xref: /dragonfly/sys/netinet/tcp_subr.c (revision c39dd9c0)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <vm/vm_zone.h>
97 
98 #include <net/route.h>
99 #include <net/if.h>
100 #include <net/netisr.h>
101 
102 #define	_IP_VHL
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip6.h>
107 #include <netinet/in_pcb.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip_var.h>
111 #include <netinet6/ip6_var.h>
112 #include <netinet/ip_icmp.h>
113 #ifdef INET6
114 #include <netinet/icmp6.h>
115 #endif
116 #include <netinet/tcp.h>
117 #include <netinet/tcp_fsm.h>
118 #include <netinet/tcp_seq.h>
119 #include <netinet/tcp_timer.h>
120 #include <netinet/tcp_timer2.h>
121 #include <netinet/tcp_var.h>
122 #include <netinet6/tcp6_var.h>
123 #include <netinet/tcpip.h>
124 #ifdef TCPDEBUG
125 #include <netinet/tcp_debug.h>
126 #endif
127 #include <netinet6/ip6protosw.h>
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
135 
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define	IPSEC
142 #endif
143 
144 #include <sys/md5.h>
145 #include <sys/msgport2.h>
146 #include <machine/smp.h>
147 
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 KTR_INFO_MASTER(tcp);
154 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
155 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
157 #define logtcp(name)	KTR_LOG(tcp_ ## name)
158 
159 struct inpcbinfo tcbinfo[MAXCPU];
160 struct tcpcbackqhead tcpcbackq[MAXCPU];
161 
162 int tcp_mpsafe_proto = 0;
163 TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
164 
165 static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
166 TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
168 	   &tcp_mpsafe_thread, 0,
169 	   "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
170 
171 int tcp_mssdflt = TCP_MSS;
172 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
173     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
174 
175 #ifdef INET6
176 int tcp_v6mssdflt = TCP6_MSS;
177 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
178     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
179 #endif
180 
181 #if 0
182 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
183 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
184     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
185 #endif
186 
187 int tcp_do_rfc1323 = 1;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
189     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
190 
191 int tcp_do_rfc1644 = 0;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
193     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
194 
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
198 
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201      "Enable tcp_drain routine for extra help when low on mbufs");
202 
203 /* XXX JH */
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
205     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
206 
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214 
215 /*
216  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
217  * 1024 exists only for debugging.  A good production default would be
218  * something like 6100.
219  */
220 static int tcp_inflight_enable = 0;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
222     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
223 
224 static int tcp_inflight_debug = 0;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
226     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
227 
228 static int tcp_inflight_min = 6144;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
230     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
231 
232 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
234     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
235 
236 static int tcp_inflight_stab = 20;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
238     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
239 
240 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
241 static struct malloc_pipe tcptemp_mpipe;
242 
243 static void tcp_willblock(int);
244 static void tcp_cleartaocache (void);
245 static void tcp_notify (struct inpcb *, int);
246 
247 struct tcp_stats tcpstats_percpu[MAXCPU];
248 #ifdef SMP
249 static int
250 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
251 {
252 	int cpu, error = 0;
253 
254 	for (cpu = 0; cpu < ncpus; ++cpu) {
255 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
256 					sizeof(struct tcp_stats))))
257 			break;
258 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
259 				       sizeof(struct tcp_stats))))
260 			break;
261 	}
262 
263 	return (error);
264 }
265 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
266     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
267 #else
268 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
269     &tcpstat, tcp_stats, "TCP statistics");
270 #endif
271 
272 /*
273  * Target size of TCP PCB hash tables. Must be a power of two.
274  *
275  * Note that this can be overridden by the kernel environment
276  * variable net.inet.tcp.tcbhashsize
277  */
278 #ifndef TCBHASHSIZE
279 #define	TCBHASHSIZE	512
280 #endif
281 
282 /*
283  * This is the actual shape of what we allocate using the zone
284  * allocator.  Doing it this way allows us to protect both structures
285  * using the same generation count, and also eliminates the overhead
286  * of allocating tcpcbs separately.  By hiding the structure here,
287  * we avoid changing most of the rest of the code (although it needs
288  * to be changed, eventually, for greater efficiency).
289  */
290 #define	ALIGNMENT	32
291 #define	ALIGNM1		(ALIGNMENT - 1)
292 struct	inp_tp {
293 	union {
294 		struct	inpcb inp;
295 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
296 	} inp_tp_u;
297 	struct	tcpcb tcb;
298 	struct	tcp_callout inp_tp_rexmt;
299 	struct	tcp_callout inp_tp_persist;
300 	struct	tcp_callout inp_tp_keep;
301 	struct	tcp_callout inp_tp_2msl;
302 	struct	tcp_callout inp_tp_delack;
303 	struct	netmsg_tcp_timer inp_tp_timermsg;
304 };
305 #undef ALIGNMENT
306 #undef ALIGNM1
307 
308 /*
309  * Tcp initialization
310  */
311 void
312 tcp_init(void)
313 {
314 	struct inpcbporthead *porthashbase;
315 	u_long porthashmask;
316 	struct vm_zone *ipi_zone;
317 	int hashsize = TCBHASHSIZE;
318 	int cpu;
319 
320 	/*
321 	 * note: tcptemp is used for keepalives, and it is ok for an
322 	 * allocation to fail so do not specify MPF_INT.
323 	 */
324 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
325 		    25, -1, 0, NULL);
326 
327 	tcp_ccgen = 1;
328 	tcp_cleartaocache();
329 
330 	tcp_delacktime = TCPTV_DELACK;
331 	tcp_keepinit = TCPTV_KEEP_INIT;
332 	tcp_keepidle = TCPTV_KEEP_IDLE;
333 	tcp_keepintvl = TCPTV_KEEPINTVL;
334 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
335 	tcp_msl = TCPTV_MSL;
336 	tcp_rexmit_min = TCPTV_MIN;
337 	tcp_rexmit_slop = TCPTV_CPU_VAR;
338 
339 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
340 	if (!powerof2(hashsize)) {
341 		kprintf("WARNING: TCB hash size not a power of 2\n");
342 		hashsize = 512; /* safe default */
343 	}
344 	tcp_tcbhashsize = hashsize;
345 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
346 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
347 			 ZONE_INTERRUPT, 0);
348 
349 	for (cpu = 0; cpu < ncpus2; cpu++) {
350 		in_pcbinfo_init(&tcbinfo[cpu]);
351 		tcbinfo[cpu].cpu = cpu;
352 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
353 		    &tcbinfo[cpu].hashmask);
354 		tcbinfo[cpu].porthashbase = porthashbase;
355 		tcbinfo[cpu].porthashmask = porthashmask;
356 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
357 		    &tcbinfo[cpu].wildcardhashmask);
358 		tcbinfo[cpu].ipi_zone = ipi_zone;
359 		TAILQ_INIT(&tcpcbackq[cpu]);
360 	}
361 
362 	tcp_reass_maxseg = nmbclusters / 16;
363 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
364 
365 #ifdef INET6
366 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
367 #else
368 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
369 #endif
370 	if (max_protohdr < TCP_MINPROTOHDR)
371 		max_protohdr = TCP_MINPROTOHDR;
372 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
373 		panic("tcp_init");
374 #undef TCP_MINPROTOHDR
375 
376 	/*
377 	 * Initialize TCP statistics counters for each CPU.
