xref: /dragonfly/sys/netinet/ip_output.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
35  * $DragonFly: src/sys/netinet/ip_output.c,v 1.17 2004/07/26 06:32:58 asmodai Exp $
36  */
37 
38 #define _IP_VHL
39 
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipsec.h"
45 #include "opt_random_ip_id.h"
46 #include "opt_mbuf_stress_test.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/proc.h>
57 #include <sys/sysctl.h>
58 #include <sys/in_cksum.h>
59 
60 #include <net/if.h>
61 #include <net/netisr.h>
62 #include <net/pfil.h>
63 #include <net/route.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 
72 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
73 
74 #ifdef IPSEC
75 #include <netinet6/ipsec.h>
76 #include <netproto/key/key.h>
77 #ifdef IPSEC_DEBUG
78 #include <netproto/key/key_debug.h>
79 #else
80 #define	KEYDEBUG(lev,arg)
81 #endif
82 #endif /*IPSEC*/
83 
84 #ifdef FAST_IPSEC
85 #include <netipsec/ipsec.h>
86 #include <netipsec/xform.h>
87 #include <netipsec/key.h>
88 #endif /*FAST_IPSEC*/
89 
90 #include <net/ipfw/ip_fw.h>
91 #include <net/dummynet/ip_dummynet.h>
92 
93 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
94 				x, (ntohl(a.s_addr)>>24)&0xFF,\
95 				  (ntohl(a.s_addr)>>16)&0xFF,\
96 				  (ntohl(a.s_addr)>>8)&0xFF,\
97 				  (ntohl(a.s_addr))&0xFF, y);
98 
99 u_short ip_id;
100 
101 #ifdef MBUF_STRESS_TEST
102 int mbuf_frag_size = 0;
103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
104 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
105 #endif
106 
107 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
108 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
109 static void	ip_mloopback
110 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
111 static int	ip_getmoptions
112 	(struct sockopt *, struct ip_moptions *);
113 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
114 static int	ip_setmoptions
115 	(struct sockopt *, struct ip_moptions **);
116 
117 int	ip_optcopy(struct ip *, struct ip *);
118 
119 
120 extern	struct protosw inetsw[];
121 
122 /*
123  * IP output.  The packet in mbuf chain m contains a skeletal IP
124  * header (with len, off, ttl, proto, tos, src, dst).
125  * The mbuf chain containing the packet will be freed.
126  * The mbuf opt, if present, will not be freed.
127  */
128 int
129 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
130 	int flags, struct ip_moptions *imo, struct inpcb *inp)
131 {
132 	struct ip *ip;
133 	struct ifnet *ifp = NULL;	/* keep compiler happy */
134 	struct mbuf *m;
135 	int hlen = sizeof (struct ip);
136 	int len, off, error = 0;
137 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
138 	struct in_ifaddr *ia = NULL;
139 	int isbroadcast, sw_csum;
140 	struct in_addr pkt_dst;
141 #ifdef IPSEC
142 	struct route iproute;
143 	struct secpolicy *sp = NULL;
144 	struct socket *so = inp ? inp->inp_socket : NULL;
145 #endif
146 #ifdef FAST_IPSEC
147 	struct route iproute;
148 	struct m_tag *mtag;
149 	struct secpolicy *sp = NULL;
150 	struct tdb_ident *tdbi;
151 	int s;
152 #endif /* FAST_IPSEC */
153 	struct ip_fw_args args;
154 	int src_was_INADDR_ANY = 0;	/* as the name says... */
155 
156 	args.eh = NULL;
157 	args.rule = NULL;
158 	args.next_hop = NULL;
159 	args.divert_rule = 0;			/* divert cookie */
160 
161 	/* Grab info from MT_TAG mbufs prepended to the chain. */
162 	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
163 		switch(m0->_m_tag_id) {
164 		default:
165 			printf("ip_output: unrecognised MT_TAG tag %d\n",
166 			    m0->_m_tag_id);
167 			break;
168 
169 		case PACKET_TAG_DUMMYNET:
170 			/*
171 			 * the packet was already tagged, so part of the
172 			 * processing was already done, and we need to go down.
173 			 * Get parameters from the header.
174 			 */
175 			args.rule = ((struct dn_pkt *)m0)->rule;
176 			opt = NULL ;
177 			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
178 			imo = NULL ;
179 			dst = ((struct dn_pkt *)m0)->dn_dst ;
180 			ifp = ((struct dn_pkt *)m0)->ifp ;
181 			flags = ((struct dn_pkt *)m0)->flags ;
182 			break;
183 
184 		case PACKET_TAG_DIVERT:
185 			args.divert_rule = (int)m0->m_data & 0xffff;
186 			break;
187 
188 		case PACKET_TAG_IPFORWARD:
189 			args.next_hop = (struct sockaddr_in *)m0->m_data;
190 			break;
191 		}
192 	}
193 	m = m0;
194 
195 	KASSERT(!m || (m->m_flags & M_PKTHDR) != 0, ("ip_output: no HDR"));
196 #ifndef FAST_IPSEC
197 	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
198 	    mtod(m, struct ip *)->ip_p));
199 #endif
200 
201 	if (args.rule != NULL) {	/* dummynet already saw us */
202 		ip = mtod(m, struct ip *);
203 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
204 		if (ro->ro_rt)
205 			ia = ifatoia(ro->ro_rt->rt_ifa);
206 		goto sendit;
207 	}
208 
209 	if (opt) {
210 		len = 0;
211 		m = ip_insertoptions(m, opt, &len);
212 		if (len != 0)
213 			hlen = len;
214 	}
215 	ip = mtod(m, struct ip *);
216 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
217 
218 	/*
219 	 * Fill in IP header.
220 	 */
221 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
222 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
223 		ip->ip_off &= IP_DF;
224 #ifdef RANDOM_IP_ID
225 		ip->ip_id = ip_randomid();
226 #else
227 		ip->ip_id = htons(ip_id++);
228 #endif
229 		ipstat.ips_localout++;
230 	} else {
231 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
232 	}
233 
234 #ifdef FAST_IPSEC
235 	if (ro == NULL) {
236 		ro = &iproute;
237 		bzero(ro, sizeof (*ro));
238 	}
239 #endif /* FAST_IPSEC */
240 	dst = (struct sockaddr_in *)&ro->ro_dst;
241 	/*
242 	 * If there is a cached route,
243 	 * check that it is to the same destination
244 	 * and is still up.  If not, free it and try again.
245 	 * The address family should also be checked in case of sharing the
246 	 * cache with IPv6.
247 	 */
248 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
249 			  dst->sin_family != AF_INET ||
250 			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
251 		RTFREE(ro->ro_rt);
252 		ro->ro_rt = (struct rtentry *)0;
253 	}
254 	if (ro->ro_rt == 0) {
255 		bzero(dst, sizeof(*dst));
256 		dst->sin_family = AF_INET;
257 		dst->sin_len = sizeof(*dst);
258 		dst->sin_addr = pkt_dst;
259 	}
260 	/*
261 	 * If routing to interface only,
262 	 * short circuit routing lookup.
263 	 */
264 	if (flags & IP_ROUTETOIF) {
265 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
266 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
267 			ipstat.ips_noroute++;
268 			error = ENETUNREACH;
269 			goto bad;
270 		}
271 		ifp = ia->ia_ifp;
272 		ip->ip_ttl = 1;
273 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
274 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
275 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
276 		/*
277 		 * Bypass the normal routing lookup for multicast
278 		 * packets if the interface is specified.
279 		 */
280 		ifp = imo->imo_multicast_ifp;
281 		IFP_TO_IA(ifp, ia);
282 		isbroadcast = 0;	/* fool gcc */
283 	} else {
284 		/*
285 		 * If this is the case, we probably don't want to allocate
286 		 * a protocol-cloned route since we didn't get one from the
287 		 * ULP.  This lets TCP do its thing, while not burdening
288 		 * forwarding or ICMP with the overhead of cloning a route.
289 		 * Of course, we still want to do any cloning requested by
290 		 * the link layer, as this is probably required in all cases
291 		 * for correct operation (as it is for ARP).
292 		 */
293 		if (ro->ro_rt == 0)
294 			rtalloc_ign(ro, RTF_PRCLONING);
295 		if (ro->ro_rt == 0) {
296 			ipstat.ips_noroute++;
297 			error = EHOSTUNREACH;
298 			goto bad;
299 		}
300 		ia = ifatoia(ro->ro_rt->rt_ifa);
301 		ifp = ro->ro_rt->rt_ifp;
302 		ro->ro_rt->rt_use++;
303 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
305 		if (ro->ro_rt->rt_flags & RTF_HOST)
306 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
307 		else
308 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
309 	}
310 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
311 		struct in_multi *inm;
312 
313 		m->m_flags |= M_MCAST;
314 		/*
315 		 * IP destination address is multicast.  Make sure "dst"
316 		 * still points to the address in "ro".  (It may have been
317 		 * changed to point to a gateway address, above.)
