xref: /dragonfly/sys/netinet/tcp_subr.c (revision e293de53)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <vm/vm_zone.h>
97 
98 #include <net/route.h>
99 #include <net/if.h>
100 #include <net/netisr.h>
101 
102 #define	_IP_VHL
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip6.h>
107 #include <netinet/in_pcb.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip_var.h>
111 #include <netinet6/ip6_var.h>
112 #include <netinet/ip_icmp.h>
113 #ifdef INET6
114 #include <netinet/icmp6.h>
115 #endif
116 #include <netinet/tcp.h>
117 #include <netinet/tcp_fsm.h>
118 #include <netinet/tcp_seq.h>
119 #include <netinet/tcp_timer.h>
120 #include <netinet/tcp_timer2.h>
121 #include <netinet/tcp_var.h>
122 #include <netinet6/tcp6_var.h>
123 #include <netinet/tcpip.h>
124 #ifdef TCPDEBUG
125 #include <netinet/tcp_debug.h>
126 #endif
127 #include <netinet6/ip6protosw.h>
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
135 
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define	IPSEC
142 #endif
143 
144 #include <sys/md5.h>
145 #include <sys/msgport2.h>
146 #include <machine/smp.h>
147 
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 KTR_INFO_MASTER(tcp);
154 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
155 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
157 #define logtcp(name)	KTR_LOG(tcp_ ## name)
158 
159 struct inpcbinfo tcbinfo[MAXCPU];
160 struct tcpcbackqhead tcpcbackq[MAXCPU];
161 
162 int tcp_mpsafe_proto = 0;
163 TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
164 
165 static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
166 TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
168 	   &tcp_mpsafe_thread, 0,
169 	   "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
170 
171 int tcp_mssdflt = TCP_MSS;
172 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
173     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
174 
175 #ifdef INET6
176 int tcp_v6mssdflt = TCP6_MSS;
177 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
178     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
179 #endif
180 
181 #if 0
182 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
183 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
184     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
185 #endif
186 
187 int tcp_do_rfc1323 = 1;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
189     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
190 
191 int tcp_do_rfc1644 = 0;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
193     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
194 
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
198 
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201      "Enable tcp_drain routine for extra help when low on mbufs");
202 
203 /* XXX JH */
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
205     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
206 
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214 
215 /*
216  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
217  * 1024 exists only for debugging.  A good production default would be
218  * something like 6100.
219  */
220 static int tcp_inflight_enable = 0;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
222     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
223 
224 static int tcp_inflight_debug = 0;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
226     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
227 
228 static int tcp_inflight_min = 6144;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
230     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
231 
232 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
234     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
235 
236 static int tcp_inflight_stab = 20;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
238     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
239 
240 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
241 static struct malloc_pipe tcptemp_mpipe;
242 
243 static void tcp_willblock(int);
244 static void tcp_cleartaocache (void);
245 static void tcp_notify (struct inpcb *, int);
246 
247 struct tcp_stats tcpstats_percpu[MAXCPU];
248 #ifdef SMP
249 static int
250 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
251 {
252 	int cpu, error = 0;
253 
254 	for (cpu = 0; cpu < ncpus; ++cpu) {
255 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
256 					sizeof(struct tcp_stats))))
257 			break;
258 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
259 				       sizeof(struct tcp_stats))))
260 			break;
261 	}
262 
263 	return (error);
264 }
265 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
266     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
267 #else
268 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
269     &tcpstat, tcp_stats, "TCP statistics");
270 #endif
271 
272 /*
273  * Target size of TCP PCB hash tables. Must be a power of two.
274  *
275  * Note that this can be overridden by the kernel environment
276  * variable net.inet.tcp.tcbhashsize
277  */
278 #ifndef TCBHASHSIZE
279 #define	TCBHASHSIZE	512
280 #endif
281 
282 /*
283  * This is the actual shape of what we allocate using the zone
284  * allocator.  Doing it this way allows us to protect both structures
285  * using the same generation count, and also eliminates the overhead
286  * of allocating tcpcbs separately.  By hiding the structure here,
287  * we avoid changing most of the rest of the code (although it needs
288  * to be changed, eventually, for greater efficiency).