378 	 */
379 #ifdef SMP
380 	for (cpu = 0; cpu < ncpus; ++cpu) {
381 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
382 	}
383 #else
384 	bzero(&tcpstat, sizeof(struct tcp_stats));
385 #endif
386 
387 	syncache_init();
388 	tcp_thread_init();
389 }
390 
391 void
392 tcpmsg_service_loop(void *dummy)
393 {
394 	struct netmsg *msg;
395 	int mplocked;
396 
397 	/*
398 	 * Thread was started with TDF_MPSAFE
399 	 */
400 	mplocked = 0;
401 
402 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
403 		do {
404 			logtcp(rxmsg);
405 			mplocked = netmsg_service(msg, tcp_mpsafe_thread,
406 						  mplocked);
407 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
408 
409 		logtcp(delayed);
410 		tcp_willblock(mplocked);
411 		logtcp(wait);
412 	}
413 }
414 
415 static void
416 tcp_willblock(int mplocked)
417 {
418 	struct tcpcb *tp;
419 	int cpu = mycpu->gd_cpuid;
420 	int unlock = 0;
421 
422 	if (!mplocked && !tcp_mpsafe_proto) {
423 		if (TAILQ_EMPTY(&tcpcbackq[cpu]))
424 			return;
425 
426 		get_mplock();
427 		mplocked = 1;
428 		unlock = 1;
429 	}
430 
431 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
432 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
433 		tp->t_flags &= ~TF_ONOUTPUTQ;
434 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
435 		tcp_output(tp);
436 	}
437 
438 	if (unlock)
439 		rel_mplock();
440 }
441 
442 
443 /*
444  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
445  * tcp_template used to store this data in mbufs, but we now recopy it out
446  * of the tcpcb each time to conserve mbufs.
447  */
448 void
449 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
450 {
451 	struct inpcb *inp = tp->t_inpcb;
452 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
453 
454 #ifdef INET6
455 	if (inp->inp_vflag & INP_IPV6) {
456 		struct ip6_hdr *ip6;
457 
458 		ip6 = (struct ip6_hdr *)ip_ptr;
459 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
460 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
461 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
462 			(IPV6_VERSION & IPV6_VERSION_MASK);
463 		ip6->ip6_nxt = IPPROTO_TCP;
464 		ip6->ip6_plen = sizeof(struct tcphdr);
465 		ip6->ip6_src = inp->in6p_laddr;
466 		ip6->ip6_dst = inp->in6p_faddr;
467 		tcp_hdr->th_sum = 0;
468 	} else
469 #endif
470 	{
471 		struct ip *ip = (struct ip *) ip_ptr;
472 
473 		ip->ip_vhl = IP_VHL_BORING;
474 		ip->ip_tos = 0;
475 		ip->ip_len = 0;
476 		ip->ip_id = 0;
477 		ip->ip_off = 0;
478 		ip->ip_ttl = 0;
479 		ip->ip_sum = 0;
480 		ip->ip_p = IPPROTO_TCP;
481 		ip->ip_src = inp->inp_laddr;
482 		ip->ip_dst = inp->inp_faddr;
483 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
484 				    ip->ip_dst.s_addr,
485 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
486 	}
487 
488 	tcp_hdr->th_sport = inp->inp_lport;
489 	tcp_hdr->th_dport = inp->inp_fport;
490 	tcp_hdr->th_seq = 0;
491 	tcp_hdr->th_ack = 0;
492 	tcp_hdr->th_x2 = 0;
493 	tcp_hdr->th_off = 5;
494 	tcp_hdr->th_flags = 0;
495 	tcp_hdr->th_win = 0;
496 	tcp_hdr->th_urp = 0;
497 }
498 
499 /*
500  * Create template to be used to send tcp packets on a connection.
501  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
502  * use for this function is in keepalives, which use tcp_respond.
503  */
504 struct tcptemp *
505 tcp_maketemplate(struct tcpcb *tp)
506 {
507 	struct tcptemp *tmp;
508 
509 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
510 		return (NULL);
511 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
512 	return (tmp);
513 }
514 
515 void
516 tcp_freetemplate(struct tcptemp *tmp)
517 {
518 	mpipe_free(&tcptemp_mpipe, tmp);
519 }
520 
521 /*
522  * Send a single message to the TCP at address specified by
523  * the given TCP/IP header.  If m == NULL, then we make a copy
524  * of the tcpiphdr at ti and send directly to the addressed host.
525  * This is used to force keep alive messages out using the TCP
526  * template for a connection.  If flags are given then we send
527  * a message back to the TCP which originated the * segment ti,
528  * and discard the mbuf containing it and any other attached mbufs.
529  *
530  * In any case the ack and sequence number of the transmitted
531  * segment are as specified by the parameters.
532  *
533  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
534  */
535 void
536 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
537 	    tcp_seq ack, tcp_seq seq, int flags)
538 {
539 	int tlen;
540 	int win = 0;
541 	struct route *ro = NULL;
542 	struct route sro;
543 	struct ip *ip = ipgen;
544 	struct tcphdr *nth;
545 	int ipflags = 0;
546 	struct route_in6 *ro6 = NULL;
547 	struct route_in6 sro6;
548 	struct ip6_hdr *ip6 = ipgen;
549 	boolean_t use_tmpro = TRUE;
550 #ifdef INET6
551 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
552 #else
553 	const boolean_t isipv6 = FALSE;
554 #endif
555 
556 	if (tp != NULL) {
557 		if (!(flags & TH_RST)) {
558 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
559 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
560 				win = (long)TCP_MAXWIN << tp->rcv_scale;
561 		}
562 		/*
563 		 * Don't use the route cache of a listen socket,
564 		 * it is not MPSAFE; use temporary route cache.
565 		 */
566 		if (tp->t_state != TCPS_LISTEN) {
567 			if (isipv6)
568 				ro6 = &tp->t_inpcb->in6p_route;
569 			else
570 				ro = &tp->t_inpcb->inp_route;
571 			use_tmpro = FALSE;
572 		}
573 	}
574 	if (use_tmpro) {
575 		if (isipv6) {
576 			ro6 = &sro6;
577 			bzero(ro6, sizeof *ro6);
578 		} else {
579 			ro = &sro;
580 			bzero(ro, sizeof *ro);
581 		}
582 	}
583 	if (m == NULL) {
584 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
585 		if (m == NULL)
586 			return;
587 		tlen = 0;
588 		m->m_data += max_linkhdr;
589 		if (isipv6) {
590 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
591 			ip6 = mtod(m, struct ip6_hdr *);
592 			nth = (struct tcphdr *)(ip6 + 1);
593 		} else {
594 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
595 			ip = mtod(m, struct ip *);
596 			nth = (struct tcphdr *)(ip + 1);
597 		}
598 		bcopy(th, nth, sizeof(struct tcphdr));
599 		flags = TH_ACK;
600 	} else {
601 		m_freem(m->m_next);
602 		m->m_next = NULL;
603 		m->m_data = (caddr_t)ipgen;
604 		/* m_len is set later */
605 		tlen = 0;
606 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
607 		if (isipv6) {
608 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
609 			nth = (struct tcphdr *)(ip6 + 1);
610 		} else {
611 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
612 			nth = (struct tcphdr *)(ip + 1);
613 		}
614 		if (th != nth) {
615 			/*
616 			 * this is usually a case when an extension header
617 			 * exists between the IPv6 header and the
618 			 * TCP header.
