xref: /dragonfly/sys/netinet/tcp_input.c (revision 28c26f7e)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 #include "opt_tcp_input.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/proc.h>		/* for proc0 declaration */
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/syslog.h>
88 #include <sys/in_cksum.h>
89 
90 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
91 #include <machine/stdarg.h>
92 
93 #include <net/if.h>
94 #include <net/route.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
100 #include <netinet/in_var.h>
101 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
117 
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 
121 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
122 struct tcphdr tcp_savetcp;
123 #endif
124 
125 #ifdef FAST_IPSEC
126 #include <netproto/ipsec/ipsec.h>
127 #include <netproto/ipsec/ipsec6.h>
128 #endif
129 
130 #ifdef IPSEC
131 #include <netinet6/ipsec.h>
132 #include <netinet6/ipsec6.h>
133 #include <netproto/key/key.h>
134 #endif
135 
136 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
137 
138 tcp_cc	tcp_ccgen;
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 int tcp_do_rfc3390 = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
172     &tcp_do_rfc3390, 0,
173     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
174 
175 static int tcp_do_eifel_detect = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
177     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
178 
179 static int tcp_do_abc = 1;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
181     &tcp_do_abc, 0,
182     "TCP Appropriate Byte Counting (RFC 3465)");
183 
184 /*
185  * Define as tunable for easy testing with SACK on and off.
186  * Warning:  do not change setting in the middle of an existing active TCP flow,
187  *   else strange things might happen to that flow.
188  */
189 int tcp_do_sack = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
191     &tcp_do_sack, 0, "Enable SACK Algorithms");
192 
193 int tcp_do_smartsack = 1;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
195     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
196 
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
198     "TCP Segment Reassembly Queue");
199 
200 int tcp_reass_maxseg = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
202     &tcp_reass_maxseg, 0,
203     "Global maximum number of TCP Segments in Reassembly Queue");
204 
205 int tcp_reass_qsize = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
207     &tcp_reass_qsize, 0,
208     "Global number of TCP Segments currently in Reassembly Queue");
209 
210 static int tcp_reass_overflows = 0;
211 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
212     &tcp_reass_overflows, 0,
213     "Global number of TCP Segment Reassembly Queue Overflows");
214 
215 int tcp_do_autorcvbuf = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
217     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
218 
219 int tcp_autorcvbuf_inc = 16*1024;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
221     &tcp_autorcvbuf_inc, 0,
222     "Incrementor step size of automatic receive buffer");
223 
224 int tcp_autorcvbuf_max = 2*1024*1024;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
226     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
227 
228 
229 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
230 static void	 tcp_pulloutofband(struct socket *,
231 		     struct tcphdr *, struct mbuf *, int);
232 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
233 		     struct mbuf *);
234 static void	 tcp_xmit_timer(struct tcpcb *, int);
235 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
236 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
237 
238 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
239 #ifdef INET6
240 #define ND6_HINT(tp) \
241 do { \
242 	if ((tp) && (tp)->t_inpcb && \
243 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
244 	    (tp)->t_inpcb->in6p_route.ro_rt) \
245 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
246 } while (0)
247 #else
248 #define ND6_HINT(tp)
249 #endif
250 
251 /*
252  * Indicate whether this ack should be delayed.  We can delay the ack if
253  *	- delayed acks are enabled and
254  *	- there is no delayed ack timer in progress and
255  *	- our last ack wasn't a 0-sized window.  We never want to delay
256  *	  the ack that opens up a 0-sized window.
257  */
258 #define DELAY_ACK(tp) \
259 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
260 	!(tp->t_flags & TF_RXWIN0SENT))
261 
262 #define acceptable_window_update(tp, th, tiwin)				\
263     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
264      (tp->snd_wl1 == th->th_seq &&					\
265       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
266        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
267 
268 static int
269 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
270 {
271 	struct tseg_qent *q;
272 	struct tseg_qent *p = NULL;
273 	struct tseg_qent *te;
274 	struct socket *so = tp->t_inpcb->inp_socket;
275 	int flags;
276 
277 	/*
278 	 * Call with th == NULL after become established to
279 	 * force pre-ESTABLISHED data up to user socket.
280 	 */
281 	if (th == NULL)
282 		goto present;
283 
284 	/*
285 	 * Limit the number of segments in the reassembly queue to prevent
286 	 * holding on to too many segments (and thus running out of mbufs).
287 	 * Make sure to let the missing segment through which caused this
288 	 * queue.  Always keep one global queue entry spare to be able to
289 	 * process the missing segment.
290 	 */
291 	if (th->th_seq != tp->rcv_nxt &&
292 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
293 		tcp_reass_overflows++;
294 		tcpstat.tcps_rcvmemdrop++;
295 		m_freem(m);
296 		/* no SACK block to report */
297 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
298 		return (0);
299 	}
300 
301 	/* Allocate a new queue entry. */
302 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
303 	       M_INTWAIT | M_NULLOK);
304 	if (te == NULL) {
305 		tcpstat.tcps_rcvmemdrop++;
306 		m_freem(m);
307 		/* no SACK block to report */
308 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
309 		return (0);
310 	}
311 	tcp_reass_qsize++;
312 
313 	/*
314 	 * Find a segment which begins after this one does.
315 	 */
316 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
317 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
318 			break;
319 		p = q;
320 	}
321 
322 	/*
323 	 * If there is a preceding segment, it may provide some of
324 	 * our data already.  If so, drop the data from the incoming
325 	 * segment.  If it provides all of our data, drop us.
326 	 */
327 	if (p != NULL) {
328 		tcp_seq_diff_t i;
329 
330 		/* conversion to int (in i) handles seq wraparound */
331 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
332 		if (i > 0) {		/* overlaps preceding segment */
333 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
334 			/* enclosing block starts w/ preceding segment */
335 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
336 			if (i >= *tlenp) {
337 				/* preceding encloses incoming segment */
338 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
339 				    p->tqe_len;
340 				tcpstat.tcps_rcvduppack++;
341 				tcpstat.tcps_rcvdupbyte += *tlenp;
342 				m_freem(m);
343 				kfree(te, M_TSEGQ);
344 				tcp_reass_qsize--;
345 				/*
346 				 * Try to present any queued data
347 				 * at the left window edge to the user.
348 				 * This is needed after the 3-WHS
349 				 * completes.
350 				 */
351 				goto present;	/* ??? */
352 			}
353 			m_adj(m, i);
354 			*tlenp -= i;
355 			th->th_seq += i;
356 			/* incoming segment end is enclosing block end */
357 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
358 			    ((th->th_flags & TH_FIN) != 0);
359 			/* trim end of reported D-SACK block */
360 			tp->reportblk.rblk_end = th->th_seq;
361 		}
362 	}
363 	tcpstat.tcps_rcvoopack++;
364 	tcpstat.tcps_rcvoobyte += *tlenp;
365 
366 	/*
367 	 * While we overlap succeeding segments trim them or,
368 	 * if they are completely covered, dequeue them.
369 	 */
370 	while (q) {
371 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
372 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
373 		struct tseg_qent *nq;
374 
375 		if (i <= 0)
376 			break;
377 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
378 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
379 			tp->encloseblk = tp->reportblk;
380 			/* report trailing duplicate D-SACK segment */
381 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
382 		}
383 		if ((tp->t_flags & TF_ENCLOSESEG) &&
384 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
385 			/* extend enclosing block if one exists */
386 			tp->encloseblk.rblk_end = qend;
387 		}
388 		if (i < q->tqe_len) {
389 			q->tqe_th->th_seq += i;
390 			q->tqe_len -= i;
391 			m_adj(q->tqe_m, i);
392 			break;
393 		}
394 
395 		nq = LIST_NEXT(q, tqe_q);
396 		LIST_REMOVE(q, tqe_q);
397 		m_freem(q->tqe_m);
398 		kfree(q, M_TSEGQ);
399 		tcp_reass_qsize--;
400 		q = nq;
401 	}
402 
403 	/* Insert the new segment queue entry into place. */
404 	te->tqe_m = m;
405 	te->tqe_th = th;
406 	te->tqe_len = *tlenp;
407 
408 	/* check if can coalesce with following segment */
409 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
410 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
411 
412 		te->tqe_len += q->tqe_len;
413 		if (q->tqe_th->th_flags & TH_FIN)
414 			te->tqe_th->th_flags |= TH_FIN;
415 		m_cat(te->tqe_m, q->tqe_m);
416 		tp->encloseblk.rblk_end = tend;
417 		/*
418 		 * When not reporting a duplicate segment, use
419 		 * the larger enclosing block as the SACK block.
420 		 */
421 		if (!(tp->t_flags & TF_DUPSEG))
422 			tp->reportblk.rblk_end = tend;
423 		LIST_REMOVE(q, tqe_q);
424 		kfree(q, M_TSEGQ);
425 		tcp_reass_qsize--;
426 	}
427 
428 	if (p == NULL) {
429 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
430 	} else {
431 		/* check if can coalesce with preceding segment */
432 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
433 			p->tqe_len += te->tqe_len;
434 			m_cat(p->tqe_m, te->tqe_m);
435 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
436 			/*
437 			 * When not reporting a duplicate segment, use
438 			 * the larger enclosing block as the SACK block.
439 			 */
440 			if (!(tp->t_flags & TF_DUPSEG))
441 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
442 			kfree(te, M_TSEGQ);
443 			tcp_reass_qsize--;
444 		} else
445 			LIST_INSERT_AFTER(p, te, tqe_q);
446 	}
447 
448 present:
449 	/*
450 	 * Present data to user, advancing rcv_nxt through
451 	 * completed sequence space.
452 	 */
453 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
454 		return (0);
455 	q = LIST_FIRST(&tp->t_segq);
456 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
457 		return (0);
458 	tp->rcv_nxt += q->tqe_len;
459 	if (!(tp->t_flags & TF_DUPSEG))	{
460 		/* no SACK block to report since ACK advanced */
461 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
462 	}
463 	/* no enclosing block to report since ACK advanced */
464 	tp->t_flags &= ~TF_ENCLOSESEG;
465 	flags = q->tqe_th->th_flags & TH_FIN;
466 	LIST_REMOVE(q, tqe_q);
467 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
468 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
469 		("segment not coalesced"));
470 	if (so->so_state & SS_CANTRCVMORE)
471 		m_freem(q->tqe_m);
472 	else
473 		ssb_appendstream(&so->so_rcv, q->tqe_m);
474 	kfree(q, M_TSEGQ);
475 	tcp_reass_qsize--;
476 	ND6_HINT(tp);
477 	sorwakeup(so);
478 	return (flags);
479 }
480 
481 /*
482  * TCP input routine, follows pages 65-76 of the
483  * protocol specification dated September, 1981 very closely.
484  */
485 #ifdef INET6
486 int
487 tcp6_input(struct mbuf **mp, int *offp, int proto)
488 {
489 	struct mbuf *m = *mp;
490 	struct in6_ifaddr *ia6;
491 
492 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
493 
494 	/*
495 	 * draft-itojun-ipv6-tcp-to-anycast
496 	 * better place to put this in?
497 	 */
498 	ia6 = ip6_getdstifaddr(m);
499 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
500 		struct ip6_hdr *ip6;
501 
502 		ip6 = mtod(m, struct ip6_hdr *);
503 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
504 			    offsetof(struct ip6_hdr, ip6_dst));
505 		return (IPPROTO_DONE);
506 	}
507 
508 	tcp_input(m, *offp, proto);
509 	return (IPPROTO_DONE);
510 }
511 #endif
512 
513 void
514 tcp_input(struct mbuf *m, ...)
515 {
516 	__va_list ap;
517 	int off0, proto;
518 	struct tcphdr *th;
519 	struct ip *ip = NULL;
520 	struct ipovly *ipov;
521 	struct inpcb *inp = NULL;
522 	u_char *optp = NULL;
523 	int optlen = 0;
524 	int len, tlen, off;
525 	int drop_hdrlen;
526 	struct tcpcb *tp = NULL;
527 	int thflags;
528 	struct socket *so = 0;
529 	int todrop, acked;
530 	boolean_t ourfinisacked, needoutput = FALSE;
531 	u_long tiwin;
532 	int recvwin;
533 	struct tcpopt to;		/* options in this segment */
534 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
535 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
536 	struct sockaddr_in *next_hop = NULL;
537 	int rstreason; /* For badport_bandlim accounting purposes */
538 	int cpu;
539 	struct ip6_hdr *ip6 = NULL;
540 #ifdef INET6
541 	boolean_t isipv6;
542 #else
543 	const boolean_t isipv6 = FALSE;
544 #endif
545 #ifdef TCPDEBUG
546 	short ostate = 0;
547 #endif
548 
549 	__va_start(ap, m);
550 	off0 = __va_arg(ap, int);
551 	proto = __va_arg(ap, int);
552 	__va_end(ap);
553 
554 	tcpstat.tcps_rcvtotal++;
555 
556 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
557 		struct m_tag *mtag;
558 
559 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
560 		KKASSERT(mtag != NULL);
561 		next_hop = m_tag_data(mtag);
562 	}
563 
564 #ifdef INET6
565 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
566 #endif
567 
568 	if (isipv6) {
569 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
570 		ip6 = mtod(m, struct ip6_hdr *);
571 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
572 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
573 			tcpstat.tcps_rcvbadsum++;
574 			goto drop;
575 		}
576 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
577 
578 		/*
579 		 * Be proactive about unspecified IPv6 address in source.
580 		 * As we use all-zero to indicate unbounded/unconnected pcb,
581 		 * unspecified IPv6 address can be used to confuse us.
582 		 *
583 		 * Note that packets with unspecified IPv6 destination is
584 		 * already dropped in ip6_input.
585 		 */
586 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
587 			/* XXX stat */
588 			goto drop;
589 		}
590 	} else {
591 		/*
592 		 * Get IP and TCP header together in first mbuf.
593 		 * Note: IP leaves IP header in first mbuf.
594 		 */
595 		if (off0 > sizeof(struct ip)) {
596 			ip_stripoptions(m);
597 			off0 = sizeof(struct ip);
598 		}
599 		/* already checked and pulled up in ip_demux() */
600 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
601 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
602 		ip = mtod(m, struct ip *);
603 		ipov = (struct ipovly *)ip;
604 		th = (struct tcphdr *)((caddr_t)ip + off0);
605 		tlen = ip->ip_len;
606 
607 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
608 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
609 				th->th_sum = m->m_pkthdr.csum_data;
610 			else
611 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
612 						ip->ip_dst.s_addr,
613 						htonl(m->m_pkthdr.csum_data +
614 							ip->ip_len +
615 							IPPROTO_TCP));
616 			th->th_sum ^= 0xffff;
617 		} else {
618 			/*
619 			 * Checksum extended TCP header and data.
