xref: /dragonfly/sys/netinet/ip_input.c (revision f9a239ec)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.45 2005/01/26 23:09:57 hsu Exp $
86  */
87 
88 #define	_IP_VHL
89 
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97 #include "opt_random_ip_id.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/mbuf.h>
102 #include <sys/malloc.h>
103 #include <sys/mpipe.h>
104 #include <sys/domain.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/time.h>
108 #include <sys/globaldata.h>
109 #include <sys/thread.h>
110 #include <sys/kernel.h>
111 #include <sys/syslog.h>
112 #include <sys/sysctl.h>
113 #include <sys/in_cksum.h>
114 
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 
118 #include <machine/stdarg.h>
119 
120 #include <net/if.h>
121 #include <net/if_types.h>
122 #include <net/if_var.h>
123 #include <net/if_dl.h>
124 #include <net/pfil.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <net/intrq.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/in_var.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/ip_icmp.h>
136 
137 
138 #include <sys/socketvar.h>
139 
140 #include <net/ipfw/ip_fw.h>
141 #include <net/dummynet/ip_dummynet.h>
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netproto/key/key.h>
146 #endif
147 
148 #ifdef FAST_IPSEC
149 #include <netproto/ipsec/ipsec.h>
150 #include <netproto/ipsec/key.h>
151 #endif
152 
153 int rsvp_on = 0;
154 static int ip_rsvp_on;
155 struct socket *ip_rsvpd;
156 
157 int ipforwarding = 0;
158 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
159     &ipforwarding, 0, "Enable IP forwarding between interfaces");
160 
161 static int ipsendredirects = 1; /* XXX */
162 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
163     &ipsendredirects, 0, "Enable sending IP redirects");
164 
165 int ip_defttl = IPDEFTTL;
166 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
167     &ip_defttl, 0, "Maximum TTL on IP packets");
168 
169 static int ip_dosourceroute = 0;
170 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
171     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
172 
173 static int ip_acceptsourceroute = 0;
174 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
175     CTLFLAG_RW, &ip_acceptsourceroute, 0,
176     "Enable accepting source routed IP packets");
177 
178 static int ip_keepfaith = 0;
179 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
180     &ip_keepfaith, 0,
181     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
182 
183 static int nipq = 0;	/* total # of reass queues */
184 static int maxnipq;
185 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
186     &maxnipq, 0,
187     "Maximum number of IPv4 fragment reassembly queue entries");
188 
189 static int maxfragsperpacket;
190 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
191     &maxfragsperpacket, 0,
192     "Maximum number of IPv4 fragments allowed per packet");
193 
194 static int ip_sendsourcequench = 0;
195 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
196     &ip_sendsourcequench, 0,
197     "Enable the transmission of source quench packets");
198 
199 /*
200  * XXX - Setting ip_checkinterface mostly implements the receive side of
201  * the Strong ES model described in RFC 1122, but since the routing table
202  * and transmit implementation do not implement the Strong ES model,
203  * setting this to 1 results in an odd hybrid.
204  *
205  * XXX - ip_checkinterface currently must be disabled if you use ipnat
206  * to translate the destination address to another local interface.
207  *
208  * XXX - ip_checkinterface must be disabled if you add IP aliases
209  * to the loopback interface instead of the interface where the
210  * packets for those addresses are received.
211  */
212 static int ip_checkinterface = 0;
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
214     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
215 
216 #ifdef DIAGNOSTIC
217 static int ipprintfs = 0;
218 #endif
219 
220 static struct ifqueue ipintrq;
221 static int ipqmaxlen = IFQ_MAXLEN;
222 
223 extern	struct domain inetdomain;
224 extern	struct protosw inetsw[];
225 u_char	ip_protox[IPPROTO_MAX];
226 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
227 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
228 u_long	in_ifaddrhmask;				/* mask for hash table */
229 
230 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
231     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
232 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
233     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
234 
235 struct ip_stats ipstats_ary[MAXCPU];
236 #ifdef SMP
237 static int
238 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
239 {
240 	int cpu, error = 0;
241 
242 	for (cpu = 0; cpu < ncpus; ++cpu) {
243 		if ((error = SYSCTL_OUT(req, &ipstats_ary[cpu],
244 					sizeof(struct ip_stats))))
245 			break;
246 		if ((error = SYSCTL_IN(req, &ipstats_ary[cpu],
247 				       sizeof(struct ip_stats))))
248 			break;
249 	}
250 
251 	return (error);
252 }
253 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
254     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
255 #else
256 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
257     &ipstat, ip_stats, "IP statistics");
258 #endif
259 
260 /* Packet reassembly stuff */
261 #define	IPREASS_NHASH_LOG2	6
262 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
263 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
264 #define	IPREASS_HASH(x,y)						\
265     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
266 
267 static struct ipq ipq[IPREASS_NHASH];
268 const  int    ipintrq_present = 1;
269 
270 #ifdef IPCTL_DEFMTU
271 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
272     &ip_mtu, 0, "Default MTU");
273 #endif
274 
275 #ifdef IPSTEALTH
276 static int ipstealth = 0;
277 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
278 #else
279 static const int ipstealth = 0;
280 #endif
281 
282 
283 /* Firewall hooks */
284 ip_fw_chk_t *ip_fw_chk_ptr;
285 int fw_enable = 1;
286 int fw_one_pass = 1;
287 
288 /* Dummynet hooks */
289 ip_dn_io_t *ip_dn_io_ptr;
290 
291 struct pfil_head inet_pfil_hook;
292 
293 /*
294  * XXX this is ugly -- the following two global variables are
295  * used to store packet state while it travels through the stack.
296  * Note that the code even makes assumptions on the size and
297  * alignment of fields inside struct ip_srcrt so e.g. adding some
298  * fields will break the code. This needs to be fixed.
299  *
300  * We need to save the IP options in case a protocol wants to respond
301  * to an incoming packet over the same route if the packet got here
302  * using IP source routing.  This allows connection establishment and
303  * maintenance when the remote end is on a network that is not known
304  * to us.
305  */
306 static int ip_nhops = 0;
307 
308 static	struct ip_srcrt {
309 	struct	in_addr dst;			/* final destination */
310 	char	nop;				/* one NOP to align */
311 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
312 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
313 } ip_srcrt;
314 
315 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
316 static struct malloc_pipe ipq_mpipe;
317 
318 static void		save_rte (u_char *, struct in_addr);
319 static int		ip_dooptions (struct mbuf *m, int,
320 					struct sockaddr_in *next_hop);
321 static void		ip_forward (struct mbuf *m, int srcrt,
322 					struct sockaddr_in *next_hop);
323 static void		ip_freef (struct ipq *);
324 static int		ip_input_handler (struct netmsg *);
325 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
326 					struct ipq *, u_int32_t *, u_int16_t *);
327 
328 /*
329  * IP initialization: fill in IP protocol switch table.
330  * All protocols not implemented in kernel go to raw IP protocol handler.
331  */
332 void
333 ip_init(void)
334 {
335 	struct protosw *pr;
336 	int i;
337 #ifdef SMP
338 	int cpu;
339 #endif
340 
341 	/*
342 	 * Make sure we can handle a reasonable number of fragments but
343 	 * cap it at 4000 (XXX).
344 	 */
345 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
346 		    IFQ_MAXLEN, 4000, 0, NULL);
347 	TAILQ_INIT(&in_ifaddrhead);
348 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
349 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
350 	if (pr == NULL)
351 		panic("ip_init");
352 	for (i = 0; i < IPPROTO_MAX; i++)
353 		ip_protox[i] = pr - inetsw;
354 	for (pr = inetdomain.dom_protosw;
355 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
356 		if (pr->pr_domain->dom_family == PF_INET &&
357 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
358 			ip_protox[pr->pr_protocol] = pr - inetsw;
359 
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 		printf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 	}
366 
367 	for (i = 0; i < IPREASS_NHASH; i++)
368 	    ipq[i].next = ipq[i].prev = &ipq[i];
369 
370 	maxnipq = nmbclusters / 32;
371 	maxfragsperpacket = 16;
372 
373 #ifndef RANDOM_IP_ID
374 	ip_id = time_second & 0xffff;
375 #endif
376 	ipintrq.ifq_maxlen = ipqmaxlen;
377 
378 	/*
379 	 * Initialize IP statistics.
380 	 *
381 	 * It is layed out as an array which is has one element for UP,
382 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
383 	 * the access mechanism from userland for both UP and SMP.
384 	 */
385 #ifdef SMP
386 	for (cpu = 0; cpu < ncpus; ++cpu) {
387 		bzero(&ipstats_ary[cpu], sizeof(struct ip_stats));
388 	}
389 #else
390 	bzero(&ipstat, sizeof(struct ip_stats));
391 #endif
392 
393 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
394 }
395 
396 /*
397  * XXX watch out this one. It is perhaps used as a cache for
398  * the most recently used route ? it is cleared in in_addroute()
399  * when a new route is successfully created.
