xref: /dragonfly/sys/netinet/tcp_subr.c (revision 333227be)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.40 2004/11/14 00:49:08 hsu Exp $
86  */
87 
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
101 #ifdef INET6
102 #include <sys/domain.h>
103 #endif
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
110 
111 #include <vm/vm_zone.h>
112 
113 #include <net/route.h>
114 #include <net/if.h>
115 #include <net/netisr.h>
116 
117 #define	_IP_VHL
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/ip.h>
121 #include <netinet/ip6.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet6/in6_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet6/ip6_var.h>
127 #include <netinet/tcp.h>
128 #include <netinet/tcp_fsm.h>
129 #include <netinet/tcp_seq.h>
130 #include <netinet/tcp_timer.h>
131 #include <netinet/tcp_var.h>
132 #include <netinet6/tcp6_var.h>
133 #include <netinet/tcpip.h>
134 #ifdef TCPDEBUG
135 #include <netinet/tcp_debug.h>
136 #endif
137 #include <netinet6/ip6protosw.h>
138 
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #ifdef INET6
142 #include <netinet6/ipsec6.h>
143 #endif
144 #endif
145 
146 #ifdef FAST_IPSEC
147 #include <netproto/ipsec/ipsec.h>
148 #ifdef INET6
149 #include <netproto/ipsec/ipsec6.h>
150 #endif
151 #define	IPSEC
152 #endif
153 
154 #include <sys/md5.h>
155 
156 #include <sys/msgport2.h>
157 
158 #include <machine/smp.h>
159 
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
162 
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
166 
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
172 
173 #if 0
174 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
176     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
177 #endif
178 
179 int tcp_do_rfc1323 = 1;
180 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
182 
183 int tcp_do_rfc1644 = 0;
184 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
185     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
186 
187 static int tcp_tcbhashsize = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
189      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
190 
191 static int do_tcpdrain = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
193      "Enable tcp_drain routine for extra help when low on mbufs");
194 
195 /* XXX JH */
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
198 
199 static int icmp_may_rst = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
201     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
202 
203 static int tcp_isn_reseed_interval = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
205     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
206 
207 /*
208  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
209  * 1024 exists only for debugging.  A good production default would be
210  * something like 6100.
211  */
212 static int tcp_inflight_enable = 0;
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
214     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
215 
216 static int tcp_inflight_debug = 0;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
218     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
219 
220 static int tcp_inflight_min = 6144;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
222     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
223 
224 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
226     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
227 
228 static int tcp_inflight_stab = 20;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
230     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
231 
232 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
233 static struct malloc_pipe tcptemp_mpipe;
234 
235 static void tcp_willblock(void);
236 static void tcp_cleartaocache (void);
237 static void tcp_notify (struct inpcb *, int);
238 
239 struct tcp_stats tcpstats_ary[MAXCPU];
240 #ifdef SMP
241 static int
242 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
243 {
244 	int cpu, error = 0;
245 
246 	for (cpu = 0; cpu < ncpus; ++cpu) {
247 		if ((error = SYSCTL_OUT(req, (void *)&tcpstats_ary[cpu],
248 					sizeof(struct tcp_stats))))
249 			break;
250 		if ((error = SYSCTL_IN(req, (void *)&tcpstats_ary[cpu],
251 				       sizeof(struct tcp_stats))))
252 			break;
253 	}
254 
255 	return (error);
256 }
257 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
258     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
259 #else
260 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
261     &tcpstat, tcp_stats, "TCP statistics");
262 #endif
263 
264 /*
265  * Target size of TCP PCB hash tables. Must be a power of two.
266  *
267  * Note that this can be overridden by the kernel environment
268  * variable net.inet.tcp.tcbhashsize
269  */
270 #ifndef TCBHASHSIZE
271 #define	TCBHASHSIZE	512
272 #endif
273 
274 /*
275  * This is the actual shape of what we allocate using the zone
276  * allocator.  Doing it this way allows us to protect both structures
277  * using the same generation count, and also eliminates the overhead
278  * of allocating tcpcbs separately.  By hiding the structure here,
279  * we avoid changing most of the rest of the code (although it needs
280  * to be changed, eventually, for greater efficiency).
281  */
282 #define	ALIGNMENT	32
283 #define	ALIGNM1		(ALIGNMENT - 1)
284 struct	inp_tp {
285 	union {
286 		struct	inpcb inp;
287 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
288 	} inp_tp_u;
289 	struct	tcpcb tcb;
290 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
291 	struct	callout inp_tp_delack;
292 };
293 #undef ALIGNMENT
294 #undef ALIGNM1
295 
296 /*
297  * Tcp initialization
298  */
299 void
300 tcp_init()
301 {
302 	struct inpcbporthead *porthashbase;
303 	u_long porthashmask;
304 	struct vm_zone *ipi_zone;
305 	int hashsize = TCBHASHSIZE;
306 	int cpu;
307 
308 	/*
309 	 * note: tcptemp is used for keepalives, and it is ok for an
310 	 * allocation to fail so do not specify MPF_INT.
311 	 */
312 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
313 		    25, -1, 0, NULL);
314 
315 	tcp_ccgen = 1;
316 	tcp_cleartaocache();
317 
318 	tcp_delacktime = TCPTV_DELACK;
319 	tcp_keepinit = TCPTV_KEEP_INIT;
320 	tcp_keepidle = TCPTV_KEEP_IDLE;
321 	tcp_keepintvl = TCPTV_KEEPINTVL;
322 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
323 	tcp_msl = TCPTV_MSL;
324 	tcp_rexmit_min = TCPTV_MIN;
325 	tcp_rexmit_slop = TCPTV_CPU_VAR;
326 
327 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
328 	if (!powerof2(hashsize)) {
329 		printf("WARNING: TCB hash size not a power of 2\n");
330 		hashsize = 512; /* safe default */
331 	}
332 	tcp_tcbhashsize = hashsize;
333 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
334 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
335 			 ZONE_INTERRUPT, 0);
336 
337 	for (cpu = 0; cpu < ncpus2; cpu++) {
338 		in_pcbinfo_init(&tcbinfo[cpu]);
339 		tcbinfo[cpu].cpu = cpu;
340 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
341 		    &tcbinfo[cpu].hashmask);
342 		tcbinfo[cpu].porthashbase = porthashbase;
343 		tcbinfo[cpu].porthashmask = porthashmask;
344 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
345 		    &tcbinfo[cpu].wildcardhashmask);
346 		tcbinfo[cpu].ipi_zone = ipi_zone;
347 		TAILQ_INIT(&tcpcbackq[cpu]);
348 	}
349 
350 	tcp_reass_maxseg = nmbclusters / 16;
351 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
352 
353 #ifdef INET6
354 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
355 #else
356 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
357 #endif
358 	if (max_protohdr < TCP_MINPROTOHDR)
359 		max_protohdr = TCP_MINPROTOHDR;
360 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
361 		panic("tcp_init");
362 #undef TCP_MINPROTOHDR
363 
364 	/*
365 	 * Initialize TCP statistics.
366 	 *
367 	 * It is layed out as an array which is has one element for UP,
368 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
369 	 * the access mechanism from userland for both UP and SMP.