619 			 */
620 			nth->th_sport = th->th_sport;
621 			nth->th_dport = th->th_dport;
622 		}
623 		xchg(nth->th_dport, nth->th_sport, n_short);
624 #undef xchg
625 	}
626 	if (isipv6) {
627 		ip6->ip6_flow = 0;
628 		ip6->ip6_vfc = IPV6_VERSION;
629 		ip6->ip6_nxt = IPPROTO_TCP;
630 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
631 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
632 	} else {
633 		tlen += sizeof(struct tcpiphdr);
634 		ip->ip_len = tlen;
635 		ip->ip_ttl = ip_defttl;
636 	}
637 	m->m_len = tlen;
638 	m->m_pkthdr.len = tlen;
639 	m->m_pkthdr.rcvif = NULL;
640 	nth->th_seq = htonl(seq);
641 	nth->th_ack = htonl(ack);
642 	nth->th_x2 = 0;
643 	nth->th_off = sizeof(struct tcphdr) >> 2;
644 	nth->th_flags = flags;
645 	if (tp != NULL)
646 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
647 	else
648 		nth->th_win = htons((u_short)win);
649 	nth->th_urp = 0;
650 	if (isipv6) {
651 		nth->th_sum = 0;
652 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
653 					sizeof(struct ip6_hdr),
654 					tlen - sizeof(struct ip6_hdr));
655 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
656 					       (ro6 && ro6->ro_rt) ?
657 						ro6->ro_rt->rt_ifp : NULL);
658 	} else {
659 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
660 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
661 		m->m_pkthdr.csum_flags = CSUM_TCP;
662 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
663 	}
664 #ifdef TCPDEBUG
665 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
666 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
667 #endif
668 	if (isipv6) {
669 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
670 			   tp ? tp->t_inpcb : NULL);
671 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
672 			RTFREE(ro6->ro_rt);
673 			ro6->ro_rt = NULL;
674 		}
675 	} else {
676 		ipflags |= IP_DEBUGROUTE;
677 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
678 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
679 			RTFREE(ro->ro_rt);
680 			ro->ro_rt = NULL;
681 		}
682 	}
683 }
684 
685 /*
686  * Create a new TCP control block, making an
687  * empty reassembly queue and hooking it to the argument
688  * protocol control block.  The `inp' parameter must have
689  * come from the zone allocator set up in tcp_init().
690  */
691 struct tcpcb *
692 tcp_newtcpcb(struct inpcb *inp)
693 {
694 	struct inp_tp *it;
695 	struct tcpcb *tp;
696 #ifdef INET6
697 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
698 #else
699 	const boolean_t isipv6 = FALSE;
700 #endif
701 
702 	it = (struct inp_tp *)inp;
703 	tp = &it->tcb;
704 	bzero(tp, sizeof(struct tcpcb));
705 	LIST_INIT(&tp->t_segq);
706 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
707 
708 	/* Set up our timeouts. */
709 	tp->tt_rexmt = &it->inp_tp_rexmt;
710 	tp->tt_persist = &it->inp_tp_persist;
711 	tp->tt_keep = &it->inp_tp_keep;
712 	tp->tt_2msl = &it->inp_tp_2msl;
713 	tp->tt_delack = &it->inp_tp_delack;
714 	tcp_inittimers(tp);
715 
716 	/*
717 	 * Zero out timer message.  We don't create it here,
718 	 * since the current CPU may not be the owner of this
719 	 * inpcb.
720 	 */
721 	tp->tt_msg = &it->inp_tp_timermsg;
722 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
723 
724 	if (tcp_do_rfc1323)
725 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
726 	if (tcp_do_rfc1644)
727 		tp->t_flags |= TF_REQ_CC;
728 	tp->t_inpcb = inp;	/* XXX */
729 	tp->t_state = TCPS_CLOSED;
730 	/*
731 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
732 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
733 	 * reasonable initial retransmit time.
734 	 */
735 	tp->t_srtt = TCPTV_SRTTBASE;
736 	tp->t_rttvar =
737 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
738 	tp->t_rttmin = tcp_rexmit_min;
739 	tp->t_rxtcur = TCPTV_RTOBASE;
740 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
741 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
742 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
743 	tp->t_rcvtime = ticks;
744 	/*
745 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
746 	 * because the socket may be bound to an IPv6 wildcard address,
747 	 * which may match an IPv4-mapped IPv6 address.
748 	 */
749 	inp->inp_ip_ttl = ip_defttl;
750 	inp->inp_ppcb = tp;
751 	tcp_sack_tcpcb_init(tp);
752 	return (tp);		/* XXX */
753 }
754 
755 /*
756  * Drop a TCP connection, reporting the specified error.
757  * If connection is synchronized, then send a RST to peer.
758  */
759 struct tcpcb *
760 tcp_drop(struct tcpcb *tp, int error)
761 {
762 	struct socket *so = tp->t_inpcb->inp_socket;
763 
764 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
765 		tp->t_state = TCPS_CLOSED;
766 		tcp_output(tp);
767 		tcpstat.tcps_drops++;
768 	} else
769 		tcpstat.tcps_conndrops++;
770 	if (error == ETIMEDOUT && tp->t_softerror)
771 		error = tp->t_softerror;
772 	so->so_error = error;
773 	return (tcp_close(tp));
774 }
775 
776 #ifdef SMP
777 
778 struct netmsg_remwildcard {
779 	struct netmsg		nm_netmsg;
780 	struct inpcb		*nm_inp;
781 	struct inpcbinfo	*nm_pcbinfo;
782 #if defined(INET6)
783 	int			nm_isinet6;
784 #else
785 	int			nm_unused01;
786 #endif
787 };
788 
789 /*
790  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
791  * inp can be detached.  We do this by cycling through the cpus, ending up
792  * on the cpu controlling the inp last and then doing the disconnect.
793  */
794 static void
795 in_pcbremwildcardhash_handler(struct netmsg *msg0)
796 {
797 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
798 	int cpu;
799 
800 	cpu = msg->nm_pcbinfo->cpu;
801 
802 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
803 		/* note: detach removes any wildcard hash entry */
804 #ifdef INET6
805 		if (msg->nm_isinet6)
806 			in6_pcbdetach(msg->nm_inp);
807 		else
808 #endif
809 			in_pcbdetach(msg->nm_inp);
810 		lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
811 	} else {
812 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
813 		cpu = (cpu + 1) % ncpus2;
814 		msg->nm_pcbinfo = &tcbinfo[cpu];
815 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
816 	}
817 }
818 
819 #endif
820 
821 /*
822  * Close a TCP control block:
823  *	discard all space held by the tcp
824  *	discard internet protocol block
825  *	wake up any sleepers
826  */
827 struct tcpcb *
828 tcp_close(struct tcpcb *tp)
829 {
830 	struct tseg_qent *q;
831 	struct inpcb *inp = tp->t_inpcb;
832 	struct socket *so = inp->inp_socket;
833 	struct rtentry *rt;
834 	boolean_t dosavessthresh;
835 #ifdef SMP
836 	int cpu;
837 #endif
838 #ifdef INET6
839 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
840 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
841 #else
842 	const boolean_t isipv6 = FALSE;
843 #endif
844 
845 	/*
846 	 * The tp is not instantly destroyed in the wildcard case.  Setting
847 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
848 	 * messing with it, though it should be noted that this change may
849 	 * not take effect on other cpus until we have chained the wildcard
850 	 * hash removal.
851 	 *
852 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
853 	 * update and prevent other tcp protocol threads from accepting new
854 	 * connections on the listen socket we might be trying to close down.
