xref: /dragonfly/sys/netinet/ip_output.c (revision 1d1731fa)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
35  * $DragonFly: src/sys/netinet/ip_output.c,v 1.8 2003/08/24 23:07:07 hsu Exp $
36  */
37 
38 #define _IP_VHL
39 
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipsec.h"
45 #include "opt_random_ip_id.h"
46 #include "opt_mbuf_stress_test.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/proc.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip_var.h>
68 
69 #include <machine/in_cksum.h>
70 
71 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
72 
73 #ifdef IPSEC
74 #include <netinet6/ipsec.h>
75 #include <netproto/key/key.h>
76 #ifdef IPSEC_DEBUG
77 #include <netproto/key/key_debug.h>
78 #else
79 #define	KEYDEBUG(lev,arg)
80 #endif
81 #endif /*IPSEC*/
82 
83 #ifdef FAST_IPSEC
84 #include <netipsec/ipsec.h>
85 #include <netipsec/xform.h>
86 #include <netipsec/key.h>
87 #endif /*FAST_IPSEC*/
88 
89 #include <net/ipfw/ip_fw.h>
90 #include <net/dummynet/ip_dummynet.h>
91 
92 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
93 				x, (ntohl(a.s_addr)>>24)&0xFF,\
94 				  (ntohl(a.s_addr)>>16)&0xFF,\
95 				  (ntohl(a.s_addr)>>8)&0xFF,\
96 				  (ntohl(a.s_addr))&0xFF, y);
97 
98 u_short ip_id;
99 
100 #ifdef MBUF_STRESS_TEST
101 int mbuf_frag_size = 0;
102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
103 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
104 #endif
105 
106 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
107 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
108 static void	ip_mloopback
109 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
110 static int	ip_getmoptions
111 	(struct sockopt *, struct ip_moptions *);
112 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
113 static int	ip_setmoptions
114 	(struct sockopt *, struct ip_moptions **);
115 
116 int	ip_optcopy(struct ip *, struct ip *);
117 extern int (*fr_checkp) (struct ip *, int, struct ifnet *, int, struct mbuf **);
118 
119 
120 extern	struct protosw inetsw[];
121 
122 /*
123  * IP output.  The packet in mbuf chain m contains a skeletal IP
124  * header (with len, off, ttl, proto, tos, src, dst).
125  * The mbuf chain containing the packet will be freed.
126  * The mbuf opt, if present, will not be freed.
127  */
128 int
129 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
130 	int flags, struct ip_moptions *imo, struct inpcb *inp)
131 {
132 	struct ip *ip;
133 	struct ifnet *ifp = NULL;	/* keep compiler happy */
134 	struct mbuf *m;
135 	int hlen = sizeof (struct ip);
136 	int len, off, error = 0;
137 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
138 	struct in_ifaddr *ia = NULL;
139 	int isbroadcast, sw_csum;
140 	struct in_addr pkt_dst;
141 #ifdef IPSEC
142 	struct route iproute;
143 	struct secpolicy *sp = NULL;
144 	struct socket *so = inp ? inp->inp_socket : NULL;
145 #endif
146 #ifdef FAST_IPSEC
147 	struct route iproute;
148 	struct m_tag *mtag;
149 	struct secpolicy *sp = NULL;
150 	struct tdb_ident *tdbi;
151 	int s;
152 #endif /* FAST_IPSEC */
153 	struct ip_fw_args args;
154 	int src_was_INADDR_ANY = 0;	/* as the name says... */
155 
156 	args.eh = NULL;
157 	args.rule = NULL;
158 	args.next_hop = NULL;
159 	args.divert_rule = 0;			/* divert cookie */
160 
161 	/* Grab info from MT_TAG mbufs prepended to the chain. */
162 	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
163 		switch(m0->_m_tag_id) {
164 		default:
165 			printf("ip_output: unrecognised MT_TAG tag %d\n",
166 			    m0->_m_tag_id);
167 			break;
168 
169 		case PACKET_TAG_DUMMYNET:
170 			/*
171 			 * the packet was already tagged, so part of the
172 			 * processing was already done, and we need to go down.
173 			 * Get parameters from the header.
174 			 */
175 			args.rule = ((struct dn_pkt *)m0)->rule;
176 			opt = NULL ;
177 			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
178 			imo = NULL ;
179 			dst = ((struct dn_pkt *)m0)->dn_dst ;
180 			ifp = ((struct dn_pkt *)m0)->ifp ;
181 			flags = ((struct dn_pkt *)m0)->flags ;
182 			break;
183 
184 		case PACKET_TAG_DIVERT:
185 			args.divert_rule = (int)m0->m_data & 0xffff;
186 			break;
187 
188 		case PACKET_TAG_IPFORWARD:
189 			args.next_hop = (struct sockaddr_in *)m0->m_data;
190 			break;
191 		}
192 	}
193 	m = m0;
194 
195 	KASSERT(!m || (m->m_flags & M_PKTHDR) != 0, ("ip_output: no HDR"));
196 #ifndef FAST_IPSEC
197 	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
198 	    mtod(m, struct ip *)->ip_p));
199 #endif
200 
201 	if (args.rule != NULL) {	/* dummynet already saw us */
202 		ip = mtod(m, struct ip *);
203 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
204 		if (ro->ro_rt)
205 			ia = ifatoia(ro->ro_rt->rt_ifa);
206 		goto sendit;
207 	}
208 
209 	if (opt) {
210 		len = 0;
211 		m = ip_insertoptions(m, opt, &len);
212 		if (len != 0)
213 			hlen = len;
214 	}
215 	ip = mtod(m, struct ip *);
216 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
217 
218 	/*
219 	 * Fill in IP header.
220 	 */
221 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
222 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
223 		ip->ip_off &= IP_DF;
224 #ifdef RANDOM_IP_ID
225 		ip->ip_id = ip_randomid();
226 #else
227 		ip->ip_id = htons(ip_id++);
228 #endif
229 		ipstat.ips_localout++;
230 	} else {
231 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
232 	}
233 
234 #ifdef FAST_IPSEC
235 	if (ro == NULL) {
236 		ro = &iproute;
237 		bzero(ro, sizeof (*ro));
238 	}
239 #endif /* FAST_IPSEC */
240 	dst = (struct sockaddr_in *)&ro->ro_dst;
241 	/*
242 	 * If there is a cached route,
243 	 * check that it is to the same destination
244 	 * and is still up.  If not, free it and try again.
245 	 * The address family should also be checked in case of sharing the
246 	 * cache with IPv6.
247 	 */
248 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
249 			  dst->sin_family != AF_INET ||
250 			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
251 		RTFREE(ro->ro_rt);
252 		ro->ro_rt = (struct rtentry *)0;
253 	}
254 	if (ro->ro_rt == 0) {
255 		bzero(dst, sizeof(*dst));
256 		dst->sin_family = AF_INET;
257 		dst->sin_len = sizeof(*dst);
258 		dst->sin_addr = pkt_dst;
259 	}
260 	/*
261 	 * If routing to interface only,
262 	 * short circuit routing lookup.
263 	 */
264 	if (flags & IP_ROUTETOIF) {
265 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
266 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
267 			ipstat.ips_noroute++;
268 			error = ENETUNREACH;
269 			goto bad;
270 		}
271 		ifp = ia->ia_ifp;
272 		ip->ip_ttl = 1;
273 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
274 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
275 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
276 		/*
277 		 * Bypass the normal routing lookup for multicast
278 		 * packets if the interface is specified.
279 		 */
280 		ifp = imo->imo_multicast_ifp;
281 		IFP_TO_IA(ifp, ia);
282 		isbroadcast = 0;	/* fool gcc */
283 	} else {
284 		/*
285 		 * If this is the case, we probably don't want to allocate
286 		 * a protocol-cloned route since we didn't get one from the
287 		 * ULP.  This lets TCP do its thing, while not burdening
288 		 * forwarding or ICMP with the overhead of cloning a route.
289 		 * Of course, we still want to do any cloning requested by
290 		 * the link layer, as this is probably required in all cases
291 		 * for correct operation (as it is for ARP).
292 		 */
293 		if (ro->ro_rt == 0)
294 			rtalloc_ign(ro, RTF_PRCLONING);
295 		if (ro->ro_rt == 0) {
296 			ipstat.ips_noroute++;
297 			error = EHOSTUNREACH;
298 			goto bad;
299 		}
300 		ia = ifatoia(ro->ro_rt->rt_ifa);
301 		ifp = ro->ro_rt->rt_ifp;
302 		ro->ro_rt->rt_use++;
303 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
305 		if (ro->ro_rt->rt_flags & RTF_HOST)
306 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
307 		else
308 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
309 	}
310 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
311 		struct in_multi *inm;
312 
313 		m->m_flags |= M_MCAST;
314 		/*
315 		 * IP destination address is multicast.  Make sure "dst"
316 		 * still points to the address in "ro".  (It may have been
317 		 * changed to point to a gateway address, above.)