318 		 */
319 		dst = (struct sockaddr_in *)&ro->ro_dst;
320 		/*
321 		 * See if the caller provided any multicast options
322 		 */
323 		if (imo != NULL) {
324 			ip->ip_ttl = imo->imo_multicast_ttl;
325 			if (imo->imo_multicast_vif != -1)
326 				ip->ip_src.s_addr =
327 				    ip_mcast_src ?
328 				    ip_mcast_src(imo->imo_multicast_vif) :
329 				    INADDR_ANY;
330 		} else
331 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
332 		/*
333 		 * Confirm that the outgoing interface supports multicast.
334 		 */
335 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
336 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
337 				ipstat.ips_noroute++;
338 				error = ENETUNREACH;
339 				goto bad;
340 			}
341 		}
342 		/*
343 		 * If source address not specified yet, use address
344 		 * of outgoing interface.
345 		 */
346 		if (ip->ip_src.s_addr == INADDR_ANY) {
347 			/* Interface may have no addresses. */
348 			if (ia != NULL)
349 				ip->ip_src = IA_SIN(ia)->sin_addr;
350 		}
351 
352 		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
353 			/*
354 			 * XXX
355 			 * delayed checksums are not currently
356 			 * compatible with IP multicast routing
357 			 */
358 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
359 				in_delayed_cksum(m);
360 				m->m_pkthdr.csum_flags &=
361 					~CSUM_DELAY_DATA;
362 			}
363 		}
364 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
365 		if (inm != NULL &&
366 		   (imo == NULL || imo->imo_multicast_loop)) {
367 			/*
368 			 * If we belong to the destination multicast group
369 			 * on the outgoing interface, and the caller did not
370 			 * forbid loopback, loop back a copy.
371 			 */
372 			ip_mloopback(ifp, m, dst, hlen);
373 		}
374 		else {
375 			/*
376 			 * If we are acting as a multicast router, perform
377 			 * multicast forwarding as if the packet had just
378 			 * arrived on the interface to which we are about
379 			 * to send.  The multicast forwarding function
380 			 * recursively calls this function, using the
381 			 * IP_FORWARDING flag to prevent infinite recursion.
382 			 *
383 			 * Multicasts that are looped back by ip_mloopback(),
384 			 * above, will be forwarded by the ip_input() routine,
385 			 * if necessary.
386 			 */
387 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
388 				/*
389 				 * If rsvp daemon is not running, do not
390 				 * set ip_moptions. This ensures that the packet
391 				 * is multicast and not just sent down one link
392 				 * as prescribed by rsvpd.
393 				 */
394 				if (!rsvp_on)
395 					imo = NULL;
396 				if (ip_mforward &&
397 				    ip_mforward(ip, ifp, m, imo) != 0) {
398 					m_freem(m);
399 					goto done;
400 				}
401 			}
402 		}
403 
404 		/*
405 		 * Multicasts with a time-to-live of zero may be looped-
406 		 * back, above, but must not be transmitted on a network.
407 		 * Also, multicasts addressed to the loopback interface
408 		 * are not sent -- the above call to ip_mloopback() will
409 		 * loop back a copy if this host actually belongs to the
410 		 * destination group on the loopback interface.
411 		 */
412 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
413 			m_freem(m);
414 			goto done;
415 		}
416 
417 		goto sendit;
418 	}
419 #ifndef notdef
420 	/*
421 	 * If the source address is not specified yet, use the address
422 	 * of the outoing interface. In case, keep note we did that, so
423 	 * if the the firewall changes the next-hop causing the output
424 	 * interface to change, we can fix that.
425 	 */
426 	if (ip->ip_src.s_addr == INADDR_ANY) {
427 		/* Interface may have no addresses. */
428 		if (ia != NULL) {
429 			ip->ip_src = IA_SIN(ia)->sin_addr;
430 			src_was_INADDR_ANY = 1;
431 		}
432 	}
433 #endif /* notdef */
434 	/*
435 	 * Verify that we have any chance at all of being able to queue
436 	 *      the packet or packet fragments
437 	 */
438 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
439 		ifp->if_snd.ifq_maxlen) {
440 			error = ENOBUFS;
441 			ipstat.ips_odropped++;
442 			goto bad;
443 	}
444 
445 	/*
446 	 * Look for broadcast address and
447 	 * verify user is allowed to send
448 	 * such a packet.
449 	 */
450 	if (isbroadcast) {
451 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
452 			error = EADDRNOTAVAIL;
453 			goto bad;
454 		}
455 		if ((flags & IP_ALLOWBROADCAST) == 0) {
456 			error = EACCES;
457 			goto bad;
458 		}
459 		/* don't allow broadcast messages to be fragmented */
460 		if (ip->ip_len > ifp->if_mtu) {
461 			error = EMSGSIZE;
462 			goto bad;
463 		}
464 		m->m_flags |= M_BCAST;
465 	} else {
466 		m->m_flags &= ~M_BCAST;
467 	}
468 
469 sendit:
470 #ifdef IPSEC
471 	/* get SP for this packet */
472 	if (so == NULL)
473 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
474 	else
475 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 
477 	if (sp == NULL) {
478 		ipsecstat.out_inval++;
479 		goto bad;
480 	}
481 
482 	error = 0;
483 
484 	/* check policy */
485 	switch (sp->policy) {
486 	case IPSEC_POLICY_DISCARD:
487 		/*
488 		 * This packet is just discarded.
489 		 */
490 		ipsecstat.out_polvio++;
491 		goto bad;
492 
493 	case IPSEC_POLICY_BYPASS:
494 	case IPSEC_POLICY_NONE:
495 		/* no need to do IPsec. */
496 		goto skip_ipsec;
497 
498 	case IPSEC_POLICY_IPSEC:
499 		if (sp->req == NULL) {
500 			/* acquire a policy */
501 			error = key_spdacquire(sp);
502 			goto bad;
503 		}
504 		break;
505 
506 	case IPSEC_POLICY_ENTRUST:
507 	default:
508 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
509 	}
510     {
511 	struct ipsec_output_state state;
512 	bzero(&state, sizeof(state));
513 	state.m = m;
514 	if (flags & IP_ROUTETOIF) {
515 		state.ro = &iproute;
516 		bzero(&iproute, sizeof(iproute));
517 	} else
518 		state.ro = ro;
519 	state.dst = (struct sockaddr *)dst;
520 
521 	ip->ip_sum = 0;
522 
523 	/*
524 	 * XXX
525 	 * delayed checksums are not currently compatible with IPsec
526 	 */
527 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
528 		in_delayed_cksum(m);
529 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
530 	}
531 
532 	ip->ip_len = htons(ip->ip_len);
533 	ip->ip_off = htons(ip->ip_off);
534 
535 	error = ipsec4_output(&state, sp, flags);
536 
537 	m = state.m;
538 	if (flags & IP_ROUTETOIF) {
539 		/*
540 		 * if we have tunnel mode SA, we may need to ignore
541 		 * IP_ROUTETOIF.
542 		 */
543 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
544 			flags &= ~IP_ROUTETOIF;
545 			ro = state.ro;
546 		}
547 	} else
548 		ro = state.ro;
549 	dst = (struct sockaddr_in *)state.dst;
550 	if (error) {
551 		/* mbuf is already reclaimed in ipsec4_output. */
552 		m0 = NULL;
553 		switch (error) {
554 		case EHOSTUNREACH:
555 		case ENETUNREACH:
556 		case EMSGSIZE:
557 		case ENOBUFS:
558 		case ENOMEM:
559 			break;
560 		default:
561 			printf("ip4_output (ipsec): error code %d\n", error);
562 			/*fall through*/
563 		case ENOENT:
564 			/* don't show these error codes to the user */
565 			error = 0;
566 			break;
567 		}
568 		goto bad;
569 	}
570     }
571 
572 	/* be sure to update variables that are affected by ipsec4_output() */
573 	ip = mtod(m, struct ip *);
574 #ifdef _IP_VHL
575 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
576 #else
577 	hlen = ip->ip_hl << 2;
578 #endif
579 	if (ro->ro_rt == NULL) {
580 		if ((flags & IP_ROUTETOIF) == 0) {
581 			printf("ip_output: "
582 				"can't update route after IPsec processing\n");
583 			error = EHOSTUNREACH;	/*XXX*/
584 			goto bad;
585 		}
586 	} else {
587 		ia = ifatoia(ro->ro_rt->rt_ifa);
588 		ifp = ro->ro_rt->rt_ifp;
589 	}
590 
591 	/* make it flipped, again. */
592 	ip->ip_len = ntohs(ip->ip_len);
593 	ip->ip_off = ntohs(ip->ip_off);
594 skip_ipsec:
595 #endif /*IPSEC*/
596 #ifdef FAST_IPSEC
597 	/*
598 	 * Check the security policy (SP) for the packet and, if
599 	 * required, do IPsec-related processing.  There are two
600 	 * cases here; the first time a packet is sent through
601 	 * it will be untagged and handled by ipsec4_checkpolicy.