370 	 */
371 #ifdef SMP
372 	for (cpu = 0; cpu < ncpus; ++cpu) {
373 		bzero(&tcpstats_ary[cpu], sizeof(struct tcp_stats));
374 	}
375 #else
376 	bzero(&tcpstat, sizeof(struct tcp_stats));
377 #endif
378 
379 	syncache_init();
380 	tcp_sack_init();
381 	tcp_thread_init();
382 }
383 
384 void
385 tcpmsg_service_loop(void *dummy)
386 {
387 	struct netmsg *msg;
388 
389 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
390 		do {
391 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
392 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
393 		tcp_willblock();
394 	}
395 }
396 
397 static void
398 tcp_willblock(void)
399 {
400 	struct tcpcb *tp;
401 	int cpu = mycpu->gd_cpuid;
402 
403 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
404 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
405 		tp->t_flags &= ~TF_ONOUTPUTQ;
406 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
407 		tcp_output(tp);
408 	}
409 }
410 
411 
412 /*
413  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
414  * tcp_template used to store this data in mbufs, but we now recopy it out
415  * of the tcpcb each time to conserve mbufs.
416  */
417 void
418 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
419 {
420 	struct inpcb *inp = tp->t_inpcb;
421 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
422 
423 #ifdef INET6
424 	if (inp->inp_vflag & INP_IPV6) {
425 		struct ip6_hdr *ip6;
426 
427 		ip6 = (struct ip6_hdr *)ip_ptr;
428 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
429 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
430 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
431 			(IPV6_VERSION & IPV6_VERSION_MASK);
432 		ip6->ip6_nxt = IPPROTO_TCP;
433 		ip6->ip6_plen = sizeof(struct tcphdr);
434 		ip6->ip6_src = inp->in6p_laddr;
435 		ip6->ip6_dst = inp->in6p_faddr;
436 		tcp_hdr->th_sum = 0;
437 	} else
438 #endif
439 	{
440 		struct ip *ip = (struct ip *) ip_ptr;
441 
442 		ip->ip_vhl = IP_VHL_BORING;
443 		ip->ip_tos = 0;
444 		ip->ip_len = 0;
445 		ip->ip_id = 0;
446 		ip->ip_off = 0;
447 		ip->ip_ttl = 0;
448 		ip->ip_sum = 0;
449 		ip->ip_p = IPPROTO_TCP;
450 		ip->ip_src = inp->inp_laddr;
451 		ip->ip_dst = inp->inp_faddr;
452 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
453 				    ip->ip_dst.s_addr,
454 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
455 	}
456 
457 	tcp_hdr->th_sport = inp->inp_lport;
458 	tcp_hdr->th_dport = inp->inp_fport;
459 	tcp_hdr->th_seq = 0;
460 	tcp_hdr->th_ack = 0;
461 	tcp_hdr->th_x2 = 0;
462 	tcp_hdr->th_off = 5;
463 	tcp_hdr->th_flags = 0;
464 	tcp_hdr->th_win = 0;
465 	tcp_hdr->th_urp = 0;
466 }
467 
468 /*
469  * Create template to be used to send tcp packets on a connection.
470  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
471  * use for this function is in keepalives, which use tcp_respond.
472  */
473 struct tcptemp *
474 tcp_maketemplate(struct tcpcb *tp)
475 {
476 	struct tcptemp *tmp;
477 
478 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
479 		return (NULL);
480 	tcp_fillheaders(tp, (void *)&tmp->tt_ipgen, (void *)&tmp->tt_t);
481 	return (tmp);
482 }
483 
484 void
485 tcp_freetemplate(struct tcptemp *tmp)
486 {
487 	mpipe_free(&tcptemp_mpipe, tmp);
488 }
489 
490 /*
491  * Send a single message to the TCP at address specified by
492  * the given TCP/IP header.  If m == NULL, then we make a copy
493  * of the tcpiphdr at ti and send directly to the addressed host.
494  * This is used to force keep alive messages out using the TCP
495  * template for a connection.  If flags are given then we send
496  * a message back to the TCP which originated the * segment ti,
497  * and discard the mbuf containing it and any other attached mbufs.
498  *
499  * In any case the ack and sequence number of the transmitted
500  * segment are as specified by the parameters.
501  *
502  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
503  */
504 void
505 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
506 	    tcp_seq ack, tcp_seq seq, int flags)
507 {
508 	int tlen;
509 	int win = 0;
510 	struct route *ro = NULL;
511 	struct route sro;
512 	struct ip *ip = ipgen;
513 	struct tcphdr *nth;
514 	int ipflags = 0;
515 	struct route_in6 *ro6 = NULL;
516 	struct route_in6 sro6;
517 	struct ip6_hdr *ip6 = ipgen;
518 #ifdef INET6
519 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
520 #else
521 	const boolean_t isipv6 = FALSE;
522 #endif
523 
524 	if (tp != NULL) {
525 		if (!(flags & TH_RST)) {
526 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
527 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
528 				win = (long)TCP_MAXWIN << tp->rcv_scale;
529 		}
530 		if (isipv6)
531 			ro6 = &tp->t_inpcb->in6p_route;
532 		else
533 			ro = &tp->t_inpcb->inp_route;
534 	} else {
535 		if (isipv6) {
536 			ro6 = &sro6;
537 			bzero(ro6, sizeof *ro6);
538 		} else {
539 			ro = &sro;
540 			bzero(ro, sizeof *ro);
541 		}
542 	}
543 	if (m == NULL) {
544 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
545 		if (m == NULL)
546 			return;
547 		tlen = 0;
548 		m->m_data += max_linkhdr;
549 		if (isipv6) {
550 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
551 			ip6 = mtod(m, struct ip6_hdr *);
552 			nth = (struct tcphdr *)(ip6 + 1);
553 		} else {
554 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
555 			ip = mtod(m, struct ip *);
556 			nth = (struct tcphdr *)(ip + 1);
557 		}
558 		bcopy(th, nth, sizeof(struct tcphdr));
559 		flags = TH_ACK;
560 	} else {
561 		m_freem(m->m_next);
562 		m->m_next = NULL;
563 		m->m_data = (caddr_t)ipgen;
564 		/* m_len is set later */
565 		tlen = 0;
566 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
567 		if (isipv6) {
568 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
569 			nth = (struct tcphdr *)(ip6 + 1);
570 		} else {
571 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
572 			nth = (struct tcphdr *)(ip + 1);
573 		}
574 		if (th != nth) {
575 			/*
576 			 * this is usually a case when an extension header
577 			 * exists between the IPv6 header and the
578 			 * TCP header.
579 			 */
580 			nth->th_sport = th->th_sport;
581 			nth->th_dport = th->th_dport;
582 		}
583 		xchg(nth->th_dport, nth->th_sport, n_short);
584 #undef xchg
585 	}
586 	if (isipv6) {
587 		ip6->ip6_flow = 0;
588 		ip6->ip6_vfc = IPV6_VERSION;
589 		ip6->ip6_nxt = IPPROTO_TCP;
590 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
591 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
592 	} else {
593 		tlen += sizeof(struct tcpiphdr);
594 		ip->ip_len = tlen;
595 		ip->ip_ttl = ip_defttl;
596 	}
597 	m->m_len = tlen;
598 	m->m_pkthdr.len = tlen;
599 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
600 	nth->th_seq = htonl(seq);
601 	nth->th_ack = htonl(ack);
602 	nth->th_x2 = 0;
603 	nth->th_off = sizeof(struct tcphdr) >> 2;
604 	nth->th_flags = flags;
605 	if (tp != NULL)
606 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
607 	else
608 		nth->th_win = htons((u_short)win);
609 	nth->th_urp = 0;
610 	if (isipv6) {
611 		nth->th_sum = 0;
612 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
613 					sizeof(struct ip6_hdr),
614 					tlen - sizeof(struct ip6_hdr));
615 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
616 					       (ro6 && ro6->ro_rt) ?