318 		 */
319 		dst = (struct sockaddr_in *)&ro->ro_dst;
320 		/*
321 		 * See if the caller provided any multicast options
322 		 */
323 		if (imo != NULL) {
324 			ip->ip_ttl = imo->imo_multicast_ttl;
325 			if (imo->imo_multicast_vif != -1)
326 				ip->ip_src.s_addr =
327 				    ip_mcast_src ?
328 				    ip_mcast_src(imo->imo_multicast_vif) :
329 				    INADDR_ANY;
330 		} else
331 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
332 		/*
333 		 * Confirm that the outgoing interface supports multicast.
334 		 */
335 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
336 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
337 				ipstat.ips_noroute++;
338 				error = ENETUNREACH;
339 				goto bad;
340 			}
341 		}
342 		/*
343 		 * If source address not specified yet, use address
344 		 * of outgoing interface.
345 		 */
346 		if (ip->ip_src.s_addr == INADDR_ANY) {
347 			/* Interface may have no addresses. */
348 			if (ia != NULL)
349 				ip->ip_src = IA_SIN(ia)->sin_addr;
350 		}
351 
352 		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
353 			/*
354 			 * XXX
355 			 * delayed checksums are not currently
356 			 * compatible with IP multicast routing
357 			 */
358 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
359 				in_delayed_cksum(m);
360 				m->m_pkthdr.csum_flags &=
361 					~CSUM_DELAY_DATA;
362 			}
363 		}
364 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
365 		if (inm != NULL &&
366 		   (imo == NULL || imo->imo_multicast_loop)) {
367 			/*
368 			 * If we belong to the destination multicast group
369 			 * on the outgoing interface, and the caller did not
370 			 * forbid loopback, loop back a copy.
371 			 */
372 			ip_mloopback(ifp, m, dst, hlen);
373 		}
374 		else {
375 			/*
376 			 * If we are acting as a multicast router, perform
377 			 * multicast forwarding as if the packet had just
378 			 * arrived on the interface to which we are about
379 			 * to send.  The multicast forwarding function
380 			 * recursively calls this function, using the
381 			 * IP_FORWARDING flag to prevent infinite recursion.
382 			 *
383 			 * Multicasts that are looped back by ip_mloopback(),
384 			 * above, will be forwarded by the ip_input() routine,
385 			 * if necessary.
386 			 */
387 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
388 				/*
389 				 * If rsvp daemon is not running, do not
390 				 * set ip_moptions. This ensures that the packet
391 				 * is multicast and not just sent down one link
392 				 * as prescribed by rsvpd.
393 				 */
394 				if (!rsvp_on)
395 					imo = NULL;
396 				if (ip_mforward &&
397 				    ip_mforward(ip, ifp, m, imo) != 0) {
398 					m_freem(m);
399 					goto done;
400 				}
401 			}
402 		}
403 
404 		/*
405 		 * Multicasts with a time-to-live of zero may be looped-
406 		 * back, above, but must not be transmitted on a network.
407 		 * Also, multicasts addressed to the loopback interface
408 		 * are not sent -- the above call to ip_mloopback() will
409 		 * loop back a copy if this host actually belongs to the
410 		 * destination group on the loopback interface.
411 		 */
412 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
413 			m_freem(m);
414 			goto done;
415 		}
416 
417 		goto sendit;
418 	}
419 #ifndef notdef
420 	/*
421 	 * If the source address is not specified yet, use the address
422 	 * of the outoing interface. In case, keep note we did that, so
423 	 * if the the firewall changes the next-hop causing the output
424 	 * interface to change, we can fix that.
425 	 */
426 	if (ip->ip_src.s_addr == INADDR_ANY) {
427 		/* Interface may have no addresses. */
428 		if (ia != NULL) {
429 			ip->ip_src = IA_SIN(ia)->sin_addr;
430 			src_was_INADDR_ANY = 1;
431 		}
432 	}
433 #endif /* notdef */
434 	/*
435 	 * Verify that we have any chance at all of being able to queue
436 	 *      the packet or packet fragments
437 	 */
438 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
439 		ifp->if_snd.ifq_maxlen) {
440 			error = ENOBUFS;
441 			ipstat.ips_odropped++;
442 			goto bad;
443 	}
444 
445 	/*
446 	 * Look for broadcast address and
447 	 * verify user is allowed to send
448 	 * such a packet.
449 	 */
450 	if (isbroadcast) {
451 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
452 			error = EADDRNOTAVAIL;
453 			goto bad;
454 		}
455 		if ((flags & IP_ALLOWBROADCAST) == 0) {
456 			error = EACCES;
457 			goto bad;
458 		}
459 		/* don't allow broadcast messages to be fragmented */
460 		if (ip->ip_len > ifp->if_mtu) {
461 			error = EMSGSIZE;
462 			goto bad;
463 		}
464 		m->m_flags |= M_BCAST;
465 	} else {
466 		m->m_flags &= ~M_BCAST;
467 	}
468 
469 sendit:
470 #ifdef IPSEC
471 	/* get SP for this packet */
472 	if (so == NULL)
473 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
474 	else
475 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 
477 	if (sp == NULL) {
478 		ipsecstat.out_inval++;
479 		goto bad;
480 	}
481 
482 	error = 0;
483 
484 	/* check policy */
485 	switch (sp->policy) {
486 	case IPSEC_POLICY_DISCARD:
487 		/*
488 		 * This packet is just discarded.
489 		 */
490 		ipsecstat.out_polvio++;
491 		goto bad;
492 
493 	case IPSEC_POLICY_BYPASS:
494 	case IPSEC_POLICY_NONE:
495 		/* no need to do IPsec. */
496 		goto skip_ipsec;
497 
498 	case IPSEC_POLICY_IPSEC:
499 		if (sp->req == NULL) {
500 			/* acquire a policy */
501 			error = key_spdacquire(sp);
502 			goto bad;
503 		}
504 		break;
505 
506 	case IPSEC_POLICY_ENTRUST:
507 	default:
508 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
509 	}
510     {
511 	struct ipsec_output_state state;
512 	bzero(&state, sizeof(state));
513 	state.m = m;
514 	if (flags & IP_ROUTETOIF) {
515 		state.ro = &iproute;
516 		bzero(&iproute, sizeof(iproute));
517 	} else
518 		state.ro = ro;
519 	state.dst = (struct sockaddr *)dst;
520 
521 	ip->ip_sum = 0;
522 
523 	/*
524 	 * XXX
525 	 * delayed checksums are not currently compatible with IPsec
526 	 */
527 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
528 		in_delayed_cksum(m);
529 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
530 	}
531 
532 	ip->ip_len = htons(ip->ip_len);
533 	ip->ip_off = htons(ip->ip_off);
534 
535 	error = ipsec4_output(&state, sp, flags);
536 
537 	m = state.m;
538 	if (flags & IP_ROUTETOIF) {
539 		/*
540 		 * if we have tunnel mode SA, we may need to ignore
541 		 * IP_ROUTETOIF.
542 		 */
543 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
544 			flags &= ~IP_ROUTETOIF;
545 			ro = state.ro;
546 		}
547 	} else
548 		ro = state.ro;
549 	dst = (struct sockaddr_in *)state.dst;
550 	if (error) {
551 		/* mbuf is already reclaimed in ipsec4_output. */
552 		m0 = NULL;
553 		switch (error) {
554 		case EHOSTUNREACH:
555 		case ENETUNREACH:
556 		case EMSGSIZE:
557 		case ENOBUFS:
558 		case ENOMEM:
559 			break;
560 		default:
561 			printf("ip4_output (ipsec): error code %d\n", error);
562 			/*fall through*/
563 		case ENOENT:
564 			/* don't show these error codes to the user */
565 			error = 0;
566 			break;
567 		}
568 		goto bad;
569 	}
570     }
571 
572 	/* be sure to update variables that are affected by ipsec4_output() */
573 	ip = mtod(m, struct ip *);
574 #ifdef _IP_VHL
575 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
576 #else
577 	hlen = ip->ip_hl << 2;
578 #endif
579 	if (ro->ro_rt == NULL) {
580 		if ((flags & IP_ROUTETOIF) == 0) {
581 			printf("ip_output: "
582 				"can't update route after IPsec processing\n");
583 			error = EHOSTUNREACH;	/*XXX*/
584 			goto bad;
585 		}
586 	} else {
587 		ia = ifatoia(ro->ro_rt->rt_ifa);
588 		ifp = ro->ro_rt->rt_ifp;
589 	}
590 
591 	/* make it flipped, again. */
592 	ip->ip_len = ntohs(ip->ip_len);
593 	ip->ip_off = ntohs(ip->ip_off);
594 skip_ipsec:
595 #endif /*IPSEC*/
596 #ifdef FAST_IPSEC
597 	/*
598 	 * Check the security policy (SP) for the packet and, if
599 	 * required, do IPsec-related processing.  There are two
600 	 * cases here; the first time a packet is sent through
601 	 * it will be untagged and handled by ipsec4_checkpolicy.