602 	 * If the packet is resubmitted to ip_output (e.g. after
603 	 * AH, ESP, etc. processing), there will be a tag to bypass
604 	 * the lookup and related policy checking.
605 	 */
606 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
607 	s = splnet();
608 	if (mtag != NULL) {
609 		tdbi = (struct tdb_ident *)(mtag + 1);
610 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
611 		if (sp == NULL)
612 			error = -EINVAL;	/* force silent drop */
613 		m_tag_delete(m, mtag);
614 	} else {
615 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
616 					&error, inp);
617 	}
618 	/*
619 	 * There are four return cases:
620 	 *    sp != NULL	 	    apply IPsec policy
621 	 *    sp == NULL, error == 0	    no IPsec handling needed
622 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
623 	 *    sp == NULL, error != 0	    discard packet, report error
624 	 */
625 	if (sp != NULL) {
626 		/* Loop detection, check if ipsec processing already done */
627 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
628 		for (mtag = m_tag_first(m); mtag != NULL;
629 		     mtag = m_tag_next(m, mtag)) {
630 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
631 				continue;
632 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
633 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
634 				continue;
635 			/*
636 			 * Check if policy has an SA associated with it.
637 			 * This can happen when an SP has yet to acquire
638 			 * an SA; e.g. on first reference.  If it occurs,
639 			 * then we let ipsec4_process_packet do its thing.
640 			 */
641 			if (sp->req->sav == NULL)
642 				break;
643 			tdbi = (struct tdb_ident *)(mtag + 1);
644 			if (tdbi->spi == sp->req->sav->spi &&
645 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
646 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
647 				 sizeof (union sockaddr_union)) == 0) {
648 				/*
649 				 * No IPsec processing is needed, free
650 				 * reference to SP.
651 				 *
652 				 * NB: null pointer to avoid free at
653 				 *     done: below.
654 				 */
655 				KEY_FREESP(&sp), sp = NULL;
656 				splx(s);
657 				goto spd_done;
658 			}
659 		}
660 
661 		/*
662 		 * Do delayed checksums now because we send before
663 		 * this is done in the normal processing path.
664 		 */
665 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
666 			in_delayed_cksum(m);
667 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
668 		}
669 
670 		ip->ip_len = htons(ip->ip_len);
671 		ip->ip_off = htons(ip->ip_off);
672 
673 		/* NB: callee frees mbuf */
674 		error = ipsec4_process_packet(m, sp->req, flags, 0);
675 		/*
676 		 * Preserve KAME behaviour: ENOENT can be returned
677 		 * when an SA acquire is in progress.  Don't propagate
678 		 * this to user-level; it confuses applications.
679 		 *
680 		 * XXX this will go away when the SADB is redone.
681 		 */
682 		if (error == ENOENT)
683 			error = 0;
684 		splx(s);
685 		goto done;
686 	} else {
687 		splx(s);
688 
689 		if (error != 0) {
690 			/*
691 			 * Hack: -EINVAL is used to signal that a packet
692 			 * should be silently discarded.  This is typically
693 			 * because we asked key management for an SA and
694 			 * it was delayed (e.g. kicked up to IKE).
695 			 */
696 			if (error == -EINVAL)
697 				error = 0;
698 			goto bad;
699 		} else {
700 			/* No IPsec processing for this packet. */
701 		}
702 #ifdef notyet
703 		/*
704 		 * If deferred crypto processing is needed, check that
705 		 * the interface supports it.
706 		 */
707 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
708 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
709 			/* notify IPsec to do its own crypto */
710 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
711 			error = EHOSTUNREACH;
712 			goto bad;
713 		}
714 #endif
715 	}
716 spd_done:
717 #endif /* FAST_IPSEC */
718 	/*
719 	 * IpHack's section.
720 	 * - Xlate: translate packet's addr/port (NAT).
721 	 * - Firewall: deny/allow/etc.
722 	 * - Wrap: fake packet's addr/port <unimpl.>
723 	 * - Encapsulate: put it in another IP and send out. <unimp.>
724 	 */
725 
726 	/*
727 	 * Run through list of hooks for output packets.
728 	 */
729 	if (pfil_has_hooks(&inet_pfil_hook)) {
730 		error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
731 		if (error != 0 || m == NULL)
732 			goto done;
733 		ip = mtod(m, struct ip *);
734 	}
735 
736 	/*
737 	 * Check with the firewall...
738 	 * but not if we are already being fwd'd from a firewall.
739 	 */
740 	if (fw_enable && IPFW_LOADED && !args.next_hop) {
741 		struct sockaddr_in *old = dst;
742 
743 		args.m = m;
744 		args.next_hop = dst;
745 		args.oif = ifp;
746 		off = ip_fw_chk_ptr(&args);
747 		m = args.m;
748 		dst = args.next_hop;
749 
750                 /*
751 		 * On return we must do the following:
752 		 * m == NULL	-> drop the pkt (old interface, deprecated)
753 		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
754 		 * 1<=off<= 0xffff		-> DIVERT
755 		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
756 		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
757 		 * dst != old			-> IPFIREWALL_FORWARD
758 		 * off==0, dst==old		-> accept
759 		 * If some of the above modules are not compiled in, then
760 		 * we should't have to check the corresponding condition
761 		 * (because the ipfw control socket should not accept
762 		 * unsupported rules), but better play safe and drop
763 		 * packets in case of doubt.
764 		 */
765 		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
766 			if (m)
767 				m_freem(m);
768 			error = EACCES;
769 			goto done;
770 		}
771 		ip = mtod(m, struct ip *);
772 		if (off == 0 && dst == old)		/* common case */
773 			goto pass;
774                 if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
775 			/*
776 			 * pass the pkt to dummynet. Need to include
777 			 * pipe number, m, ifp, ro, dst because these are
778 			 * not recomputed in the next pass.
779 			 * All other parameters have been already used and
780 			 * so they are not needed anymore.
781 			 * XXX note: if the ifp or ro entry are deleted
782 			 * while a pkt is in dummynet, we are in trouble!
783 			 */
784 			args.ro = ro;
785 			args.dst = dst;
786 			args.flags = flags;
787 
788 			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
789 				&args);
790 			goto done;
791 		}
792 #ifdef IPDIVERT
793 		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
794 			struct mbuf *clone = NULL;
795 
796 			/* Clone packet if we're doing a 'tee' */
797 			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
798 				clone = m_dup(m, MB_DONTWAIT);
799 
800 			/*
801 			 * XXX
802 			 * delayed checksums are not currently compatible
803 			 * with divert sockets.
804 			 */
805 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
806 				in_delayed_cksum(m);
807 				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
808 			}
809 
810 			/* Restore packet header fields to original values */
811 			ip->ip_len = htons(ip->ip_len);
812 			ip->ip_off = htons(ip->ip_off);
813 
814 			/* Deliver packet to divert input routine */
815 			divert_packet(m, 0, off & 0xffff, args.divert_rule);
816 
817 			/* If 'tee', continue with original packet */
818 			if (clone != NULL) {
819 				m = clone;
820 				ip = mtod(m, struct ip *);
821 				goto pass;
822 			}
823 			goto done;
824 		}
825 #endif
826 
827 		/* IPFIREWALL_FORWARD */
828 		/*
829 		 * Check dst to make sure it is directly reachable on the
830 		 * interface we previously thought it was.
831 		 * If it isn't (which may be likely in some situations) we have
832 		 * to re-route it (ie, find a route for the next-hop and the
833 		 * associated interface) and set them here. This is nested
834 		 * forwarding which in most cases is undesirable, except where
835 		 * such control is nigh impossible. So we do it here.
836 		 * And I'm babbling.
837 		 */
838 		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
839 #if 0
840 			/*
841 			 * XXX To improve readability, this block should be
842 			 * changed into a function call as below:
843 			 */
844 			error = ip_ipforward(&m, &dst, &ifp);
845 			if (error)
846 				goto bad;
847 			if (m == NULL) /* ip_input consumed the mbuf */
848 				goto done;
849 #else
850 			struct in_ifaddr *ia;
851 
852 			/*
853 			 * XXX sro_fwd below is static, and a pointer
854 			 * to it gets passed to routines downstream.
855 			 * This could have surprisingly bad results in
856 			 * practice, because its content is overwritten
857 			 * by subsequent packets.
858 			 */
859 			/* There must be a better way to do this next line... */
860 			static struct route sro_fwd;
861 			struct route *ro_fwd = &sro_fwd;
862 
863 #if 0
864 			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
865 			    dst->sin_addr, "\n");
866 #endif
867 
868 			/*
869 			 * We need to figure out if we have been forwarded
870 			 * to a local socket. If so, then we should somehow
871 			 * "loop back" to ip_input, and get directed to the
872 			 * PCB as if we had received this packet. This is
873 			 * because it may be dificult to identify the packets
874 			 * you want to forward until they are being output
875 			 * and have selected an interface. (e.g. locally
876 			 * initiated packets) If we used the loopback inteface,
877 			 * we would not be able to control what happens
878 			 * as the packet runs through ip_input() as
879 			 * it is done through a ISR.