855 	 */
856 	KKASSERT(tp->t_state != TCPS_TERMINATING);
857 	tp->t_state = TCPS_TERMINATING;
858 
859 	/*
860 	 * Make sure that all of our timers are stopped before we
861 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
862 	 * timers are never used.  If timer message is never created
863 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
864 	 */
865 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
866 		tcp_callout_stop(tp, tp->tt_rexmt);
867 		tcp_callout_stop(tp, tp->tt_persist);
868 		tcp_callout_stop(tp, tp->tt_keep);
869 		tcp_callout_stop(tp, tp->tt_2msl);
870 		tcp_callout_stop(tp, tp->tt_delack);
871 	}
872 
873 	if (tp->t_flags & TF_ONOUTPUTQ) {
874 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
875 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
876 		tp->t_flags &= ~TF_ONOUTPUTQ;
877 	}
878 
879 	/*
880 	 * If we got enough samples through the srtt filter,
881 	 * save the rtt and rttvar in the routing entry.
882 	 * 'Enough' is arbitrarily defined as the 16 samples.
883 	 * 16 samples is enough for the srtt filter to converge
884 	 * to within 5% of the correct value; fewer samples and
885 	 * we could save a very bogus rtt.
886 	 *
887 	 * Don't update the default route's characteristics and don't
888 	 * update anything that the user "locked".
889 	 */
890 	if (tp->t_rttupdated >= 16) {
891 		u_long i = 0;
892 
893 		if (isipv6) {
894 			struct sockaddr_in6 *sin6;
895 
896 			if ((rt = inp->in6p_route.ro_rt) == NULL)
897 				goto no_valid_rt;
898 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
899 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
900 				goto no_valid_rt;
901 		} else
902 			if ((rt = inp->inp_route.ro_rt) == NULL ||
903 			    ((struct sockaddr_in *)rt_key(rt))->
904 			     sin_addr.s_addr == INADDR_ANY)
905 				goto no_valid_rt;
906 
907 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
908 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
909 			if (rt->rt_rmx.rmx_rtt && i)
910 				/*
911 				 * filter this update to half the old & half
912 				 * the new values, converting scale.
913 				 * See route.h and tcp_var.h for a
914 				 * description of the scaling constants.
915 				 */
916 				rt->rt_rmx.rmx_rtt =
917 				    (rt->rt_rmx.rmx_rtt + i) / 2;
918 			else
919 				rt->rt_rmx.rmx_rtt = i;
920 			tcpstat.tcps_cachedrtt++;
921 		}
922 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
923 			i = tp->t_rttvar *
924 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
925 			if (rt->rt_rmx.rmx_rttvar && i)
926 				rt->rt_rmx.rmx_rttvar =
927 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
928 			else
929 				rt->rt_rmx.rmx_rttvar = i;
930 			tcpstat.tcps_cachedrttvar++;
931 		}
932 		/*
933 		 * The old comment here said:
934 		 * update the pipelimit (ssthresh) if it has been updated
935 		 * already or if a pipesize was specified & the threshhold
936 		 * got below half the pipesize.  I.e., wait for bad news
937 		 * before we start updating, then update on both good
938 		 * and bad news.
939 		 *
940 		 * But we want to save the ssthresh even if no pipesize is
941 		 * specified explicitly in the route, because such
942 		 * connections still have an implicit pipesize specified
943 		 * by the global tcp_sendspace.  In the absence of a reliable
944 		 * way to calculate the pipesize, it will have to do.
945 		 */
946 		i = tp->snd_ssthresh;
947 		if (rt->rt_rmx.rmx_sendpipe != 0)
948 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
949 		else
950 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
951 		if (dosavessthresh ||
952 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
953 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
954 			/*
955 			 * convert the limit from user data bytes to
956 			 * packets then to packet data bytes.
957 			 */
958 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
959 			if (i < 2)
960 				i = 2;
961 			i *= tp->t_maxseg +
962 			     (isipv6 ?
963 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
964 			      sizeof(struct tcpiphdr));
965 			if (rt->rt_rmx.rmx_ssthresh)
966 				rt->rt_rmx.rmx_ssthresh =
967 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
968 			else
969 				rt->rt_rmx.rmx_ssthresh = i;
970 			tcpstat.tcps_cachedssthresh++;
971 		}
972 	}
973 
974 no_valid_rt:
975 	/* free the reassembly queue, if any */
976 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
977 		LIST_REMOVE(q, tqe_q);
978 		m_freem(q->tqe_m);
979 		FREE(q, M_TSEGQ);
980 		tcp_reass_qsize--;
981 	}
982 	/* throw away SACK blocks in scoreboard*/
983 	if (TCP_DO_SACK(tp))
984 		tcp_sack_cleanup(&tp->scb);
985 
986 	inp->inp_ppcb = NULL;
987 	soisdisconnected(so);
988 
989 	tcp_destroy_timermsg(tp);
990 
991 	/*
992 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
993 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
994 	 * for each protocol thread and must be removed in the context of
995 	 * that thread.  This is accomplished by chaining the message
996 	 * through the cpus.
997 	 *
998 	 * If the inp is not wildcarded we simply detach, which will remove
999 	 * the any hashes still present for this inp.
1000 	 */
1001 #ifdef SMP
1002 	if (inp->inp_flags & INP_WILDCARD_MP) {
1003 		struct netmsg_remwildcard *msg;
1004 
1005 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
1006 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
1007 			      M_LWKTMSG, M_INTWAIT);
1008 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1009 			    in_pcbremwildcardhash_handler);
1010 #ifdef INET6
1011 		msg->nm_isinet6 = isafinet6;
1012 #endif
1013 		msg->nm_inp = inp;
1014 		msg->nm_pcbinfo = &tcbinfo[cpu];
1015 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1016 	} else
1017 #endif
1018 	{
1019 		/* note: detach removes any wildcard hash entry */
1020 #ifdef INET6
1021 		if (isafinet6)
1022 			in6_pcbdetach(inp);
1023 		else
1024 #endif
1025 			in_pcbdetach(inp);
1026 	}
1027 	tcpstat.tcps_closed++;
1028 	return (NULL);
1029 }
1030 
1031 static __inline void
1032 tcp_drain_oncpu(struct inpcbhead *head)
1033 {
1034 	struct inpcb *inpb;
1035 	struct tcpcb *tcpb;
1036 	struct tseg_qent *te;
1037 
1038 	LIST_FOREACH(inpb, head, inp_list) {
1039 		if (inpb->inp_flags & INP_PLACEMARKER)
1040 			continue;
1041 		if ((tcpb = intotcpcb(inpb))) {
1042 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1043 				LIST_REMOVE(te, tqe_q);
1044 				m_freem(te->tqe_m);
1045 				FREE(te, M_TSEGQ);
1046 				tcp_reass_qsize--;
1047 			}
1048 		}
1049 	}
1050 }
1051 
1052 #ifdef SMP
1053 struct netmsg_tcp_drain {
1054 	struct netmsg		nm_netmsg;
1055 	struct inpcbhead	*nm_head;
1056 };
1057 
1058 static void
1059 tcp_drain_handler(netmsg_t netmsg)
1060 {
1061 	struct netmsg_tcp_drain *nm = (void *)netmsg;
1062 
1063 	tcp_drain_oncpu(nm->nm_head);
1064 	lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1065 }
1066 #endif
1067 
1068 void
1069 tcp_drain(void)
1070 {
1071 #ifdef SMP
1072 	int cpu;
1073 #endif
1074 
1075 	if (!do_tcpdrain)
1076 		return;
1077 
1078 	/*
1079 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1080 	 * if there is one...
1081 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1082 	 *	reassembly queue should be flushed, but in a situation
1083 	 *	where we're really low on mbufs, this is potentially
1084 	 *	useful.
