xref: /dragonfly/sys/netinet/tcp_subr.c (revision a68e0df0)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
99 
100 #define	_IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #ifdef INET6
130 #include <netinet6/ipsec6.h>
131 #endif
132 #endif
133 
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #ifdef INET6
137 #include <netproto/ipsec/ipsec6.h>
138 #endif
139 #define	IPSEC
140 #endif
141 
142 #include <sys/md5.h>
143 #include <machine/smp.h>
144 
145 #include <sys/msgport2.h>
146 #include <sys/mplock2.h>
147 #include <net/netmsg2.h>
148 
149 #if !defined(KTR_TCP)
150 #define KTR_TCP		KTR_ALL
151 #endif
152 KTR_INFO_MASTER(tcp);
153 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
155 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
156 #define logtcp(name)	KTR_LOG(tcp_ ## name)
157 
158 struct inpcbinfo tcbinfo[MAXCPU];
159 struct tcpcbackqhead tcpcbackq[MAXCPU];
160 
161 int tcp_mpsafe_proto = 0;
162 TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
163 
164 static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
165 TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
167 	   &tcp_mpsafe_thread, 0,
168 	   "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
169 
170 int tcp_mssdflt = TCP_MSS;
171 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
172     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
173 
174 #ifdef INET6
175 int tcp_v6mssdflt = TCP6_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
177     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
178 #endif
179 
180 /*
181  * Minimum MSS we accept and use. This prevents DoS attacks where
182  * we are forced to a ridiculous low MSS like 20 and send hundreds
183  * of packets instead of one. The effect scales with the available
184  * bandwidth and quickly saturates the CPU and network interface
185  * with packet generation and sending. Set to zero to disable MINMSS
186  * checking. This setting prevents us from sending too small packets.
187  */
188 int tcp_minmss = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
190     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
191 
192 #if 0
193 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
195     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
196 #endif
197 
198 int tcp_do_rfc1323 = 1;
199 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
200     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
201 
202 static int tcp_tcbhashsize = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
204      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
205 
206 static int do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208      "Enable tcp_drain routine for extra help when low on mbufs");
209 
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
212     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
213 
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
216     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 
218 /*
219  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
220  * by default, but with generous values which should allow maximal
221  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
222  *
223  * The reason for doing this is that the limiter is the only mechanism we
224  * have which seems to do a really good job preventing receiver RX rings
225  * on network interfaces from getting blown out.  Even though GigE/10GigE
226  * is supposed to flow control it looks like either it doesn't actually
227  * do it or Open Source drivers do not properly enable it.
228  *
229  * People using the limiter to reduce bottlenecks on slower WAN connections
230  * should set the slop to 20 (2 packets).
231  */
232 static int tcp_inflight_enable = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
234     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
235 
236 static int tcp_inflight_debug = 0;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
238     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
239 
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
243 
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
247 
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
251 
252 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
253 static struct malloc_pipe tcptemp_mpipe;
254 
255 static void tcp_willblock(int);
256 static void tcp_notify (struct inpcb *, int);
257 
258 struct tcp_stats tcpstats_percpu[MAXCPU];
259 #ifdef SMP
260 static int
261 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
262 {
263 	int cpu, error = 0;
264 
265 	for (cpu = 0; cpu < ncpus; ++cpu) {
266 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
267 					sizeof(struct tcp_stats))))
268 			break;
269 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
270 				       sizeof(struct tcp_stats))))
271 			break;
272 	}
273 
274 	return (error);
275 }
276 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
277     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
278 #else
279 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
280     &tcpstat, tcp_stats, "TCP statistics");
281 #endif
282 
283 /*
284  * Target size of TCP PCB hash tables. Must be a power of two.
285  *
286  * Note that this can be overridden by the kernel environment
287  * variable net.inet.tcp.tcbhashsize
288  */
289 #ifndef TCBHASHSIZE
290 #define	TCBHASHSIZE	512
291 #endif
292 
293 /*
294  * This is the actual shape of what we allocate using the zone
295  * allocator.  Doing it this way allows us to protect both structures
296  * using the same generation count, and also eliminates the overhead
297  * of allocating tcpcbs separately.  By hiding the structure here,
298  * we avoid changing most of the rest of the code (although it needs
299  * to be changed, eventually, for greater efficiency).
300  */
301 #define	ALIGNMENT	32
302 #define	ALIGNM1		(ALIGNMENT - 1)
303 struct	inp_tp {
304 	union {
305 		struct	inpcb inp;
306 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
307 	} inp_tp_u;
308 	struct	tcpcb tcb;
309 	struct	tcp_callout inp_tp_rexmt;
310 	struct	tcp_callout inp_tp_persist;
311 	struct	tcp_callout inp_tp_keep;
312 	struct	tcp_callout inp_tp_2msl;
313 	struct	tcp_callout inp_tp_delack;
314 	struct	netmsg_tcp_timer inp_tp_timermsg;
315 };
316 #undef ALIGNMENT
317 #undef ALIGNM1
318 
319 /*
320  * Tcp initialization
321  */
322 void
323 tcp_init(void)
324 {
325 	struct inpcbporthead *porthashbase;
326 	u_long porthashmask;
327 	int hashsize = TCBHASHSIZE;
328 	int cpu;
329 
330 	/*
331 	 * note: tcptemp is used for keepalives, and it is ok for an
332 	 * allocation to fail so do not specify MPF_INT.
333 	 */
334 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
335 		    25, -1, 0, NULL);
336 
337 	tcp_delacktime = TCPTV_DELACK;
338 	tcp_keepinit = TCPTV_KEEP_INIT;
339 	tcp_keepidle = TCPTV_KEEP_IDLE;
340 	tcp_keepintvl = TCPTV_KEEPINTVL;
341 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
342 	tcp_msl = TCPTV_MSL;
343 	tcp_rexmit_min = TCPTV_MIN;
344 	tcp_rexmit_slop = TCPTV_CPU_VAR;
345 
346 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
347 	if (!powerof2(hashsize)) {
348 		kprintf("WARNING: TCB hash size not a power of 2\n");
349 		hashsize = 512; /* safe default */
350 	}
351 	tcp_tcbhashsize = hashsize;
352 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
353 
354 	for (cpu = 0; cpu < ncpus2; cpu++) {
355 		in_pcbinfo_init(&tcbinfo[cpu]);
356 		tcbinfo[cpu].cpu = cpu;
357 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
358 		    &tcbinfo[cpu].hashmask);
359 		tcbinfo[cpu].porthashbase = porthashbase;
360 		tcbinfo[cpu].porthashmask = porthashmask;
361 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
362 		    &tcbinfo[cpu].wildcardhashmask);
363 		tcbinfo[cpu].ipi_size = sizeof(struct inp_tp);
364 		TAILQ_INIT(&tcpcbackq[cpu]);
365 	}
366 
367 	tcp_reass_maxseg = nmbclusters / 16;
368 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
369 
370 #ifdef INET6
371 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
372 #else
373 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
374 #endif
375 	if (max_protohdr < TCP_MINPROTOHDR)
376 		max_protohdr = TCP_MINPROTOHDR;
377 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
378 		panic("tcp_init");
379 #undef TCP_MINPROTOHDR
380 
381 	/*
382 	 * Initialize TCP statistics counters for each CPU.