289  */
290 #define	ALIGNMENT	32
291 #define	ALIGNM1		(ALIGNMENT - 1)
292 struct	inp_tp {
293 	union {
294 		struct	inpcb inp;
295 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
296 	} inp_tp_u;
297 	struct	tcpcb tcb;
298 	struct	tcp_callout inp_tp_rexmt;
299 	struct	tcp_callout inp_tp_persist;
300 	struct	tcp_callout inp_tp_keep;
301 	struct	tcp_callout inp_tp_2msl;
302 	struct	tcp_callout inp_tp_delack;
303 	struct	netmsg_tcp_timer inp_tp_timermsg;
304 };
305 #undef ALIGNMENT
306 #undef ALIGNM1
307 
308 /*
309  * Tcp initialization
310  */
311 void
312 tcp_init(void)
313 {
314 	struct inpcbporthead *porthashbase;
315 	u_long porthashmask;
316 	struct vm_zone *ipi_zone;
317 	int hashsize = TCBHASHSIZE;
318 	int cpu;
319 
320 	/*
321 	 * note: tcptemp is used for keepalives, and it is ok for an
322 	 * allocation to fail so do not specify MPF_INT.
323 	 */
324 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
325 		    25, -1, 0, NULL);
326 
327 	tcp_ccgen = 1;
328 	tcp_cleartaocache();
329 
330 	tcp_delacktime = TCPTV_DELACK;
331 	tcp_keepinit = TCPTV_KEEP_INIT;
332 	tcp_keepidle = TCPTV_KEEP_IDLE;
333 	tcp_keepintvl = TCPTV_KEEPINTVL;
334 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
335 	tcp_msl = TCPTV_MSL;
336 	tcp_rexmit_min = TCPTV_MIN;
337 	tcp_rexmit_slop = TCPTV_CPU_VAR;
338 
339 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
340 	if (!powerof2(hashsize)) {
341 		kprintf("WARNING: TCB hash size not a power of 2\n");
342 		hashsize = 512; /* safe default */
343 	}
344 	tcp_tcbhashsize = hashsize;
345 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
346 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
347 			 ZONE_INTERRUPT, 0);
348 
349 	for (cpu = 0; cpu < ncpus2; cpu++) {
350 		in_pcbinfo_init(&tcbinfo[cpu]);
351 		tcbinfo[cpu].cpu = cpu;
352 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
353 		    &tcbinfo[cpu].hashmask);
354 		tcbinfo[cpu].porthashbase = porthashbase;
355 		tcbinfo[cpu].porthashmask = porthashmask;
356 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
357 		    &tcbinfo[cpu].wildcardhashmask);
358 		tcbinfo[cpu].ipi_zone = ipi_zone;
359 		TAILQ_INIT(&tcpcbackq[cpu]);
360 	}
361 
362 	tcp_reass_maxseg = nmbclusters / 16;
363 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
364 
365 #ifdef INET6
366 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
367 #else
368 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
369 #endif
370 	if (max_protohdr < TCP_MINPROTOHDR)
371 		max_protohdr = TCP_MINPROTOHDR;
372 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
373 		panic("tcp_init");
374 #undef TCP_MINPROTOHDR
375 
376 	/*
377 	 * Initialize TCP statistics counters for each CPU.
