xref: /dragonfly/sys/netinet/tcp_subr.c (revision 1d1731fa)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
35  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.8 2003/08/23 11:18:00 rob Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #ifdef INET6
51 #include <sys/domain.h>
52 #endif
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 
59 #include <vm/vm_zone.h>
60 
61 #include <net/route.h>
62 #include <net/if.h>
63 
64 #define _IP_VHL
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #define	IPSEC
107 #endif /*FAST_IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146     &tcbinfo.ipi_count, 0, "Number of active PCBs");
147 
148 static int	icmp_may_rst = 1;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151 
152 static int	tcp_isn_reseed_interval = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155 
156 /*
157  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158  * 1024 exists only for debugging.  A good production default would be
159  * something like 6100.
160  */
161 static int     tcp_inflight_enable = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164 
165 static int     tcp_inflight_debug = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168 
169 static int     tcp_inflight_min = 6144;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172 
173 static int     tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176 
177 static int     tcp_inflight_stab = 20;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
179     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
180 
181 static void	tcp_cleartaocache (void);
182 static void	tcp_notify (struct inpcb *, int);
183 
184 /*
185  * Target size of TCP PCB hash tables. Must be a power of two.
186  *
187  * Note that this can be overridden by the kernel environment
188  * variable net.inet.tcp.tcbhashsize
189  */
190 #ifndef TCBHASHSIZE
191 #define TCBHASHSIZE	512
192 #endif
193 
194 /*
195  * This is the actual shape of what we allocate using the zone
196  * allocator.  Doing it this way allows us to protect both structures
197  * using the same generation count, and also eliminates the overhead
198  * of allocating tcpcbs separately.  By hiding the structure here,
199  * we avoid changing most of the rest of the code (although it needs
200  * to be changed, eventually, for greater efficiency).
201  */
202 #define	ALIGNMENT	32
203 #define	ALIGNM1		(ALIGNMENT - 1)
204 struct	inp_tp {
205 	union {
206 		struct	inpcb inp;
207 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
208 	} inp_tp_u;
209 	struct	tcpcb tcb;
210 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
211 	struct	callout inp_tp_delack;
212 };
213 #undef ALIGNMENT
214 #undef ALIGNM1
215 
216 /*
217  * Tcp initialization
218  */
219 void
220 tcp_init()
221 {
222 	int hashsize = TCBHASHSIZE;
223 
224 	tcp_ccgen = 1;
225 	tcp_cleartaocache();
226 
227 	tcp_delacktime = TCPTV_DELACK;
228 	tcp_keepinit = TCPTV_KEEP_INIT;
229 	tcp_keepidle = TCPTV_KEEP_IDLE;
230 	tcp_keepintvl = TCPTV_KEEPINTVL;
231 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
232 	tcp_msl = TCPTV_MSL;
233 	tcp_rexmit_min = TCPTV_MIN;
234 	tcp_rexmit_slop = TCPTV_CPU_VAR;
235 
236 	LIST_INIT(&tcb);
237 	tcbinfo.listhead = &tcb;
238 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
239 	if (!powerof2(hashsize)) {
240 		printf("WARNING: TCB hash size not a power of 2\n");
241 		hashsize = 512; /* safe default */
242 	}
243 	tcp_tcbhashsize = hashsize;
244 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
245 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
246 					&tcbinfo.porthashmask);
247 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
248 				 ZONE_INTERRUPT, 0);
249 #ifdef INET6
250 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
251 #else /* INET6 */
252 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
253 #endif /* INET6 */
254 	if (max_protohdr < TCP_MINPROTOHDR)
255 		max_protohdr = TCP_MINPROTOHDR;
256 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
257 		panic("tcp_init");
258 #undef TCP_MINPROTOHDR
259 
260 	syncache_init();
261 }
262 
263 /*
264  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
265  * tcp_template used to store this data in mbufs, but we now recopy it out
266  * of the tcpcb each time to conserve mbufs.
267  */
268 void
269 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
270 	struct tcpcb *tp;
271 	void *ip_ptr;
272 	void *tcp_ptr;
273 {
274 	struct inpcb *inp = tp->t_inpcb;
275 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
276 
277 #ifdef INET6
278 	if ((inp->inp_vflag & INP_IPV6) != 0) {
279 		struct ip6_hdr *ip6;
280 
281 		ip6 = (struct ip6_hdr *)ip_ptr;
282 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
283 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
284 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
285 			(IPV6_VERSION & IPV6_VERSION_MASK);
286 		ip6->ip6_nxt = IPPROTO_TCP;
287 		ip6->ip6_plen = sizeof(struct tcphdr);
288 		ip6->ip6_src = inp->in6p_laddr;
289 		ip6->ip6_dst = inp->in6p_faddr;
290 		tcp_hdr->th_sum = 0;
291 	} else
292 #endif
293 	{
294 	struct ip *ip = (struct ip *) ip_ptr;
295 
296 	ip->ip_vhl = IP_VHL_BORING;
297 	ip->ip_tos = 0;
298 	ip->ip_len = 0;
299 	ip->ip_id = 0;
300 	ip->ip_off = 0;
301 	ip->ip_ttl = 0;
302 	ip->ip_sum = 0;
303 	ip->ip_p = IPPROTO_TCP;
304 	ip->ip_src = inp->inp_laddr;
305 	ip->ip_dst = inp->inp_faddr;
306 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
307 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
308 	}
309 
310 	tcp_hdr->th_sport = inp->inp_lport;
311 	tcp_hdr->th_dport = inp->inp_fport;
312 	tcp_hdr->th_seq = 0;
313 	tcp_hdr->th_ack = 0;
314 	tcp_hdr->th_x2 = 0;
315 	tcp_hdr->th_off = 5;
316 	tcp_hdr->th_flags = 0;
317 	tcp_hdr->th_win = 0;
318 	tcp_hdr->th_urp = 0;
319 }
320 
321 /*
322  * Create template to be used to send tcp packets on a connection.
323  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
324  * use for this function is in keepalives, which use tcp_respond.