383 	 */
384 #ifdef SMP
385 	for (cpu = 0; cpu < ncpus; ++cpu) {
386 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
387 	}
388 #else
389 	bzero(&tcpstat, sizeof(struct tcp_stats));
390 #endif
391 
392 	syncache_init();
393 	tcp_thread_init();
394 }
395 
396 void
397 tcpmsg_service_loop(void *dummy)
398 {
399 	struct netmsg *msg;
400 	int mplocked;
401 
402 	/*
403 	 * Thread was started with TDF_MPSAFE
404 	 */
405 	mplocked = 0;
406 
407 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
408 		do {
409 			logtcp(rxmsg);
410 			mplocked = netmsg_service(msg, tcp_mpsafe_thread,
411 						  mplocked);
412 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
413 
414 		logtcp(delayed);
415 		tcp_willblock(mplocked);
416 		logtcp(wait);
417 	}
418 }
419 
420 static void
421 tcp_willblock(int mplocked)
422 {
423 	struct tcpcb *tp;
424 	int cpu = mycpu->gd_cpuid;
425 	int unlock = 0;
426 
427 	if (!mplocked && !tcp_mpsafe_proto) {
428 		if (TAILQ_EMPTY(&tcpcbackq[cpu]))
429 			return;
430 
431 		get_mplock();
432 		mplocked = 1;
433 		unlock = 1;
434 	}
435 
436 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
437 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
438 		tp->t_flags &= ~TF_ONOUTPUTQ;
439 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
440 		tcp_output(tp);
441 	}
442 
443 	if (unlock)
444 		rel_mplock();
445 }
446 
447 
448 /*
449  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
450  * tcp_template used to store this data in mbufs, but we now recopy it out
451  * of the tcpcb each time to conserve mbufs.
452  */
453 void
454 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
455 {
456 	struct inpcb *inp = tp->t_inpcb;
457 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
458 
459 #ifdef INET6
460 	if (inp->inp_vflag & INP_IPV6) {
461 		struct ip6_hdr *ip6;
462 
463 		ip6 = (struct ip6_hdr *)ip_ptr;
464 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
465 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
466 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
467 			(IPV6_VERSION & IPV6_VERSION_MASK);
468 		ip6->ip6_nxt = IPPROTO_TCP;
469 		ip6->ip6_plen = sizeof(struct tcphdr);
470 		ip6->ip6_src = inp->in6p_laddr;
471 		ip6->ip6_dst = inp->in6p_faddr;
472 		tcp_hdr->th_sum = 0;
473 	} else
474 #endif
475 	{
476 		struct ip *ip = (struct ip *) ip_ptr;
477 
478 		ip->ip_vhl = IP_VHL_BORING;
479 		ip->ip_tos = 0;
480 		ip->ip_len = 0;
481 		ip->ip_id = 0;
482 		ip->ip_off = 0;
483 		ip->ip_ttl = 0;
484 		ip->ip_sum = 0;
485 		ip->ip_p = IPPROTO_TCP;
486 		ip->ip_src = inp->inp_laddr;
487 		ip->ip_dst = inp->inp_faddr;
488 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
489 				    ip->ip_dst.s_addr,
490 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
491 	}
492 
493 	tcp_hdr->th_sport = inp->inp_lport;
494 	tcp_hdr->th_dport = inp->inp_fport;
495 	tcp_hdr->th_seq = 0;
496 	tcp_hdr->th_ack = 0;
497 	tcp_hdr->th_x2 = 0;
498 	tcp_hdr->th_off = 5;
499 	tcp_hdr->th_flags = 0;
500 	tcp_hdr->th_win = 0;
501 	tcp_hdr->th_urp = 0;
502 }
503 
504 /*
505  * Create template to be used to send tcp packets on a connection.
506  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
507  * use for this function is in keepalives, which use tcp_respond.
508  */
509 struct tcptemp *
510 tcp_maketemplate(struct tcpcb *tp)
511 {
512 	struct tcptemp *tmp;
513 
514 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
515 		return (NULL);
516 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
517 	return (tmp);
518 }
519 
520 void
521 tcp_freetemplate(struct tcptemp *tmp)
522 {
523 	mpipe_free(&tcptemp_mpipe, tmp);
524 }
525 
526 /*
527  * Send a single message to the TCP at address specified by
528  * the given TCP/IP header.  If m == NULL, then we make a copy
529  * of the tcpiphdr at ti and send directly to the addressed host.
530  * This is used to force keep alive messages out using the TCP
531  * template for a connection.  If flags are given then we send
532  * a message back to the TCP which originated the * segment ti,
533  * and discard the mbuf containing it and any other attached mbufs.
534  *
535  * In any case the ack and sequence number of the transmitted
536  * segment are as specified by the parameters.
537  *
538  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
539  */
540 void
541 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
542 	    tcp_seq ack, tcp_seq seq, int flags)
543 {
544 	int tlen;
545 	int win = 0;
546 	struct route *ro = NULL;
547 	struct route sro;
548 	struct ip *ip = ipgen;
549 	struct tcphdr *nth;
550 	int ipflags = 0;
551 	struct route_in6 *ro6 = NULL;
552 	struct route_in6 sro6;
553 	struct ip6_hdr *ip6 = ipgen;
554 	boolean_t use_tmpro = TRUE;
555 #ifdef INET6
556 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
557 #else
558 	const boolean_t isipv6 = FALSE;
559 #endif
560 
561 	if (tp != NULL) {
562 		if (!(flags & TH_RST)) {
563 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
564 			if (win < 0)
565 				win = 0;
566 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
567 				win = (long)TCP_MAXWIN << tp->rcv_scale;
568 		}
569 		/*
570 		 * Don't use the route cache of a listen socket,
571 		 * it is not MPSAFE; use temporary route cache.
572 		 */
573 		if (tp->t_state != TCPS_LISTEN) {
574 			if (isipv6)
575 				ro6 = &tp->t_inpcb->in6p_route;
576 			else
577 				ro = &tp->t_inpcb->inp_route;
578 			use_tmpro = FALSE;
579 		}
580 	}
581 	if (use_tmpro) {
582 		if (isipv6) {
583 			ro6 = &sro6;
584 			bzero(ro6, sizeof *ro6);
585 		} else {
586 			ro = &sro;
587 			bzero(ro, sizeof *ro);
588 		}
589 	}
590 	if (m == NULL) {
591 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
592 		if (m == NULL)
593 			return;
594 		tlen = 0;
595 		m->m_data += max_linkhdr;
596 		if (isipv6) {
597 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
598 			ip6 = mtod(m, struct ip6_hdr *);
599 			nth = (struct tcphdr *)(ip6 + 1);
600 		} else {
601 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
602 			ip = mtod(m, struct ip *);
603 			nth = (struct tcphdr *)(ip + 1);
604 		}
605 		bcopy(th, nth, sizeof(struct tcphdr));
606 		flags = TH_ACK;
607 	} else {
608 		m_freem(m->m_next);
609 		m->m_next = NULL;
610 		m->m_data = (caddr_t)ipgen;
611 		/* m_len is set later */
612 		tlen = 0;
613 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
614 		if (isipv6) {
615 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
616 			nth = (struct tcphdr *)(ip6 + 1);
617 		} else {
618 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
619 			nth = (struct tcphdr *)(ip + 1);
620 		}
621 		if (th != nth) {
622 			/*
623 			 * this is usually a case when an extension header
624 			 * exists between the IPv6 header and the
625 			 * TCP header.