400  */
401 struct route ipforward_rt;
402 
403 /* Do transport protocol processing. */
404 static void
405 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
406 			   struct sockaddr_in *nexthop)
407 {
408 	/*
409 	 * Switch out to protocol's input routine.
410 	 */
411 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
412 		/* TCP needs IPFORWARD info if available */
413 		struct m_hdr tag;
414 
415 		tag.mh_type = MT_TAG;
416 		tag.mh_flags = PACKET_TAG_IPFORWARD;
417 		tag.mh_data = (caddr_t)nexthop;
418 		tag.mh_next = m;
419 
420 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
421 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
422 	} else {
423 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
424 	}
425 }
426 
427 struct netmsg_transport_packet {
428 	struct lwkt_msg		nm_lmsg;
429 	struct mbuf		*nm_mbuf;
430 	int			nm_hlen;
431 	boolean_t		nm_hasnexthop;
432 	struct sockaddr_in	nm_nexthop;
433 };
434 
435 static int
436 transport_processing_handler(lwkt_msg_t lmsg)
437 {
438 	struct netmsg_transport_packet *msg = (void *)lmsg;
439 	struct sockaddr_in *nexthop;
440 	struct ip *ip;
441 
442 	ip = mtod(msg->nm_mbuf, struct ip *);
443 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
444 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
445 	lwkt_replymsg(lmsg, 0);
446 	return(EASYNC);
447 }
448 
449 static int
450 ip_input_handler(struct netmsg *msg0)
451 {
452 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
453 
454 	ip_input(m);
455 	lwkt_replymsg(&msg0->nm_lmsg, 0);
456 	return(EASYNC);
457 }
458 
459 /*
460  * IP input routine.  Checksum and byte swap header.  If fragmented
461  * try to reassemble.  Process options.  Pass to next level.
462  */
463 void
464 ip_input(struct mbuf *m)
465 {
466 	struct ip *ip;
467 	struct ipq *fp;
468 	struct in_ifaddr *ia = NULL;
469 	struct ifaddr *ifa;
470 	int i, hlen, checkif;
471 	u_short sum;
472 	struct in_addr pkt_dst;
473 	u_int32_t divert_info = 0;		/* packet divert/tee info */
474 	struct ip_fw_args args;
475 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
476 	boolean_t needredispatch = FALSE;
477 	struct in_addr odst;			/* original dst address(NAT) */
478 #ifdef FAST_IPSEC
479 	struct m_tag *mtag;
480 	struct tdb_ident *tdbi;
481 	struct secpolicy *sp;
482 	int s, error;
483 #endif
484 
485 	args.eh = NULL;
486 	args.oif = NULL;
487 	args.rule = NULL;
488 	args.divert_rule = 0;			/* divert cookie */
489 	args.next_hop = NULL;
490 
491 	/* Grab info from MT_TAG mbufs prepended to the chain. */
492 	while (m != NULL && m->m_type == MT_TAG) {
493 		switch(m->_m_tag_id) {
494 		case PACKET_TAG_DUMMYNET:
495 			args.rule = ((struct dn_pkt *)m)->rule;
496 			break;
497 		case PACKET_TAG_DIVERT:
498 			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
499 			break;
500 		case PACKET_TAG_IPFORWARD:
501 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
502 			break;
503 		default:
504 			printf("ip_input: unrecognised MT_TAG tag %d\n",
505 			    m->_m_tag_id);
506 			break;
507 		}
508 		m = m->m_next;
509 	}
510 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
511 
512 	if (args.rule != NULL) {	/* dummynet already filtered us */
513 		ip = mtod(m, struct ip *);
514 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
515 		goto iphack;
516 	}
517 
518 	ipstat.ips_total++;
519 
520 	/* length checks already done in ip_demux() */
521 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
522 
523 	ip = mtod(m, struct ip *);
524 
525 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
526 		ipstat.ips_badvers++;
527 		goto bad;
528 	}
529 
530 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
531 	/* length checks already done in ip_demux() */
532 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
533 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
534 
535 	/* 127/8 must not appear on wire - RFC1122 */
536 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
537 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
538 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
539 			ipstat.ips_badaddr++;
540 			goto bad;
541 		}
542 	}
543 
544 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
545 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
546 	} else {
547 		if (hlen == sizeof(struct ip)) {
548 			sum = in_cksum_hdr(ip);
549 		} else {
550 			sum = in_cksum(m, hlen);
551 		}
552 	}
553 	if (sum != 0) {
554 		ipstat.ips_badsum++;
555 		goto bad;
556 	}
557 
558 	/*
559 	 * Convert fields to host representation.
560 	 */
561 	ip->ip_len = ntohs(ip->ip_len);
562 	if (ip->ip_len < hlen) {
563 		ipstat.ips_badlen++;
564 		goto bad;
565 	}
566 	ip->ip_off = ntohs(ip->ip_off);
567 
568 	/*
569 	 * Check that the amount of data in the buffers
570 	 * is as at least much as the IP header would have us expect.
571 	 * Trim mbufs if longer than we expect.
572 	 * Drop packet if shorter than we expect.
573 	 */
574 	if (m->m_pkthdr.len < ip->ip_len) {
575 		ipstat.ips_tooshort++;
576 		goto bad;
577 	}
578 	if (m->m_pkthdr.len > ip->ip_len) {
579 		if (m->m_len == m->m_pkthdr.len) {
580 			m->m_len = ip->ip_len;
581 			m->m_pkthdr.len = ip->ip_len;
582 		} else
583 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
584 	}
585 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
586 	/*
587 	 * Bypass packet filtering for packets from a tunnel (gif).
588 	 */
589 	if (ipsec_gethist(m, NULL))
590 		goto pass;
591 #endif
592 
593 	/*
594 	 * IpHack's section.
595 	 * Right now when no processing on packet has done
596 	 * and it is still fresh out of network we do our black
597 	 * deals with it.
598 	 * - Firewall: deny/allow/divert
599 	 * - Xlate: translate packet's addr/port (NAT).
600 	 * - Pipe: pass pkt through dummynet.
601 	 * - Wrap: fake packet's addr/port <unimpl.>
602 	 * - Encapsulate: put it in another IP and send out. <unimp.>
603 	 */
604 
605 iphack:
606 
607 	/*
608 	 * Run through list of hooks for input packets.
609 	 *
610 	 * NB: Beware of the destination address changing (e.g.
611 	 *     by NAT rewriting). When this happens, tell
612 	 *     ip_forward to do the right thing.
613 	 */
614 	if (pfil_has_hooks(&inet_pfil_hook)) {
615 		odst = ip->ip_dst;
616 		if (pfil_run_hooks(&inet_pfil_hook, &m,
617 		    m->m_pkthdr.rcvif, PFIL_IN)) {
618 			return;
619 		}
620 		if (m == NULL)			/* consumed by filter */
621 			return;
622 		ip = mtod(m, struct ip *);
623 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
624 	}
625 
626 	if (fw_enable && IPFW_LOADED) {
627 		/*
628 		 * If we've been forwarded from the output side, then
629 		 * skip the firewall a second time
630 		 */
631 		if (args.next_hop != NULL)
632 			goto ours;
633 
634 		args.m = m;
635 		i = ip_fw_chk_ptr(&args);
636 		m = args.m;
637 
638 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
639 			if (m != NULL)
640 				m_freem(m);
641 			return;
642 		}
643 		ip = mtod(m, struct ip *);	/* just in case m changed */
644 		if (i == 0 && args.next_hop == NULL)	/* common case */
645 			goto pass;
646 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
647 			/* Send packet to the appropriate pipe */
648 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
649 			return;
650 		}
651 #ifdef IPDIVERT
652 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
653 			/* Divert or tee packet */
654 			divert_info = i;
655 			goto ours;
656 		}
657 #endif
658 		if (i == 0 && args.next_hop != NULL)
659 			goto pass;
660 		/*
661 		 * if we get here, the packet must be dropped
662 		 */
663 		m_freem(m);
664 		return;
665 	}
666 pass:
667 
668 	/*
669 	 * Process options and, if not destined for us,
670 	 * ship it on.  ip_dooptions returns 1 when an
671 	 * error was detected (causing an icmp message
672 	 * to be sent and the original packet to be freed).
673 	 */
674 	ip_nhops = 0;		/* for source routed packets */
675 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
676 		return;
677 
678 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
679 	 * matter if it is destined to another node, or whether it is
680 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
681 	 * anywhere else. Also checks if the rsvp daemon is running before
682 	 * grabbing the packet.
683 	 */
684 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
685 		goto ours;
686 
687 	/*
688 	 * Check our list of addresses, to see if the packet is for us.
689 	 * If we don't have any addresses, assume any unicast packet
690 	 * we receive might be for us (and let the upper layers deal
691 	 * with it).