1085 	 */
1086 #ifdef SMP
1087 	for (cpu = 0; cpu < ncpus2; cpu++) {
1088 		struct netmsg_tcp_drain *msg;
1089 
1090 		if (cpu == mycpu->gd_cpuid) {
1091 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1092 		} else {
1093 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1094 				    M_LWKTMSG, M_NOWAIT);
1095 			if (msg == NULL)
1096 				continue;
1097 			netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1098 				    tcp_drain_handler);
1099 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1100 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1101 		}
1102 	}
1103 #else
1104 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1105 #endif
1106 }
1107 
1108 /*
1109  * Notify a tcp user of an asynchronous error;
1110  * store error as soft error, but wake up user
1111  * (for now, won't do anything until can select for soft error).
1112  *
1113  * Do not wake up user since there currently is no mechanism for
1114  * reporting soft errors (yet - a kqueue filter may be added).
1115  */
1116 static void
1117 tcp_notify(struct inpcb *inp, int error)
1118 {
1119 	struct tcpcb *tp = intotcpcb(inp);
1120 
1121 	/*
1122 	 * Ignore some errors if we are hooked up.
1123 	 * If connection hasn't completed, has retransmitted several times,
1124 	 * and receives a second error, give up now.  This is better
1125 	 * than waiting a long time to establish a connection that
1126 	 * can never complete.
1127 	 */
1128 	if (tp->t_state == TCPS_ESTABLISHED &&
1129 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1130 	      error == EHOSTDOWN)) {
1131 		return;
1132 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1133 	    tp->t_softerror)
1134 		tcp_drop(tp, error);
1135 	else
1136 		tp->t_softerror = error;
1137 #if 0
1138 	wakeup(&so->so_timeo);
1139 	sorwakeup(so);
1140 	sowwakeup(so);
1141 #endif
1142 }
1143 
1144 static int
1145 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1146 {
1147 	int error, i, n;
1148 	struct inpcb *marker;
1149 	struct inpcb *inp;
1150 	inp_gen_t gencnt;
1151 	globaldata_t gd;
1152 	int origcpu, ccpu;
1153 
1154 	error = 0;
1155 	n = 0;
1156 
1157 	/*
1158 	 * The process of preparing the TCB list is too time-consuming and
1159 	 * resource-intensive to repeat twice on every request.
1160 	 */
1161 	if (req->oldptr == NULL) {
1162 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1163 			gd = globaldata_find(ccpu);
1164 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1165 		}
1166 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1167 		return (0);
1168 	}
1169 
1170 	if (req->newptr != NULL)
1171 		return (EPERM);
1172 
1173 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1174 	marker->inp_flags |= INP_PLACEMARKER;
1175 
1176 	/*
1177 	 * OK, now we're committed to doing something.  Run the inpcb list
1178 	 * for each cpu in the system and construct the output.  Use a
1179 	 * list placemarker to deal with list changes occuring during
1180 	 * copyout blockages (but otherwise depend on being on the correct
1181 	 * cpu to avoid races).
1182 	 */
1183 	origcpu = mycpu->gd_cpuid;
1184 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1185 		globaldata_t rgd;
1186 		caddr_t inp_ppcb;
1187 		struct xtcpcb xt;
1188 		int cpu_id;
1189 
1190 		cpu_id = (origcpu + ccpu) % ncpus;
1191 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1192 			continue;
1193 		rgd = globaldata_find(cpu_id);
1194 		lwkt_setcpu_self(rgd);
1195 
1196 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1197 		n = tcbinfo[cpu_id].ipi_count;
1198 
1199 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1200 		i = 0;
1201 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1202 			/*
1203 			 * process a snapshot of pcbs, ignoring placemarkers
1204 			 * and using our own to allow SYSCTL_OUT to block.
1205 			 */
1206 			LIST_REMOVE(marker, inp_list);
1207 			LIST_INSERT_AFTER(inp, marker, inp_list);
1208 
1209 			if (inp->inp_flags & INP_PLACEMARKER)
1210 				continue;
1211 			if (inp->inp_gencnt > gencnt)
1212 				continue;
1213 			if (prison_xinpcb(req->td, inp))
1214 				continue;
1215 
1216 			xt.xt_len = sizeof xt;
1217 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1218 			inp_ppcb = inp->inp_ppcb;
1219 			if (inp_ppcb != NULL)
1220 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1221 			else
1222 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1223 			if (inp->inp_socket)
1224 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1225 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1226 				break;
1227 			++i;
1228 		}
1229 		LIST_REMOVE(marker, inp_list);
1230 		if (error == 0 && i < n) {
1231 			bzero(&xt, sizeof xt);
1232 			xt.xt_len = sizeof xt;
1233 			while (i < n) {
1234 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1235 				if (error)
1236 					break;
1237 				++i;
1238 			}
1239 		}
1240 	}
1241 
1242 	/*
1243 	 * Make sure we are on the same cpu we were on originally, since
1244 	 * higher level callers expect this.  Also don't pollute caches with
1245 	 * migrated userland data by (eventually) returning to userland
1246 	 * on a different cpu.
1247 	 */
1248 	lwkt_setcpu_self(globaldata_find(origcpu));
1249 	kfree(marker, M_TEMP);
1250 	return (error);
1251 }
1252 
1253 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1254 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1255 
1256 static int
1257 tcp_getcred(SYSCTL_HANDLER_ARGS)
1258 {
1259 	struct sockaddr_in addrs[2];
1260 	struct inpcb *inp;
1261 	int cpu;
1262 	int error;
1263 
1264 	error = priv_check(req->td, PRIV_ROOT);
1265 	if (error != 0)
1266 		return (error);
1267 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1268 	if (error != 0)
1269 		return (error);
1270 	crit_enter();
1271 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1272 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1273 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1274 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1275 	if (inp == NULL || inp->inp_socket == NULL) {
1276 		error = ENOENT;
1277 		goto out;
1278 	}
1279 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1280 out:
1281 	crit_exit();
1282 	return (error);
1283 }
1284 
1285 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1286     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1287 
1288 #ifdef INET6
1289 static int
1290 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1291 {
1292 	struct sockaddr_in6 addrs[2];
1293 	struct inpcb *inp;
1294 	int error;
1295 	boolean_t mapped = FALSE;
1296 
1297 	error = priv_check(req->td, PRIV_ROOT);
1298 	if (error != 0)
1299 		return (error);
1300 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1301 	if (error != 0)
1302 		return (error);
1303 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1304 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1305 			mapped = TRUE;
1306 		else
1307 			return (EINVAL);
1308 	}
1309 	crit_enter();
1310 	if (mapped) {
1311 		inp = in_pcblookup_hash(&tcbinfo[0],
1312 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1313 		    addrs[1].sin6_port,
1314 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1315 		    addrs[0].sin6_port,