602 	 * If the packet is resubmitted to ip_output (e.g. after
603 	 * AH, ESP, etc. processing), there will be a tag to bypass
604 	 * the lookup and related policy checking.
605 	 */
606 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
607 	s = splnet();
608 	if (mtag != NULL) {
609 		tdbi = (struct tdb_ident *)(mtag + 1);
610 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
611 		if (sp == NULL)
612 			error = -EINVAL;	/* force silent drop */
613 		m_tag_delete(m, mtag);
614 	} else {
615 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
616 					&error, inp);
617 	}
618 	/*
619 	 * There are four return cases:
620 	 *    sp != NULL	 	    apply IPsec policy
621 	 *    sp == NULL, error == 0	    no IPsec handling needed
622 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
623 	 *    sp == NULL, error != 0	    discard packet, report error
624 	 */
625 	if (sp != NULL) {
626 		/* Loop detection, check if ipsec processing already done */
627 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
628 		for (mtag = m_tag_first(m); mtag != NULL;
629 		     mtag = m_tag_next(m, mtag)) {
630 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
631 				continue;
632 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
633 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
634 				continue;
635 			/*
636 			 * Check if policy has an SA associated with it.
637 			 * This can happen when an SP has yet to acquire
638 			 * an SA; e.g. on first reference.  If it occurs,
639 			 * then we let ipsec4_process_packet do its thing.
640 			 */
641 			if (sp->req->sav == NULL)
642 				break;
643 			tdbi = (struct tdb_ident *)(mtag + 1);
644 			if (tdbi->spi == sp->req->sav->spi &&
645 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
646 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
647 				 sizeof (union sockaddr_union)) == 0) {
648 				/*
649 				 * No IPsec processing is needed, free
650 				 * reference to SP.
651 				 *
652 				 * NB: null pointer to avoid free at
653 				 *     done: below.
654 				 */
655 				KEY_FREESP(&sp), sp = NULL;
656 				splx(s);
657 				goto spd_done;
658 			}
659 		}
660 
661 		/*
662 		 * Do delayed checksums now because we send before
663 		 * this is done in the normal processing path.
664 		 */
665 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
666 			in_delayed_cksum(m);
667 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
668 		}
669 
670 		ip->ip_len = htons(ip->ip_len);
671 		ip->ip_off = htons(ip->ip_off);
672 
673 		/* NB: callee frees mbuf */
674 		error = ipsec4_process_packet(m, sp->req, flags, 0);
675 		/*
676 		 * Preserve KAME behaviour: ENOENT can be returned
677 		 * when an SA acquire is in progress.  Don't propagate
678 		 * this to user-level; it confuses applications.
679 		 *
680 		 * XXX this will go away when the SADB is redone.
681 		 */
682 		if (error == ENOENT)
683 			error = 0;
684 		splx(s);
685 		goto done;
686 	} else {
687 		splx(s);
688 
689 		if (error != 0) {
690 			/*
691 			 * Hack: -EINVAL is used to signal that a packet
692 			 * should be silently discarded.  This is typically
693 			 * because we asked key management for an SA and
694 			 * it was delayed (e.g. kicked up to IKE).
695 			 */
696 			if (error == -EINVAL)
697 				error = 0;
698 			goto bad;
699 		} else {
700 			/* No IPsec processing for this packet. */
701 		}
702 #ifdef notyet
703 		/*
704 		 * If deferred crypto processing is needed, check that
705 		 * the interface supports it.
706 		 */
707 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
708 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
709 			/* notify IPsec to do its own crypto */
710 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
711 			error = EHOSTUNREACH;
712 			goto bad;
713 		}
714 #endif
715 	}
716 spd_done:
717 #endif /* FAST_IPSEC */
718 	/*
719 	 * IpHack's section.
720 	 * - Xlate: translate packet's addr/port (NAT).
721 	 * - Firewall: deny/allow/etc.
722 	 * - Wrap: fake packet's addr/port <unimpl.>
723 	 * - Encapsulate: put it in another IP and send out. <unimp.>
724 	 */
725 	if (fr_checkp) {
726 		struct  mbuf    *m1 = m;
727 
728 		if ((error = (*fr_checkp)(ip, hlen, ifp, 1, &m1)) || !m1)
729 			goto done;
730 		ip = mtod(m = m1, struct ip *);
731 	}
732 
733 	/*
734 	 * Check with the firewall...
735 	 * but not if we are already being fwd'd from a firewall.
736 	 */
737 	if (fw_enable && IPFW_LOADED && !args.next_hop) {
738 		struct sockaddr_in *old = dst;
739 
740 		args.m = m;
741 		args.next_hop = dst;
742 		args.oif = ifp;
743 		off = ip_fw_chk_ptr(&args);
744 		m = args.m;
745 		dst = args.next_hop;
746 
747                 /*
748 		 * On return we must do the following:
749 		 * m == NULL	-> drop the pkt (old interface, deprecated)
750 		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
751 		 * 1<=off<= 0xffff		-> DIVERT
752 		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
753 		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
754 		 * dst != old			-> IPFIREWALL_FORWARD
755 		 * off==0, dst==old		-> accept
756 		 * If some of the above modules are not compiled in, then
757 		 * we should't have to check the corresponding condition
758 		 * (because the ipfw control socket should not accept
759 		 * unsupported rules), but better play safe and drop
760 		 * packets in case of doubt.
761 		 */
762 		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
763 			if (m)
764 				m_freem(m);
765 			error = EACCES;
766 			goto done;
767 		}
768 		ip = mtod(m, struct ip *);
769 		if (off == 0 && dst == old)		/* common case */
770 			goto pass;
771                 if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
772 			/*
773 			 * pass the pkt to dummynet. Need to include
774 			 * pipe number, m, ifp, ro, dst because these are
775 			 * not recomputed in the next pass.
776 			 * All other parameters have been already used and
777 			 * so they are not needed anymore.
778 			 * XXX note: if the ifp or ro entry are deleted
779 			 * while a pkt is in dummynet, we are in trouble!
780 			 */
781 			args.ro = ro;
782 			args.dst = dst;
783 			args.flags = flags;
784 
785 			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
786 				&args);
787 			goto done;
788 		}
789 #ifdef IPDIVERT
790 		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
791 			struct mbuf *clone = NULL;
792 
793 			/* Clone packet if we're doing a 'tee' */
794 			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
795 				clone = m_dup(m, M_DONTWAIT);
796 
797 			/*
798 			 * XXX
799 			 * delayed checksums are not currently compatible
800 			 * with divert sockets.
801 			 */
802 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
803 				in_delayed_cksum(m);
804 				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
805 			}
806 
807 			/* Restore packet header fields to original values */
808 			ip->ip_len = htons(ip->ip_len);
809 			ip->ip_off = htons(ip->ip_off);
810 
811 			/* Deliver packet to divert input routine */
812 			divert_packet(m, 0, off & 0xffff, args.divert_rule);
813 
814 			/* If 'tee', continue with original packet */
815 			if (clone != NULL) {
816 				m = clone;
817 				ip = mtod(m, struct ip *);
818 				goto pass;
819 			}
820 			goto done;
821 		}
822 #endif
823 
824 		/* IPFIREWALL_FORWARD */
825 		/*
826 		 * Check dst to make sure it is directly reachable on the
827 		 * interface we previously thought it was.
828 		 * If it isn't (which may be likely in some situations) we have
829 		 * to re-route it (ie, find a route for the next-hop and the
830 		 * associated interface) and set them here. This is nested
831 		 * forwarding which in most cases is undesirable, except where
832 		 * such control is nigh impossible. So we do it here.
833 		 * And I'm babbling.
834 		 */
835 		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
836 #if 0
837 			/*
838 			 * XXX To improve readability, this block should be
839 			 * changed into a function call as below:
840 			 */
841 			error = ip_ipforward(&m, &dst, &ifp);
842 			if (error)
843 				goto bad;
844 			if (m == NULL) /* ip_input consumed the mbuf */
845 				goto done;
846 #else
847 			struct in_ifaddr *ia;
848 
849 			/*
850 			 * XXX sro_fwd below is static, and a pointer
851 			 * to it gets passed to routines downstream.
852 			 * This could have surprisingly bad results in
853 			 * practice, because its content is overwritten
854 			 * by subsequent packets.
855 			 */
856 			/* There must be a better way to do this next line... */
857 			static struct route sro_fwd;
858 			struct route *ro_fwd = &sro_fwd;
859 
860 #if 0
861 			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
862 			    dst->sin_addr, "\n");
863 #endif
864 
865 			/*
866 			 * We need to figure out if we have been forwarded
867 			 * to a local socket. If so, then we should somehow
868 			 * "loop back" to ip_input, and get directed to the
869 			 * PCB as if we had received this packet. This is
870 			 * because it may be dificult to identify the packets
871 			 * you want to forward until they are being output
872 			 * and have selected an interface. (e.g. locally
873 			 * initiated packets) If we used the loopback inteface,
874 			 * we would not be able to control what happens
875 			 * as the packet runs through ip_input() as
876 			 * it is done through a ISR.