692 	 */
693 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
694 		goto ours;
695 
696 	/*
697 	 * Cache the destination address of the packet; this may be
698 	 * changed by use of 'ipfw fwd'.
699 	 */
700 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
701 
702 	/*
703 	 * Enable a consistency check between the destination address
704 	 * and the arrival interface for a unicast packet (the RFC 1122
705 	 * strong ES model) if IP forwarding is disabled and the packet
706 	 * is not locally generated and the packet is not subject to
707 	 * 'ipfw fwd'.
708 	 *
709 	 * XXX - Checking also should be disabled if the destination
710 	 * address is ipnat'ed to a different interface.
711 	 *
712 	 * XXX - Checking is incompatible with IP aliases added
713 	 * to the loopback interface instead of the interface where
714 	 * the packets are received.
715 	 */
716 	checkif = ip_checkinterface &&
717 		  !ipforwarding &&
718 		  m->m_pkthdr.rcvif != NULL &&
719 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
720 		  (args.next_hop == NULL);
721 
722 	/*
723 	 * Check for exact addresses in the hash bucket.
724 	 */
725 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
726 		/*
727 		 * If the address matches, verify that the packet
728 		 * arrived via the correct interface if checking is
729 		 * enabled.
730 		 */
731 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
732 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
733 			goto ours;
734 	}
735 	/*
736 	 * Check for broadcast addresses.
737 	 *
738 	 * Only accept broadcast packets that arrive via the matching
739 	 * interface.  Reception of forwarded directed broadcasts would
740 	 * be handled via ip_forward() and ether_output() with the loopback
741 	 * into the stack for SIMPLEX interfaces handled by ether_output().
742 	 */
743 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
744 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
745 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
746 				continue;
747 			if (ifa->ifa_addr->sa_family != AF_INET)
748 				continue;
749 			ia = ifatoia(ifa);
750 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
751 								pkt_dst.s_addr)
752 				goto ours;
753 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
754 				goto ours;
755 #ifdef BOOTP_COMPAT
756 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
757 				goto ours;
758 #endif
759 		}
760 	}
761 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
762 		struct in_multi *inm;
763 
764 		if (ip_mrouter != NULL) {
765 			/*
766 			 * If we are acting as a multicast router, all
767 			 * incoming multicast packets are passed to the
768 			 * kernel-level multicast forwarding function.
769 			 * The packet is returned (relatively) intact; if
770 			 * ip_mforward() returns a non-zero value, the packet
771 			 * must be discarded, else it may be accepted below.
772 			 */
773 			if (ip_mforward != NULL &&
774 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
775 				ipstat.ips_cantforward++;
776 				m_freem(m);
777 				return;
778 			}
779 
780 			/*
781 			 * The process-level routing daemon needs to receive
782 			 * all multicast IGMP packets, whether or not this
783 			 * host belongs to their destination groups.
784 			 */
785 			if (ip->ip_p == IPPROTO_IGMP)
786 				goto ours;
787 			ipstat.ips_forward++;
788 		}
789 		/*
790 		 * See if we belong to the destination multicast group on the
791 		 * arrival interface.
792 		 */
793 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
794 		if (inm == NULL) {
795 			ipstat.ips_notmember++;
796 			m_freem(m);
797 			return;
798 		}
799 		goto ours;
800 	}
801 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
802 		goto ours;
803 	if (ip->ip_dst.s_addr == INADDR_ANY)
804 		goto ours;
805 
806 	/*
807 	 * FAITH(Firewall Aided Internet Translator)
808 	 */
809 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
810 		if (ip_keepfaith) {
811 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
812 				goto ours;
813 		}
814 		m_freem(m);
815 		return;
816 	}
817 
818 	/*
819 	 * Not for us; forward if possible and desirable.
820 	 */
821 	if (!ipforwarding) {
822 		ipstat.ips_cantforward++;
823 		m_freem(m);
824 	} else {
825 #ifdef IPSEC
826 		/*
827 		 * Enforce inbound IPsec SPD.
828 		 */
829 		if (ipsec4_in_reject(m, NULL)) {
830 			ipsecstat.in_polvio++;
831 			goto bad;
832 		}
833 #endif
834 #ifdef FAST_IPSEC
835 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
836 		s = splnet();
837 		if (mtag != NULL) {
838 			tdbi = (struct tdb_ident *)(mtag + 1);
839 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
840 		} else {
841 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
842 						   IP_FORWARDING, &error);
843 		}
844 		if (sp == NULL) {	/* NB: can happen if error */
845 			splx(s);
846 			/*XXX error stat???*/
847 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
848 			goto bad;
849 		}
850 
851 		/*
852 		 * Check security policy against packet attributes.
853 		 */
854 		error = ipsec_in_reject(sp, m);
855 		KEY_FREESP(&sp);
856 		splx(s);
857 		if (error) {
858 			ipstat.ips_cantforward++;
859 			goto bad;
860 		}
861 #endif
862 		ip_forward(m, using_srcrt, args.next_hop);
863 	}
864 	return;
865 
866 ours:
867 
868 	/*
869 	 * IPSTEALTH: Process non-routing options only
870 	 * if the packet is destined for us.
871 	 */
872 	if (ipstealth &&
873 	    hlen > sizeof(struct ip) &&
874 	    ip_dooptions(m, 1, args.next_hop))
875 		return;
876 
877 	/* Count the packet in the ip address stats */
878 	if (ia != NULL) {
879 		ia->ia_ifa.if_ipackets++;
880 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
881 	}
882 
883 	/*
884 	 * If offset or IP_MF are set, must reassemble.
885 	 * Otherwise, nothing need be done.
886 	 * (We could look in the reassembly queue to see
887 	 * if the packet was previously fragmented,
888 	 * but it's not worth the time; just let them time out.)
889 	 */
890 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
891 
892 		/* If maxnipq is 0, never accept fragments. */
893 		if (maxnipq == 0) {
894 			ipstat.ips_fragments++;
895 			ipstat.ips_fragdropped++;
896 			goto bad;
897 		}
898 
899 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
900 		/*
901 		 * Look for queue of fragments
902 		 * of this datagram.
903 		 */
904 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
905 			if (ip->ip_id == fp->ipq_id &&
906 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
907 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
908 			    ip->ip_p == fp->ipq_p)
909 				goto found;
910 
911 		fp = NULL;
912 
913 		/*
914 		 * Enforce upper bound on number of fragmented packets
915 		 * for which we attempt reassembly;
916 		 * If maxnipq is -1, accept all fragments without limitation.
917 		 */
918 		if ((nipq > maxnipq) && (maxnipq > 0)) {
919 			/*
920 			 * drop something from the tail of the current queue
921 			 * before proceeding further
922 			 */
923 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
924 				for (i = 0; i < IPREASS_NHASH; i++) {
925 					if (ipq[i].prev != &ipq[i]) {
926 						ipstat.ips_fragtimeout +=
927 						    ipq[i].prev->ipq_nfrags;
928 						ip_freef(ipq[i].prev);
929 						break;
930 					}
931 				}
932 			} else {
933 				ipstat.ips_fragtimeout +=
934 				    ipq[sum].prev->ipq_nfrags;
935 				ip_freef(ipq[sum].prev);
936 			}
937 		}
938 found:
939 		/*
940 		 * Adjust ip_len to not reflect header,
941 		 * convert offset of this to bytes.
942 		 */
943 		ip->ip_len -= hlen;
944 		if (ip->ip_off & IP_MF) {
945 			/*
946 			 * Make sure that fragments have a data length
947 			 * that's a non-zero multiple of 8 bytes.
948 			 */
949 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
950 				ipstat.ips_toosmall++; /* XXX */
951 				goto bad;
952 			}
953 			m->m_flags |= M_FRAG;
954 		} else
955 			m->m_flags &= ~M_FRAG;
956 		ip->ip_off <<= 3;
957 
958 		/*
959 		 * Attempt reassembly; if it succeeds, proceed.
960 		 * ip_reass() will return a different mbuf, and update
961 		 * the divert info in divert_info and args.divert_rule.
962 		 */
963 		ipstat.ips_fragments++;
964 		m->m_pkthdr.header = ip;
965 		m = ip_reass(m, fp, &ipq[sum], &divert_info, &args.divert_rule);
966 		if (m == NULL)
967 			return;
968 		ipstat.ips_reassembled++;
969 		needredispatch = TRUE;
970 		ip = mtod(m, struct ip *);
971 		/* Get the header length of the reassembled packet */
972 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
973 #ifdef IPDIVERT
974 		/* Restore original checksum before diverting packet */
975 		if (divert_info != 0) {
976 			ip->ip_len += hlen;
977 			ip->ip_len = htons(ip->ip_len);
978 			ip->ip_off = htons(ip->ip_off);
979 			ip->ip_sum = 0;
980 			if (hlen == sizeof(struct ip))
981 				ip->ip_sum = in_cksum_hdr(ip);
982 			else
983 				ip->ip_sum = in_cksum(m, hlen);
984 			ip->ip_off = ntohs(ip->ip_off);
985 			ip->ip_len = ntohs(ip->ip_len);
986 			ip->ip_len -= hlen;
987 		}
988 #endif
989 	} else {
990 		ip->ip_len -= hlen;
991 	}
992 
993 #ifdef IPDIVERT
994 	/*
995 	 * Divert or tee packet to the divert protocol if required.