1316 		    0, NULL);
1317 	} else {
1318 		inp = in6_pcblookup_hash(&tcbinfo[0],
1319 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1320 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1321 		    0, NULL);
1322 	}
1323 	if (inp == NULL || inp->inp_socket == NULL) {
1324 		error = ENOENT;
1325 		goto out;
1326 	}
1327 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1328 out:
1329 	crit_exit();
1330 	return (error);
1331 }
1332 
1333 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1334 	    0, 0,
1335 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1336 #endif
1337 
1338 struct netmsg_tcp_notify {
1339 	struct netmsg	nm_nmsg;
1340 	void		(*nm_notify)(struct inpcb *, int);
1341 	struct in_addr	nm_faddr;
1342 	int		nm_arg;
1343 };
1344 
1345 static void
1346 tcp_notifyall_oncpu(struct netmsg *netmsg)
1347 {
1348 	struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1349 	int nextcpu;
1350 
1351 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1352 			nmsg->nm_arg, nmsg->nm_notify);
1353 
1354 	nextcpu = mycpuid + 1;
1355 	if (nextcpu < ncpus2)
1356 		lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1357 	else
1358 		lwkt_replymsg(&netmsg->nm_lmsg, 0);
1359 }
1360 
1361 void
1362 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1363 {
1364 	struct ip *ip = vip;
1365 	struct tcphdr *th;
1366 	struct in_addr faddr;
1367 	struct inpcb *inp;
1368 	struct tcpcb *tp;
1369 	void (*notify)(struct inpcb *, int) = tcp_notify;
1370 	tcp_seq icmpseq;
1371 	int arg, cpu;
1372 
1373 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1374 		return;
1375 	}
1376 
1377 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1378 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1379 		return;
1380 
1381 	arg = inetctlerrmap[cmd];
1382 	if (cmd == PRC_QUENCH) {
1383 		notify = tcp_quench;
1384 	} else if (icmp_may_rst &&
1385 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1386 		    cmd == PRC_UNREACH_PORT ||
1387 		    cmd == PRC_TIMXCEED_INTRANS) &&
1388 		   ip != NULL) {
1389 		notify = tcp_drop_syn_sent;
1390 	} else if (cmd == PRC_MSGSIZE) {
1391 		struct icmp *icmp = (struct icmp *)
1392 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1393 
1394 		arg = ntohs(icmp->icmp_nextmtu);
1395 		notify = tcp_mtudisc;
1396 	} else if (PRC_IS_REDIRECT(cmd)) {
1397 		ip = NULL;
1398 		notify = in_rtchange;
1399 	} else if (cmd == PRC_HOSTDEAD) {
1400 		ip = NULL;
1401 	}
1402 
1403 	if (ip != NULL) {
1404 		crit_enter();
1405 		th = (struct tcphdr *)((caddr_t)ip +
1406 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1407 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1408 				  ip->ip_src.s_addr, th->th_sport);
1409 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1410 					ip->ip_src, th->th_sport, 0, NULL);
1411 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1412 			icmpseq = htonl(th->th_seq);
1413 			tp = intotcpcb(inp);
1414 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1415 			    SEQ_LT(icmpseq, tp->snd_max))
1416 				(*notify)(inp, arg);
1417 		} else {
1418 			struct in_conninfo inc;
1419 
1420 			inc.inc_fport = th->th_dport;
1421 			inc.inc_lport = th->th_sport;
1422 			inc.inc_faddr = faddr;
1423 			inc.inc_laddr = ip->ip_src;
1424 #ifdef INET6
1425 			inc.inc_isipv6 = 0;
1426 #endif
1427 			syncache_unreach(&inc, th);
1428 		}
1429 		crit_exit();
1430 	} else {
1431 		struct netmsg_tcp_notify nmsg;
1432 
1433 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1434 		netmsg_init(&nmsg.nm_nmsg, &curthread->td_msgport, 0,
1435 			    tcp_notifyall_oncpu);
1436 		nmsg.nm_faddr = faddr;
1437 		nmsg.nm_arg = arg;
1438 		nmsg.nm_notify = notify;
1439 
1440 		lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1441 	}
1442 }
1443 
1444 #ifdef INET6
1445 void
1446 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1447 {
1448 	struct tcphdr th;
1449 	void (*notify) (struct inpcb *, int) = tcp_notify;
1450 	struct ip6_hdr *ip6;
1451 	struct mbuf *m;
1452 	struct ip6ctlparam *ip6cp = NULL;
1453 	const struct sockaddr_in6 *sa6_src = NULL;
1454 	int off;
1455 	struct tcp_portonly {
1456 		u_int16_t th_sport;
1457 		u_int16_t th_dport;
1458 	} *thp;
1459 	int arg;
1460 
1461 	if (sa->sa_family != AF_INET6 ||
1462 	    sa->sa_len != sizeof(struct sockaddr_in6))
1463 		return;
1464 
1465 	arg = 0;
1466 	if (cmd == PRC_QUENCH)
1467 		notify = tcp_quench;
1468 	else if (cmd == PRC_MSGSIZE) {
1469 		struct ip6ctlparam *ip6cp = d;
1470 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1471 
1472 		arg = ntohl(icmp6->icmp6_mtu);
1473 		notify = tcp_mtudisc;
1474 	} else if (!PRC_IS_REDIRECT(cmd) &&
1475 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1476 		return;
1477 	}
1478 
1479 	/* if the parameter is from icmp6, decode it. */
1480 	if (d != NULL) {
1481 		ip6cp = (struct ip6ctlparam *)d;
1482 		m = ip6cp->ip6c_m;
1483 		ip6 = ip6cp->ip6c_ip6;
1484 		off = ip6cp->ip6c_off;
1485 		sa6_src = ip6cp->ip6c_src;
1486 	} else {
1487 		m = NULL;
1488 		ip6 = NULL;
1489 		off = 0;	/* fool gcc */
1490 		sa6_src = &sa6_any;
1491 	}
1492 
1493 	if (ip6 != NULL) {
1494 		struct in_conninfo inc;
1495 		/*
1496 		 * XXX: We assume that when IPV6 is non NULL,
1497 		 * M and OFF are valid.
1498 		 */
1499 
1500 		/* check if we can safely examine src and dst ports */
1501 		if (m->m_pkthdr.len < off + sizeof *thp)
1502 			return;
1503 
1504 		bzero(&th, sizeof th);
1505 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1506 
1507 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1508 		    (struct sockaddr *)ip6cp->ip6c_src,
1509 		    th.th_sport, cmd, arg, notify);
1510 
1511 		inc.inc_fport = th.th_dport;
1512 		inc.inc_lport = th.th_sport;
1513 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1514 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1515 		inc.inc_isipv6 = 1;
1516 		syncache_unreach(&inc, &th);
1517 	} else
1518 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1519 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1520 }
1521 #endif
1522 
1523 /*
1524  * Following is where TCP initial sequence number generation occurs.
1525  *
1526  * There are two places where we must use initial sequence numbers:
1527  * 1.  In SYN-ACK packets.
1528  * 2.  In SYN packets.
1529  *
1530  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1531  * tcp_syncache.c for details.
1532  *
1533  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1534  * depends on this property.  In addition, these ISNs should be
1535  * unguessable so as to prevent connection hijacking.  To satisfy
1536  * the requirements of this situation, the algorithm outlined in
1537  * RFC 1948 is used to generate sequence numbers.
1538  *
1539  * Implementation details:
1540  *
1541  * Time is based off the system timer, and is corrected so that it
1542  * increases by one megabyte per second.  This allows for proper
1543  * recycling on high speed LANs while still leaving over an hour
1544  * before rollover.
1545  *
1546  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1547  * between seeding of isn_secret.  This is normally set to zero,
1548  * as reseeding should not be necessary.