626 			 */
627 			nth->th_sport = th->th_sport;
628 			nth->th_dport = th->th_dport;
629 		}
630 		xchg(nth->th_dport, nth->th_sport, n_short);
631 #undef xchg
632 	}
633 	if (isipv6) {
634 		ip6->ip6_flow = 0;
635 		ip6->ip6_vfc = IPV6_VERSION;
636 		ip6->ip6_nxt = IPPROTO_TCP;
637 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
638 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
639 	} else {
640 		tlen += sizeof(struct tcpiphdr);
641 		ip->ip_len = tlen;
642 		ip->ip_ttl = ip_defttl;
643 	}
644 	m->m_len = tlen;
645 	m->m_pkthdr.len = tlen;
646 	m->m_pkthdr.rcvif = NULL;
647 	nth->th_seq = htonl(seq);
648 	nth->th_ack = htonl(ack);
649 	nth->th_x2 = 0;
650 	nth->th_off = sizeof(struct tcphdr) >> 2;
651 	nth->th_flags = flags;
652 	if (tp != NULL)
653 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
654 	else
655 		nth->th_win = htons((u_short)win);
656 	nth->th_urp = 0;
657 	if (isipv6) {
658 		nth->th_sum = 0;
659 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
660 					sizeof(struct ip6_hdr),
661 					tlen - sizeof(struct ip6_hdr));
662 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
663 					       (ro6 && ro6->ro_rt) ?
664 						ro6->ro_rt->rt_ifp : NULL);
665 	} else {
666 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
667 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
668 		m->m_pkthdr.csum_flags = CSUM_TCP;
669 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
670 	}
671 #ifdef TCPDEBUG
672 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
673 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
674 #endif
675 	if (isipv6) {
676 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
677 			   tp ? tp->t_inpcb : NULL);
678 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
679 			RTFREE(ro6->ro_rt);
680 			ro6->ro_rt = NULL;
681 		}
682 	} else {
683 		ipflags |= IP_DEBUGROUTE;
684 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
685 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
686 			RTFREE(ro->ro_rt);
687 			ro->ro_rt = NULL;
688 		}
689 	}
690 }
691 
692 /*
693  * Create a new TCP control block, making an
694  * empty reassembly queue and hooking it to the argument
695  * protocol control block.  The `inp' parameter must have
696  * come from the zone allocator set up in tcp_init().
697  */
698 struct tcpcb *
699 tcp_newtcpcb(struct inpcb *inp)
700 {
701 	struct inp_tp *it;
702 	struct tcpcb *tp;
703 #ifdef INET6
704 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
705 #else
706 	const boolean_t isipv6 = FALSE;
707 #endif
708 
709 	it = (struct inp_tp *)inp;
710 	tp = &it->tcb;
711 	bzero(tp, sizeof(struct tcpcb));
712 	LIST_INIT(&tp->t_segq);
713 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
714 
715 	/* Set up our timeouts. */
716 	tp->tt_rexmt = &it->inp_tp_rexmt;
717 	tp->tt_persist = &it->inp_tp_persist;
718 	tp->tt_keep = &it->inp_tp_keep;
719 	tp->tt_2msl = &it->inp_tp_2msl;
720 	tp->tt_delack = &it->inp_tp_delack;
721 	tcp_inittimers(tp);
722 
723 	/*
724 	 * Zero out timer message.  We don't create it here,
725 	 * since the current CPU may not be the owner of this
726 	 * inpcb.
727 	 */
728 	tp->tt_msg = &it->inp_tp_timermsg;
729 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
730 
731 	if (tcp_do_rfc1323)
732 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
733 	tp->t_inpcb = inp;	/* XXX */
734 	tp->t_state = TCPS_CLOSED;
735 	/*
736 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
738 	 * reasonable initial retransmit time.
739 	 */
740 	tp->t_srtt = TCPTV_SRTTBASE;
741 	tp->t_rttvar =
742 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 	tp->t_rttmin = tcp_rexmit_min;
744 	tp->t_rxtcur = TCPTV_RTOBASE;
745 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 	tp->t_rcvtime = ticks;
749 	/*
750 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
751 	 * because the socket may be bound to an IPv6 wildcard address,
752 	 * which may match an IPv4-mapped IPv6 address.
753 	 */
754 	inp->inp_ip_ttl = ip_defttl;
755 	inp->inp_ppcb = tp;
756 	tcp_sack_tcpcb_init(tp);
757 	return (tp);		/* XXX */
758 }
759 
760 /*
761  * Drop a TCP connection, reporting the specified error.
762  * If connection is synchronized, then send a RST to peer.
763  */
764 struct tcpcb *
765 tcp_drop(struct tcpcb *tp, int error)
766 {
767 	struct socket *so = tp->t_inpcb->inp_socket;
768 
769 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
770 		tp->t_state = TCPS_CLOSED;
771 		tcp_output(tp);
772 		tcpstat.tcps_drops++;
773 	} else
774 		tcpstat.tcps_conndrops++;
775 	if (error == ETIMEDOUT && tp->t_softerror)
776 		error = tp->t_softerror;
777 	so->so_error = error;
778 	return (tcp_close(tp));
779 }
780 
781 #ifdef SMP
782 
783 struct netmsg_remwildcard {
784 	struct netmsg		nm_netmsg;
785 	struct inpcb		*nm_inp;
786 	struct inpcbinfo	*nm_pcbinfo;
787 #if defined(INET6)
788 	int			nm_isinet6;
789 #else
790 	int			nm_unused01;
791 #endif
792 };
793 
794 /*
795  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
796  * inp can be detached.  We do this by cycling through the cpus, ending up
797  * on the cpu controlling the inp last and then doing the disconnect.
798  */
799 static void
800 in_pcbremwildcardhash_handler(struct netmsg *msg0)
801 {
802 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
803 	int cpu;
804 
805 	cpu = msg->nm_pcbinfo->cpu;
806 
807 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
808 		/* note: detach removes any wildcard hash entry */
809 #ifdef INET6
810 		if (msg->nm_isinet6)
811 			in6_pcbdetach(msg->nm_inp);
812 		else
813 #endif
814 			in_pcbdetach(msg->nm_inp);
815 		lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
816 	} else {
817 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
818 		cpu = (cpu + 1) % ncpus2;
819 		msg->nm_pcbinfo = &tcbinfo[cpu];
820 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
821 	}
822 }
823 
824 #endif
825 
826 /*
827  * Close a TCP control block:
828  *	discard all space held by the tcp
829  *	discard internet protocol block
830  *	wake up any sleepers
831  */
832 struct tcpcb *
833 tcp_close(struct tcpcb *tp)
834 {
835 	struct tseg_qent *q;
836 	struct inpcb *inp = tp->t_inpcb;
837 	struct socket *so = inp->inp_socket;
838 	struct rtentry *rt;
839 	boolean_t dosavessthresh;
840 #ifdef SMP
841 	int cpu;
842 #endif
843 #ifdef INET6
844 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
845 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
846 #else
847 	const boolean_t isipv6 = FALSE;
848 #endif
849 
850 	/*
851 	 * The tp is not instantly destroyed in the wildcard case.  Setting
852 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
853 	 * messing with it, though it should be noted that this change may
854 	 * not take effect on other cpus until we have chained the wildcard
855 	 * hash removal.
856 	 *
857 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
858 	 * update and prevent other tcp protocol threads from accepting new
859 	 * connections on the listen socket we might be trying to close down.