996 	 */
997 	if (divert_info != 0) {
998 		struct mbuf *clone = NULL;
999 
1000 		/* Clone packet if we're doing a 'tee' */
1001 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1002 			clone = m_dup(m, MB_DONTWAIT);
1003 
1004 		/* Restore packet header fields to original values */
1005 		ip->ip_len += hlen;
1006 		ip->ip_len = htons(ip->ip_len);
1007 		ip->ip_off = htons(ip->ip_off);
1008 
1009 		/* Deliver packet to divert input routine */
1010 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
1011 		ipstat.ips_delivered++;
1012 
1013 		/* If 'tee', continue with original packet */
1014 		if (clone == NULL)
1015 			return;
1016 		m = clone;
1017 		ip = mtod(m, struct ip *);
1018 		ip->ip_len += hlen;
1019 		/*
1020 		 * Jump backwards to complete processing of the
1021 		 * packet. But first clear divert_info to avoid
1022 		 * entering this block again.
1023 		 * We do not need to clear args.divert_rule
1024 		 * or args.next_hop as they will not be used.
1025 		 */
1026 		divert_info = 0;
1027 		goto pass;
1028 	}
1029 #endif
1030 
1031 #ifdef IPSEC
1032 	/*
1033 	 * enforce IPsec policy checking if we are seeing last header.
1034 	 * note that we do not visit this with protocols with pcb layer
1035 	 * code - like udp/tcp/raw ip.
1036 	 */
1037 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1038 	    ipsec4_in_reject(m, NULL)) {
1039 		ipsecstat.in_polvio++;
1040 		goto bad;
1041 	}
1042 #endif
1043 #if FAST_IPSEC
1044 	/*
1045 	 * enforce IPsec policy checking if we are seeing last header.
1046 	 * note that we do not visit this with protocols with pcb layer
1047 	 * code - like udp/tcp/raw ip.
1048 	 */
1049 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1050 		/*
1051 		 * Check if the packet has already had IPsec processing
1052 		 * done.  If so, then just pass it along.  This tag gets
1053 		 * set during AH, ESP, etc. input handling, before the
1054 		 * packet is returned to the ip input queue for delivery.
1055 		 */
1056 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1057 		s = splnet();
1058 		if (mtag != NULL) {
1059 			tdbi = (struct tdb_ident *)(mtag + 1);
1060 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1061 		} else {
1062 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1063 						   IP_FORWARDING, &error);
1064 		}
1065 		if (sp != NULL) {
1066 			/*
1067 			 * Check security policy against packet attributes.
1068 			 */
1069 			error = ipsec_in_reject(sp, m);
1070 			KEY_FREESP(&sp);
1071 		} else {
1072 			/* XXX error stat??? */
1073 			error = EINVAL;
1074 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1075 			goto bad;
1076 		}
1077 		splx(s);
1078 		if (error)
1079 			goto bad;
1080 	}
1081 #endif /* FAST_IPSEC */
1082 
1083 	ipstat.ips_delivered++;
1084 	if (needredispatch) {
1085 		struct netmsg_transport_packet *msg;
1086 		lwkt_port_t port;
1087 
1088 		msg = malloc(sizeof(struct netmsg_transport_packet),
1089 				M_LWKTMSG, M_INTWAIT | M_NULLOK);
1090 		if (msg == NULL)
1091 			goto bad;
1092 
1093 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1094 			lwkt_cmd_func(transport_processing_handler),
1095 			lwkt_cmd_op_none);
1096 		msg->nm_hlen = hlen;
1097 		msg->nm_hasnexthop = (args.next_hop != NULL);
1098 		if (msg->nm_hasnexthop)
1099 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1100 
1101 		ip->ip_off = htons(ip->ip_off);
1102 		ip->ip_len = htons(ip->ip_len);
1103 		port = ip_mport(&m);
1104 		if (port) {
1105 		    msg->nm_mbuf = m;
1106 		    ip = mtod(m, struct ip *);
1107 		    ip->ip_len = ntohs(ip->ip_len);
1108 		    ip->ip_off = ntohs(ip->ip_off);
1109 		    lwkt_sendmsg(port, &msg->nm_lmsg);
1110 		}
1111 	} else {
1112 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1113 	}
1114 	return;
1115 
1116 bad:
1117 	m_freem(m);
1118 }
1119 
1120 /*
1121  * Take incoming datagram fragment and try to reassemble it into
1122  * whole datagram.  If a chain for reassembly of this datagram already
1123  * exists, then it is given as fp; otherwise have to make a chain.
1124  *
1125  * When IPDIVERT enabled, keep additional state with each packet that
1126  * tells us if we need to divert or tee the packet we're building.
1127  * In particular, *divinfo includes the port and TEE flag,
1128  * *divert_rule is the number of the matching rule.
1129  */
1130 
1131 static struct mbuf *
1132 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1133 	 u_int32_t *divinfo, u_int16_t *divert_rule)
1134 {
1135 	struct ip *ip = mtod(m, struct ip *);
1136 	struct mbuf *p = NULL, *q, *nq;
1137 	struct mbuf *n;
1138 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1139 	int i, next;
1140 
1141 	/*
1142 	 * Presence of header sizes in mbufs
1143 	 * would confuse code below.
1144 	 */
1145 	m->m_data += hlen;
1146 	m->m_len -= hlen;
1147 
1148 	/*
1149 	 * If first fragment to arrive, create a reassembly queue.
1150 	 */
1151 	if (fp == NULL) {
1152 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1153 			goto dropfrag;
1154 		insque(fp, where);
1155 		nipq++;
1156 		fp->ipq_nfrags = 1;
1157 		fp->ipq_ttl = IPFRAGTTL;
1158 		fp->ipq_p = ip->ip_p;
1159 		fp->ipq_id = ip->ip_id;
1160 		fp->ipq_src = ip->ip_src;
1161 		fp->ipq_dst = ip->ip_dst;
1162 		fp->ipq_frags = m;
1163 		m->m_nextpkt = NULL;
1164 #ifdef IPDIVERT
1165 		fp->ipq_div_info = 0;
1166 		fp->ipq_div_cookie = 0;
1167 #endif
1168 		goto inserted;
1169 	} else {
1170 		fp->ipq_nfrags++;
1171 	}
1172 
1173 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1174 
1175 	/*
1176 	 * Find a segment which begins after this one does.
1177 	 */
1178 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1179 		if (GETIP(q)->ip_off > ip->ip_off)
1180 			break;
1181 
1182 	/*
1183 	 * If there is a preceding segment, it may provide some of
1184 	 * our data already.  If so, drop the data from the incoming
1185 	 * segment.  If it provides all of our data, drop us, otherwise
1186 	 * stick new segment in the proper place.
1187 	 *
1188 	 * If some of the data is dropped from the the preceding
1189 	 * segment, then it's checksum is invalidated.
1190 	 */
1191 	if (p) {
1192 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1193 		if (i > 0) {
1194 			if (i >= ip->ip_len)
1195 				goto dropfrag;
1196 			m_adj(m, i);
1197 			m->m_pkthdr.csum_flags = 0;
1198 			ip->ip_off += i;
1199 			ip->ip_len -= i;
1200 		}
1201 		m->m_nextpkt = p->m_nextpkt;
1202 		p->m_nextpkt = m;
1203 	} else {
1204 		m->m_nextpkt = fp->ipq_frags;
1205 		fp->ipq_frags = m;
1206 	}
1207 
1208 	/*
1209 	 * While we overlap succeeding segments trim them or,
1210 	 * if they are completely covered, dequeue them.
1211 	 */
1212 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1213 	     q = nq) {
1214 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1215 		if (i < GETIP(q)->ip_len) {
1216 			GETIP(q)->ip_len -= i;
1217 			GETIP(q)->ip_off += i;
1218 			m_adj(q, i);
1219 			q->m_pkthdr.csum_flags = 0;
1220 			break;
1221 		}
1222 		nq = q->m_nextpkt;
1223 		m->m_nextpkt = nq;
1224 		ipstat.ips_fragdropped++;
1225 		fp->ipq_nfrags--;
1226 		m_freem(q);
1227 	}
1228 
1229 inserted:
1230 
1231 #ifdef IPDIVERT
1232 	/*
1233 	 * Transfer firewall instructions to the fragment structure.
1234 	 * Only trust info in the fragment at offset 0.