880 			 */
881 			LIST_FOREACH(ia,
882 			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
883 				/*
884 				 * If the addr to forward to is one
885 				 * of ours, we pretend to
886 				 * be the destination for this packet.
887 				 */
888 				if (IA_SIN(ia)->sin_addr.s_addr ==
889 						 dst->sin_addr.s_addr)
890 					break;
891 			}
892 			if (ia) {	/* tell ip_input "dont filter" */
893 				struct m_hdr tag;
894 
895 				tag.mh_type = MT_TAG;
896 				tag.mh_flags = PACKET_TAG_IPFORWARD;
897 				tag.mh_data = (caddr_t)args.next_hop;
898 				tag.mh_next = m;
899 
900 				if (m->m_pkthdr.rcvif == NULL)
901 					m->m_pkthdr.rcvif = ifunit("lo0");
902 				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
903 					m->m_pkthdr.csum_flags |=
904 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
905 					m0->m_pkthdr.csum_data = 0xffff;
906 				}
907 				m->m_pkthdr.csum_flags |=
908 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
909 				ip->ip_len = htons(ip->ip_len);
910 				ip->ip_off = htons(ip->ip_off);
911 				ip_input((struct mbuf *)&tag);
912 				goto done;
913 			}
914 			/* Some of the logic for this was
915 			 * nicked from above.
916 			 *
917 			 * This rewrites the cached route in a local PCB.
918 			 * Is this what we want to do?
919 			 */
920 			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
921 
922 			ro_fwd->ro_rt = 0;
923 			rtalloc_ign(ro_fwd, RTF_PRCLONING);
924 
925 			if (ro_fwd->ro_rt == 0) {
926 				ipstat.ips_noroute++;
927 				error = EHOSTUNREACH;
928 				goto bad;
929 			}
930 
931 			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
932 			ifp = ro_fwd->ro_rt->rt_ifp;
933 			ro_fwd->ro_rt->rt_use++;
934 			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
935 				dst = (struct sockaddr_in *)
936 					ro_fwd->ro_rt->rt_gateway;
937 			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
938 				isbroadcast =
939 				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
940 			else
941 				isbroadcast = in_broadcast(dst->sin_addr, ifp);
942 			if (ro->ro_rt)
943 				RTFREE(ro->ro_rt);
944 			ro->ro_rt = ro_fwd->ro_rt;
945 			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
946 
947 #endif	/* ... block to be put into a function */
948 			/*
949 			 * If we added a default src ip earlier,
950 			 * which would have been gotten from the-then
951 			 * interface, do it again, from the new one.
952 			 */
953 			if (src_was_INADDR_ANY)
954 				ip->ip_src = IA_SIN(ia)->sin_addr;
955 			goto pass ;
956 		}
957 
958                 /*
959                  * if we get here, none of the above matches, and
960                  * we have to drop the pkt
961                  */
962 		m_freem(m);
963                 error = EACCES; /* not sure this is the right error msg */
964                 goto done;
965 	}
966 
967 pass:
968 	/* 127/8 must not appear on wire - RFC1122. */
969 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
970 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
971 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
972 			ipstat.ips_badaddr++;
973 			error = EADDRNOTAVAIL;
974 			goto bad;
975 		}
976 	}
977 
978 	m->m_pkthdr.csum_flags |= CSUM_IP;
979 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
980 	if (sw_csum & CSUM_DELAY_DATA) {
981 		in_delayed_cksum(m);
982 		sw_csum &= ~CSUM_DELAY_DATA;
983 	}
984 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
985 
986 	/*
987 	 * If small enough for interface, or the interface will take
988 	 * care of the fragmentation for us, can just send directly.
989 	 */
990 	if (ip->ip_len <= ifp->if_mtu || ((ifp->if_hwassist & CSUM_FRAGMENT) &&
991 	    (ip->ip_off & IP_DF) == 0)) {
992 		ip->ip_len = htons(ip->ip_len);
993 		ip->ip_off = htons(ip->ip_off);
994 		ip->ip_sum = 0;
995 		if (sw_csum & CSUM_DELAY_IP) {
996 			if (ip->ip_vhl == IP_VHL_BORING) {
997 				ip->ip_sum = in_cksum_hdr(ip);
998 			} else {
999 				ip->ip_sum = in_cksum(m, hlen);
1000 			}
1001 		}
1002 
1003 		/* Record statistics for this interface address. */
1004 		if (!(flags & IP_FORWARDING) && ia) {
1005 			ia->ia_ifa.if_opackets++;
1006 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1007 		}
1008 
1009 #ifdef IPSEC
1010 		/* clean ipsec history once it goes out of the node */
1011 		ipsec_delaux(m);
1012 #endif
1013 
1014 #ifdef MBUF_STRESS_TEST
1015 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1016 			struct mbuf *m1, *m2;
1017 			int length, tmp;
1018 
1019 			tmp = length = m->m_pkthdr.len;
1020 
1021 			while ((length -= mbuf_frag_size) >= 1) {
1022 				m1 = m_split(m, length, MB_DONTWAIT);
1023 				if (m1 == NULL)
1024 					break;
1025 				m1->m_flags &= ~M_PKTHDR;
1026 				m2 = m;
1027 				while (m2->m_next != NULL)
1028 					m2 = m2->m_next;
1029 				m2->m_next = m1;
1030 			}
1031 			m->m_pkthdr.len = tmp;
1032 		}
1033 #endif
1034 		error = (*ifp->if_output)(ifp, m,
1035 				(struct sockaddr *)dst, ro->ro_rt);
1036 		goto done;
1037 	}
1038 
1039 	if (ip->ip_off & IP_DF) {
1040 		error = EMSGSIZE;
1041 		/*
1042 		 * This case can happen if the user changed the MTU
1043 		 * of an interface after enabling IP on it.  Because
1044 		 * most netifs don't keep track of routes pointing to
1045 		 * them, there is no way for one to update all its
1046 		 * routes when the MTU is changed.
1047 		 */
1048 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1049 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1050 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1051 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1052 		}
1053 		ipstat.ips_cantfrag++;
1054 		goto bad;
1055 	}
1056 
1057 	/*
1058 	 * Too large for interface; fragment if possible. If successful,
1059 	 * on return, m will point to a list of packets to be sent.
1060 	 */
1061 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1062 	if (error)
1063 		goto bad;
1064 	for (; m; m = m0) {
1065 		m0 = m->m_nextpkt;
1066 		m->m_nextpkt = 0;
1067 #ifdef IPSEC
1068 		/* clean ipsec history once it goes out of the node */
1069 		ipsec_delaux(m);
1070 #endif
1071 		if (error == 0) {
1072 			/* Record statistics for this interface address. */
1073 			if (ia != NULL) {
1074 				ia->ia_ifa.if_opackets++;
1075 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1076 			}
1077 
1078 			error = (*ifp->if_output)(ifp, m,
1079 			    (struct sockaddr *)dst, ro->ro_rt);
1080 		} else
1081 			m_freem(m);
1082 	}
1083 
1084 	if (error == 0)
1085 		ipstat.ips_fragmented++;
1086 
1087 done:
1088 #ifdef IPSEC
1089 	if (ro == &iproute && ro->ro_rt) {
1090 		RTFREE(ro->ro_rt);
1091 		ro->ro_rt = NULL;
1092 	}
1093 	if (sp != NULL) {
1094 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1095 			printf("DP ip_output call free SP:%p\n", sp));
1096 		key_freesp(sp);
1097 	}
1098 #endif
1099 #ifdef FAST_IPSEC
1100 	if (ro == &iproute && ro->ro_rt) {
1101 		RTFREE(ro->ro_rt);
1102 		ro->ro_rt = NULL;
1103 	}
1104 	if (sp != NULL)
1105 		KEY_FREESP(&sp);
1106 #endif
1107 	return (error);
1108 bad:
1109 	m_freem(m);
1110 	goto done;
1111 }
1112 
1113 /*
1114  * Create a chain of fragments which fit the given mtu. m_frag points to the
1115  * mbuf to be fragmented; on return it points to the chain with the fragments.
1116  * Return 0 if no error. If error, m_frag may contain a partially built
1117  * chain of fragments that should be freed by the caller.
1118  *
1119  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1120  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1121  */
1122 int
1123 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1124 	    u_long if_hwassist_flags, int sw_csum)
1125 {
1126 	int error = 0;
1127 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1128 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1129 	int off;
1130 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1131 	int firstlen;
1132 	struct mbuf **mnext;
1133 	int nfrags;
1134 
1135 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1136 		ipstat.ips_cantfrag++;
1137 		return EMSGSIZE;
1138 	}
1139 
1140 	/*
1141 	 * Must be able to put at least 8 bytes per fragment.