325  */
326 struct tcptemp *
327 tcp_maketemplate(tp)
328 	struct tcpcb *tp;
329 {
330 	struct mbuf *m;
331 	struct tcptemp *n;
332 
333 	m = m_get(M_DONTWAIT, MT_HEADER);
334 	if (m == NULL)
335 		return (0);
336 	m->m_len = sizeof(struct tcptemp);
337 	n = mtod(m, struct tcptemp *);
338 
339 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
340 	return (n);
341 }
342 
343 /*
344  * Send a single message to the TCP at address specified by
345  * the given TCP/IP header.  If m == 0, then we make a copy
346  * of the tcpiphdr at ti and send directly to the addressed host.
347  * This is used to force keep alive messages out using the TCP
348  * template for a connection.  If flags are given then we send
349  * a message back to the TCP which originated the * segment ti,
350  * and discard the mbuf containing it and any other attached mbufs.
351  *
352  * In any case the ack and sequence number of the transmitted
353  * segment are as specified by the parameters.
354  *
355  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
356  */
357 void
358 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
359 	struct tcpcb *tp;
360 	void *ipgen;
361 	struct tcphdr *th;
362 	struct mbuf *m;
363 	tcp_seq ack, seq;
364 	int flags;
365 {
366 	int tlen;
367 	int win = 0;
368 	struct route *ro = 0;
369 	struct route sro;
370 	struct ip *ip;
371 	struct tcphdr *nth;
372 #ifdef INET6
373 	struct route_in6 *ro6 = 0;
374 	struct route_in6 sro6;
375 	struct ip6_hdr *ip6;
376 	int isipv6;
377 #endif /* INET6 */
378 	int ipflags = 0;
379 
380 #ifdef INET6
381 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
382 	ip6 = ipgen;
383 #endif /* INET6 */
384 	ip = ipgen;
385 
386 	if (tp) {
387 		if (!(flags & TH_RST)) {
388 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
389 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
390 				win = (long)TCP_MAXWIN << tp->rcv_scale;
391 		}
392 #ifdef INET6
393 		if (isipv6)
394 			ro6 = &tp->t_inpcb->in6p_route;
395 		else
396 #endif /* INET6 */
397 		ro = &tp->t_inpcb->inp_route;
398 	} else {
399 #ifdef INET6
400 		if (isipv6) {
401 			ro6 = &sro6;
402 			bzero(ro6, sizeof *ro6);
403 		} else
404 #endif /* INET6 */
405 	      {
406 		ro = &sro;
407 		bzero(ro, sizeof *ro);
408 	      }
409 	}
410 	if (m == 0) {
411 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
412 		if (m == NULL)
413 			return;
414 		tlen = 0;
415 		m->m_data += max_linkhdr;
416 #ifdef INET6
417 		if (isipv6) {
418 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
419 			      sizeof(struct ip6_hdr));
420 			ip6 = mtod(m, struct ip6_hdr *);
421 			nth = (struct tcphdr *)(ip6 + 1);
422 		} else
423 #endif /* INET6 */
424 	      {
425 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
426 		ip = mtod(m, struct ip *);
427 		nth = (struct tcphdr *)(ip + 1);
428 	      }
429 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
430 		flags = TH_ACK;
431 	} else {
432 		m_freem(m->m_next);
433 		m->m_next = 0;
434 		m->m_data = (caddr_t)ipgen;
435 		/* m_len is set later */
436 		tlen = 0;
437 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
438 #ifdef INET6
439 		if (isipv6) {
440 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
441 			nth = (struct tcphdr *)(ip6 + 1);
442 		} else
443 #endif /* INET6 */
444 	      {
445 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
446 		nth = (struct tcphdr *)(ip + 1);
447 	      }
448 		if (th != nth) {
449 			/*
450 			 * this is usually a case when an extension header
451 			 * exists between the IPv6 header and the
452 			 * TCP header.
453 			 */
454 			nth->th_sport = th->th_sport;
455 			nth->th_dport = th->th_dport;
456 		}
457 		xchg(nth->th_dport, nth->th_sport, n_short);
458 #undef xchg
459 	}
460 #ifdef INET6
461 	if (isipv6) {
462 		ip6->ip6_flow = 0;
463 		ip6->ip6_vfc = IPV6_VERSION;
464 		ip6->ip6_nxt = IPPROTO_TCP;
465 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
466 						tlen));
467 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
468 	} else
469 #endif
470       {
471 	tlen += sizeof (struct tcpiphdr);
472 	ip->ip_len = tlen;
473 	ip->ip_ttl = ip_defttl;
474       }
475 	m->m_len = tlen;
476 	m->m_pkthdr.len = tlen;
477 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
478 	nth->th_seq = htonl(seq);
479 	nth->th_ack = htonl(ack);
480 	nth->th_x2 = 0;
481 	nth->th_off = sizeof (struct tcphdr) >> 2;
482 	nth->th_flags = flags;
483 	if (tp)
484 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
485 	else
486 		nth->th_win = htons((u_short)win);
487 	nth->th_urp = 0;
488 #ifdef INET6
489 	if (isipv6) {
490 		nth->th_sum = 0;
491 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
492 					sizeof(struct ip6_hdr),
493 					tlen - sizeof(struct ip6_hdr));
494 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
495 					       ro6 && ro6->ro_rt ?
496 					       ro6->ro_rt->rt_ifp :
497 					       NULL);
498 	} else
499 #endif /* INET6 */
500       {
501         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
502 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
503         m->m_pkthdr.csum_flags = CSUM_TCP;
504         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
505       }
506 #ifdef TCPDEBUG
507 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
508 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
509 #endif
510 #ifdef INET6
511 	if (isipv6) {
512 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
513 			tp ? tp->t_inpcb : NULL);
514 		if (ro6 == &sro6 && ro6->ro_rt) {
515 			RTFREE(ro6->ro_rt);
516 			ro6->ro_rt = NULL;
517 		}
518 	} else
519 #endif /* INET6 */
520       {
521 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
522 	if (ro == &sro && ro->ro_rt) {
523 		RTFREE(ro->ro_rt);
524 		ro->ro_rt = NULL;
525 	}
526       }
527 }
528 
529 /*
530  * Create a new TCP control block, making an
531  * empty reassembly queue and hooking it to the argument
532  * protocol control block.  The `inp' parameter must have
533  * come from the zone allocator set up in tcp_init().