620 			 */
621 			len = sizeof(struct ip) + tlen;
622 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
623 			ipov->ih_len = (u_short)tlen;
624 			ipov->ih_len = htons(ipov->ih_len);
625 			th->th_sum = in_cksum(m, len);
626 		}
627 		if (th->th_sum) {
628 			tcpstat.tcps_rcvbadsum++;
629 			goto drop;
630 		}
631 #ifdef INET6
632 		/* Re-initialization for later version check */
633 		ip->ip_v = IPVERSION;
634 #endif
635 	}
636 
637 	/*
638 	 * Check that TCP offset makes sense,
639 	 * pull out TCP options and adjust length.		XXX
640 	 */
641 	off = th->th_off << 2;
642 	/* already checked and pulled up in ip_demux() */
643 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
644 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
645 	tlen -= off;	/* tlen is used instead of ti->ti_len */
646 	if (off > sizeof(struct tcphdr)) {
647 		if (isipv6) {
648 			IP6_EXTHDR_CHECK(m, off0, off, );
649 			ip6 = mtod(m, struct ip6_hdr *);
650 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
651 		} else {
652 			/* already pulled up in ip_demux() */
653 			KASSERT(m->m_len >= sizeof(struct ip) + off,
654 			    ("TCP header and options not in one mbuf: "
655 			     "m_len %d, off %d", m->m_len, off));
656 		}
657 		optlen = off - sizeof(struct tcphdr);
658 		optp = (u_char *)(th + 1);
659 	}
660 	thflags = th->th_flags;
661 
662 #ifdef TCP_DROP_SYNFIN
663 	/*
664 	 * If the drop_synfin option is enabled, drop all packets with
665 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
666 	 * identifying the TCP/IP stack.
667 	 *
668 	 * This is a violation of the TCP specification.
669 	 */
670 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
671 		goto drop;
672 #endif
673 
674 	/*
675 	 * Convert TCP protocol specific fields to host format.
676 	 */
677 	th->th_seq = ntohl(th->th_seq);
678 	th->th_ack = ntohl(th->th_ack);
679 	th->th_win = ntohs(th->th_win);
680 	th->th_urp = ntohs(th->th_urp);
681 
682 	/*
683 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
684 	 * until after ip6_savecontrol() is called and before other functions
685 	 * which don't want those proto headers.
686 	 * Because ip6_savecontrol() is going to parse the mbuf to
687 	 * search for data to be passed up to user-land, it wants mbuf
688 	 * parameters to be unchanged.
689 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
690 	 * latest version of the advanced API (20020110).
691 	 */
692 	drop_hdrlen = off0 + off;
693 
694 	/*
695 	 * Locate pcb for segment.
696 	 */
697 findpcb:
698 	/* IPFIREWALL_FORWARD section */
699 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
700 		/*
701 		 * Transparently forwarded. Pretend to be the destination.
702 		 * already got one like this?
703 		 */
704 		cpu = mycpu->gd_cpuid;
705 		inp = in_pcblookup_hash(&tcbinfo[cpu],
706 					ip->ip_src, th->th_sport,
707 					ip->ip_dst, th->th_dport,
708 					0, m->m_pkthdr.rcvif);
709 		if (!inp) {
710 			/*
711 			 * It's new.  Try to find the ambushing socket.
712 			 */
713 
714 			/*
715 			 * The rest of the ipfw code stores the port in
716 			 * host order.  XXX
717 			 * (The IP address is still in network order.)
718 			 */
719 			in_port_t dport = next_hop->sin_port ?
720 						htons(next_hop->sin_port) :
721 						th->th_dport;
722 
723 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
724 					  next_hop->sin_addr.s_addr, dport);
725 			inp = in_pcblookup_hash(&tcbinfo[cpu],
726 						ip->ip_src, th->th_sport,
727 						next_hop->sin_addr, dport,
728 						1, m->m_pkthdr.rcvif);
729 		}
730 	} else {
731 		if (isipv6) {
732 			inp = in6_pcblookup_hash(&tcbinfo[0],
733 						 &ip6->ip6_src, th->th_sport,
734 						 &ip6->ip6_dst, th->th_dport,
735 						 1, m->m_pkthdr.rcvif);
736 		} else {
737 			cpu = mycpu->gd_cpuid;
738 			inp = in_pcblookup_hash(&tcbinfo[cpu],
739 						ip->ip_src, th->th_sport,
740 						ip->ip_dst, th->th_dport,
741 						1, m->m_pkthdr.rcvif);
742 		}
743 	}
744 
745 	/*
746 	 * If the state is CLOSED (i.e., TCB does not exist) then
747 	 * all data in the incoming segment is discarded.
748 	 * If the TCB exists but is in CLOSED state, it is embryonic,
749 	 * but should either do a listen or a connect soon.
750 	 */
751 	if (inp == NULL) {
752 		if (log_in_vain) {
753 #ifdef INET6
754 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
755 #else
756 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
757 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
758 #endif
759 			if (isipv6) {
760 				strcpy(dbuf, "[");
761 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
762 				strcat(dbuf, "]");
763 				strcpy(sbuf, "[");
764 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
765 				strcat(sbuf, "]");
766 			} else {
767 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
768 				strcpy(sbuf, inet_ntoa(ip->ip_src));
769 			}
770 			switch (log_in_vain) {
771 			case 1:
772 				if (!(thflags & TH_SYN))
773 					break;
774 			case 2:
775 				log(LOG_INFO,
776 				    "Connection attempt to TCP %s:%d "
777 				    "from %s:%d flags:0x%02x\n",
778 				    dbuf, ntohs(th->th_dport), sbuf,
779 				    ntohs(th->th_sport), thflags);
780 				break;
781 			default:
782 				break;
783 			}
784 		}
785 		if (blackhole) {
786 			switch (blackhole) {
787 			case 1:
788 				if (thflags & TH_SYN)
789 					goto drop;
790 				break;
791 			case 2:
792 				goto drop;
793 			default:
794 				goto drop;
795 			}
796 		}
797 		rstreason = BANDLIM_RST_CLOSEDPORT;
798 		goto dropwithreset;
799 	}
800 
801 #ifdef IPSEC
802 	if (isipv6) {
803 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
804 			ipsec6stat.in_polvio++;
805 			goto drop;
806 		}
807 	} else {
808 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
809 			ipsecstat.in_polvio++;
810 			goto drop;
811 		}
812 	}
813 #endif
814 #ifdef FAST_IPSEC
815 	if (isipv6) {
816 		if (ipsec6_in_reject(m, inp))
817 			goto drop;
818 	} else {
819 		if (ipsec4_in_reject(m, inp))
820 			goto drop;
821 	}
822 #endif
823 	/* Check the minimum TTL for socket. */
824 #ifdef INET6
825 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
826 		goto drop;
827 #endif
828 
829 	tp = intotcpcb(inp);
830 	if (tp == NULL) {
831 		rstreason = BANDLIM_RST_CLOSEDPORT;
832 		goto dropwithreset;
833 	}
834 	if (tp->t_state <= TCPS_CLOSED)
835 		goto drop;
836 
837 	/* Unscale the window into a 32-bit value. */
838 	if (!(thflags & TH_SYN))
839 		tiwin = th->th_win << tp->snd_scale;
840 	else
841 		tiwin = th->th_win;
842 
843 	so = inp->inp_socket;
844 
845 #ifdef TCPDEBUG
846 	if (so->so_options & SO_DEBUG) {
847 		ostate = tp->t_state;
848 		if (isipv6)
849 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
850 		else
851 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
852 		tcp_savetcp = *th;
853 	}
854 #endif
855 
856 	bzero(&to, sizeof to);
857 
858 	if (so->so_options & SO_ACCEPTCONN) {
859 		struct in_conninfo inc;
860 
861 #ifdef INET6
862 		inc.inc_isipv6 = (isipv6 == TRUE);
863 #endif
864 		if (isipv6) {
865 			inc.inc6_faddr = ip6->ip6_src;
866 			inc.inc6_laddr = ip6->ip6_dst;
867 			inc.inc6_route.ro_rt = NULL;		/* XXX */
868 		} else {
869 			inc.inc_faddr = ip->ip_src;
870 			inc.inc_laddr = ip->ip_dst;
871 			inc.inc_route.ro_rt = NULL;		/* XXX */
872 		}
873 		inc.inc_fport = th->th_sport;
874 		inc.inc_lport = th->th_dport;
875 
876 		/*
877 		 * If the state is LISTEN then ignore segment if it contains
878 		 * a RST.  If the segment contains an ACK then it is bad and
879 		 * send a RST.  If it does not contain a SYN then it is not
880 		 * interesting; drop it.
881 		 *
882 		 * If the state is SYN_RECEIVED (syncache) and seg contains
883 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
884 		 * contains a RST, check the sequence number to see if it
885 		 * is a valid reset segment.
886 		 */
887 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
888 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
889 				if (!syncache_expand(&inc, th, &so, m)) {
890 					/*
891 					 * No syncache entry, or ACK was not
892 					 * for our SYN/ACK.  Send a RST.
893 					 */
894 					tcpstat.tcps_badsyn++;
895 					rstreason = BANDLIM_RST_OPENPORT;
896 					goto dropwithreset;
897 				}
898 				if (so == NULL)
899 					/*
900 					 * Could not complete 3-way handshake,
901 					 * connection is being closed down, and
902 					 * syncache will free mbuf.
903 					 */
904 					return;
905 				/*
906 				 * Socket is created in state SYN_RECEIVED.
907 				 * Continue processing segment.
908 				 */
909 				inp = so->so_pcb;
910 				tp = intotcpcb(inp);
911 				/*
912 				 * This is what would have happened in
913 				 * tcp_output() when the SYN,ACK was sent.
914 				 */
915 				tp->snd_up = tp->snd_una;
916 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
917 				tp->last_ack_sent = tp->rcv_nxt;
918 /*
919  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
920  * until the _second_ ACK is received:
921  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
922  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
923  *	  move to ESTAB, set snd_wnd to tiwin.
924  */
925 				tp->snd_wnd = tiwin;	/* unscaled */
926 				goto after_listen;
927 			}
928 			if (thflags & TH_RST) {
929 				syncache_chkrst(&inc, th);
930 				goto drop;
931 			}
932 			if (thflags & TH_ACK) {
933 				syncache_badack(&inc);
934 				tcpstat.tcps_badsyn++;
935 				rstreason = BANDLIM_RST_OPENPORT;
936 				goto dropwithreset;
937 			}
938 			goto drop;
939 		}
940 
941 		/*
942 		 * Segment's flags are (SYN) or (SYN | FIN).
943 		 */
944 #ifdef INET6
945 		/*
946 		 * If deprecated address is forbidden,
947 		 * we do not accept SYN to deprecated interface
948 		 * address to prevent any new inbound connection from
949 		 * getting established.
950 		 * When we do not accept SYN, we send a TCP RST,
951 		 * with deprecated source address (instead of dropping
952 		 * it).  We compromise it as it is much better for peer
953 		 * to send a RST, and RST will be the final packet
954 		 * for the exchange.
955 		 *
956 		 * If we do not forbid deprecated addresses, we accept
957 		 * the SYN packet.  RFC2462 does not suggest dropping
958 		 * SYN in this case.
959 		 * If we decipher RFC2462 5.5.4, it says like this:
960 		 * 1. use of deprecated addr with existing
961 		 *    communication is okay - "SHOULD continue to be
962 		 *    used"
963 		 * 2. use of it with new communication:
964 		 *   (2a) "SHOULD NOT be used if alternate address
965 		 *	  with sufficient scope is available"
966 		 *   (2b) nothing mentioned otherwise.
967 		 * Here we fall into (2b) case as we have no choice in
968 		 * our source address selection - we must obey the peer.
969 		 *
970 		 * The wording in RFC2462 is confusing, and there are
971 		 * multiple description text for deprecated address
972 		 * handling - worse, they are not exactly the same.
973 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
974 		 */
975 		if (isipv6 && !ip6_use_deprecated) {
976 			struct in6_ifaddr *ia6;
977 
978 			if ((ia6 = ip6_getdstifaddr(m)) &&
979 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
980 				tp = NULL;
981 				rstreason = BANDLIM_RST_OPENPORT;
982 				goto dropwithreset;
983 			}
984 		}
985 #endif
986 		/*
987 		 * If it is from this socket, drop it, it must be forged.
988 		 * Don't bother responding if the destination was a broadcast.
989 		 */
990 		if (th->th_dport == th->th_sport) {
991 			if (isipv6) {
992 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
993 						       &ip6->ip6_src))
994 					goto drop;
995 			} else {
996 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
997 					goto drop;
998 			}
999 		}
1000 		/*
1001 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1002 		 *
1003 		 * Note that it is quite possible to receive unicast
1004 		 * link-layer packets with a broadcast IP address. Use
1005 		 * in_broadcast() to find them.
1006 		 */
1007 		if (m->m_flags & (M_BCAST | M_MCAST))
1008 			goto drop;
1009 		if (isipv6) {
1010 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1011 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1012 				goto drop;
1013 		} else {
1014 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1015 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1016 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1017 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1018 				goto drop;
1019 		}
1020 		/*
1021 		 * SYN appears to be valid; create compressed TCP state
1022 		 * for syncache, or perform t/tcp connection.
1023 		 */
1024 		if (so->so_qlen <= so->so_qlimit) {
1025 			tcp_dooptions(&to, optp, optlen, TRUE);
1026 			if (!syncache_add(&inc, &to, th, &so, m))
1027 				goto drop;
1028 			if (so == NULL)
1029 				/*
1030 				 * Entry added to syncache, mbuf used to
1031 				 * send SYN,ACK packet.
1032 				 */
1033 				return;
1034 			/*
1035 			 * Segment passed TAO tests.