860 	 */
861 	KKASSERT(tp->t_state != TCPS_TERMINATING);
862 	tp->t_state = TCPS_TERMINATING;
863 
864 	/*
865 	 * Make sure that all of our timers are stopped before we
866 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
867 	 * timers are never used.  If timer message is never created
868 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
869 	 */
870 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
871 		tcp_callout_stop(tp, tp->tt_rexmt);
872 		tcp_callout_stop(tp, tp->tt_persist);
873 		tcp_callout_stop(tp, tp->tt_keep);
874 		tcp_callout_stop(tp, tp->tt_2msl);
875 		tcp_callout_stop(tp, tp->tt_delack);
876 	}
877 
878 	if (tp->t_flags & TF_ONOUTPUTQ) {
879 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
880 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
881 		tp->t_flags &= ~TF_ONOUTPUTQ;
882 	}
883 
884 	/*
885 	 * If we got enough samples through the srtt filter,
886 	 * save the rtt and rttvar in the routing entry.
887 	 * 'Enough' is arbitrarily defined as the 16 samples.
888 	 * 16 samples is enough for the srtt filter to converge
889 	 * to within 5% of the correct value; fewer samples and
890 	 * we could save a very bogus rtt.
891 	 *
892 	 * Don't update the default route's characteristics and don't
893 	 * update anything that the user "locked".
894 	 */
895 	if (tp->t_rttupdated >= 16) {
896 		u_long i = 0;
897 
898 		if (isipv6) {
899 			struct sockaddr_in6 *sin6;
900 
901 			if ((rt = inp->in6p_route.ro_rt) == NULL)
902 				goto no_valid_rt;
903 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
904 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
905 				goto no_valid_rt;
906 		} else
907 			if ((rt = inp->inp_route.ro_rt) == NULL ||
908 			    ((struct sockaddr_in *)rt_key(rt))->
909 			     sin_addr.s_addr == INADDR_ANY)
910 				goto no_valid_rt;
911 
912 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
913 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
914 			if (rt->rt_rmx.rmx_rtt && i)
915 				/*
916 				 * filter this update to half the old & half
917 				 * the new values, converting scale.
918 				 * See route.h and tcp_var.h for a
919 				 * description of the scaling constants.
920 				 */
921 				rt->rt_rmx.rmx_rtt =
922 				    (rt->rt_rmx.rmx_rtt + i) / 2;
923 			else
924 				rt->rt_rmx.rmx_rtt = i;
925 			tcpstat.tcps_cachedrtt++;
926 		}
927 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
928 			i = tp->t_rttvar *
929 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
930 			if (rt->rt_rmx.rmx_rttvar && i)
931 				rt->rt_rmx.rmx_rttvar =
932 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
933 			else
934 				rt->rt_rmx.rmx_rttvar = i;
935 			tcpstat.tcps_cachedrttvar++;
936 		}
937 		/*
938 		 * The old comment here said:
939 		 * update the pipelimit (ssthresh) if it has been updated
940 		 * already or if a pipesize was specified & the threshhold
941 		 * got below half the pipesize.  I.e., wait for bad news
942 		 * before we start updating, then update on both good
943 		 * and bad news.
944 		 *
945 		 * But we want to save the ssthresh even if no pipesize is
946 		 * specified explicitly in the route, because such
947 		 * connections still have an implicit pipesize specified
948 		 * by the global tcp_sendspace.  In the absence of a reliable
949 		 * way to calculate the pipesize, it will have to do.
950 		 */
951 		i = tp->snd_ssthresh;
952 		if (rt->rt_rmx.rmx_sendpipe != 0)
953 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
954 		else
955 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
956 		if (dosavessthresh ||
957 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
958 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
959 			/*
960 			 * convert the limit from user data bytes to
961 			 * packets then to packet data bytes.
962 			 */
963 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
964 			if (i < 2)
965 				i = 2;
966 			i *= tp->t_maxseg +
967 			     (isipv6 ?
968 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
969 			      sizeof(struct tcpiphdr));
970 			if (rt->rt_rmx.rmx_ssthresh)
971 				rt->rt_rmx.rmx_ssthresh =
972 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
973 			else
974 				rt->rt_rmx.rmx_ssthresh = i;
975 			tcpstat.tcps_cachedssthresh++;
976 		}
977 	}
978 
979 no_valid_rt:
980 	/* free the reassembly queue, if any */
981 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
982 		LIST_REMOVE(q, tqe_q);
983 		m_freem(q->tqe_m);
984 		FREE(q, M_TSEGQ);
985 		tcp_reass_qsize--;
986 	}
987 	/* throw away SACK blocks in scoreboard*/
988 	if (TCP_DO_SACK(tp))
989 		tcp_sack_cleanup(&tp->scb);
990 
991 	inp->inp_ppcb = NULL;
992 	soisdisconnected(so);
993 
994 	tcp_destroy_timermsg(tp);
995 	if (tp->t_flags & TF_SYNCACHE)
996 		syncache_destroy(tp);
997 
998 	/*
999 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
1000 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
1001 	 * for each protocol thread and must be removed in the context of
1002 	 * that thread.  This is accomplished by chaining the message
1003 	 * through the cpus.
1004 	 *
1005 	 * If the inp is not wildcarded we simply detach, which will remove
1006 	 * the any hashes still present for this inp.
1007 	 */
1008 #ifdef SMP
1009 	if (inp->inp_flags & INP_WILDCARD_MP) {
1010 		struct netmsg_remwildcard *msg;
1011 
1012 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
1013 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
1014 			      M_LWKTMSG, M_INTWAIT);
1015 		netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1016 			    0, in_pcbremwildcardhash_handler);
1017 #ifdef INET6
1018 		msg->nm_isinet6 = isafinet6;
1019 #endif
1020 		msg->nm_inp = inp;
1021 		msg->nm_pcbinfo = &tcbinfo[cpu];
1022 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1023 	} else
1024 #endif
1025 	{
1026 		/* note: detach removes any wildcard hash entry */
1027 #ifdef INET6
1028 		if (isafinet6)
1029 			in6_pcbdetach(inp);
1030 		else
1031 #endif
1032 			in_pcbdetach(inp);
1033 	}
1034 	tcpstat.tcps_closed++;
1035 	return (NULL);
1036 }
1037 
1038 static __inline void
1039 tcp_drain_oncpu(struct inpcbhead *head)
1040 {
1041 	struct inpcb *inpb;
1042 	struct tcpcb *tcpb;
1043 	struct tseg_qent *te;
1044 
1045 	LIST_FOREACH(inpb, head, inp_list) {
1046 		if (inpb->inp_flags & INP_PLACEMARKER)
1047 			continue;
1048 		if ((tcpb = intotcpcb(inpb))) {
1049 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1050 				LIST_REMOVE(te, tqe_q);
1051 				m_freem(te->tqe_m);
1052 				FREE(te, M_TSEGQ);
1053 				tcp_reass_qsize--;
1054 			}
1055 		}
1056 	}
1057 }
1058 
1059 #ifdef SMP
1060 struct netmsg_tcp_drain {
1061 	struct netmsg		nm_netmsg;
1062 	struct inpcbhead	*nm_head;
1063 };
1064 
1065 static void
1066 tcp_drain_handler(netmsg_t netmsg)
1067 {
1068 	struct netmsg_tcp_drain *nm = (void *)netmsg;
1069 
1070 	tcp_drain_oncpu(nm->nm_head);
1071 	lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1072 }
1073 #endif
1074 
1075 void
1076 tcp_drain(void)
1077 {
1078 #ifdef SMP
1079 	int cpu;
1080 #endif
1081 
1082 	if (!do_tcpdrain)
1083 		return;
1084 
1085 	/*
1086 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1087 	 * if there is one...