617 					           ro6->ro_rt->rt_ifp : NULL);
618 	} else {
619 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
620 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
621 		m->m_pkthdr.csum_flags = CSUM_TCP;
622 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
623 	}
624 #ifdef TCPDEBUG
625 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
626 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
627 #endif
628 	if (isipv6) {
629 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
630 				 tp ? tp->t_inpcb : NULL);
631 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
632 			RTFREE(ro6->ro_rt);
633 			ro6->ro_rt = NULL;
634 		}
635 	} else {
636 		(void)ip_output(m, NULL, ro, ipflags, NULL,
637 				tp ? tp->t_inpcb : NULL);
638 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
639 			RTFREE(ro->ro_rt);
640 			ro->ro_rt = NULL;
641 		}
642 	}
643 }
644 
645 /*
646  * Create a new TCP control block, making an
647  * empty reassembly queue and hooking it to the argument
648  * protocol control block.  The `inp' parameter must have
649  * come from the zone allocator set up in tcp_init().
650  */
651 struct tcpcb *
652 tcp_newtcpcb(struct inpcb *inp)
653 {
654 	struct inp_tp *it;
655 	struct tcpcb *tp;
656 #ifdef INET6
657 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
658 #else
659 	const boolean_t isipv6 = FALSE;
660 #endif
661 
662 	it = (struct inp_tp *)inp;
663 	tp = &it->tcb;
664 	bzero(tp, sizeof(struct tcpcb));
665 	LIST_INIT(&tp->t_segq);
666 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
667 
668 	/* Set up our timeouts. */
669 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
670 	callout_init(tp->tt_persist = &it->inp_tp_persist);
671 	callout_init(tp->tt_keep = &it->inp_tp_keep);
672 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
673 	callout_init(tp->tt_delack = &it->inp_tp_delack);
674 
675 	if (tcp_do_rfc1323)
676 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
677 	if (tcp_do_rfc1644)
678 		tp->t_flags |= TF_REQ_CC;
679 	tp->t_inpcb = inp;	/* XXX */
680 	tp->t_state = TCPS_CLOSED;
681 	/*
682 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
683 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
684 	 * reasonable initial retransmit time.
685 	 */
686 	tp->t_srtt = TCPTV_SRTTBASE;
687 	tp->t_rttvar =
688 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
689 	tp->t_rttmin = tcp_rexmit_min;
690 	tp->t_rxtcur = TCPTV_RTOBASE;
691 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
694 	tp->t_rcvtime = ticks;
695 	tp->t_bw_rtttime = ticks;
696 	/*
697 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
698 	 * because the socket may be bound to an IPv6 wildcard address,
699 	 * which may match an IPv4-mapped IPv6 address.
700 	 */
701 	inp->inp_ip_ttl = ip_defttl;
702 	inp->inp_ppcb = (caddr_t)tp;
703 	tcp_sack_tcpcb_init(tp);
704 	return (tp);		/* XXX */
705 }
706 
707 /*
708  * Drop a TCP connection, reporting the specified error.
709  * If connection is synchronized, then send a RST to peer.
710  */
711 struct tcpcb *
712 tcp_drop(struct tcpcb *tp, int errno)
713 {
714 	struct socket *so = tp->t_inpcb->inp_socket;
715 
716 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
717 		tp->t_state = TCPS_CLOSED;
718 		(void) tcp_output(tp);
719 		tcpstat.tcps_drops++;
720 	} else
721 		tcpstat.tcps_conndrops++;
722 	if (errno == ETIMEDOUT && tp->t_softerror)
723 		errno = tp->t_softerror;
724 	so->so_error = errno;
725 	return (tcp_close(tp));
726 }
727 
728 #ifdef SMP
729 
730 struct netmsg_remwildcard {
731 	struct lwkt_msg		nm_lmsg;
732 	struct inpcb		*nm_inp;
733 	struct inpcbinfo	*nm_pcbinfo;
734 #if defined(INET6)
735 	int			nm_isinet6;
736 #else
737 	int			nm_unused01;
738 #endif
739 };
740 
741 /*
742  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
743  * inp can be detached.  We do this by cycling through the cpus, ending up
744  * on the cpu controlling the inp last and then doing the disconnect.
745  */
746 static int
747 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
748 {
749 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
750 	int cpu;
751 
752 	cpu = msg->nm_pcbinfo->cpu;
753 
754 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
755 		/* note: detach removes any wildcard hash entry */
756 #ifdef INET6
757 		if (msg->nm_isinet6)
758 			in6_pcbdetach(msg->nm_inp);
759 		else
760 #endif
761 			in_pcbdetach(msg->nm_inp);
762 		lwkt_replymsg(&msg->nm_lmsg, 0);
763 	} else {
764 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
765 		cpu = (cpu + 1) % ncpus2;
766 		msg->nm_pcbinfo = &tcbinfo[cpu];
767 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
768 	}
769 	return (EASYNC);
770 }
771 
772 #endif
773 
774 /*
775  * Close a TCP control block:
776  *	discard all space held by the tcp
777  *	discard internet protocol block
778  *	wake up any sleepers
779  */
780 struct tcpcb *
781 tcp_close(struct tcpcb *tp)
782 {
783 	struct tseg_qent *q;
784 	struct inpcb *inp = tp->t_inpcb;
785 	struct socket *so = inp->inp_socket;
786 	struct rtentry *rt;
787 	boolean_t dosavessthresh;
788 #ifdef SMP
789 	int cpu;
790 #endif
791 #ifdef INET6
792 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
793 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
794 #else
795 	const boolean_t isipv6 = FALSE;
796 #endif
797 
798 	/*
799 	 * The tp is not instantly destroyed in the wildcard case.  Setting
800 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
801 	 * messing with it, though it should be noted that this change may
802 	 * not take effect on other cpus until we have chained the wildcard
803 	 * hash removal.
804 	 *
805 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
806 	 * update and prevent other tcp protocol threads from accepting new
807 	 * connections on the listen socket we might be trying to close down.
808 	 */
809 	KKASSERT(tp->t_state != TCPS_TERMINATING);
810 	tp->t_state = TCPS_TERMINATING;
811 
812 	/*
813 	 * Make sure that all of our timers are stopped before we
814 	 * delete the PCB.
815 	 */
816 	callout_stop(tp->tt_rexmt);
817 	callout_stop(tp->tt_persist);
818 	callout_stop(tp->tt_keep);
819 	callout_stop(tp->tt_2msl);
820 	callout_stop(tp->tt_delack);
821 
822 	if (tp->t_flags & TF_ONOUTPUTQ) {
823 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
824 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
825 		tp->t_flags &= ~TF_ONOUTPUTQ;
826 	}
827 
828 	/*
829 	 * If we got enough samples through the srtt filter,
830 	 * save the rtt and rttvar in the routing entry.