1036 			 */
1037 			inp = so->so_pcb;
1038 			tp = intotcpcb(inp);
1039 			tp->snd_wnd = tiwin;
1040 			tp->t_starttime = ticks;
1041 			tp->t_state = TCPS_ESTABLISHED;
1042 
1043 			/*
1044 			 * If there is a FIN, or if there is data and the
1045 			 * connection is local, then delay SYN,ACK(SYN) in
1046 			 * the hope of piggy-backing it on a response
1047 			 * segment.  Otherwise must send ACK now in case
1048 			 * the other side is slow starting.
1049 			 */
1050 			if (DELAY_ACK(tp) &&
1051 			    ((thflags & TH_FIN) ||
1052 			     (tlen != 0 &&
1053 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1054 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1055 				tcp_callout_reset(tp, tp->tt_delack,
1056 				    tcp_delacktime, tcp_timer_delack);
1057 				tp->t_flags |= TF_NEEDSYN;
1058 			} else {
1059 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1060 			}
1061 
1062 			tcpstat.tcps_connects++;
1063 			soisconnected(so);
1064 			goto trimthenstep6;
1065 		}
1066 		goto drop;
1067 	}
1068 after_listen:
1069 
1070 	/* should not happen - syncache should pick up these connections */
1071 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1072 
1073 	/*
1074 	 * This is the second part of the MSS DoS prevention code (after
1075 	 * minmss on the sending side) and it deals with too many too small
1076 	 * tcp packets in a too short timeframe (1 second).
1077 	 *
1078 	 * XXX Removed.  This code was crap.  It does not scale to network
1079 	 *     speed, and default values break NFS.  Gone.
1080 	 */
1081 	/* REMOVED */
1082 
1083 	/*
1084 	 * Segment received on connection.
1085 	 *
1086 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1087 	 * then a second has elapsed.  Only update t_rcvtime for non-SYN
1088 	 * packets.
1089 	 *
1090 	 * Handle the case where one side thinks the connection is established
1091 	 * but the other side has, say, rebooted without cleaning out the
1092 	 * connection.   The SYNs could be construed as an attack and wind
1093 	 * up ignored, but in case it isn't an attack we can validate the
1094 	 * connection by forcing a keepalive.
1095 	 */
1096 	if (TCPS_HAVEESTABLISHED(tp->t_state) && (ticks - tp->t_rcvtime) > hz) {
1097 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
1098 			tp->t_flags |= TF_KEEPALIVE;
1099 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
1100 					  tcp_timer_keep);
1101 		} else {
1102 			tp->t_rcvtime = ticks;
1103 			tp->t_flags &= ~TF_KEEPALIVE;
1104 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1105 					  tcp_timer_keep);
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Process options.
1111 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1112 	 */
1113 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1114 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1115 		if (to.to_flags & TOF_SCALE) {
1116 			tp->t_flags |= TF_RCVD_SCALE;
1117 			tp->requested_s_scale = to.to_requested_s_scale;
1118 		}
1119 		if (to.to_flags & TOF_TS) {
1120 			tp->t_flags |= TF_RCVD_TSTMP;
1121 			tp->ts_recent = to.to_tsval;
1122 			tp->ts_recent_age = ticks;
1123 		}
1124 		if (to.to_flags & (TOF_CC | TOF_CCNEW))
1125 			tp->t_flags |= TF_RCVD_CC;
1126 		if (to.to_flags & TOF_MSS)
1127 			tcp_mss(tp, to.to_mss);
1128 		/*
1129 		 * Only set the TF_SACK_PERMITTED per-connection flag
1130 		 * if we got a SACK_PERMITTED option from the other side
1131 		 * and the global tcp_do_sack variable is true.
1132 		 */
1133 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1134 			tp->t_flags |= TF_SACK_PERMITTED;
1135 	}
1136 
1137 	/*
1138 	 * Header prediction: check for the two common cases
1139 	 * of a uni-directional data xfer.  If the packet has
1140 	 * no control flags, is in-sequence, the window didn't
1141 	 * change and we're not retransmitting, it's a
1142 	 * candidate.  If the length is zero and the ack moved
1143 	 * forward, we're the sender side of the xfer.  Just
1144 	 * free the data acked & wake any higher level process
1145 	 * that was blocked waiting for space.  If the length
1146 	 * is non-zero and the ack didn't move, we're the
1147 	 * receiver side.  If we're getting packets in-order
1148 	 * (the reassembly queue is empty), add the data to
1149 	 * the socket buffer and note that we need a delayed ack.
1150 	 * Make sure that the hidden state-flags are also off.
1151 	 * Since we check for TCPS_ESTABLISHED above, it can only
1152 	 * be TH_NEEDSYN.
1153 	 */
1154 	if (tp->t_state == TCPS_ESTABLISHED &&
1155 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1156 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1157 	    (!(to.to_flags & TOF_TS) ||
1158 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1159 	    /*
1160 	     * Using the CC option is compulsory if once started:
1161 	     *   the segment is OK if no T/TCP was negotiated or
1162 	     *   if the segment has a CC option equal to CCrecv
1163 	     */
1164 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1165 	     ((to.to_flags & TOF_CC) && to.to_cc == tp->cc_recv)) &&
1166 	    th->th_seq == tp->rcv_nxt &&
1167 	    tp->snd_nxt == tp->snd_max) {
1168 
1169 		/*
1170 		 * If last ACK falls within this segment's sequence numbers,
1171 		 * record the timestamp.
1172 		 * NOTE that the test is modified according to the latest
1173 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1174 		 */
1175 		if ((to.to_flags & TOF_TS) &&
1176 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1177 			tp->ts_recent_age = ticks;
1178 			tp->ts_recent = to.to_tsval;
1179 		}
1180 
1181 		if (tlen == 0) {
1182 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1183 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1184 			    tp->snd_cwnd >= tp->snd_wnd &&
1185 			    !IN_FASTRECOVERY(tp)) {
1186 				/*
1187 				 * This is a pure ack for outstanding data.
1188 				 */
1189 				++tcpstat.tcps_predack;
1190 				/*
1191 				 * "bad retransmit" recovery
1192 				 *
1193 				 * If Eifel detection applies, then
1194 				 * it is deterministic, so use it
1195 				 * unconditionally over the old heuristic.
1196 				 * Otherwise, fall back to the old heuristic.
1197 				 */
1198 				if (tcp_do_eifel_detect &&
1199 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1200 				    (tp->t_flags & TF_FIRSTACCACK)) {
1201 					/* Eifel detection applicable. */
1202 					if (to.to_tsecr < tp->t_rexmtTS) {
1203 						tcp_revert_congestion_state(tp);
1204 						++tcpstat.tcps_eifeldetected;
1205 					}
1206 				} else if (tp->t_rxtshift == 1 &&
1207 					   ticks < tp->t_badrxtwin) {
1208 					tcp_revert_congestion_state(tp);
1209 					++tcpstat.tcps_rttdetected;
1210 				}
1211 				tp->t_flags &= ~(TF_FIRSTACCACK |
1212 						 TF_FASTREXMT | TF_EARLYREXMT);
1213 				/*
1214 				 * Recalculate the retransmit timer / rtt.
1215 				 *
1216 				 * Some machines (certain windows boxes)
1217 				 * send broken timestamp replies during the
1218 				 * SYN+ACK phase, ignore timestamps of 0.
1219 				 */
1220 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1221 					tcp_xmit_timer(tp,
1222 						       ticks - to.to_tsecr + 1);
1223 				} else if (tp->t_rtttime &&
1224 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1225 					tcp_xmit_timer(tp,
1226 						       ticks - tp->t_rtttime);
1227 				}
1228 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1229 				acked = th->th_ack - tp->snd_una;
1230 				tcpstat.tcps_rcvackpack++;
1231 				tcpstat.tcps_rcvackbyte += acked;
1232 				sbdrop(&so->so_snd.sb, acked);
1233 				tp->snd_recover = th->th_ack - 1;
1234 				tp->snd_una = th->th_ack;
1235 				tp->t_dupacks = 0;
1236 				/*
1237 				 * Update window information.
1238 				 */
1239 				if (tiwin != tp->snd_wnd &&
1240 				    acceptable_window_update(tp, th, tiwin)) {
1241 					/* keep track of pure window updates */
1242 					if (tp->snd_wl2 == th->th_ack &&
1243 					    tiwin > tp->snd_wnd)
1244 						tcpstat.tcps_rcvwinupd++;
1245 					tp->snd_wnd = tiwin;
1246 					tp->snd_wl1 = th->th_seq;
1247 					tp->snd_wl2 = th->th_ack;
1248 					if (tp->snd_wnd > tp->max_sndwnd)
1249 						tp->max_sndwnd = tp->snd_wnd;
1250 				}
1251 				m_freem(m);
1252 				ND6_HINT(tp); /* some progress has been done */
1253 				/*
1254 				 * If all outstanding data are acked, stop
1255 				 * retransmit timer, otherwise restart timer
1256 				 * using current (possibly backed-off) value.
1257 				 * If process is waiting for space,
1258 				 * wakeup/selwakeup/signal.  If data
1259 				 * are ready to send, let tcp_output
1260 				 * decide between more output or persist.
1261 				 */
1262 				if (tp->snd_una == tp->snd_max) {
1263 					tcp_callout_stop(tp, tp->tt_rexmt);
1264 				} else if (!tcp_callout_active(tp,
1265 					    tp->tt_persist)) {
1266 					tcp_callout_reset(tp, tp->tt_rexmt,
1267 					    tp->t_rxtcur, tcp_timer_rexmt);
1268 				}
1269 				sowwakeup(so);
1270 				if (so->so_snd.ssb_cc > 0)
1271 					tcp_output(tp);
1272 				return;
1273 			}
1274 		} else if (tiwin == tp->snd_wnd &&
1275 		    th->th_ack == tp->snd_una &&
1276 		    LIST_EMPTY(&tp->t_segq) &&
1277 		    tlen <= ssb_space(&so->so_rcv)) {
1278 			u_long newsize = 0;	/* automatic sockbuf scaling */
1279 			/*
1280 			 * This is a pure, in-sequence data packet
1281 			 * with nothing on the reassembly queue and
1282 			 * we have enough buffer space to take it.
1283 			 */
1284 			++tcpstat.tcps_preddat;
1285 			tp->rcv_nxt += tlen;
1286 			tcpstat.tcps_rcvpack++;
1287 			tcpstat.tcps_rcvbyte += tlen;
1288 			ND6_HINT(tp);	/* some progress has been done */
1289 		/*
1290 		 * Automatic sizing of receive socket buffer.  Often the send
1291 		 * buffer size is not optimally adjusted to the actual network
1292 		 * conditions at hand (delay bandwidth product).  Setting the
1293 		 * buffer size too small limits throughput on links with high
1294 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1295 		 *
1296 		 * On the receive side the socket buffer memory is only rarely
1297 		 * used to any significant extent.  This allows us to be much
1298 		 * more aggressive in scaling the receive socket buffer.  For
1299 		 * the case that the buffer space is actually used to a large
1300 		 * extent and we run out of kernel memory we can simply drop
1301 		 * the new segments; TCP on the sender will just retransmit it
1302 		 * later.  Setting the buffer size too big may only consume too
1303 		 * much kernel memory if the application doesn't read() from
1304 		 * the socket or packet loss or reordering makes use of the
1305 		 * reassembly queue.
1306 		 *
1307 		 * The criteria to step up the receive buffer one notch are:
1308 		 *  1. the number of bytes received during the time it takes
1309 		 *     one timestamp to be reflected back to us (the RTT);
1310 		 *  2. received bytes per RTT is within seven eighth of the
1311 		 *     current socket buffer size;
1312 		 *  3. receive buffer size has not hit maximal automatic size;
1313 		 *
1314 		 * This algorithm does one step per RTT at most and only if
1315 		 * we receive a bulk stream w/o packet losses or reorderings.
1316 		 * Shrinking the buffer during idle times is not necessary as
1317 		 * it doesn't consume any memory when idle.
1318 		 *
1319 		 * TODO: Only step up if the application is actually serving
1320 		 * the buffer to better manage the socket buffer resources.
1321 		 */
1322 			if (tcp_do_autorcvbuf &&
1323 			    to.to_tsecr &&
1324 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1325 				if (to.to_tsecr > tp->rfbuf_ts &&
1326 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1327 					if (tp->rfbuf_cnt >
1328 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1329 					    so->so_rcv.ssb_hiwat <
1330 					    tcp_autorcvbuf_max) {
1331 						newsize =
1332 						    ulmin(so->so_rcv.ssb_hiwat +
1333 							  tcp_autorcvbuf_inc,
1334 							  tcp_autorcvbuf_max);
1335 					}
1336 					/* Start over with next RTT. */
1337 					tp->rfbuf_ts = 0;
1338 					tp->rfbuf_cnt = 0;
1339 				} else
1340 					tp->rfbuf_cnt += tlen;	/* add up */
1341 			}
1342 			/*
1343 			 * Add data to socket buffer.
1344 			 */
1345 			if (so->so_state & SS_CANTRCVMORE) {
1346 				m_freem(m);
1347 			} else {
1348 				/*
1349 				 * Set new socket buffer size, give up when
1350 				 * limit is reached.
1351 				 *
1352 				 * Adjusting the size can mess up ACK
1353 				 * sequencing when pure window updates are
1354 				 * being avoided (which is the default),
1355 				 * so force an ack.
1356 				 */
1357 				if (newsize) {
1358 					tp->t_flags |= TF_RXRESIZED;
1359 					if (!ssb_reserve(&so->so_rcv, newsize,
1360 							 so, NULL)) {
1361 						so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
1362 					}
1363 					if (newsize >=
1364 					    (TCP_MAXWIN << tp->rcv_scale)) {
1365 						so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
1366 					}
1367 				}
1368 				m_adj(m, drop_hdrlen); /* delayed header drop */
1369 				ssb_appendstream(&so->so_rcv, m);
1370 			}
1371 			sorwakeup(so);
1372 			/*
1373 			 * This code is responsible for most of the ACKs
1374 			 * the TCP stack sends back after receiving a data
1375 			 * packet.  Note that the DELAY_ACK check fails if
1376 			 * the delack timer is already running, which results
1377 			 * in an ack being sent every other packet (which is
1378 			 * what we want).
1379 			 *
1380 			 * We then further aggregate acks by not actually
1381 			 * sending one until the protocol thread has completed
1382 			 * processing the current backlog of packets.  This
1383 			 * does not delay the ack any further, but allows us
1384 			 * to take advantage of the packet aggregation that
1385 			 * high speed NICs do (usually blocks of 8-10 packets)
1386 			 * to send a single ack rather then four or five acks,
1387 			 * greatly reducing the ack rate, the return channel
1388 			 * bandwidth, and the protocol overhead on both ends.
