mcopy);
2016 			}
2017 			return;		/* most common case */
2018 		} else {
2019 			ipstat.ips_redirectsent++;
2020 		}
2021 	} else {
2022 		ipstat.ips_cantforward++;
2023 	}
2024 
2025 	if (mcopy == NULL)
2026 		return;
2027 
2028 	/*
2029 	 * Send ICMP message.
2030 	 */
2031 
2032 	switch (error) {
2033 
2034 	case 0:				/* forwarded, but need redirect */
2035 		/* type, code set above */
2036 		break;
2037 
2038 	case ENETUNREACH:		/* shouldn't happen, checked above */
2039 	case EHOSTUNREACH:
2040 	case ENETDOWN:
2041 	case EHOSTDOWN:
2042 	default:
2043 		type = ICMP_UNREACH;
2044 		code = ICMP_UNREACH_HOST;
2045 		break;
2046 
2047 	case EMSGSIZE:
2048 		type = ICMP_UNREACH;
2049 		code = ICMP_UNREACH_NEEDFRAG;
2050 #ifdef IPSEC
2051 		/*
2052 		 * If the packet is routed over IPsec tunnel, tell the
2053 		 * originator the tunnel MTU.
2054 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2055 		 * XXX quickhack!!!
2056 		 */
2057 		if (cache_rt->ro_rt != NULL) {
2058 			struct secpolicy *sp = NULL;
2059 			int ipsecerror;
2060 			int ipsechdr;
2061 			struct route *ro;
2062 
2063 			sp = ipsec4_getpolicybyaddr(mcopy,
2064 						    IPSEC_DIR_OUTBOUND,
2065 						    IP_FORWARDING,
2066 						    &ipsecerror);
2067 
2068 			if (sp == NULL)
2069 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2070 			else {
2071 				/* count IPsec header size */
2072 				ipsechdr = ipsec4_hdrsiz(mcopy,
2073 							 IPSEC_DIR_OUTBOUND,
2074 							 NULL);
2075 
2076 				/*
2077 				 * find the correct route for outer IPv4
2078 				 * header, compute tunnel MTU.
2079 				 *
2080 				 */
2081 				if (sp->req != NULL && sp->req->sav != NULL &&
2082 				    sp->req->sav->sah != NULL) {
2083 					ro = &sp->req->sav->sah->sa_route;
2084 					if (ro->ro_rt != NULL &&
2085 					    ro->ro_rt->rt_ifp != NULL) {
2086 						destmtu =
2087 						    ro->ro_rt->rt_ifp->if_mtu;
2088 						destmtu -= ipsechdr;
2089 					}
2090 				}
2091 
2092 				key_freesp(sp);
2093 			}
2094 		}
2095 #elif FAST_IPSEC
2096 		/*
2097 		 * If the packet is routed over IPsec tunnel, tell the
2098 		 * originator the tunnel MTU.
2099 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2100 		 * XXX quickhack!!!
2101 		 */
2102 		if (cache_rt->ro_rt != NULL) {
2103 			struct secpolicy *sp = NULL;
2104 			int ipsecerror;
2105 			int ipsechdr;
2106 			struct route *ro;
2107 
2108 			sp = ipsec_getpolicybyaddr(mcopy,
2109 						   IPSEC_DIR_OUTBOUND,
2110 						   IP_FORWARDING,
2111 						   &ipsecerror);
2112 
2113 			if (sp == NULL)
2114 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2115 			else {
2116 				/* count IPsec header size */
2117 				ipsechdr = ipsec4_hdrsiz(mcopy,
2118 							 IPSEC_DIR_OUTBOUND,
2119 							 NULL);
2120 
2121 				/*
2122 				 * find the correct route for outer IPv4
2123 				 * header, compute tunnel MTU.
2124 				 */
2125 
2126 				if (sp->req != NULL &&
2127 				    sp->req->sav != NULL &&
2128 				    sp->req->sav->sah != NULL) {
2129 					ro = &sp->req->sav->sah->sa_route;
2130 					if (ro->ro_rt != NULL &&
2131 					    ro->ro_rt->rt_ifp != NULL) {
2132 						destmtu =
2133 						    ro->ro_rt->rt_ifp->if_mtu;
2134 						destmtu -= ipsechdr;
2135 					}
2136 				}
2137 
2138 				KEY_FREESP(&sp);
2139 			}
2140 		}
2141 #else /* !IPSEC && !FAST_IPSEC */
2142 		if (cache_rt->ro_rt != NULL)
2143 			destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2144 #endif /*IPSEC*/
2145 		ipstat.ips_cantfrag++;
2146 		break;
2147 
2148 	case ENOBUFS:
2149 		/*
2150 		 * A router should not generate ICMP_SOURCEQUENCH as
2151 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2152 		 * Source quench could be a big problem under DoS attacks,
2153 		 * or if the underlying interface is rate-limited.
2154 		 * Those who need source quench packets may re-enable them
2155 		 * via the net.inet.ip.sendsourcequench sysctl.