831 	 * 'Enough' is arbitrarily defined as the 16 samples.
832 	 * 16 samples is enough for the srtt filter to converge
833 	 * to within 5% of the correct value; fewer samples and
834 	 * we could save a very bogus rtt.
835 	 *
836 	 * Don't update the default route's characteristics and don't
837 	 * update anything that the user "locked".
838 	 */
839 	if (tp->t_rttupdated >= 16) {
840 		u_long i = 0;
841 
842 		if (isipv6) {
843 			struct sockaddr_in6 *sin6;
844 
845 			if ((rt = inp->in6p_route.ro_rt) == NULL)
846 				goto no_valid_rt;
847 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
848 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
849 				goto no_valid_rt;
850 		} else
851 			if ((rt = inp->inp_route.ro_rt) == NULL ||
852 			    ((struct sockaddr_in *)rt_key(rt))->
853 			     sin_addr.s_addr == INADDR_ANY)
854 				goto no_valid_rt;
855 
856 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
857 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
858 			if (rt->rt_rmx.rmx_rtt && i)
859 				/*
860 				 * filter this update to half the old & half
861 				 * the new values, converting scale.
862 				 * See route.h and tcp_var.h for a
863 				 * description of the scaling constants.
864 				 */
865 				rt->rt_rmx.rmx_rtt =
866 				    (rt->rt_rmx.rmx_rtt + i) / 2;
867 			else
868 				rt->rt_rmx.rmx_rtt = i;
869 			tcpstat.tcps_cachedrtt++;
870 		}
871 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
872 			i = tp->t_rttvar *
873 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
874 			if (rt->rt_rmx.rmx_rttvar && i)
875 				rt->rt_rmx.rmx_rttvar =
876 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
877 			else
878 				rt->rt_rmx.rmx_rttvar = i;
879 			tcpstat.tcps_cachedrttvar++;
880 		}
881 		/*
882 		 * The old comment here said:
883 		 * update the pipelimit (ssthresh) if it has been updated
884 		 * already or if a pipesize was specified & the threshhold
885 		 * got below half the pipesize.  I.e., wait for bad news
886 		 * before we start updating, then update on both good
887 		 * and bad news.
888 		 *
889 		 * But we want to save the ssthresh even if no pipesize is
890 		 * specified explicitly in the route, because such
891 		 * connections still have an implicit pipesize specified
892 		 * by the global tcp_sendspace.  In the absence of a reliable
893 		 * way to calculate the pipesize, it will have to do.
894 		 */
895 		i = tp->snd_ssthresh;
896 		if (rt->rt_rmx.rmx_sendpipe != 0)
897 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
898 		else
899 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
900 		if (dosavessthresh ||
901 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
902 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
903 			/*
904 			 * convert the limit from user data bytes to
905 			 * packets then to packet data bytes.
906 			 */
907 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
908 			if (i < 2)
909 				i = 2;
910 			i *= tp->t_maxseg +
911 			     (isipv6 ?
912 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
913 			      sizeof(struct tcpiphdr));
914 			if (rt->rt_rmx.rmx_ssthresh)
915 				rt->rt_rmx.rmx_ssthresh =
916 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
917 			else
918 				rt->rt_rmx.rmx_ssthresh = i;
919 			tcpstat.tcps_cachedssthresh++;
920 		}
921 	}
922 
923 no_valid_rt:
924 	/* free the reassembly queue, if any */
925 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
926 		LIST_REMOVE(q, tqe_q);
927 		m_freem(q->tqe_m);
928 		FREE(q, M_TSEGQ);
929 		tcp_reass_qsize--;
930 	}
931 	/* throw away SACK blocks in scoreboard*/
932 	if (TCP_DO_SACK(tp))
933 		tcp_sack_cleanup(&tp->scb);
934 
935 	inp->inp_ppcb = NULL;
936 	soisdisconnected(so);
937 	/*
938 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
939 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
940 	 * for each protocol thread and must be removed in the context of
941 	 * that thread.  This is accomplished by chaining the message
942 	 * through the cpus.
943 	 *
944 	 * If the inp is not wildcarded we simply detach, which will remove
945 	 * the any hashes still present for this inp.
946 	 */
947 #ifdef SMP
948 	if (inp->inp_flags & INP_WILDCARD_MP) {
949 		struct netmsg_remwildcard *msg;
950 
951 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
952 		msg = malloc(sizeof(struct netmsg_remwildcard),
953 			    M_LWKTMSG, M_INTWAIT);
954 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
955 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
956 		    lwkt_cmd_op_none);
957 #ifdef INET6
958 		msg->nm_isinet6 = isafinet6;
959 #endif
960 		msg->nm_inp = inp;
961 		msg->nm_pcbinfo = &tcbinfo[cpu];
962 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
963 	} else
964 #endif
965 	{
966 		/* note: detach removes any wildcard hash entry */
967 #ifdef INET6
968 		if (isafinet6)
969 			in6_pcbdetach(inp);
970 		else
971 #endif
972 			in_pcbdetach(inp);
973 	}
974 	tcpstat.tcps_closed++;
975 	return (NULL);
976 }
977 
978 static __inline void
979 tcp_drain_oncpu(struct inpcbhead *head)
980 {
981 	struct inpcb *inpb;
982 	struct tcpcb *tcpb;
983 	struct tseg_qent *te;
984 
985 	LIST_FOREACH(inpb, head, inp_list) {
986 		if (inpb->inp_flags & INP_PLACEMARKER)
987 			continue;
988 		if ((tcpb = intotcpcb(inpb))) {
989 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
990 				LIST_REMOVE(te, tqe_q);
991 				m_freem(te->tqe_m);
992 				FREE(te, M_TSEGQ);
993 				tcp_reass_qsize--;
994 			}
995 		}
996 	}
997 }
998 
999 #ifdef SMP
1000 struct netmsg_tcp_drain {
1001 	struct lwkt_msg		nm_lmsg;
1002 	struct inpcbhead	*nm_head;
1003 };
1004 
1005 static int
1006 tcp_drain_handler(lwkt_msg_t lmsg)
1007 {
1008 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1009 
1010 	tcp_drain_oncpu(nm->nm_head);
1011 	lwkt_replymsg(lmsg, 0);
1012 	return(EASYNC);
1013 }
1014 #endif
1015 
1016 void
1017 tcp_drain()
1018 {
1019 #ifdef SMP
1020 	int cpu;
1021 #endif
1022 
1023 	if (!do_tcpdrain)
1024 		return;
1025 
1026 	/*
1027 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1028 	 * if there is one...
1029 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1030 	 *	reassembly queue should be flushed, but in a situation
1031 	 *	where we're really low on mbufs, this is potentially
1032 	 *	useful.