1549  *
1550  */
1551 
1552 #define	ISN_BYTES_PER_SECOND 1048576
1553 
1554 u_char isn_secret[32];
1555 int isn_last_reseed;
1556 MD5_CTX isn_ctx;
1557 
1558 tcp_seq
1559 tcp_new_isn(struct tcpcb *tp)
1560 {
1561 	u_int32_t md5_buffer[4];
1562 	tcp_seq new_isn;
1563 
1564 	/* Seed if this is the first use, reseed if requested. */
1565 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1566 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1567 		< (u_int)ticks))) {
1568 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1569 		isn_last_reseed = ticks;
1570 	}
1571 
1572 	/* Compute the md5 hash and return the ISN. */
1573 	MD5Init(&isn_ctx);
1574 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1575 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1576 #ifdef INET6
1577 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1578 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1579 			  sizeof(struct in6_addr));
1580 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1581 			  sizeof(struct in6_addr));
1582 	} else
1583 #endif
1584 	{
1585 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1586 			  sizeof(struct in_addr));
1587 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1588 			  sizeof(struct in_addr));
1589 	}
1590 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1591 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1592 	new_isn = (tcp_seq) md5_buffer[0];
1593 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1594 	return (new_isn);
1595 }
1596 
1597 /*
1598  * When a source quench is received, close congestion window
1599  * to one segment.  We will gradually open it again as we proceed.
1600  */
1601 void
1602 tcp_quench(struct inpcb *inp, int error)
1603 {
1604 	struct tcpcb *tp = intotcpcb(inp);
1605 
1606 	if (tp != NULL) {
1607 		tp->snd_cwnd = tp->t_maxseg;
1608 		tp->snd_wacked = 0;
1609 	}
1610 }
1611 
1612 /*
1613  * When a specific ICMP unreachable message is received and the
1614  * connection state is SYN-SENT, drop the connection.  This behavior
1615  * is controlled by the icmp_may_rst sysctl.
1616  */
1617 void
1618 tcp_drop_syn_sent(struct inpcb *inp, int error)
1619 {
1620 	struct tcpcb *tp = intotcpcb(inp);
1621 
1622 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1623 		tcp_drop(tp, error);
1624 }
1625 
1626 /*
1627  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1628  * based on the new value in the route.  Also nudge TCP to send something,
1629  * since we know the packet we just sent was dropped.
1630  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1631  */
1632 void
1633 tcp_mtudisc(struct inpcb *inp, int mtu)
1634 {
1635 	struct tcpcb *tp = intotcpcb(inp);
1636 	struct rtentry *rt;
1637 	struct socket *so = inp->inp_socket;
1638 	int maxopd, mss;
1639 #ifdef INET6
1640 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1641 #else
1642 	const boolean_t isipv6 = FALSE;
1643 #endif
1644 
1645 	if (tp == NULL)
1646 		return;
1647 
1648 	/*
1649 	 * If no MTU is provided in the ICMP message, use the
1650 	 * next lower likely value, as specified in RFC 1191.
1651 	 */
1652 	if (mtu == 0) {
1653 		int oldmtu;
1654 
1655 		oldmtu = tp->t_maxopd +
1656 		    (isipv6 ?
1657 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1658 		     sizeof(struct tcpiphdr));
1659 		mtu = ip_next_mtu(oldmtu, 0);
1660 	}
1661 
1662 	if (isipv6)
1663 		rt = tcp_rtlookup6(&inp->inp_inc);
1664 	else
1665 		rt = tcp_rtlookup(&inp->inp_inc);
1666 	if (rt != NULL) {
1667 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1668 
1669 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1670 			mtu = rt->rt_rmx.rmx_mtu;
1671 
1672 		maxopd = mtu -
1673 		    (isipv6 ?
1674 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1675 		     sizeof(struct tcpiphdr));
1676 
1677 		/*
1678 		 * XXX - The following conditional probably violates the TCP
1679 		 * spec.  The problem is that, since we don't know the
1680 		 * other end's MSS, we are supposed to use a conservative
1681 		 * default.  But, if we do that, then MTU discovery will
1682 		 * never actually take place, because the conservative
1683 		 * default is much less than the MTUs typically seen
1684 		 * on the Internet today.  For the moment, we'll sweep
1685 		 * this under the carpet.
1686 		 *
1687 		 * The conservative default might not actually be a problem
1688 		 * if the only case this occurs is when sending an initial
1689 		 * SYN with options and data to a host we've never talked
1690 		 * to before.  Then, they will reply with an MSS value which
1691 		 * will get recorded and the new parameters should get
1692 		 * recomputed.  For Further Study.
1693 		 */
1694 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1695 			maxopd = taop->tao_mssopt;
1696 	} else
1697 		maxopd = mtu -
1698 		    (isipv6 ?
1699 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1700 		     sizeof(struct tcpiphdr));
1701 
1702 	if (tp->t_maxopd <= maxopd)
1703 		return;
1704 	tp->t_maxopd = maxopd;
1705 
1706 	mss = maxopd;
1707 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1708 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1709 		mss -= TCPOLEN_TSTAMP_APPA;
1710 
1711 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1712 			   (TF_REQ_CC | TF_RCVD_CC))
1713 		mss -= TCPOLEN_CC_APPA;
1714 
1715 	/* round down to multiple of MCLBYTES */
1716 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1717 	if (mss > MCLBYTES)
1718 		mss &= ~(MCLBYTES - 1);
1719 #else
1720 	if (mss > MCLBYTES)
1721 		mss = (mss / MCLBYTES) * MCLBYTES;
1722 #endif
1723 
1724 	if (so->so_snd.ssb_hiwat < mss)
1725 		mss = so->so_snd.ssb_hiwat;
1726 
1727 	tp->t_maxseg = mss;
1728 	tp->t_rtttime = 0;
1729 	tp->snd_nxt = tp->snd_una;
1730 	tcp_output(tp);
1731 	tcpstat.tcps_mturesent++;
1732 }
1733 
1734 /*
1735  * Look-up the routing entry to the peer of this inpcb.  If no route
1736  * is found and it cannot be allocated the return NULL.  This routine
1737  * is called by TCP routines that access the rmx structure and by tcp_mss
1738  * to get the interface MTU.
1739  */
1740 struct rtentry *
1741 tcp_rtlookup(struct in_conninfo *inc)
1742 {
1743 	struct route *ro = &inc->inc_route;
1744 
1745 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1746 		/* No route yet, so try to acquire one */
1747 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1748 			/*
1749 			 * unused portions of the structure MUST be zero'd
1750 			 * out because rtalloc() treats it as opaque data
1751 			 */
1752 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1753 			ro->ro_dst.sa_family = AF_INET;
1754 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1755 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1756 			    inc->inc_faddr;
1757 			rtalloc(ro);
1758 		}
1759 	}
1760 	return (ro->ro_rt);
1761 }
1762 
1763 #ifdef INET6
1764 struct rtentry *
1765 tcp_rtlookup6(struct in_conninfo *inc)
1766 {
1767 	struct route_in6 *ro6 = &inc->inc6_route;
1768 
1769 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1770 		/* No route yet, so try to acquire one */
1771 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1772 			/*
1773 			 * unused portions of the structure MUST be zero'd
1774 			 * out because rtalloc() treats it as opaque data
1775 			 */
1776 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1777 			ro6->ro_dst.sin6_family = AF_INET6;
1778 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1779 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1780 			rtalloc((struct route *)ro6);
1781 		}
1782 	}
1783 	return (ro6->ro_rt);
1784 }
1785 #endif
1786 
1787 #ifdef IPSEC
1788 /* compute ESP/AH header size for TCP, including outer IP header. */
1789 size_t
1790 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1791 {
1792 	struct inpcb *inp;
1793 	struct mbuf *m;
1794 	size_t hdrsiz;
1795 	struct ip *ip;
1796 	struct tcphdr *th;
1797 
1798 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1799 		return (0);
1800 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1801 	if (!m)
1802 		return (0);
1803 
1804 #ifdef INET6
1805 	if (inp->inp_vflag & INP_IPV6) {
1806 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1807 
1808 		th = (struct tcphdr *)(ip6 + 1);
1809 		m->m_pkthdr.len = m->m_len =
1810 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1811 		tcp_fillheaders(tp, ip6, th);
1812 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1813 	} else
1814 #endif
1815 	{
1816 		ip = mtod(m, struct ip *);
1817 		th = (struct tcphdr *)(ip + 1);
1818 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1819 		tcp_fillheaders(tp, ip, th);
1820 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1821 	}
1822 
1823 	m_free(m);
1824 	return (hdrsiz);
1825 }
1826 #endif
1827 
1828 /*
1829  * Return a pointer to the cached information about the remote host.