1088 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1089 	 *	reassembly queue should be flushed, but in a situation
1090 	 *	where we're really low on mbufs, this is potentially
1091 	 *	useful.
1092 	 */
1093 #ifdef SMP
1094 	for (cpu = 0; cpu < ncpus2; cpu++) {
1095 		struct netmsg_tcp_drain *msg;
1096 
1097 		if (cpu == mycpu->gd_cpuid) {
1098 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1099 		} else {
1100 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1101 				    M_LWKTMSG, M_NOWAIT);
1102 			if (msg == NULL)
1103 				continue;
1104 			netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1105 				    0, tcp_drain_handler);
1106 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1107 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1108 		}
1109 	}
1110 #else
1111 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1112 #endif
1113 }
1114 
1115 /*
1116  * Notify a tcp user of an asynchronous error;
1117  * store error as soft error, but wake up user
1118  * (for now, won't do anything until can select for soft error).
1119  *
1120  * Do not wake up user since there currently is no mechanism for
1121  * reporting soft errors (yet - a kqueue filter may be added).
1122  */
1123 static void
1124 tcp_notify(struct inpcb *inp, int error)
1125 {
1126 	struct tcpcb *tp = intotcpcb(inp);
1127 
1128 	/*
1129 	 * Ignore some errors if we are hooked up.
1130 	 * If connection hasn't completed, has retransmitted several times,
1131 	 * and receives a second error, give up now.  This is better
1132 	 * than waiting a long time to establish a connection that
1133 	 * can never complete.
1134 	 */
1135 	if (tp->t_state == TCPS_ESTABLISHED &&
1136 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1137 	      error == EHOSTDOWN)) {
1138 		return;
1139 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1140 	    tp->t_softerror)
1141 		tcp_drop(tp, error);
1142 	else
1143 		tp->t_softerror = error;
1144 #if 0
1145 	wakeup(&so->so_timeo);
1146 	sorwakeup(so);
1147 	sowwakeup(so);
1148 #endif
1149 }
1150 
1151 static int
1152 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1153 {
1154 	int error, i, n;
1155 	struct inpcb *marker;
1156 	struct inpcb *inp;
1157 	inp_gen_t gencnt;
1158 	globaldata_t gd;
1159 	int origcpu, ccpu;
1160 
1161 	error = 0;
1162 	n = 0;
1163 
1164 	/*
1165 	 * The process of preparing the TCB list is too time-consuming and
1166 	 * resource-intensive to repeat twice on every request.
1167 	 */
1168 	if (req->oldptr == NULL) {
1169 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1170 			gd = globaldata_find(ccpu);
1171 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1172 		}
1173 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1174 		return (0);
1175 	}
1176 
1177 	if (req->newptr != NULL)
1178 		return (EPERM);
1179 
1180 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1181 	marker->inp_flags |= INP_PLACEMARKER;
1182 
1183 	/*
1184 	 * OK, now we're committed to doing something.  Run the inpcb list
1185 	 * for each cpu in the system and construct the output.  Use a
1186 	 * list placemarker to deal with list changes occuring during
1187 	 * copyout blockages (but otherwise depend on being on the correct
1188 	 * cpu to avoid races).
1189 	 */
1190 	origcpu = mycpu->gd_cpuid;
1191 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1192 		globaldata_t rgd;
1193 		caddr_t inp_ppcb;
1194 		struct xtcpcb xt;
1195 		int cpu_id;
1196 
1197 		cpu_id = (origcpu + ccpu) % ncpus;
1198 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1199 			continue;
1200 		rgd = globaldata_find(cpu_id);
1201 		lwkt_setcpu_self(rgd);
1202 
1203 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1204 		n = tcbinfo[cpu_id].ipi_count;
1205 
1206 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1207 		i = 0;
1208 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1209 			/*
1210 			 * process a snapshot of pcbs, ignoring placemarkers
1211 			 * and using our own to allow SYSCTL_OUT to block.
1212 			 */
1213 			LIST_REMOVE(marker, inp_list);
1214 			LIST_INSERT_AFTER(inp, marker, inp_list);
1215 
1216 			if (inp->inp_flags & INP_PLACEMARKER)
1217 				continue;
1218 			if (inp->inp_gencnt > gencnt)
1219 				continue;
1220 			if (prison_xinpcb(req->td, inp))
1221 				continue;
1222 
1223 			xt.xt_len = sizeof xt;
1224 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1225 			inp_ppcb = inp->inp_ppcb;
1226 			if (inp_ppcb != NULL)
1227 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1228 			else
1229 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1230 			if (inp->inp_socket)
1231 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1232 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1233 				break;
1234 			++i;
1235 		}
1236 		LIST_REMOVE(marker, inp_list);
1237 		if (error == 0 && i < n) {
1238 			bzero(&xt, sizeof xt);
1239 			xt.xt_len = sizeof xt;
1240 			while (i < n) {
1241 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1242 				if (error)
1243 					break;
1244 				++i;
1245 			}
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * Make sure we are on the same cpu we were on originally, since
1251 	 * higher level callers expect this.  Also don't pollute caches with
1252 	 * migrated userland data by (eventually) returning to userland
1253 	 * on a different cpu.