1033 	 */
1034 #ifdef SMP
1035 	for (cpu = 0; cpu < ncpus2; cpu++) {
1036 		struct netmsg_tcp_drain *msg;
1037 
1038 		if (cpu == mycpu->gd_cpuid) {
1039 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1040 		} else {
1041 			msg = malloc(sizeof(struct netmsg_tcp_drain),
1042 				    M_LWKTMSG, M_NOWAIT);
1043 			if (msg == NULL)
1044 				continue;
1045 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1046 				lwkt_cmd_func(tcp_drain_handler),
1047 				lwkt_cmd_op_none);
1048 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1049 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1050 		}
1051 	}
1052 #else
1053 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1054 #endif
1055 }
1056 
1057 /*
1058  * Notify a tcp user of an asynchronous error;
1059  * store error as soft error, but wake up user
1060  * (for now, won't do anything until can select for soft error).
1061  *
1062  * Do not wake up user since there currently is no mechanism for
1063  * reporting soft errors (yet - a kqueue filter may be added).
1064  */
1065 static void
1066 tcp_notify(struct inpcb *inp, int error)
1067 {
1068 	struct tcpcb *tp = intotcpcb(inp);
1069 
1070 	/*
1071 	 * Ignore some errors if we are hooked up.
1072 	 * If connection hasn't completed, has retransmitted several times,
1073 	 * and receives a second error, give up now.  This is better
1074 	 * than waiting a long time to establish a connection that
1075 	 * can never complete.
1076 	 */
1077 	if (tp->t_state == TCPS_ESTABLISHED &&
1078 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1079 	      error == EHOSTDOWN)) {
1080 		return;
1081 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1082 	    tp->t_softerror)
1083 		tcp_drop(tp, error);
1084 	else
1085 		tp->t_softerror = error;
1086 #if 0
1087 	wakeup((caddr_t) &so->so_timeo);
1088 	sorwakeup(so);
1089 	sowwakeup(so);
1090 #endif
1091 }
1092 
1093 static int
1094 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1095 {
1096 	int error, i, n;
1097 	struct inpcb *marker;
1098 	struct inpcb *inp;
1099 	inp_gen_t gencnt;
1100 	struct xinpgen xig;
1101 	globaldata_t gd;
1102 	int origcpu, ccpu;
1103 
1104 	error = 0;
1105 	n = 0;
1106 
1107 	/*
1108 	 * The process of preparing the TCB list is too time-consuming and
1109 	 * resource-intensive to repeat twice on every request.
1110 	 */
1111 	if (req->oldptr == NULL) {
1112 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1113 			gd = globaldata_find(ccpu);
1114 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1115 		}
1116 		req->oldidx = 2 * ncpus * (sizeof xig) +
1117 		  (n + n/8) * sizeof(struct xtcpcb);
1118 		return (0);
1119 	}
1120 
1121 	if (req->newptr != NULL)
1122 		return (EPERM);
1123 
1124 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1125 	marker->inp_flags |= INP_PLACEMARKER;
1126 
1127 	/*
1128 	 * OK, now we're committed to doing something.  Run the inpcb list
1129 	 * for each cpu in the system and construct the output.  Use a
1130 	 * list placemarker to deal with list changes occuring during
1131 	 * copyout blockages (but otherwise depend on being on the correct
1132 	 * cpu to avoid races).
1133 	 */
1134 	origcpu = mycpu->gd_cpuid;
1135 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1136 		globaldata_t rgd;
1137 		caddr_t inp_ppcb;
1138 		struct xtcpcb xt;
1139 		int cpu_id;
1140 
1141 		cpu_id = (origcpu + ccpu) % ncpus;
1142 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1143 			continue;
1144 		rgd = globaldata_find(cpu_id);
1145 		lwkt_setcpu_self(rgd);
1146 
1147 		/* indicate change of CPU */
1148 		cpu_mb1();
1149 
1150 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1151 		n = tcbinfo[cpu_id].ipi_count;
1152 
1153 		xig.xig_len = sizeof xig;
1154 		xig.xig_count = n;
1155 		xig.xig_gen = gencnt;
1156 		xig.xig_sogen = so_gencnt;
1157 		xig.xig_cpu = cpu_id;
1158 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1159 		if (error != 0)
1160 			break;
1161 
1162 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1163 		i = 0;
1164 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1165 			/*
1166 			 * process a snapshot of pcbs, ignoring placemarkers
1167 			 * and using our own to allow SYSCTL_OUT to block.
1168 			 */
1169 			LIST_REMOVE(marker, inp_list);
1170 			LIST_INSERT_AFTER(inp, marker, inp_list);
1171 
1172 			if (inp->inp_flags & INP_PLACEMARKER)
1173 				continue;
1174 			if (inp->inp_gencnt > gencnt)
1175 				continue;
1176 			if (prison_xinpcb(req->td, inp))
1177 				continue;
1178 
1179 			xt.xt_len = sizeof xt;
1180 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1181 			inp_ppcb = inp->inp_ppcb;
1182 			if (inp_ppcb != NULL)
1183 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1184 			else
1185 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1186 			if (inp->inp_socket)
1187 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1188 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1189 				break;
1190 			++i;
1191 		}
1192 		LIST_REMOVE(marker, inp_list);
1193 		if (error == 0 && i < n) {
1194 			bzero(&xt, sizeof(xt));
1195 			xt.xt_len = sizeof(xt);
1196 			while (i < n) {
1197 				error = SYSCTL_OUT(req, &xt, sizeof (xt));
1198 				if (error)
1199 					break;
1200 				++i;
1201 			}
1202 		}
1203 		if (error == 0) {
1204 			/*
1205 			 * Give the user an updated idea of our state.
1206 			 * If the generation differs from what we told
1207 			 * her before, she knows that something happened
1208 			 * while we were processing this request, and it
1209 			 * might be necessary to retry.
1210 			 */
1211 			xig.xig_gen = tcbinfo[cpu_id].ipi_gencnt;
1212 			xig.xig_sogen = so_gencnt;
1213 			xig.xig_count = tcbinfo[cpu_id].ipi_count;
1214 			error = SYSCTL_OUT(req, &xig, sizeof xig);
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * Make sure we are on the same cpu we were on originally, since
1220 	 * higher level callers expect this.  Also don't pollute caches with
1221 	 * migrated userland data by (eventually) returning to userland
1222 	 * on a different cpu.