2156 		 */
2157 		if (!ip_sendsourcequench) {
2158 			m_freem(mcopy);
2159 			return;
2160 		} else {
2161 			type = ICMP_SOURCEQUENCH;
2162 			code = 0;
2163 		}
2164 		break;
2165 
2166 	case EACCES:			/* ipfw denied packet */
2167 		m_freem(mcopy);
2168 		return;
2169 	}
2170 	icmp_error(mcopy, type, code, dest, destmtu);
2171 }
2172 
2173 void
2174 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2175 	       struct mbuf *m)
2176 {
2177 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2178 		struct timeval tv;
2179 
2180 		microtime(&tv);
2181 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2182 		    SCM_TIMESTAMP, SOL_SOCKET);
2183 		if (*mp)
2184 			mp = &(*mp)->m_next;
2185 	}
2186 	if (inp->inp_flags & INP_RECVDSTADDR) {
2187 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2188 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2189 		if (*mp)
2190 			mp = &(*mp)->m_next;
2191 	}
2192 	if (inp->inp_flags & INP_RECVTTL) {
2193 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2194 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2195 		if (*mp)
2196 			mp = &(*mp)->m_next;
2197 	}
2198 #ifdef notyet
2199 	/* XXX
2200 	 * Moving these out of udp_input() made them even more broken
2201 	 * than they already were.
2202 	 */
2203 	/* options were tossed already */
2204 	if (inp->inp_flags & INP_RECVOPTS) {
2205 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2206 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2207 		if (*mp)
2208 			mp = &(*mp)->m_next;
2209 	}
2210 	/* ip_srcroute doesn't do what we want here, need to fix */
2211 	if (inp->inp_flags & INP_RECVRETOPTS) {
2212 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2213 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2214 		if (*mp)
2215 			mp = &(*mp)->m_next;
2216 	}
2217 #endif
2218 	if (inp->inp_flags & INP_RECVIF) {
2219 		struct ifnet *ifp;
2220 		struct sdlbuf {
2221 			struct sockaddr_dl sdl;
2222 			u_char	pad[32];
2223 		} sdlbuf;
2224 		struct sockaddr_dl *sdp;
2225 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2226 
2227 		if (((ifp = m->m_pkthdr.rcvif)) &&
2228 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2229 			sdp = IF_LLSOCKADDR(ifp);
2230 			/*
2231 			 * Change our mind and don't try copy.
2232 			 */
2233 			if ((sdp->sdl_family != AF_LINK) ||
2234 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2235 				goto makedummy;
2236 			}
2237 			bcopy(sdp, sdl2, sdp->sdl_len);
2238 		} else {
2239 makedummy:
2240 			sdl2->sdl_len =
2241 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2242 			sdl2->sdl_family = AF_LINK;
2243 			sdl2->sdl_index = 0;
2244 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2245 		}
2246 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2247 			IP_RECVIF, IPPROTO_IP);
2248 		if (*mp)
2249 			mp = &(*mp)->m_next;
2250 	}
2251 }
2252 
2253 /*
2254  * XXX these routines are called from the upper part of the kernel.
2255  *
2256  * They could also be moved to ip_mroute.c, since all the RSVP
2257  *  handling is done there already.
2258  */
2259 int
2260 ip_rsvp_init(struct socket *so)
2261 {
2262 	if (so->so_type != SOCK_RAW ||
2263 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2264 		return EOPNOTSUPP;
2265 
2266 	if (ip_rsvpd != NULL)
2267 		return EADDRINUSE;
2268 
2269 	ip_rsvpd = so;
2270 	/*
2271 	 * This may seem silly, but we need to be sure we don't over-increment
2272 	 * the RSVP counter, in case something slips up.
2273 	 */
2274 	if (!ip_rsvp_on) {
2275 		ip_rsvp_on = 1;
2276 		rsvp_on++;
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 int
2283 ip_rsvp_done(void)
2284 {
2285 	ip_rsvpd = NULL;
2286 	/*
2287 	 * This may seem silly, but we need to be sure we don't over-decrement
2288 	 * the RSVP counter, in case something slips up.
2289 	 */
2290 	if (ip_rsvp_on) {
2291 		ip_rsvp_on = 0;
2292 		rsvp_on--;
2293 	}
2294 	return 0;
2295 }
2296 
2297 void
2298 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2299 {
2300 	int off, proto;
2301 	__va_list ap;
2302 
2303 	__va_start(ap, m);
2304 	off = __va_arg(ap, int);
2305 	proto = __va_arg(ap, int);
2306 	__va_end(ap);
2307 
2308 	if (rsvp_input_p) { /* call the real one if loaded */
2309 		rsvp_input_p(m, off, proto);
2310 		return;
2311 	}
2312 
2313 	/* Can still get packets with rsvp_on = 0 if there is a local member
2314 	 * of the group to which the RSVP packet is addressed.  But in this
2315 	 * case we want to throw the packet away.
2316 	 */
2317 
2318 	if (!rsvp_on) {
2319 		m_freem(m);
2320 		return;
2321 	}
2322 
2323 	if (ip_rsvpd != NULL) {
2324 		rip_input(m, off, proto);
2325 		return;
2326 	}
2327 	/* Drop the packet */
2328 	m_freem(m);
2329 }
2330