378 	 */
379 #ifdef SMP
380 	for (cpu = 0; cpu < ncpus; ++cpu) {
381 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
382 	}
383 #else
384 	bzero(&tcpstat, sizeof(struct tcp_stats));
385 #endif
386 
387 	syncache_init();
388 	tcp_thread_init();
389 }
390 
391 void
392 tcpmsg_service_loop(void *dummy)
393 {
394 	struct netmsg *msg;
395 	int mplocked;
396 
397 	/*
398 	 * Thread was started with TDF_MPSAFE
399 	 */
400 	mplocked = 0;
401 
402 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
403 		do {
404 			logtcp(rxmsg);
405 			mplocked = netmsg_service(msg, tcp_mpsafe_thread,
406 						  mplocked);
407 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
408 
409 		logtcp(delayed);
410 		tcp_willblock(mplocked);
411 		logtcp(wait);
412 	}
413 }
414 
415 static void
416 tcp_willblock(int mplocked)
417 {
418 	struct tcpcb *tp;
419 	int cpu = mycpu->gd_cpuid;
420 	int unlock = 0;
421 
422 	if (!mplocked && !tcp_mpsafe_proto) {
423 		if (TAILQ_EMPTY(&tcpcbackq[cpu]))
424 			return;
425 
426 		get_mplock();
427 		mplocked = 1;
428 		unlock = 1;
429 	}
430 
431 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
432 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
433 		tp->t_flags &= ~TF_ONOUTPUTQ;
434 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
435 		tcp_output(tp);
436 	}
437 
438 	if (unlock)
439 		rel_mplock();
440 }
441 
442 
443 /*
444  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
445  * tcp_template used to store this data in mbufs, but we now recopy it out
446  * of the tcpcb each time to conserve mbufs.
447  */
448 void
449 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
450 {
451 	struct inpcb *inp = tp->t_inpcb;
452 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
453 
454 #ifdef INET6
455 	if (inp->inp_vflag & INP_IPV6) {
456 		struct ip6_hdr *ip6;
457 
458 		ip6 = (struct ip6_hdr *)ip_ptr;
459 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
460 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
461 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
462 			(IPV6_VERSION & IPV6_VERSION_MASK);
463 		ip6->ip6_nxt = IPPROTO_TCP;
464 		ip6->ip6_plen = sizeof(struct tcphdr);
465 		ip6->ip6_src = inp->in6p_laddr;
466 		ip6->ip6_dst = inp->in6p_faddr;
467 		tcp_hdr->th_sum = 0;
468 	} else
469 #endif
470 	{
471 		struct ip *ip = (struct ip *) ip_ptr;
472 
473 		ip->ip_vhl = IP_VHL_BORING;
474 		ip->ip_tos = 0;
475 		ip->ip_len = 0;
476 		ip->ip_id = 0;
477 		ip->ip_off = 0;
478 		ip->ip_ttl = 0;
479 		ip->ip_sum = 0;
480 		ip->ip_p = IPPROTO_TCP;
481 		ip->ip_src = inp->inp_laddr;
482 		ip->ip_dst = inp->inp_faddr;
483 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
484 				    ip->ip_dst.s_addr,
485 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
486 	}
487 
488 	tcp_hdr->th_sport = inp->inp_lport;
489 	tcp_hdr->th_dport = inp->inp_fport;
490 	tcp_hdr->th_seq = 0;
491 	tcp_hdr->th_ack = 0;
492 	tcp_hdr->th_x2 = 0;
493 	tcp_hdr->th_off = 5;
494 	tcp_hdr->th_flags = 0;
495 	tcp_hdr->th_win = 0;
496 	tcp_hdr->th_urp = 0;
497 }
498 
499 /*
500  * Create template to be used to send tcp packets on a connection.
501  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
502  * use for this function is in keepalives, which use tcp_respond.
503  */
504 struct tcptemp *
505 tcp_maketemplate(struct tcpcb *tp)
506 {
507 	struct tcptemp *tmp;
508 
509 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
510 		return (NULL);
511 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
512 	return (tmp);
513 }
514 
515 void
516 tcp_freetemplate(struct tcptemp *tmp)
517 {
518 	mpipe_free(&tcptemp_mpipe, tmp);
519 }
520 
521 /*
522  * Send a single message to the TCP at address specified by
523  * the given TCP/IP header.  If m == NULL, then we make a copy
524  * of the tcpiphdr at ti and send directly to the addressed host.