1830  * The cached information is stored in the protocol specific part of
1831  * the route metrics.
1832  */
1833 struct rmxp_tao *
1834 tcp_gettaocache(struct in_conninfo *inc)
1835 {
1836 	struct rtentry *rt;
1837 
1838 #ifdef INET6
1839 	if (inc->inc_isipv6)
1840 		rt = tcp_rtlookup6(inc);
1841 	else
1842 #endif
1843 		rt = tcp_rtlookup(inc);
1844 
1845 	/* Make sure this is a host route and is up. */
1846 	if (rt == NULL ||
1847 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1848 		return (NULL);
1849 
1850 	return (rmx_taop(rt->rt_rmx));
1851 }
1852 
1853 /*
1854  * Clear all the TAO cache entries, called from tcp_init.
1855  *
1856  * XXX
1857  * This routine is just an empty one, because we assume that the routing
1858  * routing tables are initialized at the same time when TCP, so there is
1859  * nothing in the cache left over.
1860  */
1861 static void
1862 tcp_cleartaocache(void)
1863 {
1864 }
1865 
1866 /*
1867  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1868  *
1869  * This code attempts to calculate the bandwidth-delay product as a
1870  * means of determining the optimal window size to maximize bandwidth,
1871  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1872  * routers.  This code also does a fairly good job keeping RTTs in check
1873  * across slow links like modems.  We implement an algorithm which is very
1874  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1875  * transmitter side of a TCP connection and so only effects the transmit
1876  * side of the connection.
1877  *
1878  * BACKGROUND:  TCP makes no provision for the management of buffer space
1879  * at the end points or at the intermediate routers and switches.  A TCP
1880  * stream, whether using NewReno or not, will eventually buffer as
1881  * many packets as it is able and the only reason this typically works is
1882  * due to the fairly small default buffers made available for a connection
1883  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1884  * scaling it is now fairly easy for even a single TCP connection to blow-out
1885  * all available buffer space not only on the local interface, but on
1886  * intermediate routers and switches as well.  NewReno makes a misguided
1887  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1888  * then backing off, then steadily increasing the window again until another
1889  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1890  * is only made worse as network loads increase and the idea of intentionally
1891  * blowing out network buffers is, frankly, a terrible way to manage network
1892  * resources.
1893  *
1894  * It is far better to limit the transmit window prior to the failure
1895  * condition being achieved.  There are two general ways to do this:  First
1896  * you can 'scan' through different transmit window sizes and locate the
1897  * point where the RTT stops increasing, indicating that you have filled the
1898  * pipe, then scan backwards until you note that RTT stops decreasing, then
1899  * repeat ad-infinitum.  This method works in principle but has severe
1900  * implementation issues due to RTT variances, timer granularity, and
1901  * instability in the algorithm which can lead to many false positives and
1902  * create oscillations as well as interact badly with other TCP streams
1903  * implementing the same algorithm.
1904  *
1905  * The second method is to limit the window to the bandwidth delay product
1906  * of the link.  This is the method we implement.  RTT variances and our
1907  * own manipulation of the congestion window, bwnd, can potentially
1908  * destabilize the algorithm.  For this reason we have to stabilize the
1909  * elements used to calculate the window.  We do this by using the minimum
1910  * observed RTT, the long term average of the observed bandwidth, and
1911  * by adding two segments worth of slop.  It isn't perfect but it is able
1912  * to react to changing conditions and gives us a very stable basis on
1913  * which to extend the algorithm.
1914  */
1915 void
1916 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1917 {
1918 	u_long bw;
1919 	u_long bwnd;
1920 	int save_ticks;
1921 	int delta_ticks;
1922 
1923 	/*
1924 	 * If inflight_enable is disabled in the middle of a tcp connection,
1925 	 * make sure snd_bwnd is effectively disabled.
1926 	 */
1927 	if (!tcp_inflight_enable) {
1928 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1929 		tp->snd_bandwidth = 0;
1930 		return;
1931 	}
1932 
1933 	/*
1934 	 * Validate the delta time.  If a connection is new or has been idle
1935 	 * a long time we have to reset the bandwidth calculator.
1936 	 */
1937 	save_ticks = ticks;
1938 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1939 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1940 		tp->t_bw_rtttime = ticks;
1941 		tp->t_bw_rtseq = ack_seq;
1942 		if (tp->snd_bandwidth == 0)
1943 			tp->snd_bandwidth = tcp_inflight_min;
1944 		return;
1945 	}
1946 	if (delta_ticks == 0)
1947 		return;
1948 
1949 	/*
1950 	 * Sanity check, plus ignore pure window update acks.
1951 	 */
1952 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1953 		return;
1954 
1955 	/*
1956 	 * Figure out the bandwidth.  Due to the tick granularity this
1957 	 * is a very rough number and it MUST be averaged over a fairly
1958 	 * long period of time.  XXX we need to take into account a link
1959 	 * that is not using all available bandwidth, but for now our
1960 	 * slop will ramp us up if this case occurs and the bandwidth later
1961 	 * increases.
1962 	 */
1963 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1964 	tp->t_bw_rtttime = save_ticks;
1965 	tp->t_bw_rtseq = ack_seq;
1966 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1967 
1968 	tp->snd_bandwidth = bw;
1969 
1970 	/*
1971 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1972 	 * segments.  The additional slop puts us squarely in the sweet
1973 	 * spot and also handles the bandwidth run-up case.  Without the
1974 	 * slop we could be locking ourselves into a lower bandwidth.
1975 	 *
1976 	 * Situations Handled:
1977 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1978 	 *	    high speed LANs, allowing larger TCP buffers to be
1979 	 *	    specified, and also does a good job preventing
1980 	 *	    over-queueing of packets over choke points like modems
1981 	 *	    (at least for the transmit side).
1982 	 *
1983 	 *	(2) Is able to handle changing network loads (bandwidth
1984 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1985 	 *	    increases).
1986 	 *
1987 	 *	(3) Theoretically should stabilize in the face of multiple
1988 	 *	    connections implementing the same algorithm (this may need
1989 	 *	    a little work).
1990 	 *
1991 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1992 	 *	    be adjusted with a sysctl but typically only needs to be on
1993 	 *	    very slow connections.  A value no smaller then 5 should
1994 	 *	    be used, but only reduce this default if you have no other
1995 	 *	    choice.
1996 	 */
1997 
1998 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1999 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2000 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
2001 #undef USERTT
2002 
2003 	if (tcp_inflight_debug > 0) {
2004 		static int ltime;
2005 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2006 			ltime = ticks;
2007 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2008 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2009 		}
2010 	}
2011 	if ((long)bwnd < tcp_inflight_min)
2012 		bwnd = tcp_inflight_min;
2013 	if (bwnd > tcp_inflight_max)
2014 		bwnd = tcp_inflight_max;
2015 	if ((long)bwnd < tp->t_maxseg * 2)
2016 		bwnd = tp->t_maxseg * 2;
2017 	tp->snd_bwnd = bwnd;
2018 }
2019