1389 			 *
1390 			 * Since this also has the effect of slowing down
1391 			 * the exponential slow-start ramp-up, systems with
1392 			 * very large bandwidth-delay products might want
1393 			 * to turn the feature off.
1394 			 */
1395 			if (DELAY_ACK(tp)) {
1396 				tcp_callout_reset(tp, tp->tt_delack,
1397 				    tcp_delacktime, tcp_timer_delack);
1398 			} else if (tcp_aggregate_acks) {
1399 				tp->t_flags |= TF_ACKNOW;
1400 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1401 					tp->t_flags |= TF_ONOUTPUTQ;
1402 					tp->tt_cpu = mycpu->gd_cpuid;
1403 					TAILQ_INSERT_TAIL(
1404 					    &tcpcbackq[tp->tt_cpu],
1405 					    tp, t_outputq);
1406 				}
1407 			} else {
1408 				tp->t_flags |= TF_ACKNOW;
1409 				tcp_output(tp);
1410 			}
1411 			return;
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * Calculate amount of space in receive window,
1417 	 * and then do TCP input processing.
1418 	 * Receive window is amount of space in rcv queue,
1419 	 * but not less than advertised window.
1420 	 */
1421 	recvwin = ssb_space(&so->so_rcv);
1422 	if (recvwin < 0)
1423 		recvwin = 0;
1424 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1425 
1426 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1427 	tp->rfbuf_ts = 0;
1428 	tp->rfbuf_cnt = 0;
1429 
1430 	switch (tp->t_state) {
1431 	/*
1432 	 * If the state is SYN_RECEIVED:
1433 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1434 	 */
1435 	case TCPS_SYN_RECEIVED:
1436 		if ((thflags & TH_ACK) &&
1437 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1438 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1439 				rstreason = BANDLIM_RST_OPENPORT;
1440 				goto dropwithreset;
1441 		}
1442 		break;
1443 
1444 	/*
1445 	 * If the state is SYN_SENT:
1446 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1447 	 *	if seg contains a RST, then drop the connection.
1448 	 *	if seg does not contain SYN, then drop it.
1449 	 * Otherwise this is an acceptable SYN segment
1450 	 *	initialize tp->rcv_nxt and tp->irs
1451 	 *	if seg contains ack then advance tp->snd_una
1452 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1453 	 *	arrange for segment to be acked (eventually)
1454 	 *	continue processing rest of data/controls, beginning with URG
1455 	 */
1456 	case TCPS_SYN_SENT:
1457 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1458 			taop = &tao_noncached;
1459 			bzero(taop, sizeof *taop);
1460 		}
1461 
1462 		if ((thflags & TH_ACK) &&
1463 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1464 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1465 			/*
1466 			 * If we have a cached CCsent for the remote host,
1467 			 * hence we haven't just crashed and restarted,
1468 			 * do not send a RST.  This may be a retransmission
1469 			 * from the other side after our earlier ACK was lost.
1470 			 * Our new SYN, when it arrives, will serve as the
1471 			 * needed ACK.
1472 			 */
1473 			if (taop->tao_ccsent != 0)
1474 				goto drop;
1475 			else {
1476 				rstreason = BANDLIM_UNLIMITED;
1477 				goto dropwithreset;
1478 			}
1479 		}
1480 		if (thflags & TH_RST) {
1481 			if (thflags & TH_ACK)
1482 				tp = tcp_drop(tp, ECONNREFUSED);
1483 			goto drop;
1484 		}
1485 		if (!(thflags & TH_SYN))
1486 			goto drop;
1487 		tp->snd_wnd = th->th_win;	/* initial send window */
1488 		tp->cc_recv = to.to_cc;		/* foreign CC */
1489 
1490 		tp->irs = th->th_seq;
1491 		tcp_rcvseqinit(tp);
1492 		if (thflags & TH_ACK) {
1493 			/*
1494 			 * Our SYN was acked.  If segment contains CC.ECHO
1495 			 * option, check it to make sure this segment really
1496 			 * matches our SYN.  If not, just drop it as old
1497 			 * duplicate, but send an RST if we're still playing
1498 			 * by the old rules.  If no CC.ECHO option, make sure
1499 			 * we don't get fooled into using T/TCP.
1500 			 */
1501 			if (to.to_flags & TOF_CCECHO) {
1502 				if (tp->cc_send != to.to_ccecho) {
1503 					if (taop->tao_ccsent != 0)
1504 						goto drop;
1505 					else {
1506 						rstreason = BANDLIM_UNLIMITED;
1507 						goto dropwithreset;
1508 					}
1509 				}
1510 			} else
1511 				tp->t_flags &= ~TF_RCVD_CC;
1512 			tcpstat.tcps_connects++;
1513 			soisconnected(so);
1514 			/* Do window scaling on this connection? */
1515 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1516 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1517 				tp->snd_scale = tp->requested_s_scale;
1518 				tp->rcv_scale = tp->request_r_scale;
1519 			}
1520 			/* Segment is acceptable, update cache if undefined. */
1521 			if (taop->tao_ccsent == 0)
1522 				taop->tao_ccsent = to.to_ccecho;
1523 
1524 			tp->rcv_adv += tp->rcv_wnd;
1525 			tp->snd_una++;		/* SYN is acked */
1526 			tcp_callout_stop(tp, tp->tt_rexmt);
1527 			/*
1528 			 * If there's data, delay ACK; if there's also a FIN
1529 			 * ACKNOW will be turned on later.
1530 			 */
1531 			if (DELAY_ACK(tp) && tlen != 0) {
1532 				tcp_callout_reset(tp, tp->tt_delack,
1533 				    tcp_delacktime, tcp_timer_delack);
1534 			} else {
1535 				tp->t_flags |= TF_ACKNOW;
1536 			}
1537 			/*
1538 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1539 			 * Transitions:
1540 			 *	SYN_SENT  --> ESTABLISHED
1541 			 *	SYN_SENT* --> FIN_WAIT_1
1542 			 */
1543 			tp->t_starttime = ticks;
1544 			if (tp->t_flags & TF_NEEDFIN) {
1545 				tp->t_state = TCPS_FIN_WAIT_1;
1546 				tp->t_flags &= ~TF_NEEDFIN;
1547 				thflags &= ~TH_SYN;
1548 			} else {
1549 				tp->t_state = TCPS_ESTABLISHED;
1550 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1551 				    tcp_timer_keep);
1552 			}
1553 		} else {
1554 			/*
1555 			 * Received initial SYN in SYN-SENT[*] state =>
1556 			 * simultaneous open.  If segment contains CC option
1557 			 * and there is a cached CC, apply TAO test.
1558 			 * If it succeeds, connection is * half-synchronized.
1559 			 * Otherwise, do 3-way handshake:
1560 			 *	  SYN-SENT -> SYN-RECEIVED
1561 			 *	  SYN-SENT* -> SYN-RECEIVED*
1562 			 * If there was no CC option, clear cached CC value.
1563 			 */
1564 			tp->t_flags |= TF_ACKNOW;
1565 			tcp_callout_stop(tp, tp->tt_rexmt);
1566 			if (to.to_flags & TOF_CC) {
1567 				if (taop->tao_cc != 0 &&
1568 				    CC_GT(to.to_cc, taop->tao_cc)) {
1569 					/*
1570 					 * update cache and make transition:
1571 					 *	  SYN-SENT -> ESTABLISHED*
1572 					 *	  SYN-SENT* -> FIN-WAIT-1*
1573 					 */
1574 					taop->tao_cc = to.to_cc;
1575 					tp->t_starttime = ticks;
1576 					if (tp->t_flags & TF_NEEDFIN) {
1577 						tp->t_state = TCPS_FIN_WAIT_1;
1578 						tp->t_flags &= ~TF_NEEDFIN;
1579 					} else {
1580 						tp->t_state = TCPS_ESTABLISHED;
1581 						tcp_callout_reset(tp,
1582 						    tp->tt_keep, tcp_keepidle,
1583 						    tcp_timer_keep);
1584 					}
1585 					tp->t_flags |= TF_NEEDSYN;
1586 				} else
1587 					tp->t_state = TCPS_SYN_RECEIVED;
1588 			} else {
1589 				/* CC.NEW or no option => invalidate cache */
1590 				taop->tao_cc = 0;
1591 				tp->t_state = TCPS_SYN_RECEIVED;
1592 			}
1593 		}
1594 
1595 trimthenstep6:
1596 		/*
1597 		 * Advance th->th_seq to correspond to first data byte.
1598 		 * If data, trim to stay within window,
1599 		 * dropping FIN if necessary.
1600 		 */
1601 		th->th_seq++;
1602 		if (tlen > tp->rcv_wnd) {
1603 			todrop = tlen - tp->rcv_wnd;
1604 			m_adj(m, -todrop);
1605 			tlen = tp->rcv_wnd;
1606 			thflags &= ~TH_FIN;
1607 			tcpstat.tcps_rcvpackafterwin++;
1608 			tcpstat.tcps_rcvbyteafterwin += todrop;
1609 		}
1610 		tp->snd_wl1 = th->th_seq - 1;
1611 		tp->rcv_up = th->th_seq;
1612 		/*
1613 		 * Client side of transaction: already sent SYN and data.
1614 		 * If the remote host used T/TCP to validate the SYN,
1615 		 * our data will be ACK'd; if so, enter normal data segment
1616 		 * processing in the middle of step 5, ack processing.
1617 		 * Otherwise, goto step 6.
1618 		 */
1619 		if (thflags & TH_ACK)
1620 			goto process_ACK;
1621 
1622 		goto step6;
1623 
1624 	/*
1625 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1626 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1627 	 *		if state == TIME_WAIT and connection duration > MSL,
1628 	 *		    drop packet and send RST;
1629 	 *
1630 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1631 	 *		    ack the FIN (and data) in retransmission queue.
1632 	 *		    Complete close and delete TCPCB.  Then reprocess
1633 	 *		    segment, hoping to find new TCPCB in LISTEN state;
1634 	 *
1635 	 *		else must be old SYN; drop it.
1636 	 *	else do normal processing.
1637 	 */
1638 	case TCPS_LAST_ACK:
1639 	case TCPS_CLOSING:
1640 	case TCPS_TIME_WAIT:
1641 		if ((thflags & TH_SYN) &&
1642 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1643 			if (tp->t_state == TCPS_TIME_WAIT &&
1644 					(ticks - tp->t_starttime) > tcp_msl) {
1645 				rstreason = BANDLIM_UNLIMITED;
1646 				goto dropwithreset;
1647 			}
1648 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1649 				tp = tcp_close(tp);
1650 				goto findpcb;
1651 			}
1652 			else
1653 				goto drop;
1654 		}
1655 		break;  /* continue normal processing */
1656 	}
1657 
1658 	/*
1659 	 * States other than LISTEN or SYN_SENT.
1660 	 * First check the RST flag and sequence number since reset segments
1661 	 * are exempt from the timestamp and connection count tests.  This
1662 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1663 	 * below which allowed reset segments in half the sequence space
1664 	 * to fall though and be processed (which gives forged reset
1665 	 * segments with a random sequence number a 50 percent chance of
1666 	 * killing a connection).
1667 	 * Then check timestamp, if present.
1668 	 * Then check the connection count, if present.
1669 	 * Then check that at least some bytes of segment are within
1670 	 * receive window.  If segment begins before rcv_nxt,
1671 	 * drop leading data (and SYN); if nothing left, just ack.
1672 	 *
1673 	 *
1674 	 * If the RST bit is set, check the sequence number to see
1675 	 * if this is a valid reset segment.
1676 	 * RFC 793 page 37:
1677 	 *   In all states except SYN-SENT, all reset (RST) segments
1678 	 *   are validated by checking their SEQ-fields.  A reset is
1679 	 *   valid if its sequence number is in the window.
1680 	 * Note: this does not take into account delayed ACKs, so
1681 	 *   we should test against last_ack_sent instead of rcv_nxt.
1682 	 *   The sequence number in the reset segment is normally an
1683 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1684 	 *   send a reset with the sequence number at the rightmost edge
1685 	 *   of our receive window, and we have to handle this case.
1686 	 * If we have multiple segments in flight, the intial reset
1687 	 * segment sequence numbers will be to the left of last_ack_sent,
1688 	 * but they will eventually catch up.
1689 	 * In any case, it never made sense to trim reset segments to
1690 	 * fit the receive window since RFC 1122 says:
1691 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1692 	 *
1693 	 *    A TCP SHOULD allow a received RST segment to include data.
1694 	 *
1695 	 *    DISCUSSION
1696 	 *	   It has been suggested that a RST segment could contain
1697 	 *	   ASCII text that encoded and explained the cause of the
1698 	 *	   RST.  No standard has yet been established for such
1699 	 *	   data.
1700 	 *
1701 	 * If the reset segment passes the sequence number test examine
1702 	 * the state:
1703 	 *    SYN_RECEIVED STATE:
1704 	 *	If passive open, return to LISTEN state.
1705 	 *	If active open, inform user that connection was refused.
1706 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1707 	 *	Inform user that connection was reset, and close tcb.
1708 	 *    CLOSING, LAST_ACK STATES:
1709 	 *	Close the tcb.
1710 	 *    TIME_WAIT STATE:
1711 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1712 	 *	RFC 1337.
1713 	 */
1714 	if (thflags & TH_RST) {
1715 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1716 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1717 			switch (tp->t_state) {
1718 
1719 			case TCPS_SYN_RECEIVED:
1720 				so->so_error = ECONNREFUSED;
1721 				goto close;
1722 
1723 			case TCPS_ESTABLISHED:
1724 			case TCPS_FIN_WAIT_1:
1725 			case TCPS_FIN_WAIT_2:
1726 			case TCPS_CLOSE_WAIT:
1727 				so->so_error = ECONNRESET;
1728 			close:
1729 				tp->t_state = TCPS_CLOSED;
1730 				tcpstat.tcps_drops++;
1731 				tp = tcp_close(tp);
1732 				break;
1733 
1734 			case TCPS_CLOSING:
1735 			case TCPS_LAST_ACK:
1736 				tp = tcp_close(tp);
1737 				break;
1738 
1739 			case TCPS_TIME_WAIT:
1740 				break;
1741 			}
1742 		}
1743 		goto drop;
1744 	}
1745 
1746 	/*
1747 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1748 	 * and it's less than ts_recent, drop it.