534  */
535 struct tcpcb *
536 tcp_newtcpcb(inp)
537 	struct inpcb *inp;
538 {
539 	struct inp_tp *it;
540 	struct tcpcb *tp;
541 #ifdef INET6
542 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
543 #endif /* INET6 */
544 
545 	it = (struct inp_tp *)inp;
546 	tp = &it->tcb;
547 	bzero((char *) tp, sizeof(struct tcpcb));
548 	LIST_INIT(&tp->t_segq);
549 	tp->t_maxseg = tp->t_maxopd =
550 #ifdef INET6
551 		isipv6 ? tcp_v6mssdflt :
552 #endif /* INET6 */
553 		tcp_mssdflt;
554 
555 	/* Set up our timeouts. */
556 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
557 	callout_init(tp->tt_persist = &it->inp_tp_persist);
558 	callout_init(tp->tt_keep = &it->inp_tp_keep);
559 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
560 	callout_init(tp->tt_delack = &it->inp_tp_delack);
561 
562 	if (tcp_do_rfc1323)
563 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
564 	if (tcp_do_rfc1644)
565 		tp->t_flags |= TF_REQ_CC;
566 	tp->t_inpcb = inp;	/* XXX */
567 	/*
568 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
569 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
570 	 * reasonable initial retransmit time.
571 	 */
572 	tp->t_srtt = TCPTV_SRTTBASE;
573 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
574 	tp->t_rttmin = tcp_rexmit_min;
575 	tp->t_rxtcur = TCPTV_RTOBASE;
576 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
577 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
578 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
579 	tp->t_rcvtime = ticks;
580 	tp->t_bw_rtttime = ticks;
581         /*
582 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
583 	 * because the socket may be bound to an IPv6 wildcard address,
584 	 * which may match an IPv4-mapped IPv6 address.
585 	 */
586 	inp->inp_ip_ttl = ip_defttl;
587 	inp->inp_ppcb = (caddr_t)tp;
588 	return (tp);		/* XXX */
589 }
590 
591 /*
592  * Drop a TCP connection, reporting
593  * the specified error.  If connection is synchronized,
594  * then send a RST to peer.
595  */
596 struct tcpcb *
597 tcp_drop(tp, errno)
598 	struct tcpcb *tp;
599 	int errno;
600 {
601 	struct socket *so = tp->t_inpcb->inp_socket;
602 
603 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
604 		tp->t_state = TCPS_CLOSED;
605 		(void) tcp_output(tp);
606 		tcpstat.tcps_drops++;
607 	} else
608 		tcpstat.tcps_conndrops++;
609 	if (errno == ETIMEDOUT && tp->t_softerror)
610 		errno = tp->t_softerror;
611 	so->so_error = errno;
612 	return (tcp_close(tp));
613 }
614 
615 /*
616  * Close a TCP control block:
617  *	discard all space held by the tcp
618  *	discard internet protocol block
619  *	wake up any sleepers
620  */
621 struct tcpcb *
622 tcp_close(tp)
623 	struct tcpcb *tp;
624 {
625 	struct tseg_qent *q;
626 	struct inpcb *inp = tp->t_inpcb;
627 	struct socket *so = inp->inp_socket;
628 #ifdef INET6
629 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
630 #endif /* INET6 */
631 	struct rtentry *rt;
632 	int dosavessthresh;
633 
634 	/*
635 	 * Make sure that all of our timers are stopped before we
636 	 * delete the PCB.
637 	 */
638 	callout_stop(tp->tt_rexmt);
639 	callout_stop(tp->tt_persist);
640 	callout_stop(tp->tt_keep);
641 	callout_stop(tp->tt_2msl);
642 	callout_stop(tp->tt_delack);
643 
644 	/*
645 	 * If we got enough samples through the srtt filter,
646 	 * save the rtt and rttvar in the routing entry.
647 	 * 'Enough' is arbitrarily defined as the 16 samples.
648 	 * 16 samples is enough for the srtt filter to converge
649 	 * to within 5% of the correct value; fewer samples and
650 	 * we could save a very bogus rtt.
651 	 *
652 	 * Don't update the default route's characteristics and don't
653 	 * update anything that the user "locked".
654 	 */
655 	if (tp->t_rttupdated >= 16) {
656 		u_long i = 0;
657 #ifdef INET6
658 		if (isipv6) {
659 			struct sockaddr_in6 *sin6;
660 
661 			if ((rt = inp->in6p_route.ro_rt) == NULL)
662 				goto no_valid_rt;
663 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
664 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
665 				goto no_valid_rt;
666 		}
667 		else
668 #endif /* INET6 */
669 		if ((rt = inp->inp_route.ro_rt) == NULL ||
670 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
671 		    == INADDR_ANY)
672 			goto no_valid_rt;
673 
674 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
675 			i = tp->t_srtt *
676 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
677 			if (rt->rt_rmx.rmx_rtt && i)
678 				/*
679 				 * filter this update to half the old & half
680 				 * the new values, converting scale.
681 				 * See route.h and tcp_var.h for a
682 				 * description of the scaling constants.
683 				 */
684 				rt->rt_rmx.rmx_rtt =
685 				    (rt->rt_rmx.rmx_rtt + i) / 2;
686 			else
687 				rt->rt_rmx.rmx_rtt = i;
688 			tcpstat.tcps_cachedrtt++;
689 		}
690 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
691 			i = tp->t_rttvar *
692 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
693 			if (rt->rt_rmx.rmx_rttvar && i)
694 				rt->rt_rmx.rmx_rttvar =
695 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
696 			else
697 				rt->rt_rmx.rmx_rttvar = i;
698 			tcpstat.tcps_cachedrttvar++;
699 		}
700 		/*
701 		 * The old comment here said:
702 		 * update the pipelimit (ssthresh) if it has been updated
703 		 * already or if a pipesize was specified & the threshhold
704 		 * got below half the pipesize.  I.e., wait for bad news
705 		 * before we start updating, then update on both good
706 		 * and bad news.