1235 	 */
1236 	if (ip->ip_off == 0) {
1237 		fp->ipq_div_info = *divinfo;
1238 		fp->ipq_div_cookie = *divert_rule;
1239 	}
1240 	*divinfo = 0;
1241 	*divert_rule = 0;
1242 #endif
1243 
1244 	/*
1245 	 * Check for complete reassembly and perform frag per packet
1246 	 * limiting.
1247 	 *
1248 	 * Frag limiting is performed here so that the nth frag has
1249 	 * a chance to complete the packet before we drop the packet.
1250 	 * As a result, n+1 frags are actually allowed per packet, but
1251 	 * only n will ever be stored. (n = maxfragsperpacket.)
1252 	 *
1253 	 */
1254 	next = 0;
1255 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1256 		if (GETIP(q)->ip_off != next) {
1257 			if (fp->ipq_nfrags > maxfragsperpacket) {
1258 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1259 				ip_freef(fp);
1260 			}
1261 			return (NULL);
1262 		}
1263 		next += GETIP(q)->ip_len;
1264 	}
1265 	/* Make sure the last packet didn't have the IP_MF flag */
1266 	if (p->m_flags & M_FRAG) {
1267 		if (fp->ipq_nfrags > maxfragsperpacket) {
1268 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1269 			ip_freef(fp);
1270 		}
1271 		return (NULL);
1272 	}
1273 
1274 	/*
1275 	 * Reassembly is complete.  Make sure the packet is a sane size.
1276 	 */
1277 	q = fp->ipq_frags;
1278 	ip = GETIP(q);
1279 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1280 		ipstat.ips_toolong++;
1281 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1282 		ip_freef(fp);
1283 		return (NULL);
1284 	}
1285 
1286 	/*
1287 	 * Concatenate fragments.
1288 	 */
1289 	m = q;
1290 	n = m->m_next;
1291 	m->m_next = NULL;
1292 	m_cat(m, n);
1293 	nq = q->m_nextpkt;
1294 	q->m_nextpkt = NULL;
1295 	for (q = nq; q != NULL; q = nq) {
1296 		nq = q->m_nextpkt;
1297 		q->m_nextpkt = NULL;
1298 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1299 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1300 		m_cat(m, q);
1301 	}
1302 
1303 #ifdef IPDIVERT
1304 	/*
1305 	 * Extract firewall instructions from the fragment structure.
1306 	 */
1307 	*divinfo = fp->ipq_div_info;
1308 	*divert_rule = fp->ipq_div_cookie;
1309 #endif
1310 
1311 	/*
1312 	 * Create header for new ip packet by
1313 	 * modifying header of first packet;
1314 	 * dequeue and discard fragment reassembly header.
1315 	 * Make header visible.
1316 	 */
1317 	ip->ip_len = next;
1318 	ip->ip_src = fp->ipq_src;
1319 	ip->ip_dst = fp->ipq_dst;
1320 	remque(fp);
1321 	nipq--;
1322 	mpipe_free(&ipq_mpipe, fp);
1323 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1324 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1325 	/* some debugging cruft by sklower, below, will go away soon */
1326 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1327 		int plen = 0;
1328 
1329 		for (n = m; n; n = n->m_next)
1330 			plen += n->m_len;
1331 		m->m_pkthdr.len = plen;
1332 	}
1333 	return (m);
1334 
1335 dropfrag:
1336 #ifdef IPDIVERT
1337 	*divinfo = 0;
1338 	*divert_rule = 0;
1339 #endif
1340 	ipstat.ips_fragdropped++;
1341 	if (fp != NULL)
1342 		fp->ipq_nfrags--;
1343 	m_freem(m);
1344 	return (NULL);
1345 
1346 #undef GETIP
1347 }
1348 
1349 /*
1350  * Free a fragment reassembly header and all
1351  * associated datagrams.
1352  */
1353 static void
1354 ip_freef(struct ipq *fp)
1355 {
1356 	struct mbuf *q;
1357 
1358 	while (fp->ipq_frags) {
1359 		q = fp->ipq_frags;
1360 		fp->ipq_frags = q->m_nextpkt;
1361 		m_freem(q);
1362 	}
1363 	remque(fp);
1364 	mpipe_free(&ipq_mpipe, fp);
1365 	nipq--;
1366 }
1367 
1368 /*
1369  * IP timer processing;
1370  * if a timer expires on a reassembly
1371  * queue, discard it.
1372  */
1373 void
1374 ip_slowtimo(void)
1375 {
1376 	struct ipq *fp;
1377 	int s = splnet();
1378 	int i;
1379 
1380 	for (i = 0; i < IPREASS_NHASH; i++) {
1381 		fp = ipq[i].next;
1382 		if (fp == NULL)
1383 			continue;
1384 		while (fp != &ipq[i]) {
1385 			--fp->ipq_ttl;
1386 			fp = fp->next;
1387 			if (fp->prev->ipq_ttl == 0) {
1388 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1389 				ip_freef(fp->prev);
1390 			}
1391 		}
1392 	}
1393 	/*
1394 	 * If we are over the maximum number of fragments
1395 	 * (due to the limit being lowered), drain off
1396 	 * enough to get down to the new limit.
1397 	 */
1398 	if (maxnipq >= 0 && nipq > maxnipq) {
1399 		for (i = 0; i < IPREASS_NHASH; i++) {
1400 			while (nipq > maxnipq &&
1401 				(ipq[i].next != &ipq[i])) {
1402 				ipstat.ips_fragdropped +=
1403 				    ipq[i].next->ipq_nfrags;
1404 				ip_freef(ipq[i].next);
1405 			}
1406 		}
1407 	}
1408 	ipflow_slowtimo();
1409 	splx(s);
1410 }
1411 
1412 /*
1413  * Drain off all datagram fragments.
1414  */
1415 void
1416 ip_drain(void)
1417 {
1418 	int i;
1419 
1420 	for (i = 0; i < IPREASS_NHASH; i++) {
1421 		while (ipq[i].next != &ipq[i]) {
1422 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1423 			ip_freef(ipq[i].next);
1424 		}
1425 	}
1426 	in_rtqdrain();
1427 }
1428 
1429 /*
1430  * Do option processing on a datagram,
1431  * possibly discarding it if bad options are encountered,
1432  * or forwarding it if source-routed.
1433  * The pass argument is used when operating in the IPSTEALTH
1434  * mode to tell what options to process:
1435  * [LS]SRR (pass 0) or the others (pass 1).
1436  * The reason for as many as two passes is that when doing IPSTEALTH,
1437  * non-routing options should be processed only if the packet is for us.
1438  * Returns 1 if packet has been forwarded/freed,
1439  * 0 if the packet should be processed further.
1440  */
1441 static int
1442 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1443 {
1444 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1445 	struct ip *ip = mtod(m, struct ip *);
1446 	u_char *cp;
1447 	struct in_ifaddr *ia;
1448 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1449 	boolean_t forward = FALSE;
1450 	struct in_addr *sin, dst;
1451 	n_time ntime;
1452 
1453 	dst = ip->ip_dst;
1454 	cp = (u_char *)(ip + 1);
1455 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1456 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1457 		opt = cp[IPOPT_OPTVAL];
1458 		if (opt == IPOPT_EOL)
1459 			break;
1460 		if (opt == IPOPT_NOP)
1461 			optlen = 1;
1462 		else {
1463 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1464 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1465 				goto bad;
1466 			}
1467 			optlen = cp[IPOPT_OLEN];
1468 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1469 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1470 				goto bad;
1471 			}
1472 		}
1473 		switch (opt) {
1474 
1475 		default:
1476 			break;
1477 
1478 		/*
1479 		 * Source routing with record.
1480 		 * Find interface with current destination address.
1481 		 * If none on this machine then drop if strictly routed,
1482 		 * or do nothing if loosely routed.
1483 		 * Record interface address and bring up next address
1484 		 * component.  If strictly routed make sure next
1485 		 * address is on directly accessible net.
1486 		 */
1487 		case IPOPT_LSRR:
1488 		case IPOPT_SSRR:
1489 			if (ipstealth && pass > 0)
1490 				break;
1491 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1492 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1493 				goto bad;
1494 			}
1495 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1496 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1497 				goto bad;
1498 			}
1499 			ipaddr.sin_addr = ip->ip_dst;
1500 			ia = (struct in_ifaddr *)
1501 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1502 			if (ia == NULL) {
1503 				if (opt == IPOPT_SSRR) {
1504 					type = ICMP_UNREACH;
1505 					code = ICMP_UNREACH_SRCFAIL;
1506 					goto bad;
1507 				}
1508 				if (!ip_dosourceroute)
1509 					goto nosourcerouting;
1510 				/*
1511 				 * Loose routing, and not at next destination
1512 				 * yet; nothing to do except forward.