1142 	 */
1143 	if (len < 8)
1144 		return EMSGSIZE;
1145 
1146 	/*
1147 	 * If the interface will not calculate checksums on
1148 	 * fragmented packets, then do it here.
1149 	 */
1150 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1151 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1152 		in_delayed_cksum(m0);
1153 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1154 	}
1155 
1156 	if (len > PAGE_SIZE) {
1157 		/*
1158 		 * Fragment large datagrams such that each segment
1159 		 * contains a multiple of PAGE_SIZE amount of data,
1160 		 * plus headers. This enables a receiver to perform
1161 		 * page-flipping zero-copy optimizations.
1162 		 *
1163 		 * XXX When does this help given that sender and receiver
1164 		 * could have different page sizes, and also mtu could
1165 		 * be less than the receiver's page size ?
1166 		 */
1167 		int newlen;
1168 		struct mbuf *m;
1169 
1170 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1171 			off += m->m_len;
1172 
1173 		/*
1174 		 * firstlen (off - hlen) must be aligned on an
1175 		 * 8-byte boundary
1176 		 */
1177 		if (off < hlen)
1178 			goto smart_frag_failure;
1179 		off = ((off - hlen) & ~7) + hlen;
1180 		newlen = (~PAGE_MASK) & mtu;
1181 		if ((newlen + sizeof (struct ip)) > mtu) {
1182 			/* we failed, go back the default */
1183 smart_frag_failure:
1184 			newlen = len;
1185 			off = hlen + len;
1186 		}
1187 		len = newlen;
1188 
1189 	} else {
1190 		off = hlen + len;
1191 	}
1192 
1193 	firstlen = off - hlen;
1194 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1195 
1196 	/*
1197 	 * Loop through length of segment after first fragment,
1198 	 * make new header and copy data of each part and link onto chain.
1199 	 * Here, m0 is the original packet, m is the fragment being created.
1200 	 * The fragments are linked off the m_nextpkt of the original
1201 	 * packet, which after processing serves as the first fragment.
1202 	 */
1203 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1204 		struct ip *mhip;	/* ip header on the fragment */
1205 		struct mbuf *m;
1206 		int mhlen = sizeof (struct ip);
1207 
1208 		MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1209 		if (m == 0) {
1210 			error = ENOBUFS;
1211 			ipstat.ips_odropped++;
1212 			goto done;
1213 		}
1214 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1215 		/*
1216 		 * In the first mbuf, leave room for the link header, then
1217 		 * copy the original IP header including options. The payload
1218 		 * goes into an additional mbuf chain returned by m_copy().
1219 		 */
1220 		m->m_data += max_linkhdr;
1221 		mhip = mtod(m, struct ip *);
1222 		*mhip = *ip;
1223 		if (hlen > sizeof (struct ip)) {
1224 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1225 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1226 		}
1227 		m->m_len = mhlen;
1228 		/* XXX do we need to add ip->ip_off below ? */
1229 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1230 		if (off + len >= ip->ip_len) {	/* last fragment */
1231 			len = ip->ip_len - off;
1232 			m->m_flags |= M_LASTFRAG;
1233 		} else
1234 			mhip->ip_off |= IP_MF;
1235 		mhip->ip_len = htons((u_short)(len + mhlen));
1236 		m->m_next = m_copy(m0, off, len);
1237 		if (m->m_next == 0) {		/* copy failed */
1238 			m_free(m);
1239 			error = ENOBUFS;	/* ??? */
1240 			ipstat.ips_odropped++;
1241 			goto done;
1242 		}
1243 		m->m_pkthdr.len = mhlen + len;
1244 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1245 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1246 		mhip->ip_off = htons(mhip->ip_off);
1247 		mhip->ip_sum = 0;
1248 		if (sw_csum & CSUM_DELAY_IP)
1249 			mhip->ip_sum = in_cksum(m, mhlen);
1250 		*mnext = m;
1251 		mnext = &m->m_nextpkt;
1252 	}
1253 	ipstat.ips_ofragments += nfrags;
1254 
1255 	/* set first marker for fragment chain */
1256 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1257 	m0->m_pkthdr.csum_data = nfrags;
1258 
1259 	/*
1260 	 * Update first fragment by trimming what's been copied out
1261 	 * and updating header.
1262 	 */
1263 	m_adj(m0, hlen + firstlen - ip->ip_len);
1264 	m0->m_pkthdr.len = hlen + firstlen;
1265 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1266 	ip->ip_off |= IP_MF;
1267 	ip->ip_off = htons(ip->ip_off);
1268 	ip->ip_sum = 0;
1269 	if (sw_csum & CSUM_DELAY_IP)
1270 		ip->ip_sum = in_cksum(m0, hlen);
1271 
1272 done:
1273 	*m_frag = m0;
1274 	return error;
1275 }
1276 
1277 void
1278 in_delayed_cksum(struct mbuf *m)
1279 {
1280 	struct ip *ip;
1281 	u_short csum, offset;
1282 
1283 	ip = mtod(m, struct ip *);
1284 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1285 	csum = in_cksum_skip(m, ip->ip_len, offset);
1286 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1287 		csum = 0xffff;
1288 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1289 
1290 	if (offset + sizeof(u_short) > m->m_len) {
1291 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1292 		    m->m_len, offset, ip->ip_p);
1293 		/*
1294 		 * XXX
1295 		 * this shouldn't happen, but if it does, the
1296 		 * correct behavior may be to insert the checksum
1297 		 * in the existing chain instead of rearranging it.
1298 		 */
1299 		m = m_pullup(m, offset + sizeof(u_short));
1300 	}
1301 	*(u_short *)(m->m_data + offset) = csum;
1302 }
1303 
1304 /*
1305  * Insert IP options into preformed packet.
1306  * Adjust IP destination as required for IP source routing,
1307  * as indicated by a non-zero in_addr at the start of the options.
1308  *
1309  * XXX This routine assumes that the packet has no options in place.
1310  */
1311 static struct mbuf *
1312 ip_insertoptions(m, opt, phlen)
1313 	struct mbuf *m;
1314 	struct mbuf *opt;
1315 	int *phlen;
1316 {
1317 	struct ipoption *p = mtod(opt, struct ipoption *);
1318 	struct mbuf *n;
1319 	struct ip *ip = mtod(m, struct ip *);
1320 	unsigned optlen;
1321 
1322 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1323 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1324 		*phlen = 0;
1325 		return (m);		/* XXX should fail */
1326 	}
1327 	if (p->ipopt_dst.s_addr)
1328 		ip->ip_dst = p->ipopt_dst;
1329 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1330 		MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1331 		if (n == 0) {
1332 			*phlen = 0;
1333 			return (m);
1334 		}
1335 		n->m_pkthdr.rcvif = (struct ifnet *)0;
1336 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1337 		m->m_len -= sizeof(struct ip);
1338 		m->m_data += sizeof(struct ip);
1339 		n->m_next = m;
1340 		m = n;
1341 		m->m_len = optlen + sizeof(struct ip);
1342 		m->m_data += max_linkhdr;
1343 		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
1344 	} else {
1345 		m->m_data -= optlen;
1346 		m->m_len += optlen;
1347 		m->m_pkthdr.len += optlen;
1348 		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1349 	}
1350 	ip = mtod(m, struct ip *);
1351 	bcopy(p->ipopt_list, ip + 1, optlen);
1352 	*phlen = sizeof(struct ip) + optlen;
1353 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1354 	ip->ip_len += optlen;
1355 	return (m);
1356 }
1357 
1358 /*
1359  * Copy options from ip to jp,
1360  * omitting those not copied during fragmentation.
1361  */
1362 int
1363 ip_optcopy(ip, jp)
1364 	struct ip *ip, *jp;
1365 {
1366 	u_char *cp, *dp;
1367 	int opt, optlen, cnt;
1368 
1369 	cp = (u_char *)(ip + 1);
1370 	dp = (u_char *)(jp + 1);
1371 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1372 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1373 		opt = cp[0];
1374 		if (opt == IPOPT_EOL)
1375 			break;
1376 		if (opt == IPOPT_NOP) {
1377 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1378 			*dp++ = IPOPT_NOP;
1379 			optlen = 1;
1380 			continue;
1381 		}
1382 
1383 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1384 		    ("ip_optcopy: malformed ipv4 option"));
1385 		optlen = cp[IPOPT_OLEN];
1386 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1387 		    ("ip_optcopy: malformed ipv4 option"));
1388 
1389 		/* bogus lengths should have been caught by ip_dooptions */
1390 		if (optlen > cnt)
1391 			optlen = cnt;
1392 		if (IPOPT_COPIED(opt)) {
1393 			bcopy(cp, dp, optlen);
1394 			dp += optlen;
1395 		}
1396 	}
1397 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1398 		*dp++ = IPOPT_EOL;
1399 	return (optlen);
1400 }
1401 
1402 /*
1403  * IP socket option processing.