1749 	 */
1750 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1751 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1752 
1753 		/* Check to see if ts_recent is over 24 days old.  */
1754 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1755 			/*
1756 			 * Invalidate ts_recent.  If this segment updates
1757 			 * ts_recent, the age will be reset later and ts_recent
1758 			 * will get a valid value.  If it does not, setting
1759 			 * ts_recent to zero will at least satisfy the
1760 			 * requirement that zero be placed in the timestamp
1761 			 * echo reply when ts_recent isn't valid.  The
1762 			 * age isn't reset until we get a valid ts_recent
1763 			 * because we don't want out-of-order segments to be
1764 			 * dropped when ts_recent is old.
1765 			 */
1766 			tp->ts_recent = 0;
1767 		} else {
1768 			tcpstat.tcps_rcvduppack++;
1769 			tcpstat.tcps_rcvdupbyte += tlen;
1770 			tcpstat.tcps_pawsdrop++;
1771 			if (tlen)
1772 				goto dropafterack;
1773 			goto drop;
1774 		}
1775 	}
1776 
1777 	/*
1778 	 * T/TCP mechanism
1779 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1780 	 *   or if its CC is wrong then drop the segment.
1781 	 *   RST segments do not have to comply with this.
1782 	 */
1783 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1784 	    (!(to.to_flags & TOF_CC) || tp->cc_recv != to.to_cc))
1785 		goto dropafterack;
1786 
1787 	/*
1788 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1789 	 * this connection before trimming the data to fit the receive
1790 	 * window.  Check the sequence number versus IRS since we know
1791 	 * the sequence numbers haven't wrapped.  This is a partial fix
1792 	 * for the "LAND" DoS attack.
1793 	 */
1794 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1795 		rstreason = BANDLIM_RST_OPENPORT;
1796 		goto dropwithreset;
1797 	}
1798 
1799 	todrop = tp->rcv_nxt - th->th_seq;
1800 	if (todrop > 0) {
1801 		if (TCP_DO_SACK(tp)) {
1802 			/* Report duplicate segment at head of packet. */
1803 			tp->reportblk.rblk_start = th->th_seq;
1804 			tp->reportblk.rblk_end = th->th_seq + tlen;
1805 			if (thflags & TH_FIN)
1806 				++tp->reportblk.rblk_end;
1807 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1808 				tp->reportblk.rblk_end = tp->rcv_nxt;
1809 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1810 		}
1811 		if (thflags & TH_SYN) {
1812 			thflags &= ~TH_SYN;
1813 			th->th_seq++;
1814 			if (th->th_urp > 1)
1815 				th->th_urp--;
1816 			else
1817 				thflags &= ~TH_URG;
1818 			todrop--;
1819 		}
1820 		/*
1821 		 * Following if statement from Stevens, vol. 2, p. 960.
1822 		 */
1823 		if (todrop > tlen ||
1824 		    (todrop == tlen && !(thflags & TH_FIN))) {
1825 			/*
1826 			 * Any valid FIN must be to the left of the window.
1827 			 * At this point the FIN must be a duplicate or out
1828 			 * of sequence; drop it.
1829 			 */
1830 			thflags &= ~TH_FIN;
1831 
1832 			/*
1833 			 * Send an ACK to resynchronize and drop any data.
1834 			 * But keep on processing for RST or ACK.
1835 			 */
1836 			tp->t_flags |= TF_ACKNOW;
1837 			todrop = tlen;
1838 			tcpstat.tcps_rcvduppack++;
1839 			tcpstat.tcps_rcvdupbyte += todrop;
1840 		} else {
1841 			tcpstat.tcps_rcvpartduppack++;
1842 			tcpstat.tcps_rcvpartdupbyte += todrop;
1843 		}
1844 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1845 		th->th_seq += todrop;
1846 		tlen -= todrop;
1847 		if (th->th_urp > todrop)
1848 			th->th_urp -= todrop;
1849 		else {
1850 			thflags &= ~TH_URG;
1851 			th->th_urp = 0;
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * If new data are received on a connection after the
1857 	 * user processes are gone, then RST the other end.
1858 	 */
1859 	if ((so->so_state & SS_NOFDREF) &&
1860 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1861 		tp = tcp_close(tp);
1862 		tcpstat.tcps_rcvafterclose++;
1863 		rstreason = BANDLIM_UNLIMITED;
1864 		goto dropwithreset;
1865 	}
1866 
1867 	/*
1868 	 * If segment ends after window, drop trailing data
1869 	 * (and PUSH and FIN); if nothing left, just ACK.
1870 	 */
1871 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1872 	if (todrop > 0) {
1873 		tcpstat.tcps_rcvpackafterwin++;
1874 		if (todrop >= tlen) {
1875 			tcpstat.tcps_rcvbyteafterwin += tlen;
1876 			/*
1877 			 * If a new connection request is received
1878 			 * while in TIME_WAIT, drop the old connection
1879 			 * and start over if the sequence numbers
1880 			 * are above the previous ones.
1881 			 */
1882 			if (thflags & TH_SYN &&
1883 			    tp->t_state == TCPS_TIME_WAIT &&
1884 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1885 				tp = tcp_close(tp);
1886 				goto findpcb;
1887 			}
1888 			/*
1889 			 * If window is closed can only take segments at
1890 			 * window edge, and have to drop data and PUSH from
1891 			 * incoming segments.  Continue processing, but
1892 			 * remember to ack.  Otherwise, drop segment
1893 			 * and ack.
1894 			 */
1895 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1896 				tp->t_flags |= TF_ACKNOW;
1897 				tcpstat.tcps_rcvwinprobe++;
1898 			} else
1899 				goto dropafterack;
1900 		} else
1901 			tcpstat.tcps_rcvbyteafterwin += todrop;
1902 		m_adj(m, -todrop);
1903 		tlen -= todrop;
1904 		thflags &= ~(TH_PUSH | TH_FIN);
1905 	}
1906 
1907 	/*
1908 	 * If last ACK falls within this segment's sequence numbers,
1909 	 * record its timestamp.
1910 	 * NOTE:
1911 	 * 1) That the test incorporates suggestions from the latest
1912 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1913 	 * 2) That updating only on newer timestamps interferes with
1914 	 *    our earlier PAWS tests, so this check should be solely
1915 	 *    predicated on the sequence space of this segment.
1916 	 * 3) That we modify the segment boundary check to be
1917 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1918 	 *    instead of RFC1323's
1919 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1920 	 *    This modified check allows us to overcome RFC1323's
1921 	 *    limitations as described in Stevens TCP/IP Illustrated
1922 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1923 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1924 	 */
1925 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1926 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1927 					+ ((thflags & TH_SYN) != 0)
1928 					+ ((thflags & TH_FIN) != 0)))) {
1929 		tp->ts_recent_age = ticks;
1930 		tp->ts_recent = to.to_tsval;
1931 	}
1932 
1933 	/*
1934 	 * If a SYN is in the window, then this is an
1935 	 * error and we send an RST and drop the connection.
1936 	 */
1937 	if (thflags & TH_SYN) {
1938 		tp = tcp_drop(tp, ECONNRESET);
1939 		rstreason = BANDLIM_UNLIMITED;
1940 		goto dropwithreset;
1941 	}
1942 
1943 	/*
1944 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1945 	 * flag is on (half-synchronized state), then queue data for
1946 	 * later processing; else drop segment and return.
1947 	 */
1948 	if (!(thflags & TH_ACK)) {
1949 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1950 		    (tp->t_flags & TF_NEEDSYN))
1951 			goto step6;
1952 		else
1953 			goto drop;
1954 	}
1955 
1956 	/*
1957 	 * Ack processing.
1958 	 */
1959 	switch (tp->t_state) {
1960 	/*
1961 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1962 	 * ESTABLISHED state and continue processing.
1963 	 * The ACK was checked above.
1964 	 */
1965 	case TCPS_SYN_RECEIVED:
1966 
1967 		tcpstat.tcps_connects++;
1968 		soisconnected(so);
1969 		/* Do window scaling? */
1970 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1971 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1972 			tp->snd_scale = tp->requested_s_scale;
1973 			tp->rcv_scale = tp->request_r_scale;
1974 		}
1975 		/*
1976 		 * Upon successful completion of 3-way handshake,
1977 		 * update cache.CC if it was undefined, pass any queued
1978 		 * data to the user, and advance state appropriately.
1979 		 */
1980 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1981 		    taop->tao_cc == 0)
1982 			taop->tao_cc = tp->cc_recv;
1983 
1984 		/*
1985 		 * Make transitions:
1986 		 *      SYN-RECEIVED  -> ESTABLISHED
1987 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1988 		 */
1989 		tp->t_starttime = ticks;
1990 		if (tp->t_flags & TF_NEEDFIN) {
1991 			tp->t_state = TCPS_FIN_WAIT_1;
1992 			tp->t_flags &= ~TF_NEEDFIN;
1993 		} else {
1994 			tp->t_state = TCPS_ESTABLISHED;
1995 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1996 			    tcp_timer_keep);
1997 		}
1998 		/*
1999 		 * If segment contains data or ACK, will call tcp_reass()
2000 		 * later; if not, do so now to pass queued data to user.
2001 		 */
2002 		if (tlen == 0 && !(thflags & TH_FIN))
2003 			tcp_reass(tp, NULL, NULL, NULL);
2004 		/* fall into ... */
2005 
2006 	/*
2007 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2008 	 * ACKs.  If the ack is in the range
2009 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2010 	 * then advance tp->snd_una to th->th_ack and drop
2011 	 * data from the retransmission queue.  If this ACK reflects
2012 	 * more up to date window information we update our window information.
2013 	 */
2014 	case TCPS_ESTABLISHED:
2015 	case TCPS_FIN_WAIT_1:
2016 	case TCPS_FIN_WAIT_2:
2017 	case TCPS_CLOSE_WAIT:
2018 	case TCPS_CLOSING:
2019 	case TCPS_LAST_ACK:
2020 	case TCPS_TIME_WAIT:
2021 
2022 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2023 			if (TCP_DO_SACK(tp))
2024 				tcp_sack_update_scoreboard(tp, &to);
2025 			if (tlen != 0 || tiwin != tp->snd_wnd) {
2026 				tp->t_dupacks = 0;
2027 				break;
2028 			}
2029 			tcpstat.tcps_rcvdupack++;
2030 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
2031 			    th->th_ack != tp->snd_una) {
2032 				tp->t_dupacks = 0;
2033 				break;
2034 			}
2035 			/*
2036 			 * We have outstanding data (other than
2037 			 * a window probe), this is a completely
2038 			 * duplicate ack (ie, window info didn't
2039 			 * change), the ack is the biggest we've
2040 			 * seen and we've seen exactly our rexmt
2041 			 * threshhold of them, so assume a packet
2042 			 * has been dropped and retransmit it.
2043 			 * Kludge snd_nxt & the congestion
2044 			 * window so we send only this one
2045 			 * packet.
2046 			 */
2047 			if (IN_FASTRECOVERY(tp)) {
2048 				if (TCP_DO_SACK(tp)) {
2049 					/* No artifical cwnd inflation. */
2050 					tcp_sack_rexmt(tp, th);
2051 				} else {
2052 					/*
2053 					 * Dup acks mean that packets
2054 					 * have left the network
2055 					 * (they're now cached at the
2056 					 * receiver) so bump cwnd by
2057 					 * the amount in the receiver
2058 					 * to keep a constant cwnd
2059 					 * packets in the network.
2060 					 */
2061 					tp->snd_cwnd += tp->t_maxseg;
2062 					tcp_output(tp);
2063 				}
2064 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2065 				tp->t_dupacks = 0;
2066 				break;
2067 			} else if (++tp->t_dupacks == tcprexmtthresh) {
2068 				tcp_seq old_snd_nxt;
2069 				u_int win;
2070 
2071 fastretransmit:
2072 				if (tcp_do_eifel_detect &&
2073 				    (tp->t_flags & TF_RCVD_TSTMP)) {
2074 					tcp_save_congestion_state(tp);
2075 					tp->t_flags |= TF_FASTREXMT;
2076 				}
2077 				/*
2078 				 * We know we're losing at the current
2079 				 * window size, so do congestion avoidance:
2080 				 * set ssthresh to half the current window
2081 				 * and pull our congestion window back to the
2082 				 * new ssthresh.
2083 				 */
2084 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
2085 				    tp->t_maxseg;
2086 				if (win < 2)
2087 					win = 2;
2088 				tp->snd_ssthresh = win * tp->t_maxseg;
2089 				ENTER_FASTRECOVERY(tp);
2090 				tp->snd_recover = tp->snd_max;
2091 				tcp_callout_stop(tp, tp->tt_rexmt);
2092 				tp->t_rtttime = 0;
2093 				old_snd_nxt = tp->snd_nxt;
2094 				tp->snd_nxt = th->th_ack;
2095 				tp->snd_cwnd = tp->t_maxseg;
2096 				tcp_output(tp);
2097 				++tcpstat.tcps_sndfastrexmit;
2098 				tp->snd_cwnd = tp->snd_ssthresh;
2099 				tp->rexmt_high = tp->snd_nxt;
2100 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
2101 					tp->snd_nxt = old_snd_nxt;
2102 				KASSERT(tp->snd_limited <= 2,
2103 				    ("tp->snd_limited too big"));
2104 				if (TCP_DO_SACK(tp))
2105 					tcp_sack_rexmt(tp, th);
2106 				else
2107 					tp->snd_cwnd += tp->t_maxseg *
2108 					    (tp->t_dupacks - tp->snd_limited);
2109 			} else if (tcp_do_limitedtransmit) {
2110 				u_long oldcwnd = tp->snd_cwnd;
2111 				tcp_seq oldsndmax = tp->snd_max;
2112 				tcp_seq oldsndnxt = tp->snd_nxt;
2113 				/* outstanding data */
2114 				uint32_t ownd = tp->snd_max - tp->snd_una;
2115 				u_int sent;
2116 
2117 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2118 
2119 				KASSERT(tp->t_dupacks == 1 ||
2120 					tp->t_dupacks == 2,
2121 				    ("dupacks not 1 or 2"));
2122 				if (tp->t_dupacks == 1)
2123 					tp->snd_limited = 0;
2124 				tp->snd_nxt = tp->snd_max;
2125 				tp->snd_cwnd = ownd +
2126 				    (tp->t_dupacks - tp->snd_limited) *
2127 				    tp->t_maxseg;
2128 				tcp_output(tp);
2129 
2130 				/*
2131 				 * Other acks may have been processed,
2132 				 * snd_nxt cannot be reset to a value less
2133 				 * then snd_una.