1223 	 */
1224 	lwkt_setcpu_self(globaldata_find(origcpu));
1225 	free(marker, M_TEMP);
1226 	return (error);
1227 }
1228 
1229 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1230 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1231 
1232 static int
1233 tcp_getcred(SYSCTL_HANDLER_ARGS)
1234 {
1235 	struct sockaddr_in addrs[2];
1236 	struct inpcb *inp;
1237 	int cpu;
1238 	int error, s;
1239 
1240 	error = suser(req->td);
1241 	if (error != 0)
1242 		return (error);
1243 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1244 	if (error != 0)
1245 		return (error);
1246 	s = splnet();
1247 
1248 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1249 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1250 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1251 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1252 	if (inp == NULL || inp->inp_socket == NULL) {
1253 		error = ENOENT;
1254 		goto out;
1255 	}
1256 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1257 out:
1258 	splx(s);
1259 	return (error);
1260 }
1261 
1262 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1263     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1264 
1265 #ifdef INET6
1266 static int
1267 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1268 {
1269 	struct sockaddr_in6 addrs[2];
1270 	struct inpcb *inp;
1271 	int error, s;
1272 	boolean_t mapped = FALSE;
1273 
1274 	error = suser(req->td);
1275 	if (error != 0)
1276 		return (error);
1277 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1278 	if (error != 0)
1279 		return (error);
1280 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1281 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1282 			mapped = TRUE;
1283 		else
1284 			return (EINVAL);
1285 	}
1286 	s = splnet();
1287 	if (mapped) {
1288 		inp = in_pcblookup_hash(&tcbinfo[0],
1289 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1290 		    addrs[1].sin6_port,
1291 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1292 		    addrs[0].sin6_port,
1293 		    0, NULL);
1294 	} else {
1295 		inp = in6_pcblookup_hash(&tcbinfo[0],
1296 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1297 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1298 		    0, NULL);
1299 	}
1300 	if (inp == NULL || inp->inp_socket == NULL) {
1301 		error = ENOENT;
1302 		goto out;
1303 	}
1304 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1305 out:
1306 	splx(s);
1307 	return (error);
1308 }
1309 
1310 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1311 	    0, 0,
1312 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1313 #endif
1314 
1315 void
1316 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1317 {
1318 	struct ip *ip = vip;
1319 	struct tcphdr *th;
1320 	struct in_addr faddr;
1321 	struct inpcb *inp;
1322 	struct tcpcb *tp;
1323 	void (*notify)(struct inpcb *, int) = tcp_notify;
1324 	tcp_seq icmp_seq;
1325 	int cpu;
1326 	int s;
1327 
1328 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1329 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1330 		return;
1331 
1332 	if (cmd == PRC_QUENCH)
1333 		notify = tcp_quench;
1334 	else if (icmp_may_rst &&
1335 		 (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT ||
1336 		  cmd == PRC_TIMXCEED_INTRANS) &&
1337 		 ip != NULL)
1338 		notify = tcp_drop_syn_sent;
1339 	else if (cmd == PRC_MSGSIZE)
1340 		notify = tcp_mtudisc;
1341 	else if (PRC_IS_REDIRECT(cmd)) {
1342 		ip = NULL;
1343 		notify = in_rtchange;
1344 	} else if (cmd == PRC_HOSTDEAD)
1345 		ip = NULL;
1346 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1347 		return;
1348 	if (ip != NULL) {
1349 		s = splnet();
1350 		th = (struct tcphdr *)((caddr_t)ip +
1351 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1352 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1353 				  ip->ip_src.s_addr, th->th_sport);
1354 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1355 					ip->ip_src, th->th_sport, 0, NULL);
1356 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1357 			icmp_seq = htonl(th->th_seq);
1358 			tp = intotcpcb(inp);
1359 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1360 			    SEQ_LT(icmp_seq, tp->snd_max))
1361 				(*notify)(inp, inetctlerrmap[cmd]);
1362 		} else {
1363 			struct in_conninfo inc;
1364 
1365 			inc.inc_fport = th->th_dport;
1366 			inc.inc_lport = th->th_sport;
1367 			inc.inc_faddr = faddr;
1368 			inc.inc_laddr = ip->ip_src;
1369 #ifdef INET6
1370 			inc.inc_isipv6 = 0;
1371 #endif
1372 			syncache_unreach(&inc, th);
1373 		}
1374 		splx(s);
1375 	} else {
1376 		for (cpu = 0; cpu < ncpus2; cpu++) {
1377 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr,
1378 					inetctlerrmap[cmd], notify);
1379 		}
1380 	}
1381 }
1382 
1383 #ifdef INET6
1384 void
1385 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1386 {
1387 	struct tcphdr th;
1388 	void (*notify) (struct inpcb *, int) = tcp_notify;
1389 	struct ip6_hdr *ip6;
1390 	struct mbuf *m;
1391 	struct ip6ctlparam *ip6cp = NULL;
1392 	const struct sockaddr_in6 *sa6_src = NULL;
1393 	int off;
1394 	struct tcp_portonly {
1395 		u_int16_t th_sport;
1396 		u_int16_t th_dport;
1397 	} *thp;
1398 
1399 	if (sa->sa_family != AF_INET6 ||
1400 	    sa->sa_len != sizeof(struct sockaddr_in6))
1401 		return;
1402 
1403 	if (cmd == PRC_QUENCH)
1404 		notify = tcp_quench;
1405 	else if (cmd == PRC_MSGSIZE)
1406 		notify = tcp_mtudisc;
1407 	else if (!PRC_IS_REDIRECT(cmd) &&
1408 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1409 		return;
1410 
1411 	/* if the parameter is from icmp6, decode it. */
1412 	if (d != NULL) {
1413 		ip6cp = (struct ip6ctlparam *)d;
1414 		m = ip6cp->ip6c_m;
1415 		ip6 = ip6cp->ip6c_ip6;
1416 		off = ip6cp->ip6c_off;
1417 		sa6_src = ip6cp->ip6c_src;
1418 	} else {
1419 		m = NULL;
1420 		ip6 = NULL;
1421 		off = 0;	/* fool gcc */
1422 		sa6_src = &sa6_any;
1423 	}
1424 
1425 	if (ip6 != NULL) {
1426 		struct in_conninfo inc;
1427 		/*
1428 		 * XXX: We assume that when IPV6 is non NULL,
1429 		 * M and OFF are valid.
1430 		 */
1431 
1432 		/* check if we can safely examine src and dst ports */
1433 		if (m->m_pkthdr.len < off + sizeof *thp)
1434 			return;
1435 
1436 		bzero(&th, sizeof th);
1437 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1438 
1439 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1440 		    (struct sockaddr *)ip6cp->ip6c_src,
1441 		    th.th_sport, cmd, notify);
1442 
1443 		inc.inc_fport = th.th_dport;
1444 		inc.inc_lport = th.th_sport;
1445 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1446 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1447 		inc.inc_isipv6 = 1;
1448 		syncache_unreach(&inc, &th);
1449 	} else
1450 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1451 		    (const struct sockaddr *)sa6_src, 0, cmd, notify);
1452 }
1453 #endif
1454 
1455 /*
1456  * Following is where TCP initial sequence number generation occurs.
1457  *
1458  * There are two places where we must use initial sequence numbers:
1459  * 1.  In SYN-ACK packets.
1460  * 2.  In SYN packets.
1461  *
1462  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1463  * tcp_syncache.c for details.
1464  *
1465  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1466  * depends on this property.  In addition, these ISNs should be
1467  * unguessable so as to prevent connection hijacking.  To satisfy
1468  * the requirements of this situation, the algorithm outlined in
1469  * RFC 1948 is used to generate sequence numbers.
1470  *
1471  * Implementation details:
1472  *
1473  * Time is based off the system timer, and is corrected so that it
1474  * increases by one megabyte per second.  This allows for proper
1475  * recycling on high speed LANs while still leaving over an hour
1476  * before rollover.
1477  *
1478  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1479  * between seeding of isn_secret.  This is normally set to zero,
1480  * as reseeding should not be necessary.