1404  */
1405 int
1406 ip_ctloutput(so, sopt)
1407 	struct socket *so;
1408 	struct sockopt *sopt;
1409 {
1410 	struct	inpcb *inp = sotoinpcb(so);
1411 	int	error, optval;
1412 
1413 	error = optval = 0;
1414 	if (sopt->sopt_level != IPPROTO_IP) {
1415 		return (EINVAL);
1416 	}
1417 
1418 	switch (sopt->sopt_dir) {
1419 	case SOPT_SET:
1420 		switch (sopt->sopt_name) {
1421 		case IP_OPTIONS:
1422 #ifdef notyet
1423 		case IP_RETOPTS:
1424 #endif
1425 		{
1426 			struct mbuf *m;
1427 			if (sopt->sopt_valsize > MLEN) {
1428 				error = EMSGSIZE;
1429 				break;
1430 			}
1431 			MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1432 			if (m == 0) {
1433 				error = ENOBUFS;
1434 				break;
1435 			}
1436 			m->m_len = sopt->sopt_valsize;
1437 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1438 					    m->m_len);
1439 
1440 			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1441 					   m));
1442 		}
1443 
1444 		case IP_TOS:
1445 		case IP_TTL:
1446 		case IP_RECVOPTS:
1447 		case IP_RECVRETOPTS:
1448 		case IP_RECVDSTADDR:
1449 		case IP_RECVIF:
1450 		case IP_FAITH:
1451 			error = sooptcopyin(sopt, &optval, sizeof optval,
1452 					    sizeof optval);
1453 			if (error)
1454 				break;
1455 
1456 			switch (sopt->sopt_name) {
1457 			case IP_TOS:
1458 				inp->inp_ip_tos = optval;
1459 				break;
1460 
1461 			case IP_TTL:
1462 				inp->inp_ip_ttl = optval;
1463 				break;
1464 #define	OPTSET(bit) \
1465 	if (optval) \
1466 		inp->inp_flags |= bit; \
1467 	else \
1468 		inp->inp_flags &= ~bit;
1469 
1470 			case IP_RECVOPTS:
1471 				OPTSET(INP_RECVOPTS);
1472 				break;
1473 
1474 			case IP_RECVRETOPTS:
1475 				OPTSET(INP_RECVRETOPTS);
1476 				break;
1477 
1478 			case IP_RECVDSTADDR:
1479 				OPTSET(INP_RECVDSTADDR);
1480 				break;
1481 
1482 			case IP_RECVIF:
1483 				OPTSET(INP_RECVIF);
1484 				break;
1485 
1486 			case IP_FAITH:
1487 				OPTSET(INP_FAITH);
1488 				break;
1489 			}
1490 			break;
1491 #undef OPTSET
1492 
1493 		case IP_MULTICAST_IF:
1494 		case IP_MULTICAST_VIF:
1495 		case IP_MULTICAST_TTL:
1496 		case IP_MULTICAST_LOOP:
1497 		case IP_ADD_MEMBERSHIP:
1498 		case IP_DROP_MEMBERSHIP:
1499 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1500 			break;
1501 
1502 		case IP_PORTRANGE:
1503 			error = sooptcopyin(sopt, &optval, sizeof optval,
1504 					    sizeof optval);
1505 			if (error)
1506 				break;
1507 
1508 			switch (optval) {
1509 			case IP_PORTRANGE_DEFAULT:
1510 				inp->inp_flags &= ~(INP_LOWPORT);
1511 				inp->inp_flags &= ~(INP_HIGHPORT);
1512 				break;
1513 
1514 			case IP_PORTRANGE_HIGH:
1515 				inp->inp_flags &= ~(INP_LOWPORT);
1516 				inp->inp_flags |= INP_HIGHPORT;
1517 				break;
1518 
1519 			case IP_PORTRANGE_LOW:
1520 				inp->inp_flags &= ~(INP_HIGHPORT);
1521 				inp->inp_flags |= INP_LOWPORT;
1522 				break;
1523 
1524 			default:
1525 				error = EINVAL;
1526 				break;
1527 			}
1528 			break;
1529 
1530 #if defined(IPSEC) || defined(FAST_IPSEC)
1531 		case IP_IPSEC_POLICY:
1532 		{
1533 			caddr_t req;
1534 			size_t len = 0;
1535 			int priv;
1536 			struct mbuf *m;
1537 			int optname;
1538 
1539 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1540 				break;
1541 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1542 				break;
1543 			priv = (sopt->sopt_td != NULL &&
1544 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1545 			req = mtod(m, caddr_t);
1546 			len = m->m_len;
1547 			optname = sopt->sopt_name;
1548 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1549 			m_freem(m);
1550 			break;
1551 		}
1552 #endif /*IPSEC*/
1553 
1554 		default:
1555 			error = ENOPROTOOPT;
1556 			break;
1557 		}
1558 		break;
1559 
1560 	case SOPT_GET:
1561 		switch (sopt->sopt_name) {
1562 		case IP_OPTIONS:
1563 		case IP_RETOPTS:
1564 			if (inp->inp_options)
1565 				error = sooptcopyout(sopt,
1566 						     mtod(inp->inp_options,
1567 							  char *),
1568 						     inp->inp_options->m_len);
1569 			else
1570 				sopt->sopt_valsize = 0;
1571 			break;
1572 
1573 		case IP_TOS:
1574 		case IP_TTL:
1575 		case IP_RECVOPTS:
1576 		case IP_RECVRETOPTS:
1577 		case IP_RECVDSTADDR:
1578 		case IP_RECVIF:
1579 		case IP_PORTRANGE:
1580 		case IP_FAITH:
1581 			switch (sopt->sopt_name) {
1582 
1583 			case IP_TOS:
1584 				optval = inp->inp_ip_tos;
1585 				break;
1586 
1587 			case IP_TTL:
1588 				optval = inp->inp_ip_ttl;
1589 				break;
1590 
1591 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1592 
1593 			case IP_RECVOPTS:
1594 				optval = OPTBIT(INP_RECVOPTS);
1595 				break;
1596 
1597 			case IP_RECVRETOPTS:
1598 				optval = OPTBIT(INP_RECVRETOPTS);
1599 				break;
1600 
1601 			case IP_RECVDSTADDR:
1602 				optval = OPTBIT(INP_RECVDSTADDR);
1603 				break;
1604 
1605 			case IP_RECVIF:
1606 				optval = OPTBIT(INP_RECVIF);
1607 				break;
1608 
1609 			case IP_PORTRANGE:
1610 				if (inp->inp_flags & INP_HIGHPORT)
1611 					optval = IP_PORTRANGE_HIGH;
1612 				else if (inp->inp_flags & INP_LOWPORT)
1613 					optval = IP_PORTRANGE_LOW;
1614 				else
1615 					optval = 0;
1616 				break;
1617 
1618 			case IP_FAITH:
1619 				optval = OPTBIT(INP_FAITH);
1620 				break;
1621 			}
1622 			error = sooptcopyout(sopt, &optval, sizeof optval);
1623 			break;
1624 
1625 		case IP_MULTICAST_IF:
1626 		case IP_MULTICAST_VIF:
1627 		case IP_MULTICAST_TTL:
1628 		case IP_MULTICAST_LOOP:
1629 		case IP_ADD_MEMBERSHIP:
1630 		case IP_DROP_MEMBERSHIP:
1631 			error = ip_getmoptions(sopt, inp->inp_moptions);
1632 			break;
1633 
1634 #if defined(IPSEC) || defined(FAST_IPSEC)
1635 		case IP_IPSEC_POLICY:
1636 		{
1637 			struct mbuf *m = NULL;
1638 			caddr_t req = NULL;
1639 			size_t len = 0;
1640 
1641 			if (m != 0) {
1642 				req = mtod(m, caddr_t);
1643 				len = m->m_len;
1644 			}
1645 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1646 			if (error == 0)
1647 				error = soopt_mcopyout(sopt, m); /* XXX */
1648 			if (error == 0)
1649 				m_freem(m);
1650 			break;
1651 		}
1652 #endif /*IPSEC*/
1653 
1654 		default:
1655 			error = ENOPROTOOPT;
1656 			break;
1657 		}
1658 		break;
1659 	}
1660 	return (error);
1661 }
1662 
1663 /*
1664  * Set up IP options in pcb for insertion in output packets.
1665  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1666  * with destination address if source routed.
1667  */
1668 static int
1669 ip_pcbopts(optname, pcbopt, m)
1670 	int optname;
1671 	struct mbuf **pcbopt;
1672 	struct mbuf *m;
1673 {
1674 	int cnt, optlen;
1675 	u_char *cp;
1676 	u_char opt;
1677 
1678 	/* turn off any old options */
1679 	if (*pcbopt)
1680 		(void)m_free(*pcbopt);
1681 	*pcbopt = 0;
1682 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1683 		/*
1684 		 * Only turning off any previous options.