707 		 *
708 		 * But we want to save the ssthresh even if no pipesize is
709 		 * specified explicitly in the route, because such
710 		 * connections still have an implicit pipesize specified
711 		 * by the global tcp_sendspace.  In the absence of a reliable
712 		 * way to calculate the pipesize, it will have to do.
713 		 */
714 		i = tp->snd_ssthresh;
715 		if (rt->rt_rmx.rmx_sendpipe != 0)
716 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
717 		else
718 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
719 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
720 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
721 		    || dosavessthresh) {
722 			/*
723 			 * convert the limit from user data bytes to
724 			 * packets then to packet data bytes.
725 			 */
726 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
727 			if (i < 2)
728 				i = 2;
729 			i *= (u_long)(tp->t_maxseg +
730 #ifdef INET6
731 				      (isipv6 ? sizeof (struct ip6_hdr) +
732 					       sizeof (struct tcphdr) :
733 #endif
734 				       sizeof (struct tcpiphdr)
735 #ifdef INET6
736 				       )
737 #endif
738 				      );
739 			if (rt->rt_rmx.rmx_ssthresh)
740 				rt->rt_rmx.rmx_ssthresh =
741 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
742 			else
743 				rt->rt_rmx.rmx_ssthresh = i;
744 			tcpstat.tcps_cachedssthresh++;
745 		}
746 	}
747     no_valid_rt:
748 	/* free the reassembly queue, if any */
749 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
750 		LIST_REMOVE(q, tqe_q);
751 		m_freem(q->tqe_m);
752 		FREE(q, M_TSEGQ);
753 	}
754 	inp->inp_ppcb = NULL;
755 	soisdisconnected(so);
756 #ifdef INET6
757 	if (INP_CHECK_SOCKAF(so, AF_INET6))
758 		in6_pcbdetach(inp);
759 	else
760 #endif /* INET6 */
761 	in_pcbdetach(inp);
762 	tcpstat.tcps_closed++;
763 	return ((struct tcpcb *)0);
764 }
765 
766 void
767 tcp_drain()
768 {
769 	if (do_tcpdrain)
770 	{
771 		struct inpcb *inpb;
772 		struct tcpcb *tcpb;
773 		struct tseg_qent *te;
774 
775 	/*
776 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
777 	 * if there is one...
778 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
779 	 *      reassembly queue should be flushed, but in a situation
780 	 * 	where we're really low on mbufs, this is potentially
781 	 *  	usefull.
782 	 */
783 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
784 			if ((tcpb = intotcpcb(inpb))) {
785 				while ((te = LIST_FIRST(&tcpb->t_segq))
786 			            != NULL) {
787 					LIST_REMOVE(te, tqe_q);
788 					m_freem(te->tqe_m);
789 					FREE(te, M_TSEGQ);
790 				}
791 			}
792 		}
793 
794 	}
795 }
796 
797 /*
798  * Notify a tcp user of an asynchronous error;
799  * store error as soft error, but wake up user
800  * (for now, won't do anything until can select for soft error).
801  *
802  * Do not wake up user since there currently is no mechanism for
803  * reporting soft errors (yet - a kqueue filter may be added).
804  */
805 static void
806 tcp_notify(inp, error)
807 	struct inpcb *inp;
808 	int error;
809 {
810 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
811 
812 	/*
813 	 * Ignore some errors if we are hooked up.
814 	 * If connection hasn't completed, has retransmitted several times,
815 	 * and receives a second error, give up now.  This is better
816 	 * than waiting a long time to establish a connection that
817 	 * can never complete.
818 	 */
819 	if (tp->t_state == TCPS_ESTABLISHED &&
820 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
821 	      error == EHOSTDOWN)) {
822 		return;
823 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
824 	    tp->t_softerror)
825 		tcp_drop(tp, error);
826 	else
827 		tp->t_softerror = error;
828 #if 0
829 	wakeup((caddr_t) &so->so_timeo);
830 	sorwakeup(so);
831 	sowwakeup(so);
832 #endif
833 }
834 
835 static int
836 tcp_pcblist(SYSCTL_HANDLER_ARGS)
837 {
838 	int error, i, n, s;
839 	struct inpcb *inp, **inp_list;
840 	inp_gen_t gencnt;
841 	struct xinpgen xig;
842 
843 	/*
844 	 * The process of preparing the TCB list is too time-consuming and
845 	 * resource-intensive to repeat twice on every request.
846 	 */
847 	if (req->oldptr == 0) {
848 		n = tcbinfo.ipi_count;
849 		req->oldidx = 2 * (sizeof xig)
850 			+ (n + n/8) * sizeof(struct xtcpcb);
851 		return 0;
852 	}
853 
854 	if (req->newptr != 0)
855 		return EPERM;
856 
857 	/*
858 	 * OK, now we're committed to doing something.
859 	 */
860 	s = splnet();
861 	gencnt = tcbinfo.ipi_gencnt;
862 	n = tcbinfo.ipi_count;
863 	splx(s);
864 
865 	xig.xig_len = sizeof xig;
866 	xig.xig_count = n;
867 	xig.xig_gen = gencnt;
868 	xig.xig_sogen = so_gencnt;
869 	error = SYSCTL_OUT(req, &xig, sizeof xig);
870 	if (error)
871 		return error;
872 
873 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
874 	if (inp_list == 0)
875 		return ENOMEM;
876 
877 	s = splnet();
878 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
879 	     inp = LIST_NEXT(inp, inp_list)) {
880 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->td, inp))
881 			inp_list[i++] = inp;
882 	}
883 	splx(s);
884 	n = i;
885 
886 	error = 0;
887 	for (i = 0; i < n; i++) {
888 		inp = inp_list[i];
889 		if (inp->inp_gencnt <= gencnt) {
890 			struct xtcpcb xt;
891 			caddr_t inp_ppcb;
892 			xt.xt_len = sizeof xt;
893 			/* XXX should avoid extra copy */
894 			bcopy(inp, &xt.xt_inp, sizeof *inp);
895 			inp_ppcb = inp->inp_ppcb;
896 			if (inp_ppcb != NULL)
897 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
898 			else
899 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
900 			if (inp->inp_socket)
901 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
902 			error = SYSCTL_OUT(req, &xt, sizeof xt);
903 		}
904 	}
905 	if (!error) {
906 		/*
907 		 * Give the user an updated idea of our state.