1254 	 */
1255 	lwkt_setcpu_self(globaldata_find(origcpu));
1256 	kfree(marker, M_TEMP);
1257 	return (error);
1258 }
1259 
1260 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1261 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1262 
1263 static int
1264 tcp_getcred(SYSCTL_HANDLER_ARGS)
1265 {
1266 	struct sockaddr_in addrs[2];
1267 	struct inpcb *inp;
1268 	int cpu;
1269 	int error;
1270 
1271 	error = priv_check(req->td, PRIV_ROOT);
1272 	if (error != 0)
1273 		return (error);
1274 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1275 	if (error != 0)
1276 		return (error);
1277 	crit_enter();
1278 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1279 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1280 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1281 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1282 	if (inp == NULL || inp->inp_socket == NULL) {
1283 		error = ENOENT;
1284 		goto out;
1285 	}
1286 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1287 out:
1288 	crit_exit();
1289 	return (error);
1290 }
1291 
1292 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1293     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1294 
1295 #ifdef INET6
1296 static int
1297 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1298 {
1299 	struct sockaddr_in6 addrs[2];
1300 	struct inpcb *inp;
1301 	int error;
1302 	boolean_t mapped = FALSE;
1303 
1304 	error = priv_check(req->td, PRIV_ROOT);
1305 	if (error != 0)
1306 		return (error);
1307 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1308 	if (error != 0)
1309 		return (error);
1310 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1311 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1312 			mapped = TRUE;
1313 		else
1314 			return (EINVAL);
1315 	}
1316 	crit_enter();
1317 	if (mapped) {
1318 		inp = in_pcblookup_hash(&tcbinfo[0],
1319 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1320 		    addrs[1].sin6_port,
1321 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1322 		    addrs[0].sin6_port,
1323 		    0, NULL);
1324 	} else {
1325 		inp = in6_pcblookup_hash(&tcbinfo[0],
1326 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1327 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1328 		    0, NULL);
1329 	}
1330 	if (inp == NULL || inp->inp_socket == NULL) {
1331 		error = ENOENT;
1332 		goto out;
1333 	}
1334 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1335 out:
1336 	crit_exit();
1337 	return (error);
1338 }
1339 
1340 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1341 	    0, 0,
1342 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1343 #endif
1344 
1345 struct netmsg_tcp_notify {
1346 	struct netmsg	nm_nmsg;
1347 	void		(*nm_notify)(struct inpcb *, int);
1348 	struct in_addr	nm_faddr;
1349 	int		nm_arg;
1350 };
1351 
1352 static void
1353 tcp_notifyall_oncpu(struct netmsg *netmsg)
1354 {
1355 	struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1356 	int nextcpu;
1357 
1358 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1359 			nmsg->nm_arg, nmsg->nm_notify);
1360 
1361 	nextcpu = mycpuid + 1;
1362 	if (nextcpu < ncpus2)
1363 		lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1364 	else
1365 		lwkt_replymsg(&netmsg->nm_lmsg, 0);
1366 }
1367 
1368 void
1369 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1370 {
1371 	struct ip *ip = vip;
1372 	struct tcphdr *th;
1373 	struct in_addr faddr;
1374 	struct inpcb *inp;
1375 	struct tcpcb *tp;
1376 	void (*notify)(struct inpcb *, int) = tcp_notify;
1377 	tcp_seq icmpseq;
1378 	int arg, cpu;
1379 
1380 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1381 		return;
1382 	}
1383 
1384 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1385 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1386 		return;
1387 
1388 	arg = inetctlerrmap[cmd];
1389 	if (cmd == PRC_QUENCH) {
1390 		notify = tcp_quench;
1391 	} else if (icmp_may_rst &&
1392 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1393 		    cmd == PRC_UNREACH_PORT ||
1394 		    cmd == PRC_TIMXCEED_INTRANS) &&
1395 		   ip != NULL) {
1396 		notify = tcp_drop_syn_sent;
1397 	} else if (cmd == PRC_MSGSIZE) {
1398 		struct icmp *icmp = (struct icmp *)
1399 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1400 
1401 		arg = ntohs(icmp->icmp_nextmtu);
1402 		notify = tcp_mtudisc;
1403 	} else if (PRC_IS_REDIRECT(cmd)) {
1404 		ip = NULL;
1405 		notify = in_rtchange;
1406 	} else if (cmd == PRC_HOSTDEAD) {
1407 		ip = NULL;
1408 	}
1409 
1410 	if (ip != NULL) {
1411 		crit_enter();
1412 		th = (struct tcphdr *)((caddr_t)ip +
1413 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1414 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1415 				  ip->ip_src.s_addr, th->th_sport);
1416 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1417 					ip->ip_src, th->th_sport, 0, NULL);
1418 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1419 			icmpseq = htonl(th->th_seq);
1420 			tp = intotcpcb(inp);
1421 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1422 			    SEQ_LT(icmpseq, tp->snd_max))
1423 				(*notify)(inp, arg);
1424 		} else {
1425 			struct in_conninfo inc;
1426 
1427 			inc.inc_fport = th->th_dport;
1428 			inc.inc_lport = th->th_sport;
1429 			inc.inc_faddr = faddr;
1430 			inc.inc_laddr = ip->ip_src;
1431 #ifdef INET6
1432 			inc.inc_isipv6 = 0;
1433 #endif
1434 			syncache_unreach(&inc, th);
1435 		}
1436 		crit_exit();
1437 	} else {
1438 		struct netmsg_tcp_notify nmsg;
1439 
1440 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1441 		netmsg_init(&nmsg.nm_nmsg, NULL, &curthread->td_msgport,
1442 			    0, tcp_notifyall_oncpu);
1443 		nmsg.nm_faddr = faddr;
1444 		nmsg.nm_arg = arg;
1445 		nmsg.nm_notify = notify;
1446 
1447 		lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1448 	}
1449 }
1450 
1451 #ifdef INET6
1452 void
1453 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1454 {
1455 	struct tcphdr th;
1456 	void (*notify) (struct inpcb *, int) = tcp_notify;
1457 	struct ip6_hdr *ip6;
1458 	struct mbuf *m;
1459 	struct ip6ctlparam *ip6cp = NULL;
1460 	const struct sockaddr_in6 *sa6_src = NULL;
1461 	int off;
1462 	struct tcp_portonly {
1463 		u_int16_t th_sport;
1464 		u_int16_t th_dport;
1465 	} *thp;
1466 	int arg;
1467 
1468 	if (sa->sa_family != AF_INET6 ||
1469 	    sa->sa_len != sizeof(struct sockaddr_in6))
1470 		return;
1471 
1472 	arg = 0;
1473 	if (cmd == PRC_QUENCH)
1474 		notify = tcp_quench;
1475 	else if (cmd == PRC_MSGSIZE) {
1476 		struct ip6ctlparam *ip6cp = d;
1477 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1478 
1479 		arg = ntohl(icmp6->icmp6_mtu);
1480 		notify = tcp_mtudisc;
1481 	} else if (!PRC_IS_REDIRECT(cmd) &&
1482 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1483 		return;
1484 	}
1485 
1486 	/* if the parameter is from icmp6, decode it. */
1487 	if (d != NULL) {
1488 		ip6cp = (struct ip6ctlparam *)d;
1489 		m = ip6cp->ip6c_m;
1490 		ip6 = ip6cp->ip6c_ip6;
1491 		off = ip6cp->ip6c_off;
1492 		sa6_src = ip6cp->ip6c_src;
1493 	} else {
1494 		m = NULL;
1495 		ip6 = NULL;
1496 		off = 0;	/* fool gcc */
1497 		sa6_src = &sa6_any;
1498 	}
1499 
1500 	if (ip6 != NULL) {
1501 		struct in_conninfo inc;
1502 		/*
1503 		 * XXX: We assume that when IPV6 is non NULL,
1504 		 * M and OFF are valid.
1505 		 */
1506 
1507 		/* check if we can safely examine src and dst ports */
1508 		if (m->m_pkthdr.len < off + sizeof *thp)
1509 			return;
1510 
1511 		bzero(&th, sizeof th);
1512 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1513 
1514 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1515 		    (struct sockaddr *)ip6cp->ip6c_src,
1516 		    th.th_sport, cmd, arg, notify);
1517 
1518 		inc.inc_fport = th.th_dport;
1519 		inc.inc_lport = th.th_sport;
1520 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1521 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1522 		inc.inc_isipv6 = 1;
1523 		syncache_unreach(&inc, &th);
1524 	} else
1525 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1526 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1527 }
1528 #endif
1529 
1530 /*
1531  * Following is where TCP initial sequence number generation occurs.
1532  *
1533  * There are two places where we must use initial sequence numbers:
1534  * 1.  In SYN-ACK packets.
1535  * 2.  In SYN packets.
1536  *
1537  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1538  * tcp_syncache.c for details.
1539  *
1540  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1541  * depends on this property.  In addition, these ISNs should be
1542  * unguessable so as to prevent connection hijacking.  To satisfy
1543  * the requirements of this situation, the algorithm outlined in
1544  * RFC 1948 is used to generate sequence numbers.