525  * This is used to force keep alive messages out using the TCP
526  * template for a connection.  If flags are given then we send
527  * a message back to the TCP which originated the * segment ti,
528  * and discard the mbuf containing it and any other attached mbufs.
529  *
530  * In any case the ack and sequence number of the transmitted
531  * segment are as specified by the parameters.
532  *
533  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
534  */
535 void
536 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
537 	    tcp_seq ack, tcp_seq seq, int flags)
538 {
539 	int tlen;
540 	int win = 0;
541 	struct route *ro = NULL;
542 	struct route sro;
543 	struct ip *ip = ipgen;
544 	struct tcphdr *nth;
545 	int ipflags = 0;
546 	struct route_in6 *ro6 = NULL;
547 	struct route_in6 sro6;
548 	struct ip6_hdr *ip6 = ipgen;
549 	boolean_t use_tmpro = TRUE;
550 #ifdef INET6
551 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
552 #else
553 	const boolean_t isipv6 = FALSE;
554 #endif
555 
556 	if (tp != NULL) {
557 		if (!(flags & TH_RST)) {
558 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
559 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
560 				win = (long)TCP_MAXWIN << tp->rcv_scale;
561 		}
562 		/*
563 		 * Don't use the route cache of a listen socket,
564 		 * it is not MPSAFE; use temporary route cache.
565 		 */
566 		if (tp->t_state != TCPS_LISTEN) {
567 			if (isipv6)
568 				ro6 = &tp->t_inpcb->in6p_route;
569 			else
570 				ro = &tp->t_inpcb->inp_route;
571 			use_tmpro = FALSE;
572 		}
573 	}
574 	if (use_tmpro) {
575 		if (isipv6) {
576 			ro6 = &sro6;
577 			bzero(ro6, sizeof *ro6);
578 		} else {
579 			ro = &sro;
580 			bzero(ro, sizeof *ro);
581 		}
582 	}
583 	if (m == NULL) {
584 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
585 		if (m == NULL)
586 			return;
587 		tlen = 0;
588 		m->m_data += max_linkhdr;
589 		if (isipv6) {
590 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
591 			ip6 = mtod(m, struct ip6_hdr *);
592 			nth = (struct tcphdr *)(ip6 + 1);
593 		} else {
594 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
595 			ip = mtod(m, struct ip *);
596 			nth = (struct tcphdr *)(ip + 1);
597 		}
598 		bcopy(th, nth, sizeof(struct tcphdr));
599 		flags = TH_ACK;
600 	} else {
601 		m_freem(m->m_next);
602 		m->m_next = NULL;
603 		m->m_data = (caddr_t)ipgen;
604 		/* m_len is set later */
605 		tlen = 0;
606 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
607 		if (isipv6) {
608 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
609 			nth = (struct tcphdr *)(ip6 + 1);
610 		} else {
611 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
612 			nth = (struct tcphdr *)(ip + 1);
613 		}
614 		if (th != nth) {
615 			/*
616 			 * this is usually a case when an extension header
617 			 * exists between the IPv6 header and the
618 			 * TCP header.
619 			 */
620 			nth->th_sport = th->th_sport;
621 			nth->th_dport = th->th_dport;
622 		}
623 		xchg(nth->th_dport, nth->th_sport, n_short);
624 #undef xchg
625 	}
626 	if (isipv6) {
627 		ip6->ip6_flow = 0;
628 		ip6->ip6_vfc = IPV6_VERSION;
629 		ip6->ip6_nxt = IPPROTO_TCP;
630 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
631 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
632 	} else {
633 		tlen += sizeof(struct tcpiphdr);
634 		ip->ip_len = tlen;
635 		ip->ip_ttl = ip_defttl;
636 	}
637 	m->m_len = tlen;
638 	m->m_pkthdr.len = tlen;
639 	m->m_pkthdr.rcvif = NULL;
640 	nth->th_seq = htonl(seq);
641 	nth->th_ack = htonl(ack);
642 	nth->th_x2 = 0;
643 	nth->th_off = sizeof(struct tcphdr) >> 2;
644 	nth->th_flags = flags;
645 	if (tp != NULL)
646 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
647 	else
648 		nth->th_win = htons((u_short)win);
649 	nth->th_urp = 0;
650 	if (isipv6) {
651 		nth->th_sum = 0;
652 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
653 					sizeof(struct ip6_hdr),
654 					tlen - sizeof(struct ip6_hdr));
655 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
656 					       (ro6 && ro6->ro_rt) ?