1513 				 */
1514 				break;
1515 			}
1516 			off--;			/* 0 origin */
1517 			if (off > optlen - (int)sizeof(struct in_addr)) {
1518 				/*
1519 				 * End of source route.  Should be for us.
1520 				 */
1521 				if (!ip_acceptsourceroute)
1522 					goto nosourcerouting;
1523 				save_rte(cp, ip->ip_src);
1524 				break;
1525 			}
1526 			if (ipstealth)
1527 				goto dropit;
1528 			if (!ip_dosourceroute) {
1529 				if (ipforwarding) {
1530 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1531 
1532 					/*
1533 					 * Acting as a router, so generate ICMP
1534 					 */
1535 nosourcerouting:
1536 					strcpy(buf, inet_ntoa(ip->ip_dst));
1537 					log(LOG_WARNING,
1538 					    "attempted source route from %s to %s\n",
1539 					    inet_ntoa(ip->ip_src), buf);
1540 					type = ICMP_UNREACH;
1541 					code = ICMP_UNREACH_SRCFAIL;
1542 					goto bad;
1543 				} else {
1544 					/*
1545 					 * Not acting as a router,
1546 					 * so silently drop.
1547 					 */
1548 dropit:
1549 					ipstat.ips_cantforward++;
1550 					m_freem(m);
1551 					return (1);
1552 				}
1553 			}
1554 
1555 			/*
1556 			 * locate outgoing interface
1557 			 */
1558 			memcpy(&ipaddr.sin_addr, cp + off,
1559 			    sizeof ipaddr.sin_addr);
1560 
1561 			if (opt == IPOPT_SSRR) {
1562 #define	INA	struct in_ifaddr *
1563 #define	SA	struct sockaddr *
1564 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1565 									== NULL)
1566 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1567 			} else
1568 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1569 			if (ia == NULL) {
1570 				type = ICMP_UNREACH;
1571 				code = ICMP_UNREACH_SRCFAIL;
1572 				goto bad;
1573 			}
1574 			ip->ip_dst = ipaddr.sin_addr;
1575 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1576 			    sizeof(struct in_addr));
1577 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1578 			/*
1579 			 * Let ip_intr's mcast routing check handle mcast pkts
1580 			 */
1581 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1582 			break;
1583 
1584 		case IPOPT_RR:
1585 			if (ipstealth && pass == 0)
1586 				break;
1587 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1588 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1589 				goto bad;
1590 			}
1591 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1592 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1593 				goto bad;
1594 			}
1595 			/*
1596 			 * If no space remains, ignore.
1597 			 */
1598 			off--;			/* 0 origin */
1599 			if (off > optlen - (int)sizeof(struct in_addr))
1600 				break;
1601 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1602 			    sizeof ipaddr.sin_addr);
1603 			/*
1604 			 * locate outgoing interface; if we're the destination,
1605 			 * use the incoming interface (should be same).
1606 			 */
1607 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1608 			    (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1609 								     == NULL) {
1610 				type = ICMP_UNREACH;
1611 				code = ICMP_UNREACH_HOST;
1612 				goto bad;
1613 			}
1614 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1615 			    sizeof(struct in_addr));
1616 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1617 			break;
1618 
1619 		case IPOPT_TS:
1620 			if (ipstealth && pass == 0)
1621 				break;
1622 			code = cp - (u_char *)ip;
1623 			if (optlen < 4 || optlen > 40) {
1624 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1625 				goto bad;
1626 			}
1627 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1628 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1629 				goto bad;
1630 			}
1631 			if (off > optlen - (int)sizeof(int32_t)) {
1632 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1633 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1634 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1635 					goto bad;
1636 				}
1637 				break;
1638 			}
1639 			off--;				/* 0 origin */
1640 			sin = (struct in_addr *)(cp + off);
1641 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1642 
1643 			case IPOPT_TS_TSONLY:
1644 				break;
1645 
1646 			case IPOPT_TS_TSANDADDR:
1647 				if (off + sizeof(n_time) +
1648 				    sizeof(struct in_addr) > optlen) {
1649 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1650 					goto bad;
1651 				}
1652 				ipaddr.sin_addr = dst;
1653 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1654 							    m->m_pkthdr.rcvif);
1655 				if (ia == NULL)
1656 					continue;
1657 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1658 				    sizeof(struct in_addr));
1659 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1660 				off += sizeof(struct in_addr);
1661 				break;
1662 
1663 			case IPOPT_TS_PRESPEC:
1664 				if (off + sizeof(n_time) +
1665 				    sizeof(struct in_addr) > optlen) {
1666 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1667 					goto bad;
1668 				}
1669 				memcpy(&ipaddr.sin_addr, sin,
1670 				    sizeof(struct in_addr));
1671 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1672 					continue;
1673 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1674 				off += sizeof(struct in_addr);
1675 				break;
1676 
1677 			default:
1678 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1679 				goto bad;
1680 			}
1681 			ntime = iptime();
1682 			memcpy(cp + off, &ntime, sizeof(n_time));
1683 			cp[IPOPT_OFFSET] += sizeof(n_time);
1684 		}
1685 	}
1686 	if (forward && ipforwarding) {
1687 		ip_forward(m, 1, next_hop);
1688 		return (1);
1689 	}
1690 	return (0);
1691 bad:
1692 	icmp_error(m, type, code, 0, NULL);
1693 	ipstat.ips_badoptions++;
1694 	return (1);
1695 }
1696 
1697 /*
1698  * Given address of next destination (final or next hop),
1699  * return internet address info of interface to be used to get there.
1700  */
1701 struct in_ifaddr *
1702 ip_rtaddr(struct in_addr dst, struct route *rt)
1703 {
1704 	struct sockaddr_in *sin;
1705 
1706 	sin = (struct sockaddr_in *)&rt->ro_dst;
1707 
1708 	if (rt->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1709 		if (rt->ro_rt != NULL) {
1710 			RTFREE(rt->ro_rt);
1711 			rt->ro_rt = NULL;
1712 		}
1713 		sin->sin_family = AF_INET;
1714 		sin->sin_len = sizeof *sin;
1715 		sin->sin_addr = dst;
1716 		rtalloc_ign(rt, RTF_PRCLONING);
1717 	}
1718 
1719 	if (rt->ro_rt == NULL)
1720 		return (NULL);
1721 
1722 	return (ifatoia(rt->ro_rt->rt_ifa));
1723 }
1724 
1725 /*
1726  * Save incoming source route for use in replies,
1727  * to be picked up later by ip_srcroute if the receiver is interested.
1728  */
1729 void
1730 save_rte(u_char *option, struct in_addr dst)
1731 {
1732 	unsigned olen;
1733 
1734 	olen = option[IPOPT_OLEN];
1735 #ifdef DIAGNOSTIC
1736 	if (ipprintfs)
1737 		printf("save_rte: olen %d\n", olen);
1738 #endif
1739 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1740 		return;
1741 	bcopy(option, ip_srcrt.srcopt, olen);
1742 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1743 	ip_srcrt.dst = dst;
1744 }
1745 
1746 /*
1747  * Retrieve incoming source route for use in replies,
1748  * in the same form used by setsockopt.
1749  * The first hop is placed before the options, will be removed later.
1750  */
1751 struct mbuf *
1752 ip_srcroute(void)
1753 {
1754 	struct in_addr *p, *q;
1755 	struct mbuf *m;
1756 
1757 	if (ip_nhops == 0)
1758 		return (NULL);
1759 	m = m_get(MB_DONTWAIT, MT_HEADER);
1760 	if (m == NULL)
1761 		return (NULL);
1762 
1763 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1764 
1765 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1766 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1767 	    OPTSIZ;
1768 #ifdef DIAGNOSTIC
1769 	if (ipprintfs)
1770 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1771 #endif
1772 
1773 	/*
1774 	 * First save first hop for return route
1775 	 */
1776 	p = &ip_srcrt.route[ip_nhops - 1];
1777 	*(mtod(m, struct in_addr *)) = *p--;
1778 #ifdef DIAGNOSTIC
1779 	if (ipprintfs)
1780 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1781 #endif
1782 
1783 	/*
1784 	 * Copy option fields and padding (nop) to mbuf.
1785 	 */
1786 	ip_srcrt.nop = IPOPT_NOP;
1787 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1788 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1789 	    OPTSIZ);
1790 	q = (struct in_addr *)(mtod(m, caddr_t) +
1791 	    sizeof(struct in_addr) + OPTSIZ);
1792 #undef OPTSIZ
1793 	/*
1794 	 * Record return path as an IP source route,
1795 	 * reversing the path (pointers are now aligned).
1796 	 */
1797 	while (p >= ip_srcrt.route) {
1798 #ifdef DIAGNOSTIC
1799 		if (ipprintfs)
1800 			printf(" %x", ntohl(q->s_addr));
1801 #endif
1802 		*q++ = *p--;
1803 	}
1804 	/*
1805 	 * Last hop goes to final destination.