877 			 */
878 			LIST_FOREACH(ia,
879 			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
880 				/*
881 				 * If the addr to forward to is one
882 				 * of ours, we pretend to
883 				 * be the destination for this packet.
884 				 */
885 				if (IA_SIN(ia)->sin_addr.s_addr ==
886 						 dst->sin_addr.s_addr)
887 					break;
888 			}
889 			if (ia) {	/* tell ip_input "dont filter" */
890 				struct m_hdr tag;
891 
892 				tag.mh_type = MT_TAG;
893 				tag.mh_flags = PACKET_TAG_IPFORWARD;
894 				tag.mh_data = (caddr_t)args.next_hop;
895 				tag.mh_next = m;
896 
897 				if (m->m_pkthdr.rcvif == NULL)
898 					m->m_pkthdr.rcvif = ifunit("lo0");
899 				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
900 					m->m_pkthdr.csum_flags |=
901 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
902 					m0->m_pkthdr.csum_data = 0xffff;
903 				}
904 				m->m_pkthdr.csum_flags |=
905 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
906 				ip->ip_len = htons(ip->ip_len);
907 				ip->ip_off = htons(ip->ip_off);
908 				ip_input((struct mbuf *)&tag);
909 				goto done;
910 			}
911 			/* Some of the logic for this was
912 			 * nicked from above.
913 			 *
914 			 * This rewrites the cached route in a local PCB.
915 			 * Is this what we want to do?
916 			 */
917 			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
918 
919 			ro_fwd->ro_rt = 0;
920 			rtalloc_ign(ro_fwd, RTF_PRCLONING);
921 
922 			if (ro_fwd->ro_rt == 0) {
923 				ipstat.ips_noroute++;
924 				error = EHOSTUNREACH;
925 				goto bad;
926 			}
927 
928 			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
929 			ifp = ro_fwd->ro_rt->rt_ifp;
930 			ro_fwd->ro_rt->rt_use++;
931 			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
932 				dst = (struct sockaddr_in *)
933 					ro_fwd->ro_rt->rt_gateway;
934 			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
935 				isbroadcast =
936 				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
937 			else
938 				isbroadcast = in_broadcast(dst->sin_addr, ifp);
939 			if (ro->ro_rt)
940 				RTFREE(ro->ro_rt);
941 			ro->ro_rt = ro_fwd->ro_rt;
942 			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
943 
944 #endif	/* ... block to be put into a function */
945 			/*
946 			 * If we added a default src ip earlier,
947 			 * which would have been gotten from the-then
948 			 * interface, do it again, from the new one.
949 			 */
950 			if (src_was_INADDR_ANY)
951 				ip->ip_src = IA_SIN(ia)->sin_addr;
952 			goto pass ;
953 		}
954 
955                 /*
956                  * if we get here, none of the above matches, and
957                  * we have to drop the pkt
958                  */
959 		m_freem(m);
960                 error = EACCES; /* not sure this is the right error msg */
961                 goto done;
962 	}
963 
964 pass:
965 	/* 127/8 must not appear on wire - RFC1122. */
966 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
967 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
968 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
969 			ipstat.ips_badaddr++;
970 			error = EADDRNOTAVAIL;
971 			goto bad;
972 		}
973 	}
974 
975 	m->m_pkthdr.csum_flags |= CSUM_IP;
976 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
977 	if (sw_csum & CSUM_DELAY_DATA) {
978 		in_delayed_cksum(m);
979 		sw_csum &= ~CSUM_DELAY_DATA;
980 	}
981 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
982 
983 	/*
984 	 * If small enough for interface, or the interface will take
985 	 * care of the fragmentation for us, can just send directly.
986 	 */
987 	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
988 		ip->ip_len = htons(ip->ip_len);
989 		ip->ip_off = htons(ip->ip_off);
990 		ip->ip_sum = 0;
991 		if (sw_csum & CSUM_DELAY_IP) {
992 			if (ip->ip_vhl == IP_VHL_BORING) {
993 				ip->ip_sum = in_cksum_hdr(ip);
994 			} else {
995 				ip->ip_sum = in_cksum(m, hlen);
996 			}
997 		}
998 
999 		/* Record statistics for this interface address. */
1000 		if (!(flags & IP_FORWARDING) && ia) {
1001 			ia->ia_ifa.if_opackets++;
1002 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1003 		}
1004 
1005 #ifdef IPSEC
1006 		/* clean ipsec history once it goes out of the node */
1007 		ipsec_delaux(m);
1008 #endif
1009 
1010 #ifdef MBUF_STRESS_TEST
1011 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1012 			struct mbuf *m1, *m2;
1013 			int length, tmp;
1014 
1015 			tmp = length = m->m_pkthdr.len;
1016 
1017 			while ((length -= mbuf_frag_size) >= 1) {
1018 				m1 = m_split(m, length, M_DONTWAIT);
1019 				if (m1 == NULL)
1020 					break;
1021 				m1->m_flags &= ~M_PKTHDR;
1022 				m2 = m;
1023 				while (m2->m_next != NULL)
1024 					m2 = m2->m_next;
1025 				m2->m_next = m1;
1026 			}
1027 			m->m_pkthdr.len = tmp;
1028 		}
1029 #endif
1030 		error = (*ifp->if_output)(ifp, m,
1031 				(struct sockaddr *)dst, ro->ro_rt);
1032 		goto done;
1033 	}
1034 
1035 	if (ip->ip_off & IP_DF) {
1036 		error = EMSGSIZE;
1037 		/*
1038 		 * This case can happen if the user changed the MTU
1039 		 * of an interface after enabling IP on it.  Because
1040 		 * most netifs don't keep track of routes pointing to
1041 		 * them, there is no way for one to update all its
1042 		 * routes when the MTU is changed.
1043 		 */
1044 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1045 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1046 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1047 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1048 		}
1049 		ipstat.ips_cantfrag++;
1050 		goto bad;
1051 	}
1052 
1053 	/*
1054 	 * Too large for interface; fragment if possible. If successful,
1055 	 * on return, m will point to a list of packets to be sent.
1056 	 */
1057 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1058 	if (error)
1059 		goto bad;
1060 	for (; m; m = m0) {
1061 		m0 = m->m_nextpkt;
1062 		m->m_nextpkt = 0;
1063 #ifdef IPSEC
1064 		/* clean ipsec history once it goes out of the node */
1065 		ipsec_delaux(m);
1066 #endif
1067 		if (error == 0) {
1068 			/* Record statistics for this interface address. */
1069 			if (ia != NULL) {
1070 				ia->ia_ifa.if_opackets++;
1071 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1072 			}
1073 
1074 			error = (*ifp->if_output)(ifp, m,
1075 			    (struct sockaddr *)dst, ro->ro_rt);
1076 		} else
1077 			m_freem(m);
1078 	}
1079 
1080 	if (error == 0)
1081 		ipstat.ips_fragmented++;
1082 
1083 done:
1084 #ifdef IPSEC
1085 	if (ro == &iproute && ro->ro_rt) {
1086 		RTFREE(ro->ro_rt);
1087 		ro->ro_rt = NULL;
1088 	}
1089 	if (sp != NULL) {
1090 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1091 			printf("DP ip_output call free SP:%p\n", sp));
1092 		key_freesp(sp);
1093 	}
1094 #endif
1095 #ifdef FAST_IPSEC
1096 	if (ro == &iproute && ro->ro_rt) {
1097 		RTFREE(ro->ro_rt);
1098 		ro->ro_rt = NULL;
1099 	}
1100 	if (sp != NULL)
1101 		KEY_FREESP(&sp);
1102 #endif
1103 	return (error);
1104 bad:
1105 	m_freem(m);
1106 	goto done;
1107 }
1108 
1109 /*
1110  * Create a chain of fragments which fit the given mtu. m_frag points to the
1111  * mbuf to be fragmented; on return it points to the chain with the fragments.
1112  * Return 0 if no error. If error, m_frag may contain a partially built
1113  * chain of fragments that should be freed by the caller.
1114  *
1115  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1116  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1117  */
1118 int
1119 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1120 	    u_long if_hwassist_flags, int sw_csum)
1121 {
1122 	int error = 0;
1123 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1124 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1125 	int off;
1126 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1127 	int firstlen;
1128 	struct mbuf **mnext;
1129 	int nfrags;
1130 
1131 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1132 		ipstat.ips_cantfrag++;
1133 		return EMSGSIZE;
1134 	}
1135 
1136 	/*
1137 	 * Must be able to put at least 8 bytes per fragment.