908 		 * If the generation differs from what we told
909 		 * her before, she knows that something happened
910 		 * while we were processing this request, and it
911 		 * might be necessary to retry.
912 		 */
913 		s = splnet();
914 		xig.xig_gen = tcbinfo.ipi_gencnt;
915 		xig.xig_sogen = so_gencnt;
916 		xig.xig_count = tcbinfo.ipi_count;
917 		splx(s);
918 		error = SYSCTL_OUT(req, &xig, sizeof xig);
919 	}
920 	free(inp_list, M_TEMP);
921 	return error;
922 }
923 
924 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
925 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
926 
927 static int
928 tcp_getcred(SYSCTL_HANDLER_ARGS)
929 {
930 	struct sockaddr_in addrs[2];
931 	struct inpcb *inp;
932 	int error, s;
933 
934 	error = suser(req->td);
935 	if (error)
936 		return (error);
937 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
938 	if (error)
939 		return (error);
940 	s = splnet();
941 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
942 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
943 	if (inp == NULL || inp->inp_socket == NULL) {
944 		error = ENOENT;
945 		goto out;
946 	}
947 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
948 out:
949 	splx(s);
950 	return (error);
951 }
952 
953 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
954     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
955 
956 #ifdef INET6
957 static int
958 tcp6_getcred(SYSCTL_HANDLER_ARGS)
959 {
960 	struct sockaddr_in6 addrs[2];
961 	struct inpcb *inp;
962 	int error, s, mapped = 0;
963 
964 	error = suser(req->td);
965 	if (error)
966 		return (error);
967 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
968 	if (error)
969 		return (error);
970 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
971 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
972 			mapped = 1;
973 		else
974 			return (EINVAL);
975 	}
976 	s = splnet();
977 	if (mapped == 1)
978 		inp = in_pcblookup_hash(&tcbinfo,
979 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
980 			addrs[1].sin6_port,
981 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
982 			addrs[0].sin6_port,
983 			0, NULL);
984 	else
985 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
986 				 addrs[1].sin6_port,
987 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
988 				 0, NULL);
989 	if (inp == NULL || inp->inp_socket == NULL) {
990 		error = ENOENT;
991 		goto out;
992 	}
993 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
994 			   sizeof(struct ucred));
995 out:
996 	splx(s);
997 	return (error);
998 }
999 
1000 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1001 	    0, 0,
1002 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1003 #endif
1004 
1005 
1006 void
1007 tcp_ctlinput(cmd, sa, vip)
1008 	int cmd;
1009 	struct sockaddr *sa;
1010 	void *vip;
1011 {
1012 	struct ip *ip = vip;
1013 	struct tcphdr *th;
1014 	struct in_addr faddr;
1015 	struct inpcb *inp;
1016 	struct tcpcb *tp;
1017 	void (*notify) (struct inpcb *, int) = tcp_notify;
1018 	tcp_seq icmp_seq;
1019 	int s;
1020 
1021 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1022 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1023 		return;
1024 
1025 	if (cmd == PRC_QUENCH)
1026 		notify = tcp_quench;
1027 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1028 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1029 		notify = tcp_drop_syn_sent;
1030 	else if (cmd == PRC_MSGSIZE)
1031 		notify = tcp_mtudisc;
1032 	else if (PRC_IS_REDIRECT(cmd)) {
1033 		ip = 0;
1034 		notify = in_rtchange;
1035 	} else if (cmd == PRC_HOSTDEAD)
1036 		ip = 0;
1037 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1038 		return;
1039 	if (ip) {
1040 		s = splnet();
1041 		th = (struct tcphdr *)((caddr_t)ip
1042 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1043 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1044 		    ip->ip_src, th->th_sport, 0, NULL);
1045 		if (inp != NULL && inp->inp_socket != NULL) {
1046 			icmp_seq = htonl(th->th_seq);
1047 			tp = intotcpcb(inp);
1048 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1049 			    SEQ_LT(icmp_seq, tp->snd_max))
1050 				(*notify)(inp, inetctlerrmap[cmd]);
1051 		} else {
1052 			struct in_conninfo inc;
1053 
1054 			inc.inc_fport = th->th_dport;
1055 			inc.inc_lport = th->th_sport;
1056 			inc.inc_faddr = faddr;
1057 			inc.inc_laddr = ip->ip_src;
1058 #ifdef INET6
1059 			inc.inc_isipv6 = 0;
1060 #endif
1061 			syncache_unreach(&inc, th);
1062 		}
1063 		splx(s);
1064 	} else
1065 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1066 }
1067 
1068 #ifdef INET6
1069 void
1070 tcp6_ctlinput(cmd, sa, d)
1071 	int cmd;
1072 	struct sockaddr *sa;
1073 	void *d;
1074 {
1075 	struct tcphdr th;
1076 	void (*notify) (struct inpcb *, int) = tcp_notify;
1077 	struct ip6_hdr *ip6;
1078 	struct mbuf *m;
1079 	struct ip6ctlparam *ip6cp = NULL;
1080 	const struct sockaddr_in6 *sa6_src = NULL;
1081 	int off;
1082 	struct tcp_portonly {
1083 		u_int16_t th_sport;
1084 		u_int16_t th_dport;
1085 	} *thp;
1086 
1087 	if (sa->sa_family != AF_INET6 ||
1088 	    sa->sa_len != sizeof(struct sockaddr_in6))
1089 		return;
1090 
1091 	if (cmd == PRC_QUENCH)
1092 		notify = tcp_quench;
1093 	else if (cmd == PRC_MSGSIZE)
1094 		notify = tcp_mtudisc;
1095 	else if (!PRC_IS_REDIRECT(cmd) &&
1096 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1097 		return;
1098 
1099 	/* if the parameter is from icmp6, decode it. */
1100 	if (d != NULL) {
1101 		ip6cp = (struct ip6ctlparam *)d;
1102 		m = ip6cp->ip6c_m;
1103 		ip6 = ip6cp->ip6c_ip6;
1104 		off = ip6cp->ip6c_off;
1105 		sa6_src = ip6cp->ip6c_src;
1106 	} else {
1107 		m = NULL;
1108 		ip6 = NULL;
1109 		off = 0;	/* fool gcc */
1110 		sa6_src = &sa6_any;
1111 	}
1112 
1113 	if (ip6) {
1114 		struct in_conninfo inc;
1115 		/*
1116 		 * XXX: We assume that when IPV6 is non NULL,
1117 		 * M and OFF are valid.