1685 		 */
1686 		if (m)
1687 			(void)m_free(m);
1688 		return (0);
1689 	}
1690 
1691 	if (m->m_len % sizeof(int32_t))
1692 		goto bad;
1693 	/*
1694 	 * IP first-hop destination address will be stored before
1695 	 * actual options; move other options back
1696 	 * and clear it when none present.
1697 	 */
1698 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1699 		goto bad;
1700 	cnt = m->m_len;
1701 	m->m_len += sizeof(struct in_addr);
1702 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1703 	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
1704 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1705 
1706 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1707 		opt = cp[IPOPT_OPTVAL];
1708 		if (opt == IPOPT_EOL)
1709 			break;
1710 		if (opt == IPOPT_NOP)
1711 			optlen = 1;
1712 		else {
1713 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1714 				goto bad;
1715 			optlen = cp[IPOPT_OLEN];
1716 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1717 				goto bad;
1718 		}
1719 		switch (opt) {
1720 
1721 		default:
1722 			break;
1723 
1724 		case IPOPT_LSRR:
1725 		case IPOPT_SSRR:
1726 			/*
1727 			 * user process specifies route as:
1728 			 *	->A->B->C->D
1729 			 * D must be our final destination (but we can't
1730 			 * check that since we may not have connected yet).
1731 			 * A is first hop destination, which doesn't appear in
1732 			 * actual IP option, but is stored before the options.
1733 			 */
1734 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1735 				goto bad;
1736 			m->m_len -= sizeof(struct in_addr);
1737 			cnt -= sizeof(struct in_addr);
1738 			optlen -= sizeof(struct in_addr);
1739 			cp[IPOPT_OLEN] = optlen;
1740 			/*
1741 			 * Move first hop before start of options.
1742 			 */
1743 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1744 			    sizeof(struct in_addr));
1745 			/*
1746 			 * Then copy rest of options back
1747 			 * to close up the deleted entry.
1748 			 */
1749 			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
1750 			    sizeof(struct in_addr)),
1751 			    (caddr_t)&cp[IPOPT_OFFSET+1],
1752 			    (unsigned)cnt + sizeof(struct in_addr));
1753 			break;
1754 		}
1755 	}
1756 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1757 		goto bad;
1758 	*pcbopt = m;
1759 	return (0);
1760 
1761 bad:
1762 	(void)m_free(m);
1763 	return (EINVAL);
1764 }
1765 
1766 /*
1767  * XXX
1768  * The whole multicast option thing needs to be re-thought.
1769  * Several of these options are equally applicable to non-multicast
1770  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1771  * standard option (IP_TTL).
1772  */
1773 
1774 /*
1775  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1776  */
1777 static struct ifnet *
1778 ip_multicast_if(a, ifindexp)
1779 	struct in_addr *a;
1780 	int *ifindexp;
1781 {
1782 	int ifindex;
1783 	struct ifnet *ifp;
1784 
1785 	if (ifindexp)
1786 		*ifindexp = 0;
1787 	if (ntohl(a->s_addr) >> 24 == 0) {
1788 		ifindex = ntohl(a->s_addr) & 0xffffff;
1789 		if (ifindex < 0 || if_index < ifindex)
1790 			return NULL;
1791 		ifp = ifindex2ifnet[ifindex];
1792 		if (ifindexp)
1793 			*ifindexp = ifindex;
1794 	} else {
1795 		INADDR_TO_IFP(*a, ifp);
1796 	}
1797 	return ifp;
1798 }
1799 
1800 /*
1801  * Set the IP multicast options in response to user setsockopt().
1802  */
1803 static int
1804 ip_setmoptions(sopt, imop)
1805 	struct sockopt *sopt;
1806 	struct ip_moptions **imop;
1807 {
1808 	int error = 0;
1809 	int i;
1810 	struct in_addr addr;
1811 	struct ip_mreq mreq;
1812 	struct ifnet *ifp;
1813 	struct ip_moptions *imo = *imop;
1814 	struct route ro;
1815 	struct sockaddr_in *dst;
1816 	int ifindex;
1817 	int s;
1818 
1819 	if (imo == NULL) {
1820 		/*
1821 		 * No multicast option buffer attached to the pcb;
1822 		 * allocate one and initialize to default values.
1823 		 */
1824 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1825 		    M_WAITOK);
1826 
1827 		if (imo == NULL)
1828 			return (ENOBUFS);
1829 		*imop = imo;
1830 		imo->imo_multicast_ifp = NULL;
1831 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1832 		imo->imo_multicast_vif = -1;
1833 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1834 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1835 		imo->imo_num_memberships = 0;
1836 	}
1837 
1838 	switch (sopt->sopt_name) {
1839 	/* store an index number for the vif you wanna use in the send */
1840 	case IP_MULTICAST_VIF:
1841 		if (legal_vif_num == 0) {
1842 			error = EOPNOTSUPP;
1843 			break;
1844 		}
1845 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1846 		if (error)
1847 			break;
1848 		if (!legal_vif_num(i) && (i != -1)) {
1849 			error = EINVAL;
1850 			break;
1851 		}
1852 		imo->imo_multicast_vif = i;
1853 		break;
1854 
1855 	case IP_MULTICAST_IF:
1856 		/*
1857 		 * Select the interface for outgoing multicast packets.
1858 		 */
1859 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1860 		if (error)
1861 			break;
1862 		/*
1863 		 * INADDR_ANY is used to remove a previous selection.
1864 		 * When no interface is selected, a default one is
1865 		 * chosen every time a multicast packet is sent.
1866 		 */
1867 		if (addr.s_addr == INADDR_ANY) {
1868 			imo->imo_multicast_ifp = NULL;
1869 			break;
1870 		}
1871 		/*
1872 		 * The selected interface is identified by its local
1873 		 * IP address.  Find the interface and confirm that
1874 		 * it supports multicasting.
1875 		 */
1876 		s = splimp();
1877 		ifp = ip_multicast_if(&addr, &ifindex);
1878 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1879 			splx(s);
1880 			error = EADDRNOTAVAIL;
1881 			break;
1882 		}
1883 		imo->imo_multicast_ifp = ifp;
1884 		if (ifindex)
1885 			imo->imo_multicast_addr = addr;
1886 		else
1887 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1888 		splx(s);
1889 		break;
1890 
1891 	case IP_MULTICAST_TTL:
1892 		/*
1893 		 * Set the IP time-to-live for outgoing multicast packets.
1894 		 * The original multicast API required a char argument,
1895 		 * which is inconsistent with the rest of the socket API.
1896 		 * We allow either a char or an int.
1897 		 */
1898 		if (sopt->sopt_valsize == 1) {
1899 			u_char ttl;
1900 			error = sooptcopyin(sopt, &ttl, 1, 1);
1901 			if (error)
1902 				break;
1903 			imo->imo_multicast_ttl = ttl;
1904 		} else {
1905 			u_int ttl;
1906 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1907 					    sizeof ttl);
1908 			if (error)
1909 				break;
1910 			if (ttl > 255)
1911 				error = EINVAL;
1912 			else
1913 				imo->imo_multicast_ttl = ttl;
1914 		}
1915 		break;
1916 
1917 	case IP_MULTICAST_LOOP:
1918 		/*
1919 		 * Set the loopback flag for outgoing multicast packets.
1920 		 * Must be zero or one.  The original multicast API required a
1921 		 * char argument, which is inconsistent with the rest
1922 		 * of the socket API.  We allow either a char or an int.
1923 		 */
1924 		if (sopt->sopt_valsize == 1) {
1925 			u_char loop;
1926 			error = sooptcopyin(sopt, &loop, 1, 1);
1927 			if (error)
1928 				break;
1929 			imo->imo_multicast_loop = !!loop;
1930 		} else {
1931 			u_int loop;
1932 			error = sooptcopyin(sopt, &loop, sizeof loop,
1933 					    sizeof loop);
1934 			if (error)
1935 				break;
1936 			imo->imo_multicast_loop = !!loop;
1937 		}
1938 		break;
1939 
1940 	case IP_ADD_MEMBERSHIP:
1941 		/*
1942 		 * Add a multicast group membership.
1943 		 * Group must be a valid IP multicast address.
1944 		 */
1945 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1946 		if (error)
1947 			break;
1948 
1949 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1950 			error = EINVAL;
1951 			break;
1952 		}
1953 		s = splimp();
1954 		/*
1955 		 * If no interface address was provided, use the interface of
1956 		 * the route to the given multicast address.
1957 		 */
1958 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1959 			bzero((caddr_t)&ro, sizeof(ro));
1960 			dst = (struct sockaddr_in *)&ro.ro_dst;
1961 			dst->sin_len = sizeof(*dst);
1962 			dst->sin_family = AF_INET;
1963 			dst->sin_addr = mreq.imr_multiaddr;
1964 			rtalloc(&ro);
1965 			if (ro.ro_rt == NULL) {
1966 				error = EADDRNOTAVAIL;
1967 				splx(s);
1968 				break;
1969 			}
1970 			ifp = ro.ro_rt->rt_ifp;
1971 			rtfree(ro.ro_rt);
1972 		}
1973 		else {
1974 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1975 		}
1976 
1977 		/*
1978 		 * See if we found an interface, and confirm that it
1979 		 * supports multicast.