1806 	 */
1807 	*q = ip_srcrt.dst;
1808 #ifdef DIAGNOSTIC
1809 	if (ipprintfs)
1810 		printf(" %x\n", ntohl(q->s_addr));
1811 #endif
1812 	return (m);
1813 }
1814 
1815 /*
1816  * Strip out IP options.
1817  */
1818 void
1819 ip_stripoptions(struct mbuf *m)
1820 {
1821 	int datalen;
1822 	struct ip *ip = mtod(m, struct ip *);
1823 	caddr_t opts;
1824 	int optlen;
1825 
1826 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1827 	opts = (caddr_t)(ip + 1);
1828 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1829 	bcopy(opts + optlen, opts, datalen);
1830 	m->m_len -= optlen;
1831 	if (m->m_flags & M_PKTHDR)
1832 		m->m_pkthdr.len -= optlen;
1833 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1834 }
1835 
1836 u_char inetctlerrmap[PRC_NCMDS] = {
1837 	0,		0,		0,		0,
1838 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1839 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1840 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1841 	0,		0,		0,		0,
1842 	ENOPROTOOPT,	ECONNREFUSED
1843 };
1844 
1845 /*
1846  * Forward a packet.  If some error occurs return the sender
1847  * an icmp packet.  Note we can't always generate a meaningful
1848  * icmp message because icmp doesn't have a large enough repertoire
1849  * of codes and types.
1850  *
1851  * If not forwarding, just drop the packet.  This could be confusing
1852  * if ipforwarding was zero but some routing protocol was advancing
1853  * us as a gateway to somewhere.  However, we must let the routing
1854  * protocol deal with that.
1855  *
1856  * The using_srcrt parameter indicates whether the packet is being forwarded
1857  * via a source route.
1858  */
1859 static void
1860 ip_forward(struct mbuf *m, int using_srcrt, struct sockaddr_in *next_hop)
1861 {
1862 	struct ip *ip = mtod(m, struct ip *);
1863 	struct sockaddr_in *sin;
1864 	struct rtentry *rt;
1865 	int error, type = 0, code = 0;
1866 	struct mbuf *mcopy;
1867 	n_long dest;
1868 	struct in_addr pkt_dst;
1869 	struct ifnet *destifp;
1870 	struct m_hdr tag;
1871 #if defined(IPSEC) || defined(FAST_IPSEC)
1872 	struct ifnet dummyifp;
1873 #endif
1874 
1875 	dest = 0;
1876 	/*
1877 	 * Cache the destination address of the packet; this may be
1878 	 * changed by use of 'ipfw fwd'.
1879 	 */
1880 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1881 
1882 #ifdef DIAGNOSTIC
1883 	if (ipprintfs)
1884 		printf("forward: src %x dst %x ttl %x\n",
1885 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1886 #endif
1887 
1888 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1889 		ipstat.ips_cantforward++;
1890 		m_freem(m);
1891 		return;
1892 	}
1893 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1894 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1895 		return;
1896 	}
1897 
1898 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1899 	if ((rt = ipforward_rt.ro_rt) == NULL ||
1900 	    pkt_dst.s_addr != sin->sin_addr.s_addr) {
1901 		if (ipforward_rt.ro_rt != NULL) {
1902 			RTFREE(ipforward_rt.ro_rt);
1903 			ipforward_rt.ro_rt = NULL;
1904 		}
1905 		sin->sin_family = AF_INET;
1906 		sin->sin_len = sizeof(*sin);
1907 		sin->sin_addr = pkt_dst;
1908 
1909 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1910 		if (ipforward_rt.ro_rt == NULL) {
1911 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1912 				   NULL);
1913 			return;
1914 		}
1915 		rt = ipforward_rt.ro_rt;
1916 	}
1917 
1918 	/*
1919 	 * Save the IP header and at most 8 bytes of the payload,
1920 	 * in case we need to generate an ICMP message to the src.
1921 	 *
1922 	 * XXX this can be optimized a lot by saving the data in a local
1923 	 * buffer on the stack (72 bytes at most), and only allocating the
1924 	 * mbuf if really necessary. The vast majority of the packets
1925 	 * are forwarded without having to send an ICMP back (either
1926 	 * because unnecessary, or because rate limited), so we are
1927 	 * really we are wasting a lot of work here.
1928 	 *
1929 	 * We don't use m_copy() because it might return a reference
1930 	 * to a shared cluster. Both this function and ip_output()
1931 	 * assume exclusive access to the IP header in `m', so any
1932 	 * data in a cluster may change before we reach icmp_error().
1933 	 */
1934 	MGET(mcopy, MB_DONTWAIT, m->m_type);
1935 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1936 		/*
1937 		 * It's probably ok if the pkthdr dup fails (because
1938 		 * the deep copy of the tag chain failed), but for now
1939 		 * be conservative and just discard the copy since
1940 		 * code below may some day want the tags.
1941 		 */
1942 		m_free(mcopy);
1943 		mcopy = NULL;
1944 	}
1945 	if (mcopy != NULL) {
1946 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1947 		    (int)ip->ip_len);
1948 		mcopy->m_pkthdr.len = mcopy->m_len;
1949 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1950 	}
1951 
1952 	if (!ipstealth)
1953 		ip->ip_ttl -= IPTTLDEC;
1954 
1955 	/*
1956 	 * If forwarding packet using same interface that it came in on,
1957 	 * perhaps should send a redirect to sender to shortcut a hop.
1958 	 * Only send redirect if source is sending directly to us,
1959 	 * and if packet was not source routed (or has any options).
1960 	 * Also, don't send redirect if forwarding using a default route
1961 	 * or a route modified by a redirect.
1962 	 */
1963 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1964 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1965 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1966 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1967 		u_long src = ntohl(ip->ip_src.s_addr);
1968 
1969 #define	RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1970 		if (RTA(rt) != NULL &&
1971 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1972 			if (rt->rt_flags & RTF_GATEWAY)
1973 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1974 			else
1975 				dest = pkt_dst.s_addr;
1976 			/*
1977 			 * Router requirements says to only send
1978 			 * host redirects.
1979 			 */
1980 			type = ICMP_REDIRECT;
1981 			code = ICMP_REDIRECT_HOST;
1982 #ifdef DIAGNOSTIC
1983 			if (ipprintfs)
1984 				printf("redirect (%d) to %x\n", code, dest);
1985 #endif
1986 		}
1987 	}
1988 
1989 	if (next_hop != NULL) {
1990 		/* Pass IPFORWARD info if available */
1991 		tag.mh_type = MT_TAG;
1992 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1993 		tag.mh_data = (caddr_t)next_hop;
1994 		tag.mh_next = m;
1995 		m = (struct mbuf *)&tag;
1996 	}
1997 
1998 	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
1999 
2000 	if (error)
2001 		ipstat.ips_cantforward++;
2002 	else {
2003 		ipstat.ips_forward++;
2004 		if (type)
2005 			ipstat.ips_redirectsent++;
2006 		else {
2007 			if (mcopy) {
2008 				ipflow_create(&ipforward_rt, mcopy);
2009 				m_freem(mcopy);
2010 			}
2011 			return;
2012 		}
2013 	}
2014 	if (mcopy == NULL)
2015 		return;
2016 	destifp = NULL;
2017 
2018 	switch (error) {
2019 
2020 	case 0:				/* forwarded, but need redirect */
2021 		/* type, code set above */
2022 		break;
2023 
2024 	case ENETUNREACH:		/* shouldn't happen, checked above */
2025 	case EHOSTUNREACH:
2026 	case ENETDOWN:
2027 	case EHOSTDOWN:
2028 	default:
2029 		type = ICMP_UNREACH;
2030 		code = ICMP_UNREACH_HOST;
2031 		break;
2032 
2033 	case EMSGSIZE:
2034 		type = ICMP_UNREACH;
2035 		code = ICMP_UNREACH_NEEDFRAG;
2036 #ifdef IPSEC
2037 		/*
2038 		 * If the packet is routed over IPsec tunnel, tell the
2039 		 * originator the tunnel MTU.
2040 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2041 		 * XXX quickhack!!!
2042 		 */
2043 		if (ipforward_rt.ro_rt != NULL) {
2044 			struct secpolicy *sp = NULL;
2045 			int ipsecerror;
2046 			int ipsechdr;
2047 			struct route *ro;
2048 
2049 			sp = ipsec4_getpolicybyaddr(mcopy,
2050 						    IPSEC_DIR_OUTBOUND,
2051 						    IP_FORWARDING,
2052 						    &ipsecerror);
2053 
2054 			if (sp == NULL)
2055 				destifp = ipforward_rt.ro_rt->rt_ifp;
2056 			else {
2057 				/* count IPsec header size */
2058 				ipsechdr = ipsec4_hdrsiz(mcopy,
2059 							 IPSEC_DIR_OUTBOUND,
2060 							 NULL);
2061 
2062 				/*
2063 				 * find the correct route for outer IPv4
2064 				 * header, compute tunnel MTU.