2134 				 */
2135 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2136 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2137 					tp->snd_nxt = oldsndnxt;
2138 				    else
2139 					tp->snd_nxt = tp->snd_una;
2140 				}
2141 				tp->snd_cwnd = oldcwnd;
2142 				sent = tp->snd_max - oldsndmax;
2143 				if (sent > tp->t_maxseg) {
2144 					KASSERT((tp->t_dupacks == 2 &&
2145 						 tp->snd_limited == 0) ||
2146 						(sent == tp->t_maxseg + 1 &&
2147 						 tp->t_flags & TF_SENTFIN),
2148 					    ("sent too much"));
2149 					KASSERT(sent <= tp->t_maxseg * 2,
2150 					    ("sent too many segments"));
2151 					tp->snd_limited = 2;
2152 					tcpstat.tcps_sndlimited += 2;
2153 				} else if (sent > 0) {
2154 					++tp->snd_limited;
2155 					++tcpstat.tcps_sndlimited;
2156 				} else if (tcp_do_early_retransmit &&
2157 				    (tcp_do_eifel_detect &&
2158 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2159 				    ownd < 4 * tp->t_maxseg &&
2160 				    tp->t_dupacks + 1 >=
2161 				      iceildiv(ownd, tp->t_maxseg) &&
2162 				    (!TCP_DO_SACK(tp) ||
2163 				     ownd <= tp->t_maxseg ||
2164 				     tcp_sack_has_sacked(&tp->scb,
2165 							ownd - tp->t_maxseg))) {
2166 					++tcpstat.tcps_sndearlyrexmit;
2167 					tp->t_flags |= TF_EARLYREXMT;
2168 					goto fastretransmit;
2169 				}
2170 			}
2171 			goto drop;
2172 		}
2173 
2174 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2175 		tp->t_dupacks = 0;
2176 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2177 			/*
2178 			 * Detected optimistic ACK attack.
2179 			 * Force slow-start to de-synchronize attack.
2180 			 */
2181 			tp->snd_cwnd = tp->t_maxseg;
2182 			tp->snd_wacked = 0;
2183 
2184 			tcpstat.tcps_rcvacktoomuch++;
2185 			goto dropafterack;
2186 		}
2187 		/*
2188 		 * If we reach this point, ACK is not a duplicate,
2189 		 *     i.e., it ACKs something we sent.
2190 		 */
2191 		if (tp->t_flags & TF_NEEDSYN) {
2192 			/*
2193 			 * T/TCP: Connection was half-synchronized, and our
2194 			 * SYN has been ACK'd (so connection is now fully
2195 			 * synchronized).  Go to non-starred state,
2196 			 * increment snd_una for ACK of SYN, and check if
2197 			 * we can do window scaling.
2198 			 */
2199 			tp->t_flags &= ~TF_NEEDSYN;
2200 			tp->snd_una++;
2201 			/* Do window scaling? */
2202 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2203 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2204 				tp->snd_scale = tp->requested_s_scale;
2205 				tp->rcv_scale = tp->request_r_scale;
2206 			}
2207 		}
2208 
2209 process_ACK:
2210 		acked = th->th_ack - tp->snd_una;
2211 		tcpstat.tcps_rcvackpack++;
2212 		tcpstat.tcps_rcvackbyte += acked;
2213 
2214 		if (tcp_do_eifel_detect && acked > 0 &&
2215 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2216 		    (tp->t_flags & TF_FIRSTACCACK)) {
2217 			/* Eifel detection applicable. */
2218 			if (to.to_tsecr < tp->t_rexmtTS) {
2219 				++tcpstat.tcps_eifeldetected;
2220 				tcp_revert_congestion_state(tp);
2221 				if (tp->t_rxtshift == 1 &&
2222 				    ticks >= tp->t_badrxtwin)
2223 					++tcpstat.tcps_rttcantdetect;
2224 			}
2225 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2226 			/*
2227 			 * If we just performed our first retransmit,
2228 			 * and the ACK arrives within our recovery window,
2229 			 * then it was a mistake to do the retransmit
2230 			 * in the first place.  Recover our original cwnd
2231 			 * and ssthresh, and proceed to transmit where we
2232 			 * left off.
2233 			 */
2234 			tcp_revert_congestion_state(tp);
2235 			++tcpstat.tcps_rttdetected;
2236 		}
2237 
2238 		/*
2239 		 * If we have a timestamp reply, update smoothed
2240 		 * round trip time.  If no timestamp is present but
2241 		 * transmit timer is running and timed sequence
2242 		 * number was acked, update smoothed round trip time.
2243 		 * Since we now have an rtt measurement, cancel the
2244 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2245 		 * Recompute the initial retransmit timer.
2246 		 *
2247 		 * Some machines (certain windows boxes) send broken
2248 		 * timestamp replies during the SYN+ACK phase, ignore
2249 		 * timestamps of 0.
2250 		 */
2251 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2252 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2253 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2254 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2255 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2256 
2257 		/*
2258 		 * If no data (only SYN) was ACK'd,
2259 		 *    skip rest of ACK processing.
2260 		 */
2261 		if (acked == 0)
2262 			goto step6;
2263 
2264 		/* Stop looking for an acceptable ACK since one was received. */
2265 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2266 
2267 		if (acked > so->so_snd.ssb_cc) {
2268 			tp->snd_wnd -= so->so_snd.ssb_cc;
2269 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2270 			ourfinisacked = TRUE;
2271 		} else {
2272 			sbdrop(&so->so_snd.sb, acked);
2273 			tp->snd_wnd -= acked;
2274 			ourfinisacked = FALSE;
2275 		}
2276 		sowwakeup(so);
2277 
2278 		/*
2279 		 * Update window information.
2280 		 * Don't look at window if no ACK:
2281 		 * TAC's send garbage on first SYN.
2282 		 */
2283 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2284 		    (tp->snd_wl1 == th->th_seq &&
2285 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2286 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2287 			/* keep track of pure window updates */
2288 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2289 			    tiwin > tp->snd_wnd)
2290 				tcpstat.tcps_rcvwinupd++;
2291 			tp->snd_wnd = tiwin;
2292 			tp->snd_wl1 = th->th_seq;
2293 			tp->snd_wl2 = th->th_ack;
2294 			if (tp->snd_wnd > tp->max_sndwnd)
2295 				tp->max_sndwnd = tp->snd_wnd;
2296 			needoutput = TRUE;
2297 		}
2298 
2299 		tp->snd_una = th->th_ack;
2300 		if (TCP_DO_SACK(tp))
2301 			tcp_sack_update_scoreboard(tp, &to);
2302 		if (IN_FASTRECOVERY(tp)) {
2303 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2304 				EXIT_FASTRECOVERY(tp);
2305 				needoutput = TRUE;
2306 				/*
2307 				 * If the congestion window was inflated
2308 				 * to account for the other side's
2309 				 * cached packets, retract it.
2310 				 */
2311 				if (!TCP_DO_SACK(tp))
2312 					tp->snd_cwnd = tp->snd_ssthresh;
2313 
2314 				/*
2315 				 * Window inflation should have left us
2316 				 * with approximately snd_ssthresh outstanding
2317 				 * data.  But, in case we would be inclined
2318 				 * to send a burst, better do it using
2319 				 * slow start.
2320 				 */
2321 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2322 					   tp->snd_max + 2 * tp->t_maxseg))
2323 					tp->snd_cwnd =
2324 					    (tp->snd_max - tp->snd_una) +
2325 					    2 * tp->t_maxseg;
2326 
2327 				tp->snd_wacked = 0;
2328 			} else {
2329 				if (TCP_DO_SACK(tp)) {
2330 					tp->snd_max_rexmt = tp->snd_max;
2331 					tcp_sack_rexmt(tp, th);
2332 				} else {
2333 					tcp_newreno_partial_ack(tp, th, acked);
2334 				}
2335 				needoutput = FALSE;
2336 			}
2337 		} else {
2338 			/*
2339 			 * Open the congestion window.  When in slow-start,
2340 			 * open exponentially: maxseg per packet.  Otherwise,
2341 			 * open linearly: maxseg per window.
2342 			 */
2343 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2344 				u_int abc_sslimit =
2345 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2346 				     tp->t_maxseg : 2 * tp->t_maxseg);
2347 
2348 				/* slow-start */
2349 				tp->snd_cwnd += tcp_do_abc ?
2350 				    min(acked, abc_sslimit) : tp->t_maxseg;
2351 			} else {
2352 				/* linear increase */
2353 				tp->snd_wacked += tcp_do_abc ? acked :
2354 				    tp->t_maxseg;
2355 				if (tp->snd_wacked >= tp->snd_cwnd) {
2356 					tp->snd_wacked -= tp->snd_cwnd;
2357 					tp->snd_cwnd += tp->t_maxseg;
2358 				}
2359 			}
2360 			tp->snd_cwnd = min(tp->snd_cwnd,
2361 					   TCP_MAXWIN << tp->snd_scale);
2362 			tp->snd_recover = th->th_ack - 1;
2363 		}
2364 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2365 			tp->snd_nxt = tp->snd_una;
2366 
2367 		/*
2368 		 * If all outstanding data is acked, stop retransmit
2369 		 * timer and remember to restart (more output or persist).
2370 		 * If there is more data to be acked, restart retransmit
2371 		 * timer, using current (possibly backed-off) value.
2372 		 */
2373 		if (th->th_ack == tp->snd_max) {
2374 			tcp_callout_stop(tp, tp->tt_rexmt);
2375 			needoutput = TRUE;
2376 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2377 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2378 			    tcp_timer_rexmt);
2379 		}
2380 
2381 		switch (tp->t_state) {
2382 		/*
2383 		 * In FIN_WAIT_1 STATE in addition to the processing
2384 		 * for the ESTABLISHED state if our FIN is now acknowledged
2385 		 * then enter FIN_WAIT_2.
2386 		 */
2387 		case TCPS_FIN_WAIT_1:
2388 			if (ourfinisacked) {
2389 				/*
2390 				 * If we can't receive any more
2391 				 * data, then closing user can proceed.
2392 				 * Starting the timer is contrary to the
2393 				 * specification, but if we don't get a FIN
2394 				 * we'll hang forever.
2395 				 */
2396 				if (so->so_state & SS_CANTRCVMORE) {
2397 					soisdisconnected(so);
2398 					tcp_callout_reset(tp, tp->tt_2msl,
2399 					    tcp_maxidle, tcp_timer_2msl);
2400 				}
2401 				tp->t_state = TCPS_FIN_WAIT_2;
2402 			}
2403 			break;
2404 
2405 		/*
2406 		 * In CLOSING STATE in addition to the processing for
2407 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2408 		 * then enter the TIME-WAIT state, otherwise ignore
2409 		 * the segment.
2410 		 */
2411 		case TCPS_CLOSING:
2412 			if (ourfinisacked) {
2413 				tp->t_state = TCPS_TIME_WAIT;
2414 				tcp_canceltimers(tp);
2415 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2416 				if (tp->cc_recv != 0 &&
2417 				    (ticks - tp->t_starttime) < tcp_msl) {
2418 					tcp_callout_reset(tp, tp->tt_2msl,
2419 					    tp->t_rxtcur * TCPTV_TWTRUNC,
2420 					    tcp_timer_2msl);
2421 				} else {
2422 					tcp_callout_reset(tp, tp->tt_2msl,
2423 					    2 * tcp_msl, tcp_timer_2msl);
2424 				}
2425 				soisdisconnected(so);
2426 			}
2427 			break;
2428 
2429 		/*
2430 		 * In LAST_ACK, we may still be waiting for data to drain
2431 		 * and/or to be acked, as well as for the ack of our FIN.
2432 		 * If our FIN is now acknowledged, delete the TCB,
2433 		 * enter the closed state and return.
2434 		 */
2435 		case TCPS_LAST_ACK:
2436 			if (ourfinisacked) {
2437 				tp = tcp_close(tp);
2438 				goto drop;
2439 			}
2440 			break;
2441 
2442 		/*
2443 		 * In TIME_WAIT state the only thing that should arrive
2444 		 * is a retransmission of the remote FIN.  Acknowledge
2445 		 * it and restart the finack timer.
2446 		 */
2447 		case TCPS_TIME_WAIT:
2448 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2449 			    tcp_timer_2msl);
2450 			goto dropafterack;
2451 		}
2452 	}
2453 
2454 step6:
2455 	/*
2456 	 * Update window information.
2457 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2458 	 */
2459 	if ((thflags & TH_ACK) &&
2460 	    acceptable_window_update(tp, th, tiwin)) {
2461 		/* keep track of pure window updates */
2462 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2463 		    tiwin > tp->snd_wnd)
2464 			tcpstat.tcps_rcvwinupd++;
2465 		tp->snd_wnd = tiwin;
2466 		tp->snd_wl1 = th->th_seq;
2467 		tp->snd_wl2 = th->th_ack;
2468 		if (tp->snd_wnd > tp->max_sndwnd)
2469 			tp->max_sndwnd = tp->snd_wnd;
2470 		needoutput = TRUE;
2471 	}
2472 
2473 	/*
2474 	 * Process segments with URG.
2475 	 */
2476 	if ((thflags & TH_URG) && th->th_urp &&
2477 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2478 		/*
2479 		 * This is a kludge, but if we receive and accept
2480 		 * random urgent pointers, we'll crash in
2481 		 * soreceive.  It's hard to imagine someone
2482 		 * actually wanting to send this much urgent data.
2483 		 */
2484 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2485 			th->th_urp = 0;			/* XXX */
2486 			thflags &= ~TH_URG;		/* XXX */
2487 			goto dodata;			/* XXX */
2488 		}
2489 		/*
2490 		 * If this segment advances the known urgent pointer,
2491 		 * then mark the data stream.  This should not happen
2492 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2493 		 * a FIN has been received from the remote side.
2494 		 * In these states we ignore the URG.