1138 	 */
1139 	if (len < 8)
1140 		return EMSGSIZE;
1141 
1142 	/*
1143 	 * If the interface will not calculate checksums on
1144 	 * fragmented packets, then do it here.
1145 	 */
1146 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1147 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1148 		in_delayed_cksum(m0);
1149 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1150 	}
1151 
1152 	if (len > PAGE_SIZE) {
1153 		/*
1154 		 * Fragment large datagrams such that each segment
1155 		 * contains a multiple of PAGE_SIZE amount of data,
1156 		 * plus headers. This enables a receiver to perform
1157 		 * page-flipping zero-copy optimizations.
1158 		 *
1159 		 * XXX When does this help given that sender and receiver
1160 		 * could have different page sizes, and also mtu could
1161 		 * be less than the receiver's page size ?
1162 		 */
1163 		int newlen;
1164 		struct mbuf *m;
1165 
1166 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1167 			off += m->m_len;
1168 
1169 		/*
1170 		 * firstlen (off - hlen) must be aligned on an
1171 		 * 8-byte boundary
1172 		 */
1173 		if (off < hlen)
1174 			goto smart_frag_failure;
1175 		off = ((off - hlen) & ~7) + hlen;
1176 		newlen = (~PAGE_MASK) & mtu;
1177 		if ((newlen + sizeof (struct ip)) > mtu) {
1178 			/* we failed, go back the default */
1179 smart_frag_failure:
1180 			newlen = len;
1181 			off = hlen + len;
1182 		}
1183 		len = newlen;
1184 
1185 	} else {
1186 		off = hlen + len;
1187 	}
1188 
1189 	firstlen = off - hlen;
1190 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1191 
1192 	/*
1193 	 * Loop through length of segment after first fragment,
1194 	 * make new header and copy data of each part and link onto chain.
1195 	 * Here, m0 is the original packet, m is the fragment being created.
1196 	 * The fragments are linked off the m_nextpkt of the original
1197 	 * packet, which after processing serves as the first fragment.
1198 	 */
1199 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1200 		struct ip *mhip;	/* ip header on the fragment */
1201 		struct mbuf *m;
1202 		int mhlen = sizeof (struct ip);
1203 
1204 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1205 		if (m == 0) {
1206 			error = ENOBUFS;
1207 			ipstat.ips_odropped++;
1208 			goto done;
1209 		}
1210 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1211 		/*
1212 		 * In the first mbuf, leave room for the link header, then
1213 		 * copy the original IP header including options. The payload
1214 		 * goes into an additional mbuf chain returned by m_copy().
1215 		 */
1216 		m->m_data += max_linkhdr;
1217 		mhip = mtod(m, struct ip *);
1218 		*mhip = *ip;
1219 		if (hlen > sizeof (struct ip)) {
1220 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1221 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1222 		}
1223 		m->m_len = mhlen;
1224 		/* XXX do we need to add ip->ip_off below ? */
1225 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1226 		if (off + len >= ip->ip_len) {	/* last fragment */
1227 			len = ip->ip_len - off;
1228 			m->m_flags |= M_LASTFRAG;
1229 		} else
1230 			mhip->ip_off |= IP_MF;
1231 		mhip->ip_len = htons((u_short)(len + mhlen));
1232 		m->m_next = m_copy(m0, off, len);
1233 		if (m->m_next == 0) {		/* copy failed */
1234 			m_free(m);
1235 			error = ENOBUFS;	/* ??? */
1236 			ipstat.ips_odropped++;
1237 			goto done;
1238 		}
1239 		m->m_pkthdr.len = mhlen + len;
1240 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1241 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1242 		mhip->ip_off = htons(mhip->ip_off);
1243 		mhip->ip_sum = 0;
1244 		if (sw_csum & CSUM_DELAY_IP)
1245 			mhip->ip_sum = in_cksum(m, mhlen);
1246 		*mnext = m;
1247 		mnext = &m->m_nextpkt;
1248 	}
1249 	ipstat.ips_ofragments += nfrags;
1250 
1251 	/* set first marker for fragment chain */
1252 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1253 	m0->m_pkthdr.csum_data = nfrags;
1254 
1255 	/*
1256 	 * Update first fragment by trimming what's been copied out
1257 	 * and updating header.
1258 	 */
1259 	m_adj(m0, hlen + firstlen - ip->ip_len);
1260 	m0->m_pkthdr.len = hlen + firstlen;
1261 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1262 	ip->ip_off |= IP_MF;
1263 	ip->ip_off = htons(ip->ip_off);
1264 	ip->ip_sum = 0;
1265 	if (sw_csum & CSUM_DELAY_IP)
1266 		ip->ip_sum = in_cksum(m0, hlen);
1267 
1268 done:
1269 	*m_frag = m0;
1270 	return error;
1271 }
1272 
1273 void
1274 in_delayed_cksum(struct mbuf *m)
1275 {
1276 	struct ip *ip;
1277 	u_short csum, offset;
1278 
1279 	ip = mtod(m, struct ip *);
1280 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1281 	csum = in_cksum_skip(m, ip->ip_len, offset);
1282 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1283 		csum = 0xffff;
1284 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1285 
1286 	if (offset + sizeof(u_short) > m->m_len) {
1287 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1288 		    m->m_len, offset, ip->ip_p);
1289 		/*
1290 		 * XXX
1291 		 * this shouldn't happen, but if it does, the
1292 		 * correct behavior may be to insert the checksum
1293 		 * in the existing chain instead of rearranging it.
1294 		 */
1295 		m = m_pullup(m, offset + sizeof(u_short));
1296 	}
1297 	*(u_short *)(m->m_data + offset) = csum;
1298 }
1299 
1300 /*
1301  * Insert IP options into preformed packet.
1302  * Adjust IP destination as required for IP source routing,
1303  * as indicated by a non-zero in_addr at the start of the options.
1304  *
1305  * XXX This routine assumes that the packet has no options in place.
1306  */
1307 static struct mbuf *
1308 ip_insertoptions(m, opt, phlen)
1309 	struct mbuf *m;
1310 	struct mbuf *opt;
1311 	int *phlen;
1312 {
1313 	struct ipoption *p = mtod(opt, struct ipoption *);
1314 	struct mbuf *n;
1315 	struct ip *ip = mtod(m, struct ip *);
1316 	unsigned optlen;
1317 
1318 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1319 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1320 		*phlen = 0;
1321 		return (m);		/* XXX should fail */
1322 	}
1323 	if (p->ipopt_dst.s_addr)
1324 		ip->ip_dst = p->ipopt_dst;
1325 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1326 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1327 		if (n == 0) {
1328 			*phlen = 0;
1329 			return (m);
1330 		}
1331 		n->m_pkthdr.rcvif = (struct ifnet *)0;
1332 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1333 		m->m_len -= sizeof(struct ip);
1334 		m->m_data += sizeof(struct ip);
1335 		n->m_next = m;
1336 		m = n;
1337 		m->m_len = optlen + sizeof(struct ip);
1338 		m->m_data += max_linkhdr;
1339 		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
1340 	} else {
1341 		m->m_data -= optlen;
1342 		m->m_len += optlen;
1343 		m->m_pkthdr.len += optlen;
1344 		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1345 	}
1346 	ip = mtod(m, struct ip *);
1347 	bcopy(p->ipopt_list, ip + 1, optlen);
1348 	*phlen = sizeof(struct ip) + optlen;
1349 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1350 	ip->ip_len += optlen;
1351 	return (m);
1352 }
1353 
1354 /*
1355  * Copy options from ip to jp,
1356  * omitting those not copied during fragmentation.
1357  */
1358 int
1359 ip_optcopy(ip, jp)
1360 	struct ip *ip, *jp;
1361 {
1362 	u_char *cp, *dp;
1363 	int opt, optlen, cnt;
1364 
1365 	cp = (u_char *)(ip + 1);
1366 	dp = (u_char *)(jp + 1);
1367 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1368 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1369 		opt = cp[0];
1370 		if (opt == IPOPT_EOL)
1371 			break;
1372 		if (opt == IPOPT_NOP) {
1373 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1374 			*dp++ = IPOPT_NOP;
1375 			optlen = 1;
1376 			continue;
1377 		}
1378 
1379 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1380 		    ("ip_optcopy: malformed ipv4 option"));
1381 		optlen = cp[IPOPT_OLEN];
1382 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1383 		    ("ip_optcopy: malformed ipv4 option"));
1384 
1385 		/* bogus lengths should have been caught by ip_dooptions */
1386 		if (optlen > cnt)
1387 			optlen = cnt;
1388 		if (IPOPT_COPIED(opt)) {
1389 			bcopy(cp, dp, optlen);
1390 			dp += optlen;
1391 		}
1392 	}
1393 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1394 		*dp++ = IPOPT_EOL;
1395 	return (optlen);
1396 }
1397 
1398 /*
1399  * IP socket option processing.