2065 				 *
2066 				 * XXX BUG ALERT
2067 				 * The "dummyifp" code relies upon the fact
2068 				 * that icmp_error() touches only ifp->if_mtu.
2069 				 */
2070 				/*XXX*/
2071 				destifp = NULL;
2072 				if (sp->req != NULL && sp->req->sav != NULL &&
2073 				    sp->req->sav->sah != NULL) {
2074 					ro = &sp->req->sav->sah->sa_route;
2075 					if (ro->ro_rt != NULL &&
2076 					    ro->ro_rt->rt_ifp != NULL) {
2077 						dummyifp.if_mtu =
2078 						    ro->ro_rt->rt_ifp->if_mtu;
2079 						dummyifp.if_mtu -= ipsechdr;
2080 						destifp = &dummyifp;
2081 					}
2082 				}
2083 
2084 				key_freesp(sp);
2085 			}
2086 		}
2087 #elif FAST_IPSEC
2088 		/*
2089 		 * If the packet is routed over IPsec tunnel, tell the
2090 		 * originator the tunnel MTU.
2091 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2092 		 * XXX quickhack!!!
2093 		 */
2094 		if (ipforward_rt.ro_rt != NULL) {
2095 			struct secpolicy *sp = NULL;
2096 			int ipsecerror;
2097 			int ipsechdr;
2098 			struct route *ro;
2099 
2100 			sp = ipsec_getpolicybyaddr(mcopy,
2101 						   IPSEC_DIR_OUTBOUND,
2102 						   IP_FORWARDING,
2103 						   &ipsecerror);
2104 
2105 			if (sp == NULL)
2106 				destifp = ipforward_rt.ro_rt->rt_ifp;
2107 			else {
2108 				/* count IPsec header size */
2109 				ipsechdr = ipsec4_hdrsiz(mcopy,
2110 							 IPSEC_DIR_OUTBOUND,
2111 							 NULL);
2112 
2113 				/*
2114 				 * find the correct route for outer IPv4
2115 				 * header, compute tunnel MTU.
2116 				 *
2117 				 * XXX BUG ALERT
2118 				 * The "dummyifp" code relies upon the fact
2119 				 * that icmp_error() touches only ifp->if_mtu.
2120 				 */
2121 				/*XXX*/
2122 				destifp = NULL;
2123 				if (sp->req != NULL &&
2124 				    sp->req->sav != NULL &&
2125 				    sp->req->sav->sah != NULL) {
2126 					ro = &sp->req->sav->sah->sa_route;
2127 					if (ro->ro_rt != NULL &&
2128 					    ro->ro_rt->rt_ifp != NULL) {
2129 						dummyifp.if_mtu =
2130 						    ro->ro_rt->rt_ifp->if_mtu;
2131 						dummyifp.if_mtu -= ipsechdr;
2132 						destifp = &dummyifp;
2133 					}
2134 				}
2135 
2136 				KEY_FREESP(&sp);
2137 			}
2138 		}
2139 #else /* !IPSEC && !FAST_IPSEC */
2140 		if (ipforward_rt.ro_rt != NULL)
2141 			destifp = ipforward_rt.ro_rt->rt_ifp;
2142 #endif /*IPSEC*/
2143 		ipstat.ips_cantfrag++;
2144 		break;
2145 
2146 	case ENOBUFS:
2147 		/*
2148 		 * A router should not generate ICMP_SOURCEQUENCH as
2149 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2150 		 * Source quench could be a big problem under DoS attacks,
2151 		 * or if the underlying interface is rate-limited.
2152 		 * Those who need source quench packets may re-enable them
2153 		 * via the net.inet.ip.sendsourcequench sysctl.
2154 		 */
2155 		if (!ip_sendsourcequench) {
2156 			m_freem(mcopy);
2157 			return;
2158 		} else {
2159 			type = ICMP_SOURCEQUENCH;
2160 			code = 0;
2161 		}
2162 		break;
2163 
2164 	case EACCES:			/* ipfw denied packet */
2165 		m_freem(mcopy);
2166 		return;
2167 	}
2168 	icmp_error(mcopy, type, code, dest, destifp);
2169 }
2170 
2171 void
2172 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2173 	       struct mbuf *m)
2174 {
2175 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2176 		struct timeval tv;
2177 
2178 		microtime(&tv);
2179 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2180 		    SCM_TIMESTAMP, SOL_SOCKET);
2181 		if (*mp)
2182 			mp = &(*mp)->m_next;
2183 	}
2184 	if (inp->inp_flags & INP_RECVDSTADDR) {
2185 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2186 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2187 		if (*mp)
2188 			mp = &(*mp)->m_next;
2189 	}
2190 #ifdef notyet
2191 	/* XXX
2192 	 * Moving these out of udp_input() made them even more broken
2193 	 * than they already were.
2194 	 */
2195 	/* options were tossed already */
2196 	if (inp->inp_flags & INP_RECVOPTS) {
2197 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2198 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2199 		if (*mp)
2200 			mp = &(*mp)->m_next;
2201 	}
2202 	/* ip_srcroute doesn't do what we want here, need to fix */
2203 	if (inp->inp_flags & INP_RECVRETOPTS) {
2204 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2205 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2206 		if (*mp)
2207 			mp = &(*mp)->m_next;
2208 	}
2209 #endif
2210 	if (inp->inp_flags & INP_RECVIF) {
2211 		struct ifnet *ifp;
2212 		struct sdlbuf {
2213 			struct sockaddr_dl sdl;
2214 			u_char	pad[32];
2215 		} sdlbuf;
2216 		struct sockaddr_dl *sdp;
2217 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2218 
2219 		if (((ifp = m->m_pkthdr.rcvif)) &&
2220 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2221 			sdp = (struct sockaddr_dl *)
2222 			    ifnet_addrs[ifp->if_index - 1]->ifa_addr;
2223 			/*
2224 			 * Change our mind and don't try copy.
2225 			 */
2226 			if ((sdp->sdl_family != AF_LINK) ||
2227 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2228 				goto makedummy;
2229 			}
2230 			bcopy(sdp, sdl2, sdp->sdl_len);
2231 		} else {
2232 makedummy:
2233 			sdl2->sdl_len =
2234 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2235 			sdl2->sdl_family = AF_LINK;
2236 			sdl2->sdl_index = 0;
2237 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2238 		}
2239 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2240 			IP_RECVIF, IPPROTO_IP);
2241 		if (*mp)
2242 			mp = &(*mp)->m_next;
2243 	}
2244 }
2245 
2246 /*
2247  * XXX these routines are called from the upper part of the kernel.
2248  *
2249  * They could also be moved to ip_mroute.c, since all the RSVP
2250  *  handling is done there already.
2251  */
2252 int
2253 ip_rsvp_init(struct socket *so)
2254 {
2255 	if (so->so_type != SOCK_RAW ||
2256 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2257 		return EOPNOTSUPP;
2258 
2259 	if (ip_rsvpd != NULL)
2260 		return EADDRINUSE;
2261 
2262 	ip_rsvpd = so;
2263 	/*
2264 	 * This may seem silly, but we need to be sure we don't over-increment
2265 	 * the RSVP counter, in case something slips up.
2266 	 */
2267 	if (!ip_rsvp_on) {
2268 		ip_rsvp_on = 1;
2269 		rsvp_on++;
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 int
2276 ip_rsvp_done(void)
2277 {
2278 	ip_rsvpd = NULL;
2279 	/*
2280 	 * This may seem silly, but we need to be sure we don't over-decrement
2281 	 * the RSVP counter, in case something slips up.
2282 	 */
2283 	if (ip_rsvp_on) {
2284 		ip_rsvp_on = 0;
2285 		rsvp_on--;
2286 	}
2287 	return 0;
2288 }
2289 
2290 void
2291 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2292 {
2293 	int off, proto;
2294 	__va_list ap;
2295 
2296 	__va_start(ap, m);
2297 	off = __va_arg(ap, int);
2298 	proto = __va_arg(ap, int);
2299 	__va_end(ap);
2300 
2301 	if (rsvp_input_p) { /* call the real one if loaded */
2302 		rsvp_input_p(m, off, proto);
2303 		return;
2304 	}
2305 
2306 	/* Can still get packets with rsvp_on = 0 if there is a local member
2307 	 * of the group to which the RSVP packet is addressed.  But in this
2308 	 * case we want to throw the packet away.
2309 	 */
2310 
2311 	if (!rsvp_on) {
2312 		m_freem(m);
2313 		return;
2314 	}
2315 
2316 	if (ip_rsvpd != NULL) {
2317 		rip_input(m, off, proto);
2318 		return;
2319 	}
2320 	/* Drop the packet */
2321 	m_freem(m);
2322 }
2323