2495 		 *
2496 		 * According to RFC961 (Assigned Protocols),
2497 		 * the urgent pointer points to the last octet
2498 		 * of urgent data.  We continue, however,
2499 		 * to consider it to indicate the first octet
2500 		 * of data past the urgent section as the original
2501 		 * spec states (in one of two places).
2502 		 */
2503 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2504 			tp->rcv_up = th->th_seq + th->th_urp;
2505 			so->so_oobmark = so->so_rcv.ssb_cc +
2506 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2507 			if (so->so_oobmark == 0)
2508 				so->so_state |= SS_RCVATMARK;
2509 			sohasoutofband(so);
2510 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2511 		}
2512 		/*
2513 		 * Remove out of band data so doesn't get presented to user.
2514 		 * This can happen independent of advancing the URG pointer,
2515 		 * but if two URG's are pending at once, some out-of-band
2516 		 * data may creep in... ick.
2517 		 */
2518 		if (th->th_urp <= (u_long)tlen &&
2519 		    !(so->so_options & SO_OOBINLINE)) {
2520 			/* hdr drop is delayed */
2521 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2522 		}
2523 	} else {
2524 		/*
2525 		 * If no out of band data is expected,
2526 		 * pull receive urgent pointer along
2527 		 * with the receive window.
2528 		 */
2529 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2530 			tp->rcv_up = tp->rcv_nxt;
2531 	}
2532 
2533 dodata:							/* XXX */
2534 	/*
2535 	 * Process the segment text, merging it into the TCP sequencing queue,
2536 	 * and arranging for acknowledgment of receipt if necessary.
2537 	 * This process logically involves adjusting tp->rcv_wnd as data
2538 	 * is presented to the user (this happens in tcp_usrreq.c,
2539 	 * case PRU_RCVD).  If a FIN has already been received on this
2540 	 * connection then we just ignore the text.
2541 	 */
2542 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2543 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2544 		/*
2545 		 * Insert segment which includes th into TCP reassembly queue
2546 		 * with control block tp.  Set thflags to whether reassembly now
2547 		 * includes a segment with FIN.  This handles the common case
2548 		 * inline (segment is the next to be received on an established
2549 		 * connection, and the queue is empty), avoiding linkage into
2550 		 * and removal from the queue and repetition of various
2551 		 * conversions.
2552 		 * Set DELACK for segments received in order, but ack
2553 		 * immediately when segments are out of order (so
2554 		 * fast retransmit can work).
2555 		 */
2556 		if (th->th_seq == tp->rcv_nxt &&
2557 		    LIST_EMPTY(&tp->t_segq) &&
2558 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2559 			if (DELAY_ACK(tp)) {
2560 				tcp_callout_reset(tp, tp->tt_delack,
2561 				    tcp_delacktime, tcp_timer_delack);
2562 			} else {
2563 				tp->t_flags |= TF_ACKNOW;
2564 			}
2565 			tp->rcv_nxt += tlen;
2566 			thflags = th->th_flags & TH_FIN;
2567 			tcpstat.tcps_rcvpack++;
2568 			tcpstat.tcps_rcvbyte += tlen;
2569 			ND6_HINT(tp);
2570 			if (so->so_state & SS_CANTRCVMORE)
2571 				m_freem(m);
2572 			else
2573 				ssb_appendstream(&so->so_rcv, m);
2574 			sorwakeup(so);
2575 		} else {
2576 			if (!(tp->t_flags & TF_DUPSEG)) {
2577 				/* Initialize SACK report block. */
2578 				tp->reportblk.rblk_start = th->th_seq;
2579 				tp->reportblk.rblk_end = th->th_seq + tlen +
2580 				    ((thflags & TH_FIN) != 0);
2581 			}
2582 			thflags = tcp_reass(tp, th, &tlen, m);
2583 			tp->t_flags |= TF_ACKNOW;
2584 		}
2585 
2586 		/*
2587 		 * Note the amount of data that peer has sent into
2588 		 * our window, in order to estimate the sender's
2589 		 * buffer size.
2590 		 */
2591 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2592 	} else {
2593 		m_freem(m);
2594 		thflags &= ~TH_FIN;
2595 	}
2596 
2597 	/*
2598 	 * If FIN is received ACK the FIN and let the user know
2599 	 * that the connection is closing.
2600 	 */
2601 	if (thflags & TH_FIN) {
2602 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2603 			socantrcvmore(so);
2604 			/*
2605 			 * If connection is half-synchronized
2606 			 * (ie NEEDSYN flag on) then delay ACK,
2607 			 * so it may be piggybacked when SYN is sent.
2608 			 * Otherwise, since we received a FIN then no
2609 			 * more input can be expected, send ACK now.
2610 			 */
2611 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2612 				tcp_callout_reset(tp, tp->tt_delack,
2613 				    tcp_delacktime, tcp_timer_delack);
2614 			} else {
2615 				tp->t_flags |= TF_ACKNOW;
2616 			}
2617 			tp->rcv_nxt++;
2618 		}
2619 
2620 		switch (tp->t_state) {
2621 		/*
2622 		 * In SYN_RECEIVED and ESTABLISHED STATES
2623 		 * enter the CLOSE_WAIT state.
2624 		 */
2625 		case TCPS_SYN_RECEIVED:
2626 			tp->t_starttime = ticks;
2627 			/*FALLTHROUGH*/
2628 		case TCPS_ESTABLISHED:
2629 			tp->t_state = TCPS_CLOSE_WAIT;
2630 			break;
2631 
2632 		/*
2633 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2634 		 * enter the CLOSING state.
2635 		 */
2636 		case TCPS_FIN_WAIT_1:
2637 			tp->t_state = TCPS_CLOSING;
2638 			break;
2639 
2640 		/*
2641 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2642 		 * starting the time-wait timer, turning off the other
2643 		 * standard timers.
2644 		 */
2645 		case TCPS_FIN_WAIT_2:
2646 			tp->t_state = TCPS_TIME_WAIT;
2647 			tcp_canceltimers(tp);
2648 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2649 			if (tp->cc_recv != 0 &&
2650 			    (ticks - tp->t_starttime) < tcp_msl) {
2651 				tcp_callout_reset(tp, tp->tt_2msl,
2652 				    tp->t_rxtcur * TCPTV_TWTRUNC,
2653 				    tcp_timer_2msl);
2654 				/* For transaction client, force ACK now. */
2655 				tp->t_flags |= TF_ACKNOW;
2656 			} else {
2657 				tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2658 				    tcp_timer_2msl);
2659 			}
2660 			soisdisconnected(so);
2661 			break;
2662 
2663 		/*
2664 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2665 		 */
2666 		case TCPS_TIME_WAIT:
2667 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2668 			    tcp_timer_2msl);
2669 			break;
2670 		}
2671 	}
2672 
2673 #ifdef TCPDEBUG
2674 	if (so->so_options & SO_DEBUG)
2675 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2676 #endif
2677 
2678 	/*
2679 	 * Return any desired output.
2680 	 */
2681 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2682 		tcp_output(tp);
2683 	return;
2684 
2685 dropafterack:
2686 	/*
2687 	 * Generate an ACK dropping incoming segment if it occupies
2688 	 * sequence space, where the ACK reflects our state.
2689 	 *
2690 	 * We can now skip the test for the RST flag since all
2691 	 * paths to this code happen after packets containing
2692 	 * RST have been dropped.
2693 	 *
2694 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2695 	 * segment we received passes the SYN-RECEIVED ACK test.
2696 	 * If it fails send a RST.  This breaks the loop in the
2697 	 * "LAND" DoS attack, and also prevents an ACK storm
2698 	 * between two listening ports that have been sent forged
2699 	 * SYN segments, each with the source address of the other.
2700 	 */
2701 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2702 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2703 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2704 		rstreason = BANDLIM_RST_OPENPORT;
2705 		goto dropwithreset;
2706 	}
2707 #ifdef TCPDEBUG
2708 	if (so->so_options & SO_DEBUG)
2709 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2710 #endif
2711 	m_freem(m);
2712 	tp->t_flags |= TF_ACKNOW;
2713 	tcp_output(tp);
2714 	return;
2715 
2716 dropwithreset:
2717 	/*
2718 	 * Generate a RST, dropping incoming segment.
2719 	 * Make ACK acceptable to originator of segment.
2720 	 * Don't bother to respond if destination was broadcast/multicast.
2721 	 */
2722 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2723 		goto drop;
2724 	if (isipv6) {
2725 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2726 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2727 			goto drop;
2728 	} else {
2729 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2730 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2731 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2732 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2733 			goto drop;
2734 	}
2735 	/* IPv6 anycast check is done at tcp6_input() */
2736 
2737 	/*
2738 	 * Perform bandwidth limiting.
2739 	 */
2740 #ifdef ICMP_BANDLIM
2741 	if (badport_bandlim(rstreason) < 0)
2742 		goto drop;
2743 #endif
2744 
2745 #ifdef TCPDEBUG
2746 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2747 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2748 #endif
2749 	if (thflags & TH_ACK)
2750 		/* mtod() below is safe as long as hdr dropping is delayed */
2751 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2752 			    TH_RST);
2753 	else {
2754 		if (thflags & TH_SYN)
2755 			tlen++;
2756 		/* mtod() below is safe as long as hdr dropping is delayed */
2757 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2758 			    (tcp_seq)0, TH_RST | TH_ACK);
2759 	}
2760 	return;
2761 
2762 drop:
2763 	/*
2764 	 * Drop space held by incoming segment and return.
2765 	 */
2766 #ifdef TCPDEBUG
2767 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2768 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2769 #endif
2770 	m_freem(m);
2771 	return;
2772 }
2773 
2774 /*
2775  * Parse TCP options and place in tcpopt.
2776  */
2777 static void
2778 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2779 {
2780 	int opt, optlen, i;
2781 
2782 	to->to_flags = 0;
2783 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2784 		opt = cp[0];
2785 		if (opt == TCPOPT_EOL)
2786 			break;
2787 		if (opt == TCPOPT_NOP)
2788 			optlen = 1;
2789 		else {
2790 			if (cnt < 2)
2791 				break;
2792 			optlen = cp[1];
2793 			if (optlen < 2 || optlen > cnt)
2794 				break;
2795 		}
2796 		switch (opt) {
2797 		case TCPOPT_MAXSEG:
2798 			if (optlen != TCPOLEN_MAXSEG)
2799 				continue;
2800 			if (!is_syn)
2801 				continue;
2802 			to->to_flags |= TOF_MSS;
2803 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2804 			to->to_mss = ntohs(to->to_mss);
2805 			break;
2806 		case TCPOPT_WINDOW:
2807 			if (optlen != TCPOLEN_WINDOW)
2808 				continue;
2809 			if (!is_syn)
2810 				continue;
2811 			to->to_flags |= TOF_SCALE;
2812 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2813 			break;
2814 		case TCPOPT_TIMESTAMP:
2815 			if (optlen != TCPOLEN_TIMESTAMP)
2816 				continue;
2817 			to->to_flags |= TOF_TS;
2818 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2819 			to->to_tsval = ntohl(to->to_tsval);
2820 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2821 			to->to_tsecr = ntohl(to->to_tsecr);
2822 			/*
2823 			 * If echoed timestamp is later than the current time,
2824 			 * fall back to non RFC1323 RTT calculation.
2825 			 */
2826 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2827 				to->to_tsecr = 0;
2828 			break;
2829 		case TCPOPT_CC:
2830 			if (optlen != TCPOLEN_CC)
2831 				continue;
2832 			to->to_flags |= TOF_CC;
2833 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2834 			to->to_cc = ntohl(to->to_cc);
2835 			break;
2836 		case TCPOPT_CCNEW:
2837 			if (optlen != TCPOLEN_CC)
2838 				continue;
2839 			if (!is_syn)
2840 				continue;
2841 			to->to_flags |= TOF_CCNEW;
2842 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2843 			to->to_cc = ntohl(to->to_cc);
2844 			break;
2845 		case TCPOPT_CCECHO:
2846 			if (optlen != TCPOLEN_CC)
2847 				continue;
2848 			if (!is_syn)
2849 				continue;
2850 			to->to_flags |= TOF_CCECHO;
2851 			bcopy(cp + 2, &to->to_ccecho, sizeof to->to_ccecho);
2852 			to->to_ccecho = ntohl(to->to_ccecho);
2853 			break;
2854 		case TCPOPT_SACK_PERMITTED:
2855 			if (optlen != TCPOLEN_SACK_PERMITTED)
2856 				continue;
2857 			if (!is_syn)
2858 				continue;
2859 			to->to_flags |= TOF_SACK_PERMITTED;
2860 			break;
2861 		case TCPOPT_SACK:
2862 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2863 				continue;
2864 			to->to_nsackblocks = (optlen - 2) / 8;
2865 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2866 			to->to_flags |= TOF_SACK;
2867 			for (i = 0; i < to->to_nsackblocks; i++) {
2868 				struct raw_sackblock *r = &to->to_sackblocks[i];
2869 
2870 				r->rblk_start = ntohl(r->rblk_start);
2871 				r->rblk_end = ntohl(r->rblk_end);
2872 			}
2873 			break;
2874 		default:
2875 			continue;
2876 		}
2877 	}
2878 }
2879 
2880 /*
2881  * Pull out of band byte out of a segment so
2882  * it doesn't appear in the user's data queue.
2883  * It is still reflected in the segment length for
2884  * sequencing purposes.
2885  * "off" is the delayed to be dropped hdrlen.
2886  */
2887 static void
2888 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2889 {
2890 	int cnt = off + th->th_urp - 1;
2891 
2892 	while (cnt >= 0) {
2893 		if (m->m_len > cnt) {
2894 			char *cp = mtod(m, caddr_t) + cnt;
2895 			struct tcpcb *tp = sototcpcb(so);
2896 
2897 			tp->t_iobc = *cp;
2898 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2899 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2900 			m->m_len--;
2901 			if (m->m_flags & M_PKTHDR)
2902 				m->m_pkthdr.len--;
2903 			return;
2904 		}
2905 		cnt -= m->m_len;
2906 		m = m->m_next;
2907 		if (m == 0)
2908 			break;
2909 	}
2910 	panic("tcp_pulloutofband");
2911 }
2912 
2913 /*
2914  * Collect new round-trip time estimate
2915  * and update averages and current timeout.