1400  */
1401 int
1402 ip_ctloutput(so, sopt)
1403 	struct socket *so;
1404 	struct sockopt *sopt;
1405 {
1406 	struct	inpcb *inp = sotoinpcb(so);
1407 	int	error, optval;
1408 
1409 	error = optval = 0;
1410 	if (sopt->sopt_level != IPPROTO_IP) {
1411 		return (EINVAL);
1412 	}
1413 
1414 	switch (sopt->sopt_dir) {
1415 	case SOPT_SET:
1416 		switch (sopt->sopt_name) {
1417 		case IP_OPTIONS:
1418 #ifdef notyet
1419 		case IP_RETOPTS:
1420 #endif
1421 		{
1422 			struct mbuf *m;
1423 			if (sopt->sopt_valsize > MLEN) {
1424 				error = EMSGSIZE;
1425 				break;
1426 			}
1427 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_HEADER);
1428 			if (m == 0) {
1429 				error = ENOBUFS;
1430 				break;
1431 			}
1432 			m->m_len = sopt->sopt_valsize;
1433 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1434 					    m->m_len);
1435 
1436 			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1437 					   m));
1438 		}
1439 
1440 		case IP_TOS:
1441 		case IP_TTL:
1442 		case IP_RECVOPTS:
1443 		case IP_RECVRETOPTS:
1444 		case IP_RECVDSTADDR:
1445 		case IP_RECVIF:
1446 		case IP_FAITH:
1447 			error = sooptcopyin(sopt, &optval, sizeof optval,
1448 					    sizeof optval);
1449 			if (error)
1450 				break;
1451 
1452 			switch (sopt->sopt_name) {
1453 			case IP_TOS:
1454 				inp->inp_ip_tos = optval;
1455 				break;
1456 
1457 			case IP_TTL:
1458 				inp->inp_ip_ttl = optval;
1459 				break;
1460 #define	OPTSET(bit) \
1461 	if (optval) \
1462 		inp->inp_flags |= bit; \
1463 	else \
1464 		inp->inp_flags &= ~bit;
1465 
1466 			case IP_RECVOPTS:
1467 				OPTSET(INP_RECVOPTS);
1468 				break;
1469 
1470 			case IP_RECVRETOPTS:
1471 				OPTSET(INP_RECVRETOPTS);
1472 				break;
1473 
1474 			case IP_RECVDSTADDR:
1475 				OPTSET(INP_RECVDSTADDR);
1476 				break;
1477 
1478 			case IP_RECVIF:
1479 				OPTSET(INP_RECVIF);
1480 				break;
1481 
1482 			case IP_FAITH:
1483 				OPTSET(INP_FAITH);
1484 				break;
1485 			}
1486 			break;
1487 #undef OPTSET
1488 
1489 		case IP_MULTICAST_IF:
1490 		case IP_MULTICAST_VIF:
1491 		case IP_MULTICAST_TTL:
1492 		case IP_MULTICAST_LOOP:
1493 		case IP_ADD_MEMBERSHIP:
1494 		case IP_DROP_MEMBERSHIP:
1495 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1496 			break;
1497 
1498 		case IP_PORTRANGE:
1499 			error = sooptcopyin(sopt, &optval, sizeof optval,
1500 					    sizeof optval);
1501 			if (error)
1502 				break;
1503 
1504 			switch (optval) {
1505 			case IP_PORTRANGE_DEFAULT:
1506 				inp->inp_flags &= ~(INP_LOWPORT);
1507 				inp->inp_flags &= ~(INP_HIGHPORT);
1508 				break;
1509 
1510 			case IP_PORTRANGE_HIGH:
1511 				inp->inp_flags &= ~(INP_LOWPORT);
1512 				inp->inp_flags |= INP_HIGHPORT;
1513 				break;
1514 
1515 			case IP_PORTRANGE_LOW:
1516 				inp->inp_flags &= ~(INP_HIGHPORT);
1517 				inp->inp_flags |= INP_LOWPORT;
1518 				break;
1519 
1520 			default:
1521 				error = EINVAL;
1522 				break;
1523 			}
1524 			break;
1525 
1526 #if defined(IPSEC) || defined(FAST_IPSEC)
1527 		case IP_IPSEC_POLICY:
1528 		{
1529 			caddr_t req;
1530 			size_t len = 0;
1531 			int priv;
1532 			struct mbuf *m;
1533 			int optname;
1534 
1535 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1536 				break;
1537 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1538 				break;
1539 			priv = (sopt->sopt_td != NULL &&
1540 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1541 			req = mtod(m, caddr_t);
1542 			len = m->m_len;
1543 			optname = sopt->sopt_name;
1544 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1545 			m_freem(m);
1546 			break;
1547 		}
1548 #endif /*IPSEC*/
1549 
1550 		default:
1551 			error = ENOPROTOOPT;
1552 			break;
1553 		}
1554 		break;
1555 
1556 	case SOPT_GET:
1557 		switch (sopt->sopt_name) {
1558 		case IP_OPTIONS:
1559 		case IP_RETOPTS:
1560 			if (inp->inp_options)
1561 				error = sooptcopyout(sopt,
1562 						     mtod(inp->inp_options,
1563 							  char *),
1564 						     inp->inp_options->m_len);
1565 			else
1566 				sopt->sopt_valsize = 0;
1567 			break;
1568 
1569 		case IP_TOS:
1570 		case IP_TTL:
1571 		case IP_RECVOPTS:
1572 		case IP_RECVRETOPTS:
1573 		case IP_RECVDSTADDR:
1574 		case IP_RECVIF:
1575 		case IP_PORTRANGE:
1576 		case IP_FAITH:
1577 			switch (sopt->sopt_name) {
1578 
1579 			case IP_TOS:
1580 				optval = inp->inp_ip_tos;
1581 				break;
1582 
1583 			case IP_TTL:
1584 				optval = inp->inp_ip_ttl;
1585 				break;
1586 
1587 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1588 
1589 			case IP_RECVOPTS:
1590 				optval = OPTBIT(INP_RECVOPTS);
1591 				break;
1592 
1593 			case IP_RECVRETOPTS:
1594 				optval = OPTBIT(INP_RECVRETOPTS);
1595 				break;
1596 
1597 			case IP_RECVDSTADDR:
1598 				optval = OPTBIT(INP_RECVDSTADDR);
1599 				break;
1600 
1601 			case IP_RECVIF:
1602 				optval = OPTBIT(INP_RECVIF);
1603 				break;
1604 
1605 			case IP_PORTRANGE:
1606 				if (inp->inp_flags & INP_HIGHPORT)
1607 					optval = IP_PORTRANGE_HIGH;
1608 				else if (inp->inp_flags & INP_LOWPORT)
1609 					optval = IP_PORTRANGE_LOW;
1610 				else
1611 					optval = 0;
1612 				break;
1613 
1614 			case IP_FAITH:
1615 				optval = OPTBIT(INP_FAITH);
1616 				break;
1617 			}
1618 			error = sooptcopyout(sopt, &optval, sizeof optval);
1619 			break;
1620 
1621 		case IP_MULTICAST_IF:
1622 		case IP_MULTICAST_VIF:
1623 		case IP_MULTICAST_TTL:
1624 		case IP_MULTICAST_LOOP:
1625 		case IP_ADD_MEMBERSHIP:
1626 		case IP_DROP_MEMBERSHIP:
1627 			error = ip_getmoptions(sopt, inp->inp_moptions);
1628 			break;
1629 
1630 #if defined(IPSEC) || defined(FAST_IPSEC)
1631 		case IP_IPSEC_POLICY:
1632 		{
1633 			struct mbuf *m = NULL;
1634 			caddr_t req = NULL;
1635 			size_t len = 0;
1636 
1637 			if (m != 0) {
1638 				req = mtod(m, caddr_t);
1639 				len = m->m_len;
1640 			}
1641 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1642 			if (error == 0)
1643 				error = soopt_mcopyout(sopt, m); /* XXX */
1644 			if (error == 0)
1645 				m_freem(m);
1646 			break;
1647 		}
1648 #endif /*IPSEC*/
1649 
1650 		default:
1651 			error = ENOPROTOOPT;
1652 			break;
1653 		}
1654 		break;
1655 	}
1656 	return (error);
1657 }
1658 
1659 /*
1660  * Set up IP options in pcb for insertion in output packets.
1661  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1662  * with destination address if source routed.
1663  */
1664 static int
1665 ip_pcbopts(optname, pcbopt, m)
1666 	int optname;
1667 	struct mbuf **pcbopt;
1668 	struct mbuf *m;
1669 {
1670 	int cnt, optlen;
1671 	u_char *cp;
1672 	u_char opt;
1673 
1674 	/* turn off any old options */
1675 	if (*pcbopt)
1676 		(void)m_free(*pcbopt);
1677 	*pcbopt = 0;
1678 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1679 		/*
1680 		 * Only turning off any previous options.