657 						ro6->ro_rt->rt_ifp : NULL);
658 	} else {
659 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
660 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
661 		m->m_pkthdr.csum_flags = CSUM_TCP;
662 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
663 	}
664 #ifdef TCPDEBUG
665 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
666 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
667 #endif
668 	if (isipv6) {
669 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
670 			   tp ? tp->t_inpcb : NULL);
671 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
672 			RTFREE(ro6->ro_rt);
673 			ro6->ro_rt = NULL;
674 		}
675 	} else {
676 		ipflags |= IP_DEBUGROUTE;
677 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
678 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
679 			RTFREE(ro->ro_rt);
680 			ro->ro_rt = NULL;
681 		}
682 	}
683 }
684 
685 /*
686  * Create a new TCP control block, making an
687  * empty reassembly queue and hooking it to the argument
688  * protocol control block.  The `inp' parameter must have
689  * come from the zone allocator set up in tcp_init().
690  */
691 struct tcpcb *
692 tcp_newtcpcb(struct inpcb *inp)
693 {
694 	struct inp_tp *it;
695 	struct tcpcb *tp;
696 #ifdef INET6
697 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
698 #else
699 	const boolean_t isipv6 = FALSE;
700 #endif
701 
702 	it = (struct inp_tp *)inp;
703 	tp = &it->tcb;
704 	bzero(tp, sizeof(struct tcpcb));
705 	LIST_INIT(&tp->t_segq);
706 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
707 
708 	/* Set up our timeouts. */
709 	tp->tt_rexmt = &it->inp_tp_rexmt;
710 	tp->tt_persist = &it->inp_tp_persist;
711 	tp->tt_keep = &it->inp_tp_keep;
712 	tp->tt_2msl = &it->inp_tp_2msl;
713 	tp->tt_delack = &it->inp_tp_delack;
714 	tcp_inittimers(tp);
715 
716 	tp->tt_msg = &it->inp_tp_timermsg;
717 	if (isipv6) {
718 		/* Don't mess with IPv6; always create timer message */
719 		tcp_create_timermsg(tp);
720 	} else {
721 		/*
722 		 * Zero out timer message.  We don't create it here,
723 		 * since the current CPU may not be the owner of this
724 		 * inpcb.
725 		 */
726 		bzero(tp->tt_msg, sizeof(*tp->tt_msg));
727 	}
728 
729 	if (tcp_do_rfc1323)
730 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
731 	if (tcp_do_rfc1644)
732 		tp->t_flags |= TF_REQ_CC;
733 	tp->t_inpcb = inp;	/* XXX */
734 	tp->t_state = TCPS_CLOSED;
735 	/*
736 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
738 	 * reasonable initial retransmit time.
739 	 */
740 	tp->t_srtt = TCPTV_SRTTBASE;
741 	tp->t_rttvar =
742 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 	tp->t_rttmin = tcp_rexmit_min;
744 	tp->t_rxtcur = TCPTV_RTOBASE;
745 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 	tp->t_rcvtime = ticks;
749 	/*
750 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
751 	 * because the socket may be bound to an IPv6 wildcard address,
752 	 * which may match an IPv4-mapped IPv6 address.
753 	 */
754 	inp->inp_ip_ttl = ip_defttl;
755 	inp->inp_ppcb = tp;
756 	tcp_sack_tcpcb_init(tp);
757 	return (tp);		/* XXX */
758 }
759 
760 /*
761  * Drop a TCP connection, reporting the specified error.