1980 		 */
1981 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1982 			error = EADDRNOTAVAIL;
1983 			splx(s);
1984 			break;
1985 		}
1986 		/*
1987 		 * See if the membership already exists or if all the
1988 		 * membership slots are full.
1989 		 */
1990 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1991 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1992 			    imo->imo_membership[i]->inm_addr.s_addr
1993 						== mreq.imr_multiaddr.s_addr)
1994 				break;
1995 		}
1996 		if (i < imo->imo_num_memberships) {
1997 			error = EADDRINUSE;
1998 			splx(s);
1999 			break;
2000 		}
2001 		if (i == IP_MAX_MEMBERSHIPS) {
2002 			error = ETOOMANYREFS;
2003 			splx(s);
2004 			break;
2005 		}
2006 		/*
2007 		 * Everything looks good; add a new record to the multicast
2008 		 * address list for the given interface.
2009 		 */
2010 		if ((imo->imo_membership[i] =
2011 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2012 			error = ENOBUFS;
2013 			splx(s);
2014 			break;
2015 		}
2016 		++imo->imo_num_memberships;
2017 		splx(s);
2018 		break;
2019 
2020 	case IP_DROP_MEMBERSHIP:
2021 		/*
2022 		 * Drop a multicast group membership.
2023 		 * Group must be a valid IP multicast address.
2024 		 */
2025 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2026 		if (error)
2027 			break;
2028 
2029 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2030 			error = EINVAL;
2031 			break;
2032 		}
2033 
2034 		s = splimp();
2035 		/*
2036 		 * If an interface address was specified, get a pointer
2037 		 * to its ifnet structure.
2038 		 */
2039 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2040 			ifp = NULL;
2041 		else {
2042 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2043 			if (ifp == NULL) {
2044 				error = EADDRNOTAVAIL;
2045 				splx(s);
2046 				break;
2047 			}
2048 		}
2049 		/*
2050 		 * Find the membership in the membership array.
2051 		 */
2052 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2053 			if ((ifp == NULL ||
2054 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2055 			     imo->imo_membership[i]->inm_addr.s_addr ==
2056 			     mreq.imr_multiaddr.s_addr)
2057 				break;
2058 		}
2059 		if (i == imo->imo_num_memberships) {
2060 			error = EADDRNOTAVAIL;
2061 			splx(s);
2062 			break;
2063 		}
2064 		/*
2065 		 * Give up the multicast address record to which the
2066 		 * membership points.
2067 		 */
2068 		in_delmulti(imo->imo_membership[i]);
2069 		/*
2070 		 * Remove the gap in the membership array.
2071 		 */
2072 		for (++i; i < imo->imo_num_memberships; ++i)
2073 			imo->imo_membership[i-1] = imo->imo_membership[i];
2074 		--imo->imo_num_memberships;
2075 		splx(s);
2076 		break;
2077 
2078 	default:
2079 		error = EOPNOTSUPP;
2080 		break;
2081 	}
2082 
2083 	/*
2084 	 * If all options have default values, no need to keep the mbuf.
2085 	 */
2086 	if (imo->imo_multicast_ifp == NULL &&
2087 	    imo->imo_multicast_vif == -1 &&
2088 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2089 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2090 	    imo->imo_num_memberships == 0) {
2091 		free(*imop, M_IPMOPTS);
2092 		*imop = NULL;
2093 	}
2094 
2095 	return (error);
2096 }
2097 
2098 /*
2099  * Return the IP multicast options in response to user getsockopt().
2100  */
2101 static int
2102 ip_getmoptions(sopt, imo)
2103 	struct sockopt *sopt;
2104 	struct ip_moptions *imo;
2105 {
2106 	struct in_addr addr;
2107 	struct in_ifaddr *ia;
2108 	int error, optval;
2109 	u_char coptval;
2110 
2111 	error = 0;
2112 	switch (sopt->sopt_name) {
2113 	case IP_MULTICAST_VIF:
2114 		if (imo != NULL)
2115 			optval = imo->imo_multicast_vif;
2116 		else
2117 			optval = -1;
2118 		error = sooptcopyout(sopt, &optval, sizeof optval);
2119 		break;
2120 
2121 	case IP_MULTICAST_IF:
2122 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2123 			addr.s_addr = INADDR_ANY;
2124 		else if (imo->imo_multicast_addr.s_addr) {
2125 			/* return the value user has set */
2126 			addr = imo->imo_multicast_addr;
2127 		} else {
2128 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2129 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2130 				: IA_SIN(ia)->sin_addr.s_addr;
2131 		}
2132 		error = sooptcopyout(sopt, &addr, sizeof addr);
2133 		break;
2134 
2135 	case IP_MULTICAST_TTL:
2136 		if (imo == 0)
2137 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2138 		else
2139 			optval = coptval = imo->imo_multicast_ttl;
2140 		if (sopt->sopt_valsize == 1)
2141 			error = sooptcopyout(sopt, &coptval, 1);
2142 		else
2143 			error = sooptcopyout(sopt, &optval, sizeof optval);
2144 		break;
2145 
2146 	case IP_MULTICAST_LOOP:
2147 		if (imo == 0)
2148 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2149 		else
2150 			optval = coptval = imo->imo_multicast_loop;
2151 		if (sopt->sopt_valsize == 1)
2152 			error = sooptcopyout(sopt, &coptval, 1);
2153 		else
2154 			error = sooptcopyout(sopt, &optval, sizeof optval);
2155 		break;
2156 
2157 	default:
2158 		error = ENOPROTOOPT;
2159 		break;
2160 	}
2161 	return (error);
2162 }
2163 
2164 /*
2165  * Discard the IP multicast options.
2166  */
2167 void
2168 ip_freemoptions(imo)
2169 	struct ip_moptions *imo;
2170 {
2171 	int i;
2172 
2173 	if (imo != NULL) {
2174 		for (i = 0; i < imo->imo_num_memberships; ++i)
2175 			in_delmulti(imo->imo_membership[i]);
2176 		free(imo, M_IPMOPTS);
2177 	}
2178 }
2179 
2180 /*
2181  * Routine called from ip_output() to loop back a copy of an IP multicast
2182  * packet to the input queue of a specified interface.  Note that this
2183  * calls the output routine of the loopback "driver", but with an interface
2184  * pointer that might NOT be a loopback interface -- evil, but easier than
2185  * replicating that code here.
2186  */
2187 static void
2188 ip_mloopback(ifp, m, dst, hlen)
2189 	struct ifnet *ifp;
2190 	struct mbuf *m;
2191 	struct sockaddr_in *dst;
2192 	int hlen;
2193 {
2194 	struct ip *ip;
2195 	struct mbuf *copym;
2196 
2197 	copym = m_copy(m, 0, M_COPYALL);
2198 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2199 		copym = m_pullup(copym, hlen);
2200 	if (copym != NULL) {
2201 		/*
2202 		 * We don't bother to fragment if the IP length is greater
2203 		 * than the interface's MTU.  Can this possibly matter?
2204 		 */
2205 		ip = mtod(copym, struct ip *);
2206 		ip->ip_len = htons(ip->ip_len);
2207 		ip->ip_off = htons(ip->ip_off);
2208 		ip->ip_sum = 0;
2209 		if (ip->ip_vhl == IP_VHL_BORING) {
2210 			ip->ip_sum = in_cksum_hdr(ip);
2211 		} else {
2212 			ip->ip_sum = in_cksum(copym, hlen);
2213 		}
2214 		/*
2215 		 * NB:
2216 		 * It's not clear whether there are any lingering
2217 		 * reentrancy problems in other areas which might
2218 		 * be exposed by using ip_input directly (in
2219 		 * particular, everything which modifies the packet
2220 		 * in-place).  Yet another option is using the
2221 		 * protosw directly to deliver the looped back
2222 		 * packet.  For the moment, we'll err on the side
2223 		 * of safety by using if_simloop().
2224 		 */
2225 #if 1 /* XXX */
2226 		if (dst->sin_family != AF_INET) {
2227 			printf("ip_mloopback: bad address family %d\n",
2228 						dst->sin_family);
2229 			dst->sin_family = AF_INET;
2230 		}
2231 #endif
2232 
2233 #ifdef notdef
2234 		copym->m_pkthdr.rcvif = ifp;
2235 		ip_input(copym);
2236 #else
2237 		/* if the checksum hasn't been computed, mark it as valid */
2238 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2239 			copym->m_pkthdr.csum_flags |=
2240 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2241 			copym->m_pkthdr.csum_data = 0xffff;
2242 		}
2243 		if_simloop(ifp, copym, dst->sin_family, 0);
2244 #endif
2245 	}
2246 }
2247