1481  *
1482  */
1483 
1484 #define	ISN_BYTES_PER_SECOND 1048576
1485 
1486 u_char isn_secret[32];
1487 int isn_last_reseed;
1488 MD5_CTX isn_ctx;
1489 
1490 tcp_seq
1491 tcp_new_isn(struct tcpcb *tp)
1492 {
1493 	u_int32_t md5_buffer[4];
1494 	tcp_seq new_isn;
1495 
1496 	/* Seed if this is the first use, reseed if requested. */
1497 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1498 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1499 		< (u_int)ticks))) {
1500 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1501 		isn_last_reseed = ticks;
1502 	}
1503 
1504 	/* Compute the md5 hash and return the ISN. */
1505 	MD5Init(&isn_ctx);
1506 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1507 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1508 #ifdef INET6
1509 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1510 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1511 			  sizeof(struct in6_addr));
1512 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1513 			  sizeof(struct in6_addr));
1514 	} else
1515 #endif
1516 	{
1517 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1518 			  sizeof(struct in_addr));
1519 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1520 			  sizeof(struct in_addr));
1521 	}
1522 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1523 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1524 	new_isn = (tcp_seq) md5_buffer[0];
1525 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1526 	return (new_isn);
1527 }
1528 
1529 /*
1530  * When a source quench is received, close congestion window
1531  * to one segment.  We will gradually open it again as we proceed.
1532  */
1533 void
1534 tcp_quench(struct inpcb *inp, int errno)
1535 {
1536 	struct tcpcb *tp = intotcpcb(inp);
1537 
1538 	if (tp != NULL)
1539 		tp->snd_cwnd = tp->t_maxseg;
1540 }
1541 
1542 /*
1543  * When a specific ICMP unreachable message is received and the
1544  * connection state is SYN-SENT, drop the connection.  This behavior
1545  * is controlled by the icmp_may_rst sysctl.
1546  */
1547 void
1548 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1549 {
1550 	struct tcpcb *tp = intotcpcb(inp);
1551 
1552 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1553 		tcp_drop(tp, errno);
1554 }
1555 
1556 /*
1557  * When `need fragmentation' ICMP is received, update our idea of the MSS
1558  * based on the new value in the route.  Also nudge TCP to send something,
1559  * since we know the packet we just sent was dropped.
1560  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1561  */
1562 void
1563 tcp_mtudisc(struct inpcb *inp, int errno)
1564 {
1565 	struct tcpcb *tp = intotcpcb(inp);
1566 	struct rtentry *rt;
1567 	struct rmxp_tao *taop;
1568 	struct socket *so = inp->inp_socket;
1569 	int offered;
1570 	int mss;
1571 #ifdef INET6
1572 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1573 #else
1574 	const boolean_t isipv6 = FALSE;
1575 #endif
1576 
1577 	if (tp != NULL) {
1578 		if (isipv6)
1579 			rt = tcp_rtlookup6(&inp->inp_inc);
1580 		else
1581 			rt = tcp_rtlookup(&inp->inp_inc);
1582 		if (rt == NULL || rt->rt_rmx.rmx_mtu == 0) {
1583 			tp->t_maxopd = tp->t_maxseg =
1584 			    isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
1585 			return;
1586 		}
1587 		taop = rmx_taop(rt->rt_rmx);
1588 		offered = taop->tao_mssopt;
1589 		mss = rt->rt_rmx.rmx_mtu -
1590 			(isipv6 ?
1591 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1592 			 sizeof(struct tcpiphdr));
1593 
1594 		if (offered != 0)
1595 			mss = min(mss, offered);
1596 		/*
1597 		 * XXX - The above conditional probably violates the TCP
1598 		 * spec.  The problem is that, since we don't know the
1599 		 * other end's MSS, we are supposed to use a conservative
1600 		 * default.  But, if we do that, then MTU discovery will
1601 		 * never actually take place, because the conservative
1602 		 * default is much less than the MTUs typically seen
1603 		 * on the Internet today.  For the moment, we'll sweep
1604 		 * this under the carpet.
1605 		 *
1606 		 * The conservative default might not actually be a problem
1607 		 * if the only case this occurs is when sending an initial
1608 		 * SYN with options and data to a host we've never talked
1609 		 * to before.  Then, they will reply with an MSS value which
1610 		 * will get recorded and the new parameters should get
1611 		 * recomputed.  For Further Study.
1612 		 */
1613 		if (tp->t_maxopd <= mss)
1614 			return;
1615 		tp->t_maxopd = mss;
1616 
1617 		if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
1618 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1619 			mss -= TCPOLEN_TSTAMP_APPA;
1620 		if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
1621 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1622 			mss -= TCPOLEN_CC_APPA;
1623 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1624 		if (mss > MCLBYTES)
1625 			mss &= ~(MCLBYTES - 1);
1626 #else
1627 		if (mss > MCLBYTES)
1628 			mss = mss / MCLBYTES * MCLBYTES;
1629 #endif
1630 		if (so->so_snd.sb_hiwat < mss)
1631 			mss = so->so_snd.sb_hiwat;
1632 
1633 		tp->t_maxseg = mss;
1634 
1635 		tcpstat.tcps_mturesent++;
1636 		tp->t_rtttime = 0;
1637 		tp->snd_nxt = tp->snd_una;
1638 		tcp_output(tp);
1639 	}
1640 }
1641 
1642 /*
1643  * Look-up the routing entry to the peer of this inpcb.  If no route
1644  * is found and it cannot be allocated the return NULL.  This routine
1645  * is called by TCP routines that access the rmx structure and by tcp_mss
1646  * to get the interface MTU.
1647  */
1648 struct rtentry *
1649 tcp_rtlookup(struct in_conninfo *inc)
1650 {
1651 	struct route *ro;
1652 	struct rtentry *rt;
1653 
1654 	ro = &inc->inc_route;
1655 	rt = ro->ro_rt;
1656 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1657 		/* No route yet, so try to acquire one */
1658 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1659 			/*
1660 			 * unused portions of the structure MUST be zero'd
1661 			 * out because rtalloc() treats it as opaque data
1662 			 */
1663 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1664 			ro->ro_dst.sa_family = AF_INET;
1665 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1666 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1667 			    inc->inc_faddr;
1668 			rtalloc(ro);
1669 			rt = ro->ro_rt;
1670 		}
1671 	}
1672 	return (rt);
1673 }
1674 
1675 #ifdef INET6
1676 struct rtentry *
1677 tcp_rtlookup6(struct in_conninfo *inc)
1678 {
1679 	struct route_in6 *ro6;
1680 	struct rtentry *rt;
1681 
1682 	ro6 = &inc->inc6_route;
1683 	rt = ro6->ro_rt;
1684 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1685 		/* No route yet, so try to acquire one */
1686 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1687 			/*
1688 			 * unused portions of the structure MUST be zero'd
1689 			 * out because rtalloc() treats it as opaque data
1690 			 */
1691 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1692 			ro6->ro_dst.sin6_family = AF_INET6;
1693 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1694 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1695 			rtalloc((struct route *)ro6);
1696 			rt = ro6->ro_rt;
1697 		}
1698 	}
1699 	return (rt);
1700 }
1701 #endif
1702 
1703 #ifdef IPSEC
1704 /* compute ESP/AH header size for TCP, including outer IP header. */
1705 size_t
1706 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1707 {
1708 	struct inpcb *inp;
1709 	struct mbuf *m;
1710 	size_t hdrsiz;
1711 	struct ip *ip;
1712 	struct tcphdr *th;
1713 
1714 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1715 		return (0);
1716 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1717 	if (!m)
1718 		return (0);
1719 
1720 #ifdef INET6
1721 	if (inp->inp_vflag & INP_IPV6) {
1722 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1723 
1724 		th = (struct tcphdr *)(ip6 + 1);
1725 		m->m_pkthdr.len = m->m_len =
1726 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1727 		tcp_fillheaders(tp, ip6, th);
1728 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1729 	} else
1730 #endif
1731 	{
1732 		ip = mtod(m, struct ip *);
1733 		th = (struct tcphdr *)(ip + 1);
1734 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1735 		tcp_fillheaders(tp, ip, th);
1736 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1737 	}
1738 
1739 	m_free(m);
1740 	return (hdrsiz);
1741 }
1742 #endif
1743 
1744 /*
1745  * Return a pointer to the cached information about the remote host.