762  * If connection is synchronized, then send a RST to peer.
763  */
764 struct tcpcb *
765 tcp_drop(struct tcpcb *tp, int error)
766 {
767 	struct socket *so = tp->t_inpcb->inp_socket;
768 
769 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
770 		tp->t_state = TCPS_CLOSED;
771 		tcp_output(tp);
772 		tcpstat.tcps_drops++;
773 	} else
774 		tcpstat.tcps_conndrops++;
775 	if (error == ETIMEDOUT && tp->t_softerror)
776 		error = tp->t_softerror;
777 	so->so_error = error;
778 	return (tcp_close(tp));
779 }
780 
781 #ifdef SMP
782 
783 struct netmsg_remwildcard {
784 	struct netmsg		nm_netmsg;
785 	struct inpcb		*nm_inp;
786 	struct inpcbinfo	*nm_pcbinfo;
787 #if defined(INET6)
788 	int			nm_isinet6;
789 #else
790 	int			nm_unused01;
791 #endif
792 };
793 
794 /*
795  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
796  * inp can be detached.  We do this by cycling through the cpus, ending up
797  * on the cpu controlling the inp last and then doing the disconnect.
798  */
799 static void
800 in_pcbremwildcardhash_handler(struct netmsg *msg0)
801 {
802 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
803 	int cpu;
804 
805 	cpu = msg->nm_pcbinfo->cpu;
806 
807 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
808 		/* note: detach removes any wildcard hash entry */
809 #ifdef INET6
810 		if (msg->nm_isinet6)
811 			in6_pcbdetach(msg->nm_inp);
812 		else
813 #endif
814 			in_pcbdetach(msg->nm_inp);
815 		lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
816 	} else {
817 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
818 		cpu = (cpu + 1) % ncpus2;
819 		msg->nm_pcbinfo = &tcbinfo[cpu];
820 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
821 	}
822 }
823 
824 #endif
825 
826 /*
827  * Close a TCP control block:
828  *	discard all space held by the tcp
829  *	discard internet protocol block
830  *	wake up any sleepers
831  */
832 struct tcpcb *
833 tcp_close(struct tcpcb *tp)
834 {
835 	struct tseg_qent *q;
836 	struct inpcb *inp = tp->t_inpcb;
837 	struct socket *so = inp->inp_socket;
838 	struct rtentry *rt;
839 	boolean_t dosavessthresh;
840 #ifdef SMP
841 	int cpu;
842 #endif
843 #ifdef INET6
844 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
845 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
846 #else
847 	const boolean_t isipv6 = FALSE;
848 #endif
849 
850 	/*
851 	 * The tp is not instantly destroyed in the wildcard case.  Setting
852 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
853 	 * messing with it, though it should be noted that this change may
854 	 * not take effect on other cpus until we have chained the wildcard
855 	 * hash removal.
856 	 *
857 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
858 	 * update and prevent other tcp protocol threads from accepting new
859 	 * connections on the listen socket we might be trying to close down.
860 	 */
861 	KKASSERT(tp->t_state != TCPS_TERMINATING);
862 	tp->t_state = TCPS_TERMINATING;
863 
864 	/*
865 	 * Make sure that all of our timers are stopped before we
866 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
867 	 * timers are never used.
868 	 */
869 	if (tp->tt_msg != NULL) {
870 		tcp_callout_stop(tp, tp->tt_rexmt);
871 		tcp_callout_stop(tp, tp->tt_persist);
872 		tcp_callout_stop(tp, tp->tt_keep);
873 		tcp_callout_stop(tp, tp->tt_2msl);
874 		tcp_callout_stop(tp, tp->tt_delack);
875 	}
876 
877 	if (tp->t_flags & TF_ONOUTPUTQ) {
878 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
879 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
880 		tp->t_flags &= ~TF_ONOUTPUTQ;
881 	}
882 
883 	/*
884 	 * If we got enough samples through the srtt filter,
885 	 * save the rtt and rttvar in the routing entry.