1118 		 */
1119 
1120 		/* check if we can safely examine src and dst ports */
1121 		if (m->m_pkthdr.len < off + sizeof(*thp))
1122 			return;
1123 
1124 		bzero(&th, sizeof(th));
1125 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1126 
1127 		in6_pcbnotify(&tcb, sa, th.th_dport,
1128 		    (struct sockaddr *)ip6cp->ip6c_src,
1129 		    th.th_sport, cmd, notify);
1130 
1131 		inc.inc_fport = th.th_dport;
1132 		inc.inc_lport = th.th_sport;
1133 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1134 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1135 		inc.inc_isipv6 = 1;
1136 		syncache_unreach(&inc, &th);
1137 	} else
1138 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1139 			      0, cmd, notify);
1140 }
1141 #endif /* INET6 */
1142 
1143 
1144 /*
1145  * Following is where TCP initial sequence number generation occurs.
1146  *
1147  * There are two places where we must use initial sequence numbers:
1148  * 1.  In SYN-ACK packets.
1149  * 2.  In SYN packets.
1150  *
1151  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1152  * tcp_syncache.c for details.
1153  *
1154  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1155  * depends on this property.  In addition, these ISNs should be
1156  * unguessable so as to prevent connection hijacking.  To satisfy
1157  * the requirements of this situation, the algorithm outlined in
1158  * RFC 1948 is used to generate sequence numbers.
1159  *
1160  * Implementation details:
1161  *
1162  * Time is based off the system timer, and is corrected so that it
1163  * increases by one megabyte per second.  This allows for proper
1164  * recycling on high speed LANs while still leaving over an hour
1165  * before rollover.
1166  *
1167  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1168  * between seeding of isn_secret.  This is normally set to zero,
1169  * as reseeding should not be necessary.
1170  *
1171  */
1172 
1173 #define ISN_BYTES_PER_SECOND 1048576
1174 
1175 u_char isn_secret[32];
1176 int isn_last_reseed;
1177 MD5_CTX isn_ctx;
1178 
1179 tcp_seq
1180 tcp_new_isn(tp)
1181 	struct tcpcb *tp;
1182 {
1183 	u_int32_t md5_buffer[4];
1184 	tcp_seq new_isn;
1185 
1186 	/* Seed if this is the first use, reseed if requested. */
1187 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1188 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1189 		< (u_int)ticks))) {
1190 		read_random_unlimited(&isn_secret, sizeof(isn_secret));
1191 		isn_last_reseed = ticks;
1192 	}
1193 
1194 	/* Compute the md5 hash and return the ISN. */
1195 	MD5Init(&isn_ctx);
1196 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1197 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1198 #ifdef INET6
1199 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1200 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1201 			  sizeof(struct in6_addr));
1202 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1203 			  sizeof(struct in6_addr));
1204 	} else
1205 #endif
1206 	{
1207 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1208 			  sizeof(struct in_addr));
1209 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1210 			  sizeof(struct in_addr));
1211 	}
1212 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1213 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1214 	new_isn = (tcp_seq) md5_buffer[0];
1215 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1216 	return new_isn;
1217 }
1218 
1219 /*
1220  * When a source quench is received, close congestion window
1221  * to one segment.  We will gradually open it again as we proceed.
1222  */
1223 void
1224 tcp_quench(inp, errno)
1225 	struct inpcb *inp;
1226 	int errno;
1227 {
1228 	struct tcpcb *tp = intotcpcb(inp);
1229 
1230 	if (tp)
1231 		tp->snd_cwnd = tp->t_maxseg;
1232 }
1233 
1234 /*
1235  * When a specific ICMP unreachable message is received and the
1236  * connection state is SYN-SENT, drop the connection.  This behavior
1237  * is controlled by the icmp_may_rst sysctl.
1238  */
1239 void
1240 tcp_drop_syn_sent(inp, errno)
1241 	struct inpcb *inp;
1242 	int errno;
1243 {
1244 	struct tcpcb *tp = intotcpcb(inp);
1245 
1246 	if (tp && tp->t_state == TCPS_SYN_SENT)
1247 		tcp_drop(tp, errno);
1248 }
1249 
1250 /*
1251  * When `need fragmentation' ICMP is received, update our idea of the MSS
1252  * based on the new value in the route.  Also nudge TCP to send something,
1253  * since we know the packet we just sent was dropped.
1254  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1255  */
1256 void
1257 tcp_mtudisc(inp, errno)
1258 	struct inpcb *inp;
1259 	int errno;
1260 {
1261 	struct tcpcb *tp = intotcpcb(inp);
1262 	struct rtentry *rt;
1263 	struct rmxp_tao *taop;
1264 	struct socket *so = inp->inp_socket;
1265 	int offered;
1266 	int mss;
1267 #ifdef INET6
1268 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1269 #endif /* INET6 */
1270 
1271 	if (tp) {
1272 #ifdef INET6
1273 		if (isipv6)
1274 			rt = tcp_rtlookup6(&inp->inp_inc);
1275 		else
1276 #endif /* INET6 */
1277 		rt = tcp_rtlookup(&inp->inp_inc);
1278 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1279 			tp->t_maxopd = tp->t_maxseg =
1280 #ifdef INET6
1281 				isipv6 ? tcp_v6mssdflt :
1282 #endif /* INET6 */
1283 				tcp_mssdflt;
1284 			return;
1285 		}
1286 		taop = rmx_taop(rt->rt_rmx);
1287 		offered = taop->tao_mssopt;
1288 		mss = rt->rt_rmx.rmx_mtu -
1289 #ifdef INET6
1290 			(isipv6 ?