1545  *
1546  * Implementation details:
1547  *
1548  * Time is based off the system timer, and is corrected so that it
1549  * increases by one megabyte per second.  This allows for proper
1550  * recycling on high speed LANs while still leaving over an hour
1551  * before rollover.
1552  *
1553  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1554  * between seeding of isn_secret.  This is normally set to zero,
1555  * as reseeding should not be necessary.
1556  *
1557  */
1558 
1559 #define	ISN_BYTES_PER_SECOND 1048576
1560 
1561 u_char isn_secret[32];
1562 int isn_last_reseed;
1563 MD5_CTX isn_ctx;
1564 
1565 tcp_seq
1566 tcp_new_isn(struct tcpcb *tp)
1567 {
1568 	u_int32_t md5_buffer[4];
1569 	tcp_seq new_isn;
1570 
1571 	/* Seed if this is the first use, reseed if requested. */
1572 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1573 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1574 		< (u_int)ticks))) {
1575 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1576 		isn_last_reseed = ticks;
1577 	}
1578 
1579 	/* Compute the md5 hash and return the ISN. */
1580 	MD5Init(&isn_ctx);
1581 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1582 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1583 #ifdef INET6
1584 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1585 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1586 			  sizeof(struct in6_addr));
1587 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1588 			  sizeof(struct in6_addr));
1589 	} else
1590 #endif
1591 	{
1592 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1593 			  sizeof(struct in_addr));
1594 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1595 			  sizeof(struct in_addr));
1596 	}
1597 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1598 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1599 	new_isn = (tcp_seq) md5_buffer[0];
1600 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1601 	return (new_isn);
1602 }
1603 
1604 /*
1605  * When a source quench is received, close congestion window
1606  * to one segment.  We will gradually open it again as we proceed.
1607  */
1608 void
1609 tcp_quench(struct inpcb *inp, int error)
1610 {
1611 	struct tcpcb *tp = intotcpcb(inp);
1612 
1613 	if (tp != NULL) {
1614 		tp->snd_cwnd = tp->t_maxseg;
1615 		tp->snd_wacked = 0;
1616 	}
1617 }
1618 
1619 /*
1620  * When a specific ICMP unreachable message is received and the
1621  * connection state is SYN-SENT, drop the connection.  This behavior
1622  * is controlled by the icmp_may_rst sysctl.
1623  */
1624 void
1625 tcp_drop_syn_sent(struct inpcb *inp, int error)
1626 {
1627 	struct tcpcb *tp = intotcpcb(inp);
1628 
1629 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1630 		tcp_drop(tp, error);
1631 }
1632 
1633 /*
1634  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1635  * based on the new value in the route.  Also nudge TCP to send something,
1636  * since we know the packet we just sent was dropped.
1637  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1638  */
1639 void
1640 tcp_mtudisc(struct inpcb *inp, int mtu)
1641 {
1642 	struct tcpcb *tp = intotcpcb(inp);
1643 	struct rtentry *rt;
1644 	struct socket *so = inp->inp_socket;
1645 	int maxopd, mss;
1646 #ifdef INET6
1647 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1648 #else
1649 	const boolean_t isipv6 = FALSE;
1650 #endif
1651 
1652 	if (tp == NULL)
1653 		return;
1654 
1655 	/*
1656 	 * If no MTU is provided in the ICMP message, use the
1657 	 * next lower likely value, as specified in RFC 1191.
1658 	 */
1659 	if (mtu == 0) {
1660 		int oldmtu;
1661 
1662 		oldmtu = tp->t_maxopd +
1663 		    (isipv6 ?
1664 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1665 		     sizeof(struct tcpiphdr));
1666 		mtu = ip_next_mtu(oldmtu, 0);
1667 	}
1668 
1669 	if (isipv6)
1670 		rt = tcp_rtlookup6(&inp->inp_inc);
1671 	else
1672 		rt = tcp_rtlookup(&inp->inp_inc);
1673 	if (rt != NULL) {
1674 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1675 			mtu = rt->rt_rmx.rmx_mtu;
1676 
1677 		maxopd = mtu -
1678 		    (isipv6 ?
1679 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1680 		     sizeof(struct tcpiphdr));
1681 
1682 		/*
1683 		 * XXX - The following conditional probably violates the TCP
1684 		 * spec.  The problem is that, since we don't know the
1685 		 * other end's MSS, we are supposed to use a conservative
1686 		 * default.  But, if we do that, then MTU discovery will
1687 		 * never actually take place, because the conservative
1688 		 * default is much less than the MTUs typically seen
1689 		 * on the Internet today.  For the moment, we'll sweep
1690 		 * this under the carpet.
1691 		 *
1692 		 * The conservative default might not actually be a problem
1693 		 * if the only case this occurs is when sending an initial
1694 		 * SYN with options and data to a host we've never talked
1695 		 * to before.  Then, they will reply with an MSS value which
1696 		 * will get recorded and the new parameters should get
1697 		 * recomputed.  For Further Study.
1698 		 */
1699 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1700 			maxopd = rt->rt_rmx.rmx_mssopt;
1701 	} else
1702 		maxopd = mtu -
1703 		    (isipv6 ?
1704 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1705 		     sizeof(struct tcpiphdr));
1706 
1707 	if (tp->t_maxopd <= maxopd)
1708 		return;
1709 	tp->t_maxopd = maxopd;
1710 
1711 	mss = maxopd;
1712 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1713 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1714 		mss -= TCPOLEN_TSTAMP_APPA;
1715 
1716 	/* round down to multiple of MCLBYTES */
1717 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1718 	if (mss > MCLBYTES)
1719 		mss &= ~(MCLBYTES - 1);
1720 #else
1721 	if (mss > MCLBYTES)
1722 		mss = (mss / MCLBYTES) * MCLBYTES;
1723 #endif
1724 
1725 	if (so->so_snd.ssb_hiwat < mss)
1726 		mss = so->so_snd.ssb_hiwat;
1727 
1728 	tp->t_maxseg = mss;
1729 	tp->t_rtttime = 0;
1730 	tp->snd_nxt = tp->snd_una;
1731 	tcp_output(tp);
1732 	tcpstat.tcps_mturesent++;
1733 }
1734 
1735 /*
1736  * Look-up the routing entry to the peer of this inpcb.  If no route
1737  * is found and it cannot be allocated the return NULL.  This routine
1738  * is called by TCP routines that access the rmx structure and by tcp_mss
1739  * to get the interface MTU.