1681 		 */
1682 		if (m)
1683 			(void)m_free(m);
1684 		return (0);
1685 	}
1686 
1687 	if (m->m_len % sizeof(int32_t))
1688 		goto bad;
1689 	/*
1690 	 * IP first-hop destination address will be stored before
1691 	 * actual options; move other options back
1692 	 * and clear it when none present.
1693 	 */
1694 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1695 		goto bad;
1696 	cnt = m->m_len;
1697 	m->m_len += sizeof(struct in_addr);
1698 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1699 	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
1700 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1701 
1702 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1703 		opt = cp[IPOPT_OPTVAL];
1704 		if (opt == IPOPT_EOL)
1705 			break;
1706 		if (opt == IPOPT_NOP)
1707 			optlen = 1;
1708 		else {
1709 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1710 				goto bad;
1711 			optlen = cp[IPOPT_OLEN];
1712 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1713 				goto bad;
1714 		}
1715 		switch (opt) {
1716 
1717 		default:
1718 			break;
1719 
1720 		case IPOPT_LSRR:
1721 		case IPOPT_SSRR:
1722 			/*
1723 			 * user process specifies route as:
1724 			 *	->A->B->C->D
1725 			 * D must be our final destination (but we can't
1726 			 * check that since we may not have connected yet).
1727 			 * A is first hop destination, which doesn't appear in
1728 			 * actual IP option, but is stored before the options.
1729 			 */
1730 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1731 				goto bad;
1732 			m->m_len -= sizeof(struct in_addr);
1733 			cnt -= sizeof(struct in_addr);
1734 			optlen -= sizeof(struct in_addr);
1735 			cp[IPOPT_OLEN] = optlen;
1736 			/*
1737 			 * Move first hop before start of options.
1738 			 */
1739 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1740 			    sizeof(struct in_addr));
1741 			/*
1742 			 * Then copy rest of options back
1743 			 * to close up the deleted entry.
1744 			 */
1745 			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
1746 			    sizeof(struct in_addr)),
1747 			    (caddr_t)&cp[IPOPT_OFFSET+1],
1748 			    (unsigned)cnt + sizeof(struct in_addr));
1749 			break;
1750 		}
1751 	}
1752 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1753 		goto bad;
1754 	*pcbopt = m;
1755 	return (0);
1756 
1757 bad:
1758 	(void)m_free(m);
1759 	return (EINVAL);
1760 }
1761 
1762 /*
1763  * XXX
1764  * The whole multicast option thing needs to be re-thought.
1765  * Several of these options are equally applicable to non-multicast
1766  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1767  * standard option (IP_TTL).
1768  */
1769 
1770 /*
1771  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1772  */
1773 static struct ifnet *
1774 ip_multicast_if(a, ifindexp)
1775 	struct in_addr *a;
1776 	int *ifindexp;
1777 {
1778 	int ifindex;
1779 	struct ifnet *ifp;
1780 
1781 	if (ifindexp)
1782 		*ifindexp = 0;
1783 	if (ntohl(a->s_addr) >> 24 == 0) {
1784 		ifindex = ntohl(a->s_addr) & 0xffffff;
1785 		if (ifindex < 0 || if_index < ifindex)
1786 			return NULL;
1787 		ifp = ifindex2ifnet[ifindex];
1788 		if (ifindexp)
1789 			*ifindexp = ifindex;
1790 	} else {
1791 		INADDR_TO_IFP(*a, ifp);
1792 	}
1793 	return ifp;
1794 }
1795 
1796 /*
1797  * Set the IP multicast options in response to user setsockopt().
1798  */
1799 static int
1800 ip_setmoptions(sopt, imop)
1801 	struct sockopt *sopt;
1802 	struct ip_moptions **imop;
1803 {
1804 	int error = 0;
1805 	int i;
1806 	struct in_addr addr;
1807 	struct ip_mreq mreq;
1808 	struct ifnet *ifp;
1809 	struct ip_moptions *imo = *imop;
1810 	struct route ro;
1811 	struct sockaddr_in *dst;
1812 	int ifindex;
1813 	int s;
1814 
1815 	if (imo == NULL) {
1816 		/*
1817 		 * No multicast option buffer attached to the pcb;
1818 		 * allocate one and initialize to default values.
1819 		 */
1820 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1821 		    M_WAITOK);
1822 
1823 		if (imo == NULL)
1824 			return (ENOBUFS);
1825 		*imop = imo;
1826 		imo->imo_multicast_ifp = NULL;
1827 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1828 		imo->imo_multicast_vif = -1;
1829 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1830 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1831 		imo->imo_num_memberships = 0;
1832 	}
1833 
1834 	switch (sopt->sopt_name) {
1835 	/* store an index number for the vif you wanna use in the send */
1836 	case IP_MULTICAST_VIF:
1837 		if (legal_vif_num == 0) {
1838 			error = EOPNOTSUPP;
1839 			break;
1840 		}
1841 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1842 		if (error)
1843 			break;
1844 		if (!legal_vif_num(i) && (i != -1)) {
1845 			error = EINVAL;
1846 			break;
1847 		}
1848 		imo->imo_multicast_vif = i;
1849 		break;
1850 
1851 	case IP_MULTICAST_IF:
1852 		/*
1853 		 * Select the interface for outgoing multicast packets.
1854 		 */
1855 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1856 		if (error)
1857 			break;
1858 		/*
1859 		 * INADDR_ANY is used to remove a previous selection.
1860 		 * When no interface is selected, a default one is
1861 		 * chosen every time a multicast packet is sent.
1862 		 */
1863 		if (addr.s_addr == INADDR_ANY) {
1864 			imo->imo_multicast_ifp = NULL;
1865 			break;
1866 		}
1867 		/*
1868 		 * The selected interface is identified by its local
1869 		 * IP address.  Find the interface and confirm that
1870 		 * it supports multicasting.
1871 		 */
1872 		s = splimp();
1873 		ifp = ip_multicast_if(&addr, &ifindex);
1874 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1875 			splx(s);
1876 			error = EADDRNOTAVAIL;
1877 			break;
1878 		}
1879 		imo->imo_multicast_ifp = ifp;
1880 		if (ifindex)
1881 			imo->imo_multicast_addr = addr;
1882 		else
1883 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1884 		splx(s);
1885 		break;
1886 
1887 	case IP_MULTICAST_TTL:
1888 		/*
1889 		 * Set the IP time-to-live for outgoing multicast packets.
1890 		 * The original multicast API required a char argument,
1891 		 * which is inconsistent with the rest of the socket API.
1892 		 * We allow either a char or an int.
1893 		 */
1894 		if (sopt->sopt_valsize == 1) {
1895 			u_char ttl;
1896 			error = sooptcopyin(sopt, &ttl, 1, 1);
1897 			if (error)
1898 				break;
1899 			imo->imo_multicast_ttl = ttl;
1900 		} else {
1901 			u_int ttl;
1902 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1903 					    sizeof ttl);
1904 			if (error)
1905 				break;
1906 			if (ttl > 255)
1907 				error = EINVAL;
1908 			else
1909 				imo->imo_multicast_ttl = ttl;
1910 		}
1911 		break;
1912 
1913 	case IP_MULTICAST_LOOP:
1914 		/*
1915 		 * Set the loopback flag for outgoing multicast packets.
1916 		 * Must be zero or one.  The original multicast API required a
1917 		 * char argument, which is inconsistent with the rest
1918 		 * of the socket API.  We allow either a char or an int.
1919 		 */
1920 		if (sopt->sopt_valsize == 1) {
1921 			u_char loop;
1922 			error = sooptcopyin(sopt, &loop, 1, 1);
1923 			if (error)
1924 				break;
1925 			imo->imo_multicast_loop = !!loop;
1926 		} else {
1927 			u_int loop;
1928 			error = sooptcopyin(sopt, &loop, sizeof loop,
1929 					    sizeof loop);
1930 			if (error)
1931 				break;
1932 			imo->imo_multicast_loop = !!loop;
1933 		}
1934 		break;
1935 
1936 	case IP_ADD_MEMBERSHIP:
1937 		/*
1938 		 * Add a multicast group membership.
1939 		 * Group must be a valid IP multicast address.
1940 		 */
1941 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1942 		if (error)
1943 			break;
1944 
1945 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1946 			error = EINVAL;
1947 			break;
1948 		}
1949 		s = splimp();
1950 		/*
1951 		 * If no interface address was provided, use the interface of
1952 		 * the route to the given multicast address.
1953 		 */
1954 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1955 			bzero((caddr_t)&ro, sizeof(ro));
1956 			dst = (struct sockaddr_in *)&ro.ro_dst;
1957 			dst->sin_len = sizeof(*dst);
1958 			dst->sin_family = AF_INET;
1959 			dst->sin_addr = mreq.imr_multiaddr;
1960 			rtalloc(&ro);
1961 			if (ro.ro_rt == NULL) {
1962 				error = EADDRNOTAVAIL;
1963 				splx(s);
1964 				break;
1965 			}
1966 			ifp = ro.ro_rt->rt_ifp;
1967 			rtfree(ro.ro_rt);
1968 		}
1969 		else {
1970 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1971 		}
1972 
1973 		/*
1974 		 * See if we found an interface, and confirm that it
1975 		 * supports multicast.