2916  */
2917 static void
2918 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2919 {
2920 	int delta;
2921 
2922 	tcpstat.tcps_rttupdated++;
2923 	tp->t_rttupdated++;
2924 	if (tp->t_srtt != 0) {
2925 		/*
2926 		 * srtt is stored as fixed point with 5 bits after the
2927 		 * binary point (i.e., scaled by 8).  The following magic
2928 		 * is equivalent to the smoothing algorithm in rfc793 with
2929 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2930 		 * point).  Adjust rtt to origin 0.
2931 		 */
2932 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2933 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2934 
2935 		if ((tp->t_srtt += delta) <= 0)
2936 			tp->t_srtt = 1;
2937 
2938 		/*
2939 		 * We accumulate a smoothed rtt variance (actually, a
2940 		 * smoothed mean difference), then set the retransmit
2941 		 * timer to smoothed rtt + 4 times the smoothed variance.
2942 		 * rttvar is stored as fixed point with 4 bits after the
2943 		 * binary point (scaled by 16).  The following is
2944 		 * equivalent to rfc793 smoothing with an alpha of .75
2945 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2946 		 * rfc793's wired-in beta.
2947 		 */
2948 		if (delta < 0)
2949 			delta = -delta;
2950 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2951 		if ((tp->t_rttvar += delta) <= 0)
2952 			tp->t_rttvar = 1;
2953 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2954 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2955 	} else {
2956 		/*
2957 		 * No rtt measurement yet - use the unsmoothed rtt.
2958 		 * Set the variance to half the rtt (so our first
2959 		 * retransmit happens at 3*rtt).
2960 		 */
2961 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2962 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2963 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2964 	}
2965 	tp->t_rtttime = 0;
2966 	tp->t_rxtshift = 0;
2967 
2968 	/*
2969 	 * the retransmit should happen at rtt + 4 * rttvar.
2970 	 * Because of the way we do the smoothing, srtt and rttvar
2971 	 * will each average +1/2 tick of bias.  When we compute
2972 	 * the retransmit timer, we want 1/2 tick of rounding and
2973 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2974 	 * firing of the timer.  The bias will give us exactly the
2975 	 * 1.5 tick we need.  But, because the bias is
2976 	 * statistical, we have to test that we don't drop below
2977 	 * the minimum feasible timer (which is 2 ticks).
2978 	 */
2979 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2980 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2981 
2982 	/*
2983 	 * We received an ack for a packet that wasn't retransmitted;
2984 	 * it is probably safe to discard any error indications we've
2985 	 * received recently.  This isn't quite right, but close enough
2986 	 * for now (a route might have failed after we sent a segment,
2987 	 * and the return path might not be symmetrical).
2988 	 */
2989 	tp->t_softerror = 0;
2990 }
2991 
2992 /*
2993  * Determine a reasonable value for maxseg size.
2994  * If the route is known, check route for mtu.
2995  * If none, use an mss that can be handled on the outgoing
2996  * interface without forcing IP to fragment; if bigger than
2997  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2998  * to utilize large mbufs.  If no route is found, route has no mtu,
2999  * or the destination isn't local, use a default, hopefully conservative
3000  * size (usually 512 or the default IP max size, but no more than the mtu
3001  * of the interface), as we can't discover anything about intervening
3002  * gateways or networks.  We also initialize the congestion/slow start
3003  * window to be a single segment if the destination isn't local.
3004  * While looking at the routing entry, we also initialize other path-dependent
3005  * parameters from pre-set or cached values in the routing entry.
3006  *
3007  * Also take into account the space needed for options that we
3008  * send regularly.  Make maxseg shorter by that amount to assure
3009  * that we can send maxseg amount of data even when the options
3010  * are present.  Store the upper limit of the length of options plus
3011  * data in maxopd.
3012  *
3013  * NOTE that this routine is only called when we process an incoming
3014  * segment, for outgoing segments only tcp_mssopt is called.
3015  *
3016  * In case of T/TCP, we call this routine during implicit connection
3017  * setup as well (offer = -1), to initialize maxseg from the cached
3018  * MSS of our peer.
3019  */
3020 void
3021 tcp_mss(struct tcpcb *tp, int offer)
3022 {
3023 	struct rtentry *rt;
3024 	struct ifnet *ifp;
3025 	int rtt, mss;
3026 	u_long bufsize;
3027 	struct inpcb *inp = tp->t_inpcb;
3028 	struct socket *so;
3029 	struct rmxp_tao *taop;
3030 	int origoffer = offer;
3031 #ifdef INET6
3032 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3033 	size_t min_protoh = isipv6 ?
3034 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3035 			    sizeof(struct tcpiphdr);
3036 #else
3037 	const boolean_t isipv6 = FALSE;
3038 	const size_t min_protoh = sizeof(struct tcpiphdr);
3039 #endif
3040 
3041 	if (isipv6)
3042 		rt = tcp_rtlookup6(&inp->inp_inc);
3043 	else
3044 		rt = tcp_rtlookup(&inp->inp_inc);
3045 	if (rt == NULL) {
3046 		tp->t_maxopd = tp->t_maxseg =
3047 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3048 		return;
3049 	}
3050 	ifp = rt->rt_ifp;
3051 	so = inp->inp_socket;
3052 
3053 	taop = rmx_taop(rt->rt_rmx);
3054 
3055 	/*
3056 	 * Offer == -1 means that we didn't receive SYN yet,
3057 	 * use cached value in that case;
3058 	 */
3059 	if (offer == -1)
3060 		offer = taop->tao_mssopt;
3061 
3062 	/*
3063 	 * Offer == 0 means that there was no MSS on the SYN segment,
3064 	 * in this case we use either the interface mtu or tcp_mssdflt.
3065 	 *
3066 	 * An offer which is too large will be cut down later.
3067 	 */
3068 	if (offer == 0) {
3069 		if (isipv6) {
3070 			if (in6_localaddr(&inp->in6p_faddr)) {
3071 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
3072 					min_protoh;
3073 			} else {
3074 				offer = tcp_v6mssdflt;
3075 			}
3076 		} else {
3077 			if (in_localaddr(inp->inp_faddr))
3078 				offer = ifp->if_mtu - min_protoh;
3079 			else
3080 				offer = tcp_mssdflt;
3081 		}
3082 	}
3083 
3084 	/*
3085 	 * Prevent DoS attack with too small MSS. Round up
3086 	 * to at least minmss.
3087 	 *
3088 	 * Sanity check: make sure that maxopd will be large
3089 	 * enough to allow some data on segments even is the
3090 	 * all the option space is used (40bytes).  Otherwise
3091 	 * funny things may happen in tcp_output.
3092 	 */
3093 	offer = max(offer, tcp_minmss);
3094 	offer = max(offer, 64);
3095 
3096 	taop->tao_mssopt = offer;
3097 
3098 	/*
3099 	 * While we're here, check if there's an initial rtt
3100 	 * or rttvar.  Convert from the route-table units
3101 	 * to scaled multiples of the slow timeout timer.
3102 	 */
3103 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3104 		/*
3105 		 * XXX the lock bit for RTT indicates that the value
3106 		 * is also a minimum value; this is subject to time.
3107 		 */
3108 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3109 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3110 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3111 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3112 		tcpstat.tcps_usedrtt++;
3113 		if (rt->rt_rmx.rmx_rttvar) {
3114 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3115 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3116 			tcpstat.tcps_usedrttvar++;
3117 		} else {
3118 			/* default variation is +- 1 rtt */
3119 			tp->t_rttvar =
3120 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3121 		}
3122 		TCPT_RANGESET(tp->t_rxtcur,
3123 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3124 			      tp->t_rttmin, TCPTV_REXMTMAX);
3125 	}
3126 
3127 	/*
3128 	 * if there's an mtu associated with the route, use it
3129 	 * else, use the link mtu.  Take the smaller of mss or offer
3130 	 * as our final mss.
3131 	 */
3132 	if (rt->rt_rmx.rmx_mtu) {
3133 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
3134 	} else {
3135 		if (isipv6)
3136 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3137 		else
3138 			mss = ifp->if_mtu - min_protoh;
3139 	}
3140 	mss = min(mss, offer);
3141 
3142 	/*
3143 	 * maxopd stores the maximum length of data AND options
3144 	 * in a segment; maxseg is the amount of data in a normal
3145 	 * segment.  We need to store this value (maxopd) apart
3146 	 * from maxseg, because now every segment carries options
3147 	 * and thus we normally have somewhat less data in segments.
3148 	 */
3149 	tp->t_maxopd = mss;
3150 
3151 	/*
3152 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
3153 	 * were received yet.  In this case we just guess, otherwise
3154 	 * we do the same as before T/TCP.
3155 	 */
3156 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3157 	    (origoffer == -1 ||
3158 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3159 		mss -= TCPOLEN_TSTAMP_APPA;
3160 	if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
3161 	    (origoffer == -1 ||
3162 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
3163 		mss -= TCPOLEN_CC_APPA;
3164 
3165 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3166 		if (mss > MCLBYTES)
3167 			mss &= ~(MCLBYTES-1);
3168 #else
3169 		if (mss > MCLBYTES)
3170 			mss = mss / MCLBYTES * MCLBYTES;
3171 #endif
3172 	/*
3173 	 * If there's a pipesize, change the socket buffer
3174 	 * to that size.  Make the socket buffers an integral
3175 	 * number of mss units; if the mss is larger than
3176 	 * the socket buffer, decrease the mss.
3177 	 */
3178 #ifdef RTV_SPIPE
3179 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3180 #endif
3181 		bufsize = so->so_snd.ssb_hiwat;
3182 	if (bufsize < mss)
3183 		mss = bufsize;
3184 	else {
3185 		bufsize = roundup(bufsize, mss);
3186 		if (bufsize > sb_max)
3187 			bufsize = sb_max;
3188 		if (bufsize > so->so_snd.ssb_hiwat)
3189 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3190 	}
3191 	tp->t_maxseg = mss;
3192 
3193 #ifdef RTV_RPIPE
3194 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3195 #endif
3196 		bufsize = so->so_rcv.ssb_hiwat;
3197 	if (bufsize > mss) {
3198 		bufsize = roundup(bufsize, mss);
3199 		if (bufsize > sb_max)
3200 			bufsize = sb_max;
3201 		if (bufsize > so->so_rcv.ssb_hiwat)
3202 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3203 	}
3204 
3205 	/*
3206 	 * Set the slow-start flight size depending on whether this
3207 	 * is a local network or not.
3208 	 */
3209 	if (tcp_do_rfc3390)
3210 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3211 	else
3212 		tp->snd_cwnd = mss;
3213 
3214 	if (rt->rt_rmx.rmx_ssthresh) {
3215 		/*
3216 		 * There's some sort of gateway or interface
3217 		 * buffer limit on the path.  Use this to set
3218 		 * the slow start threshhold, but set the
3219 		 * threshold to no less than 2*mss.
3220 		 */
3221 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3222 		tcpstat.tcps_usedssthresh++;
3223 	}
3224 }
3225 
3226 /*
3227  * Determine the MSS option to send on an outgoing SYN.
3228  */
3229 int
3230 tcp_mssopt(struct tcpcb *tp)
3231 {
3232 	struct rtentry *rt;
3233 #ifdef INET6
3234 	boolean_t isipv6 =
3235 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3236 	int min_protoh = isipv6 ?
3237 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3238 			     sizeof(struct tcpiphdr);
3239 #else
3240 	const boolean_t isipv6 = FALSE;
3241 	const size_t min_protoh = sizeof(struct tcpiphdr);
3242 #endif
3243 
3244 	if (isipv6)
3245 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3246 	else
3247 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3248 	if (rt == NULL)
3249 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3250 
3251 	return (rt->rt_ifp->if_mtu - min_protoh);
3252 }
3253 
3254 /*
3255  * When a partial ack arrives, force the retransmission of the
3256  * next unacknowledged segment.  Do not exit Fast Recovery.
3257  *
3258  * Implement the Slow-but-Steady variant of NewReno by restarting the
3259  * the retransmission timer.  Turn it off here so it can be restarted
3260  * later in tcp_output().
3261  */
3262 static void
3263 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3264 {
3265 	tcp_seq old_snd_nxt = tp->snd_nxt;
3266 	u_long ocwnd = tp->snd_cwnd;
3267 
3268 	tcp_callout_stop(tp, tp->tt_rexmt);
3269 	tp->t_rtttime = 0;
3270 	tp->snd_nxt = th->th_ack;
3271 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3272 	tp->snd_cwnd = tp->t_maxseg;
3273 	tp->t_flags |= TF_ACKNOW;
3274 	tcp_output(tp);
3275 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3276 		tp->snd_nxt = old_snd_nxt;
3277 	/* partial window deflation */
3278 	if (ocwnd > acked)
3279 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3280 	else
3281 		tp->snd_cwnd = tp->t_maxseg;
3282 }
3283 
3284 /*
3285  * In contrast to the Slow-but-Steady NewReno variant,
3286  * we do not reset the retransmission timer for SACK retransmissions,
3287  * except when retransmitting snd_una.
3288  */
3289 static void
3290 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3291 {
3292 	uint32_t pipe, seglen;
3293 	tcp_seq nextrexmt;
3294 	boolean_t lostdup;
3295 	tcp_seq old_snd_nxt = tp->snd_nxt;
3296 	u_long ocwnd = tp->snd_cwnd;
3297 	int nseg = 0;		/* consecutive new segments */
3298 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3299 
3300 	tp->t_rtttime = 0;
3301 	pipe = tcp_sack_compute_pipe(tp);
3302 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3303 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3304 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3305 		uint32_t sent;
3306 		tcp_seq old_snd_max;
3307 		int error;
3308 
3309 		if (nextrexmt == tp->snd_max)
3310 			++nseg;
3311 		tp->snd_nxt = nextrexmt;
3312 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3313 		old_snd_max = tp->snd_max;
3314 		if (nextrexmt == tp->snd_una)
3315 			tcp_callout_stop(tp, tp->tt_rexmt);
3316 		error = tcp_output(tp);
3317 		if (error != 0)
3318 			break;
3319 		sent = tp->snd_nxt - nextrexmt;
3320 		if (sent <= 0)
3321 			break;
3322 		if (!lostdup)
3323 			pipe += sent;
3324 		tcpstat.tcps_sndsackpack++;
3325 		tcpstat.tcps_sndsackbyte += sent;
3326 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3327 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3328 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3329 	}
3330 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3331 		tp->snd_nxt = old_snd_nxt;
3332 	tp->snd_cwnd = ocwnd;
3333 }
3334