1291 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1292 #endif /* INET6 */
1293 			 sizeof(struct tcpiphdr)
1294 #ifdef INET6
1295 			 )
1296 #endif /* INET6 */
1297 			;
1298 
1299 		if (offered)
1300 			mss = min(mss, offered);
1301 		/*
1302 		 * XXX - The above conditional probably violates the TCP
1303 		 * spec.  The problem is that, since we don't know the
1304 		 * other end's MSS, we are supposed to use a conservative
1305 		 * default.  But, if we do that, then MTU discovery will
1306 		 * never actually take place, because the conservative
1307 		 * default is much less than the MTUs typically seen
1308 		 * on the Internet today.  For the moment, we'll sweep
1309 		 * this under the carpet.
1310 		 *
1311 		 * The conservative default might not actually be a problem
1312 		 * if the only case this occurs is when sending an initial
1313 		 * SYN with options and data to a host we've never talked
1314 		 * to before.  Then, they will reply with an MSS value which
1315 		 * will get recorded and the new parameters should get
1316 		 * recomputed.  For Further Study.
1317 		 */
1318 		if (tp->t_maxopd <= mss)
1319 			return;
1320 		tp->t_maxopd = mss;
1321 
1322 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1323 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1324 			mss -= TCPOLEN_TSTAMP_APPA;
1325 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1326 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1327 			mss -= TCPOLEN_CC_APPA;
1328 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1329 		if (mss > MCLBYTES)
1330 			mss &= ~(MCLBYTES-1);
1331 #else
1332 		if (mss > MCLBYTES)
1333 			mss = mss / MCLBYTES * MCLBYTES;
1334 #endif
1335 		if (so->so_snd.sb_hiwat < mss)
1336 			mss = so->so_snd.sb_hiwat;
1337 
1338 		tp->t_maxseg = mss;
1339 
1340 		tcpstat.tcps_mturesent++;
1341 		tp->t_rtttime = 0;
1342 		tp->snd_nxt = tp->snd_una;
1343 		tcp_output(tp);
1344 	}
1345 }
1346 
1347 /*
1348  * Look-up the routing entry to the peer of this inpcb.  If no route
1349  * is found and it cannot be allocated the return NULL.  This routine
1350  * is called by TCP routines that access the rmx structure and by tcp_mss
1351  * to get the interface MTU.
1352  */
1353 struct rtentry *
1354 tcp_rtlookup(inc)
1355 	struct in_conninfo *inc;
1356 {
1357 	struct route *ro;
1358 	struct rtentry *rt;
1359 
1360 	ro = &inc->inc_route;
1361 	rt = ro->ro_rt;
1362 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1363 		/* No route yet, so try to acquire one */
1364 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1365 			ro->ro_dst.sa_family = AF_INET;
1366 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1367 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1368 			    inc->inc_faddr;
1369 			rtalloc(ro);
1370 			rt = ro->ro_rt;
1371 		}
1372 	}
1373 	return rt;
1374 }
1375 
1376 #ifdef INET6
1377 struct rtentry *
1378 tcp_rtlookup6(inc)
1379 	struct in_conninfo *inc;
1380 {
1381 	struct route_in6 *ro6;
1382 	struct rtentry *rt;
1383 
1384 	ro6 = &inc->inc6_route;
1385 	rt = ro6->ro_rt;
1386 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1387 		/* No route yet, so try to acquire one */
1388 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1389 			ro6->ro_dst.sin6_family = AF_INET6;
1390 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1391 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1392 			rtalloc((struct route *)ro6);
1393 			rt = ro6->ro_rt;
1394 		}
1395 	}
1396 	return rt;
1397 }
1398 #endif /* INET6 */
1399 
1400 #ifdef IPSEC
1401 /* compute ESP/AH header size for TCP, including outer IP header. */
1402 size_t
1403 ipsec_hdrsiz_tcp(tp)
1404 	struct tcpcb *tp;
1405 {
1406 	struct inpcb *inp;
1407 	struct mbuf *m;
1408 	size_t hdrsiz;
1409 	struct ip *ip;
1410 #ifdef INET6
1411 	struct ip6_hdr *ip6;
1412 #endif /* INET6 */
1413 	struct tcphdr *th;
1414 
1415 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1416 		return 0;
1417 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1418 	if (!m)
1419 		return 0;
1420 
1421 #ifdef INET6
1422 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1423 		ip6 = mtod(m, struct ip6_hdr *);
1424 		th = (struct tcphdr *)(ip6 + 1);
1425 		m->m_pkthdr.len = m->m_len =
1426 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1427 		tcp_fillheaders(tp, ip6, th);
1428 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1429 	} else
1430 #endif /* INET6 */
1431       {
1432 	ip = mtod(m, struct ip *);
1433 	th = (struct tcphdr *)(ip + 1);
1434 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1435 	tcp_fillheaders(tp, ip, th);
1436 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1437       }
1438 
1439 	m_free(m);
1440 	return hdrsiz;
1441 }
1442 #endif /*IPSEC*/
1443 
1444 /*
1445  * Return a pointer to the cached information about the remote host.
1446  * The cached information is stored in the protocol specific part of
1447  * the route metrics.
1448  */
1449 struct rmxp_tao *
1450 tcp_gettaocache(inc)
1451 	struct in_conninfo *inc;
1452 {
1453 	struct rtentry *rt;
1454 
1455 #ifdef INET6
1456 	if (inc->inc_isipv6)
1457 		rt = tcp_rtlookup6(inc);
1458 	else
1459 #endif /* INET6 */
1460 	rt = tcp_rtlookup(inc);
1461 
1462 	/* Make sure this is a host route and is up. */
1463 	if (rt == NULL ||
1464 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1465 		return NULL;
1466 
1467 	return rmx_taop(rt->rt_rmx);
1468 }
1469 
1470 /*
1471  * Clear all the TAO cache entries, called from tcp_init.