1976 		 */
1977 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1978 			error = EADDRNOTAVAIL;
1979 			splx(s);
1980 			break;
1981 		}
1982 		/*
1983 		 * See if the membership already exists or if all the
1984 		 * membership slots are full.
1985 		 */
1986 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1987 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1988 			    imo->imo_membership[i]->inm_addr.s_addr
1989 						== mreq.imr_multiaddr.s_addr)
1990 				break;
1991 		}
1992 		if (i < imo->imo_num_memberships) {
1993 			error = EADDRINUSE;
1994 			splx(s);
1995 			break;
1996 		}
1997 		if (i == IP_MAX_MEMBERSHIPS) {
1998 			error = ETOOMANYREFS;
1999 			splx(s);
2000 			break;
2001 		}
2002 		/*
2003 		 * Everything looks good; add a new record to the multicast
2004 		 * address list for the given interface.
2005 		 */
2006 		if ((imo->imo_membership[i] =
2007 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2008 			error = ENOBUFS;
2009 			splx(s);
2010 			break;
2011 		}
2012 		++imo->imo_num_memberships;
2013 		splx(s);
2014 		break;
2015 
2016 	case IP_DROP_MEMBERSHIP:
2017 		/*
2018 		 * Drop a multicast group membership.
2019 		 * Group must be a valid IP multicast address.
2020 		 */
2021 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2022 		if (error)
2023 			break;
2024 
2025 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2026 			error = EINVAL;
2027 			break;
2028 		}
2029 
2030 		s = splimp();
2031 		/*
2032 		 * If an interface address was specified, get a pointer
2033 		 * to its ifnet structure.
2034 		 */
2035 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2036 			ifp = NULL;
2037 		else {
2038 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2039 			if (ifp == NULL) {
2040 				error = EADDRNOTAVAIL;
2041 				splx(s);
2042 				break;
2043 			}
2044 		}
2045 		/*
2046 		 * Find the membership in the membership array.
2047 		 */
2048 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2049 			if ((ifp == NULL ||
2050 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2051 			     imo->imo_membership[i]->inm_addr.s_addr ==
2052 			     mreq.imr_multiaddr.s_addr)
2053 				break;
2054 		}
2055 		if (i == imo->imo_num_memberships) {
2056 			error = EADDRNOTAVAIL;
2057 			splx(s);
2058 			break;
2059 		}
2060 		/*
2061 		 * Give up the multicast address record to which the
2062 		 * membership points.
2063 		 */
2064 		in_delmulti(imo->imo_membership[i]);
2065 		/*
2066 		 * Remove the gap in the membership array.
2067 		 */
2068 		for (++i; i < imo->imo_num_memberships; ++i)
2069 			imo->imo_membership[i-1] = imo->imo_membership[i];
2070 		--imo->imo_num_memberships;
2071 		splx(s);
2072 		break;
2073 
2074 	default:
2075 		error = EOPNOTSUPP;
2076 		break;
2077 	}
2078 
2079 	/*
2080 	 * If all options have default values, no need to keep the mbuf.
2081 	 */
2082 	if (imo->imo_multicast_ifp == NULL &&
2083 	    imo->imo_multicast_vif == -1 &&
2084 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2085 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2086 	    imo->imo_num_memberships == 0) {
2087 		free(*imop, M_IPMOPTS);
2088 		*imop = NULL;
2089 	}
2090 
2091 	return (error);
2092 }
2093 
2094 /*
2095  * Return the IP multicast options in response to user getsockopt().
2096  */
2097 static int
2098 ip_getmoptions(sopt, imo)
2099 	struct sockopt *sopt;
2100 	struct ip_moptions *imo;
2101 {
2102 	struct in_addr addr;
2103 	struct in_ifaddr *ia;
2104 	int error, optval;
2105 	u_char coptval;
2106 
2107 	error = 0;
2108 	switch (sopt->sopt_name) {
2109 	case IP_MULTICAST_VIF:
2110 		if (imo != NULL)
2111 			optval = imo->imo_multicast_vif;
2112 		else
2113 			optval = -1;
2114 		error = sooptcopyout(sopt, &optval, sizeof optval);
2115 		break;
2116 
2117 	case IP_MULTICAST_IF:
2118 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2119 			addr.s_addr = INADDR_ANY;
2120 		else if (imo->imo_multicast_addr.s_addr) {
2121 			/* return the value user has set */
2122 			addr = imo->imo_multicast_addr;
2123 		} else {
2124 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2125 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2126 				: IA_SIN(ia)->sin_addr.s_addr;
2127 		}
2128 		error = sooptcopyout(sopt, &addr, sizeof addr);
2129 		break;
2130 
2131 	case IP_MULTICAST_TTL:
2132 		if (imo == 0)
2133 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2134 		else
2135 			optval = coptval = imo->imo_multicast_ttl;
2136 		if (sopt->sopt_valsize == 1)
2137 			error = sooptcopyout(sopt, &coptval, 1);
2138 		else
2139 			error = sooptcopyout(sopt, &optval, sizeof optval);
2140 		break;
2141 
2142 	case IP_MULTICAST_LOOP:
2143 		if (imo == 0)
2144 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2145 		else
2146 			optval = coptval = imo->imo_multicast_loop;
2147 		if (sopt->sopt_valsize == 1)
2148 			error = sooptcopyout(sopt, &coptval, 1);
2149 		else
2150 			error = sooptcopyout(sopt, &optval, sizeof optval);
2151 		break;
2152 
2153 	default:
2154 		error = ENOPROTOOPT;
2155 		break;
2156 	}
2157 	return (error);
2158 }
2159 
2160 /*
2161  * Discard the IP multicast options.
2162  */
2163 void
2164 ip_freemoptions(imo)
2165 	struct ip_moptions *imo;
2166 {
2167 	int i;
2168 
2169 	if (imo != NULL) {
2170 		for (i = 0; i < imo->imo_num_memberships; ++i)
2171 			in_delmulti(imo->imo_membership[i]);
2172 		free(imo, M_IPMOPTS);
2173 	}
2174 }
2175 
2176 /*
2177  * Routine called from ip_output() to loop back a copy of an IP multicast
2178  * packet to the input queue of a specified interface.  Note that this
2179  * calls the output routine of the loopback "driver", but with an interface
2180  * pointer that might NOT be a loopback interface -- evil, but easier than
2181  * replicating that code here.
2182  */
2183 static void
2184 ip_mloopback(ifp, m, dst, hlen)
2185 	struct ifnet *ifp;
2186 	struct mbuf *m;
2187 	struct sockaddr_in *dst;
2188 	int hlen;
2189 {
2190 	struct ip *ip;
2191 	struct mbuf *copym;
2192 
2193 	copym = m_copy(m, 0, M_COPYALL);
2194 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2195 		copym = m_pullup(copym, hlen);
2196 	if (copym != NULL) {
2197 		/*
2198 		 * We don't bother to fragment if the IP length is greater
2199 		 * than the interface's MTU.  Can this possibly matter?
2200 		 */
2201 		ip = mtod(copym, struct ip *);
2202 		ip->ip_len = htons(ip->ip_len);
2203 		ip->ip_off = htons(ip->ip_off);
2204 		ip->ip_sum = 0;
2205 		if (ip->ip_vhl == IP_VHL_BORING) {
2206 			ip->ip_sum = in_cksum_hdr(ip);
2207 		} else {
2208 			ip->ip_sum = in_cksum(copym, hlen);
2209 		}
2210 		/*
2211 		 * NB:
2212 		 * It's not clear whether there are any lingering
2213 		 * reentrancy problems in other areas which might
2214 		 * be exposed by using ip_input directly (in
2215 		 * particular, everything which modifies the packet
2216 		 * in-place).  Yet another option is using the
2217 		 * protosw directly to deliver the looped back
2218 		 * packet.  For the moment, we'll err on the side
2219 		 * of safety by using if_simloop().
2220 		 */
2221 #if 1 /* XXX */
2222 		if (dst->sin_family != AF_INET) {
2223 			printf("ip_mloopback: bad address family %d\n",
2224 						dst->sin_family);
2225 			dst->sin_family = AF_INET;
2226 		}
2227 #endif
2228 
2229 #ifdef notdef
2230 		copym->m_pkthdr.rcvif = ifp;
2231 		ip_input(copym);
2232 #else
2233 		/* if the checksum hasn't been computed, mark it as valid */
2234 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2235 			copym->m_pkthdr.csum_flags |=
2236 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2237 			copym->m_pkthdr.csum_data = 0xffff;
2238 		}
2239 		if_simloop(ifp, copym, dst->sin_family, 0);
2240 #endif
2241 	}
2242 }
2243