1740  */
1741 struct rtentry *
1742 tcp_rtlookup(struct in_conninfo *inc)
1743 {
1744 	struct route *ro = &inc->inc_route;
1745 
1746 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1747 		/* No route yet, so try to acquire one */
1748 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1749 			/*
1750 			 * unused portions of the structure MUST be zero'd
1751 			 * out because rtalloc() treats it as opaque data
1752 			 */
1753 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1754 			ro->ro_dst.sa_family = AF_INET;
1755 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1756 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1757 			    inc->inc_faddr;
1758 			rtalloc(ro);
1759 		}
1760 	}
1761 	return (ro->ro_rt);
1762 }
1763 
1764 #ifdef INET6
1765 struct rtentry *
1766 tcp_rtlookup6(struct in_conninfo *inc)
1767 {
1768 	struct route_in6 *ro6 = &inc->inc6_route;
1769 
1770 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1771 		/* No route yet, so try to acquire one */
1772 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1773 			/*
1774 			 * unused portions of the structure MUST be zero'd
1775 			 * out because rtalloc() treats it as opaque data
1776 			 */
1777 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1778 			ro6->ro_dst.sin6_family = AF_INET6;
1779 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1780 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1781 			rtalloc((struct route *)ro6);
1782 		}
1783 	}
1784 	return (ro6->ro_rt);
1785 }
1786 #endif
1787 
1788 #ifdef IPSEC
1789 /* compute ESP/AH header size for TCP, including outer IP header. */
1790 size_t
1791 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1792 {
1793 	struct inpcb *inp;
1794 	struct mbuf *m;
1795 	size_t hdrsiz;
1796 	struct ip *ip;
1797 	struct tcphdr *th;
1798 
1799 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1800 		return (0);
1801 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1802 	if (!m)
1803 		return (0);
1804 
1805 #ifdef INET6
1806 	if (inp->inp_vflag & INP_IPV6) {
1807 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1808 
1809 		th = (struct tcphdr *)(ip6 + 1);
1810 		m->m_pkthdr.len = m->m_len =
1811 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1812 		tcp_fillheaders(tp, ip6, th);
1813 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1814 	} else
1815 #endif
1816 	{
1817 		ip = mtod(m, struct ip *);
1818 		th = (struct tcphdr *)(ip + 1);
1819 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1820 		tcp_fillheaders(tp, ip, th);
1821 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1822 	}
1823 
1824 	m_free(m);
1825 	return (hdrsiz);
1826 }
1827 #endif
1828 
1829 /*
1830  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1831  *
1832  * This code attempts to calculate the bandwidth-delay product as a
1833  * means of determining the optimal window size to maximize bandwidth,
1834  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1835  * routers.  This code also does a fairly good job keeping RTTs in check
1836  * across slow links like modems.  We implement an algorithm which is very
1837  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1838  * transmitter side of a TCP connection and so only effects the transmit
1839  * side of the connection.
1840  *
1841  * BACKGROUND:  TCP makes no provision for the management of buffer space
1842  * at the end points or at the intermediate routers and switches.  A TCP
1843  * stream, whether using NewReno or not, will eventually buffer as
1844  * many packets as it is able and the only reason this typically works is
1845  * due to the fairly small default buffers made available for a connection
1846  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1847  * scaling it is now fairly easy for even a single TCP connection to blow-out
1848  * all available buffer space not only on the local interface, but on
1849  * intermediate routers and switches as well.  NewReno makes a misguided
1850  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1851  * then backing off, then steadily increasing the window again until another
1852  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1853  * is only made worse as network loads increase and the idea of intentionally
1854  * blowing out network buffers is, frankly, a terrible way to manage network
1855  * resources.
1856  *
1857  * It is far better to limit the transmit window prior to the failure
1858  * condition being achieved.  There are two general ways to do this:  First
1859  * you can 'scan' through different transmit window sizes and locate the
1860  * point where the RTT stops increasing, indicating that you have filled the
1861  * pipe, then scan backwards until you note that RTT stops decreasing, then
1862  * repeat ad-infinitum.  This method works in principle but has severe
1863  * implementation issues due to RTT variances, timer granularity, and
1864  * instability in the algorithm which can lead to many false positives and
1865  * create oscillations as well as interact badly with other TCP streams
1866  * implementing the same algorithm.
1867  *
1868  * The second method is to limit the window to the bandwidth delay product
1869  * of the link.  This is the method we implement.  RTT variances and our
1870  * own manipulation of the congestion window, bwnd, can potentially
1871  * destabilize the algorithm.  For this reason we have to stabilize the
1872  * elements used to calculate the window.  We do this by using the minimum
1873  * observed RTT, the long term average of the observed bandwidth, and
1874  * by adding two segments worth of slop.  It isn't perfect but it is able
1875  * to react to changing conditions and gives us a very stable basis on
1876  * which to extend the algorithm.
1877  */
1878 void
1879 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1880 {
1881 	u_long bw;
1882 	u_long bwnd;
1883 	int save_ticks;
1884 	int delta_ticks;
1885 
1886 	/*
1887 	 * If inflight_enable is disabled in the middle of a tcp connection,
1888 	 * make sure snd_bwnd is effectively disabled.
1889 	 */
1890 	if (!tcp_inflight_enable) {
1891 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1892 		tp->snd_bandwidth = 0;
1893 		return;
1894 	}
1895 
1896 	/*
1897 	 * Validate the delta time.  If a connection is new or has been idle
1898 	 * a long time we have to reset the bandwidth calculator.
1899 	 */
1900 	save_ticks = ticks;
1901 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1902 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1903 		tp->t_bw_rtttime = ticks;
1904 		tp->t_bw_rtseq = ack_seq;
1905 		if (tp->snd_bandwidth == 0)
1906 			tp->snd_bandwidth = tcp_inflight_min;
1907 		return;
1908 	}
1909 	if (delta_ticks == 0)
1910 		return;
1911 
1912 	/*
1913 	 * Sanity check, plus ignore pure window update acks.
1914 	 */
1915 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1916 		return;
1917 
1918 	/*
1919 	 * Figure out the bandwidth.  Due to the tick granularity this
1920 	 * is a very rough number and it MUST be averaged over a fairly
1921 	 * long period of time.  XXX we need to take into account a link
1922 	 * that is not using all available bandwidth, but for now our
1923 	 * slop will ramp us up if this case occurs and the bandwidth later
1924 	 * increases.
1925 	 */
1926 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1927 	tp->t_bw_rtttime = save_ticks;
1928 	tp->t_bw_rtseq = ack_seq;
1929 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1930 
1931 	tp->snd_bandwidth = bw;
1932 
1933 	/*
1934 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1935 	 * segments.  The additional slop puts us squarely in the sweet
1936 	 * spot and also handles the bandwidth run-up case.  Without the
1937 	 * slop we could be locking ourselves into a lower bandwidth.
1938 	 *
1939 	 * Situations Handled:
1940 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1941 	 *	    high speed LANs, allowing larger TCP buffers to be
1942 	 *	    specified, and also does a good job preventing
1943 	 *	    over-queueing of packets over choke points like modems
1944 	 *	    (at least for the transmit side).
1945 	 *
1946 	 *	(2) Is able to handle changing network loads (bandwidth
1947 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1948 	 *	    increases).
1949 	 *
1950 	 *	(3) Theoretically should stabilize in the face of multiple
1951 	 *	    connections implementing the same algorithm (this may need
1952 	 *	    a little work).
1953 	 *
1954 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1955 	 *	    be adjusted with a sysctl but typically only needs to be on
1956 	 *	    very slow connections.  A value no smaller then 5 should
1957 	 *	    be used, but only reduce this default if you have no other
1958 	 *	    choice.
1959 	 */
1960 
1961 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1962 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1963 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1964 #undef USERTT
1965 
1966 	if (tcp_inflight_debug > 0) {
1967 		static int ltime;
1968 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1969 			ltime = ticks;
1970 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1971 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1972 		}
1973 	}
1974 	if ((long)bwnd < tcp_inflight_min)
1975 		bwnd = tcp_inflight_min;
1976 	if (bwnd > tcp_inflight_max)
1977 		bwnd = tcp_inflight_max;
1978 	if ((long)bwnd < tp->t_maxseg * 2)
1979 		bwnd = tp->t_maxseg * 2;
1980 	tp->snd_bwnd = bwnd;
1981 }
1982