1472  *
1473  * XXX
1474  * This routine is just an empty one, because we assume that the routing
1475  * routing tables are initialized at the same time when TCP, so there is
1476  * nothing in the cache left over.
1477  */
1478 static void
1479 tcp_cleartaocache()
1480 {
1481 }
1482 
1483 /*
1484  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1485  *
1486  * This code attempts to calculate the bandwidth-delay product as a
1487  * means of determining the optimal window size to maximize bandwidth,
1488  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1489  * routers.  This code also does a fairly good job keeping RTTs in check
1490  * across slow links like modems.  We implement an algorithm which is very
1491  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1492  * transmitter side of a TCP connection and so only effects the transmit
1493  * side of the connection.
1494  *
1495  * BACKGROUND:  TCP makes no provision for the management of buffer space
1496  * at the end points or at the intermediate routers and switches.  A TCP
1497  * stream, whether using NewReno or not, will eventually buffer as
1498  * many packets as it is able and the only reason this typically works is
1499  * due to the fairly small default buffers made available for a connection
1500  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1501  * scaling it is now fairly easy for even a single TCP connection to blow-out
1502  * all available buffer space not only on the local interface, but on
1503  * intermediate routers and switches as well.  NewReno makes a misguided
1504  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1505  * then backing off, then steadily increasing the window again until another
1506  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1507  * is only made worse as network loads increase and the idea of intentionally
1508  * blowing out network buffers is, frankly, a terrible way to manage network
1509  * resources.
1510  *
1511  * It is far better to limit the transmit window prior to the failure
1512  * condition being achieved.  There are two general ways to do this:  First
1513  * you can 'scan' through different transmit window sizes and locate the
1514  * point where the RTT stops increasing, indicating that you have filled the
1515  * pipe, then scan backwards until you note that RTT stops decreasing, then
1516  * repeat ad-infinitum.  This method works in principle but has severe
1517  * implementation issues due to RTT variances, timer granularity, and
1518  * instability in the algorithm which can lead to many false positives and
1519  * create oscillations as well as interact badly with other TCP streams
1520  * implementing the same algorithm.
1521  *
1522  * The second method is to limit the window to the bandwidth delay product
1523  * of the link.  This is the method we implement.  RTT variances and our
1524  * own manipulation of the congestion window, bwnd, can potentially
1525  * destabilize the algorithm.  For this reason we have to stabilize the
1526  * elements used to calculate the window.  We do this by using the minimum
1527  * observed RTT, the long term average of the observed bandwidth, and
1528  * by adding two segments worth of slop.  It isn't perfect but it is able
1529  * to react to changing conditions and gives us a very stable basis on
1530  * which to extend the algorithm.
1531  */
1532 void
1533 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1534 {
1535 	u_long bw;
1536 	u_long bwnd;
1537 	int save_ticks;
1538 
1539 	/*
1540 	 * If inflight_enable is disabled in the middle of a tcp connection,
1541 	 * make sure snd_bwnd is effectively disabled.
1542 	 */
1543 	if (tcp_inflight_enable == 0) {
1544 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1545 		tp->snd_bandwidth = 0;
1546 		return;
1547 	}
1548 
1549 	/*
1550 	 * Figure out the bandwidth.  Due to the tick granularity this
1551 	 * is a very rough number and it MUST be averaged over a fairly
1552 	 * long period of time.  XXX we need to take into account a link
1553 	 * that is not using all available bandwidth, but for now our
1554 	 * slop will ramp us up if this case occurs and the bandwidth later
1555 	 * increases.
1556 	 *
1557 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1558 	 * effectively reset t_bw_rtttime for this case.
1559 	 */
1560 	save_ticks = ticks;
1561 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1562 		return;
1563 
1564 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1565 	    (save_ticks - tp->t_bw_rtttime);
1566 	tp->t_bw_rtttime = save_ticks;
1567 	tp->t_bw_rtseq = ack_seq;
1568 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1569 		return;
1570 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1571 
1572 	tp->snd_bandwidth = bw;
1573 
1574 	/*
1575 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1576 	 * segments.  The additional slop puts us squarely in the sweet
1577 	 * spot and also handles the bandwidth run-up case.  Without the
1578 	 * slop we could be locking ourselves into a lower bandwidth.
1579 	 *
1580 	 * Situations Handled:
1581 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1582 	 *	    high speed LANs, allowing larger TCP buffers to be
1583 	 *	    specified, and also does a good job preventing
1584 	 *	    over-queueing of packets over choke points like modems
1585 	 *	    (at least for the transmit side).
1586 	 *
1587 	 *	(2) Is able to handle changing network loads (bandwidth
1588 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1589 	 *	    increases).
1590 	 *
1591 	 *	(3) Theoretically should stabilize in the face of multiple
1592 	 *	    connections implementing the same algorithm (this may need
1593 	 *	    a little work).
1594 	 *
1595 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1596 	 *	    be adjusted with a sysctl but typically only needs to be on
1597 	 *	    very slow connections.  A value no smaller then 5 should
1598 	 *	    be used, but only reduce this default if you have no other
1599 	 *	    choice.
1600 	 */
1601 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1602 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * (int)tp->t_maxseg / 10;
1603 #undef USERTT
1604 
1605 	if (tcp_inflight_debug > 0) {
1606 		static int ltime;
1607 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1608 			ltime = ticks;
1609 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1610 			    tp,
1611 			    bw,
1612 			    tp->t_rttbest,
1613 			    tp->t_srtt,
1614 			    bwnd
1615 			);
1616 		}
1617 	}
1618 	if ((long)bwnd < tcp_inflight_min)
1619 		bwnd = tcp_inflight_min;
1620 	if (bwnd > tcp_inflight_max)
1621 		bwnd = tcp_inflight_max;
1622 	if ((long)bwnd < tp->t_maxseg * 2)
1623 		bwnd = tp->t_maxseg * 2;
1624 	tp->snd_bwnd = bwnd;
1625 }
1626 
1627