1746  * The cached information is stored in the protocol specific part of
1747  * the route metrics.
1748  */
1749 struct rmxp_tao *
1750 tcp_gettaocache(struct in_conninfo *inc)
1751 {
1752 	struct rtentry *rt;
1753 
1754 #ifdef INET6
1755 	if (inc->inc_isipv6)
1756 		rt = tcp_rtlookup6(inc);
1757 	else
1758 #endif
1759 		rt = tcp_rtlookup(inc);
1760 
1761 	/* Make sure this is a host route and is up. */
1762 	if (rt == NULL ||
1763 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1764 		return (NULL);
1765 
1766 	return (rmx_taop(rt->rt_rmx));
1767 }
1768 
1769 /*
1770  * Clear all the TAO cache entries, called from tcp_init.
1771  *
1772  * XXX
1773  * This routine is just an empty one, because we assume that the routing
1774  * routing tables are initialized at the same time when TCP, so there is
1775  * nothing in the cache left over.
1776  */
1777 static void
1778 tcp_cleartaocache()
1779 {
1780 }
1781 
1782 /*
1783  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1784  *
1785  * This code attempts to calculate the bandwidth-delay product as a
1786  * means of determining the optimal window size to maximize bandwidth,
1787  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1788  * routers.  This code also does a fairly good job keeping RTTs in check
1789  * across slow links like modems.  We implement an algorithm which is very
1790  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1791  * transmitter side of a TCP connection and so only effects the transmit
1792  * side of the connection.
1793  *
1794  * BACKGROUND:  TCP makes no provision for the management of buffer space
1795  * at the end points or at the intermediate routers and switches.  A TCP
1796  * stream, whether using NewReno or not, will eventually buffer as
1797  * many packets as it is able and the only reason this typically works is
1798  * due to the fairly small default buffers made available for a connection
1799  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1800  * scaling it is now fairly easy for even a single TCP connection to blow-out
1801  * all available buffer space not only on the local interface, but on
1802  * intermediate routers and switches as well.  NewReno makes a misguided
1803  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1804  * then backing off, then steadily increasing the window again until another
1805  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1806  * is only made worse as network loads increase and the idea of intentionally
1807  * blowing out network buffers is, frankly, a terrible way to manage network
1808  * resources.
1809  *
1810  * It is far better to limit the transmit window prior to the failure
1811  * condition being achieved.  There are two general ways to do this:  First
1812  * you can 'scan' through different transmit window sizes and locate the
1813  * point where the RTT stops increasing, indicating that you have filled the
1814  * pipe, then scan backwards until you note that RTT stops decreasing, then
1815  * repeat ad-infinitum.  This method works in principle but has severe
1816  * implementation issues due to RTT variances, timer granularity, and
1817  * instability in the algorithm which can lead to many false positives and
1818  * create oscillations as well as interact badly with other TCP streams
1819  * implementing the same algorithm.
1820  *
1821  * The second method is to limit the window to the bandwidth delay product
1822  * of the link.  This is the method we implement.  RTT variances and our
1823  * own manipulation of the congestion window, bwnd, can potentially
1824  * destabilize the algorithm.  For this reason we have to stabilize the
1825  * elements used to calculate the window.  We do this by using the minimum
1826  * observed RTT, the long term average of the observed bandwidth, and
1827  * by adding two segments worth of slop.  It isn't perfect but it is able
1828  * to react to changing conditions and gives us a very stable basis on
1829  * which to extend the algorithm.
1830  */
1831 void
1832 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1833 {
1834 	u_long bw;
1835 	u_long bwnd;
1836 	int save_ticks;
1837 
1838 	/*
1839 	 * If inflight_enable is disabled in the middle of a tcp connection,
1840 	 * make sure snd_bwnd is effectively disabled.
1841 	 */
1842 	if (!tcp_inflight_enable) {
1843 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1844 		tp->snd_bandwidth = 0;
1845 		return;
1846 	}
1847 
1848 	/*
1849 	 * Figure out the bandwidth.  Due to the tick granularity this
1850 	 * is a very rough number and it MUST be averaged over a fairly
1851 	 * long period of time.  XXX we need to take into account a link
1852 	 * that is not using all available bandwidth, but for now our
1853 	 * slop will ramp us up if this case occurs and the bandwidth later
1854 	 * increases.
1855 	 *
1856 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1857 	 * effectively reset t_bw_rtttime for this case.
1858 	 */
1859 	save_ticks = ticks;
1860 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1861 		return;
1862 
1863 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1864 	    (save_ticks - tp->t_bw_rtttime);
1865 	tp->t_bw_rtttime = save_ticks;
1866 	tp->t_bw_rtseq = ack_seq;
1867 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1868 		return;
1869 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1870 
1871 	tp->snd_bandwidth = bw;
1872 
1873 	/*
1874 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1875 	 * segments.  The additional slop puts us squarely in the sweet
1876 	 * spot and also handles the bandwidth run-up case.  Without the
1877 	 * slop we could be locking ourselves into a lower bandwidth.
1878 	 *
1879 	 * Situations Handled:
1880 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1881 	 *	    high speed LANs, allowing larger TCP buffers to be
1882 	 *	    specified, and also does a good job preventing
1883 	 *	    over-queueing of packets over choke points like modems
1884 	 *	    (at least for the transmit side).
1885 	 *
1886 	 *	(2) Is able to handle changing network loads (bandwidth
1887 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1888 	 *	    increases).
1889 	 *
1890 	 *	(3) Theoretically should stabilize in the face of multiple
1891 	 *	    connections implementing the same algorithm (this may need
1892 	 *	    a little work).
1893 	 *
1894 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1895 	 *	    be adjusted with a sysctl but typically only needs to be on
1896 	 *	    very slow connections.  A value no smaller then 5 should
1897 	 *	    be used, but only reduce this default if you have no other
1898 	 *	    choice.
1899 	 */
1900 
1901 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1902 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1903 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1904 #undef USERTT
1905 
1906 	if (tcp_inflight_debug > 0) {
1907 		static int ltime;
1908 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1909 			ltime = ticks;
1910 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1911 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1912 		}
1913 	}
1914 	if ((long)bwnd < tcp_inflight_min)
1915 		bwnd = tcp_inflight_min;
1916 	if (bwnd > tcp_inflight_max)
1917 		bwnd = tcp_inflight_max;
1918 	if ((long)bwnd < tp->t_maxseg * 2)
1919 		bwnd = tp->t_maxseg * 2;
1920 	tp->snd_bwnd = bwnd;
1921 }
1922