886 	 * 'Enough' is arbitrarily defined as the 16 samples.
887 	 * 16 samples is enough for the srtt filter to converge
888 	 * to within 5% of the correct value; fewer samples and
889 	 * we could save a very bogus rtt.
890 	 *
891 	 * Don't update the default route's characteristics and don't
892 	 * update anything that the user "locked".
893 	 */
894 	if (tp->t_rttupdated >= 16) {
895 		u_long i = 0;
896 
897 		if (isipv6) {
898 			struct sockaddr_in6 *sin6;
899 
900 			if ((rt = inp->in6p_route.ro_rt) == NULL)
901 				goto no_valid_rt;
902 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
903 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
904 				goto no_valid_rt;
905 		} else
906 			if ((rt = inp->inp_route.ro_rt) == NULL ||
907 			    ((struct sockaddr_in *)rt_key(rt))->
908 			     sin_addr.s_addr == INADDR_ANY)
909 				goto no_valid_rt;
910 
911 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
912 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
913 			if (rt->rt_rmx.rmx_rtt && i)
914 				/*
915 				 * filter this update to half the old & half
916 				 * the new values, converting scale.
917 				 * See route.h and tcp_var.h for a
918 				 * description of the scaling constants.
919 				 */
920 				rt->rt_rmx.rmx_rtt =
921 				    (rt->rt_rmx.rmx_rtt + i) / 2;
922 			else
923 				rt->rt_rmx.rmx_rtt = i;
924 			tcpstat.tcps_cachedrtt++;
925 		}
926 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
927 			i = tp->t_rttvar *
928 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
929 			if (rt->rt_rmx.rmx_rttvar && i)
930 				rt->rt_rmx.rmx_rttvar =
931 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
932 			else
933 				rt->rt_rmx.rmx_rttvar = i;
934 			tcpstat.tcps_cachedrttvar++;
935 		}
936 		/*
937 		 * The old comment here said:
938 		 * update the pipelimit (ssthresh) if it has been updated
939 		 * already or if a pipesize was specified & the threshhold
940 		 * got below half the pipesize.  I.e., wait for bad news
941 		 * before we start updating, then update on both good
942 		 * and bad news.
943 		 *
944 		 * But we want to save the ssthresh even if no pipesize is
945 		 * specified explicitly in the route, because such
946 		 * connections still have an implicit pipesize specified
947 		 * by the global tcp_sendspace.  In the absence of a reliable
948 		 * way to calculate the pipesize, it will have to do.
949 		 */
950 		i = tp->snd_ssthresh;
951 		if (rt->rt_rmx.rmx_sendpipe != 0)
952 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
953 		else
954 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
955 		if (dosavessthresh ||
956 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
957 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
958 			/*
959 			 * convert the limit from user data bytes to
960 			 * packets then to packet data bytes.
961 			 */
962 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
963 			if (i < 2)
964 				i = 2;
965 			i *= tp->t_maxseg +
966 			     (isipv6 ?
967 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
968 			      sizeof(struct tcpiphdr));
969 			if (rt->rt_rmx.rmx_ssthresh)
970 				rt->rt_rmx.rmx_ssthresh =
971 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
972 			else
973 				rt->rt_rmx.rmx_ssthresh = i;
974 			tcpstat.tcps_cachedssthresh++;
975 		}
976 	}
977 
978 no_valid_rt:
979 	/* free the reassembly queue, if any */
980 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
981 		LIST_REMOVE(q, tqe_q);
982 		m_freem(q->tqe_m);
983 		FREE(q, M_TSEGQ);
984 		tcp_reass_qsize--;
985 	}
986 	/* throw away SACK blocks in scoreboard*/
987 	if (TCP_DO_SACK(tp))
988 		tcp_sack_cleanup(&tp->scb);
989 
990 	inp->inp_ppcb = NULL;
991 	soisdisconnected(so);
992 
993 	tcp_destroy_timermsg(tp);
994 
995 	/*
996 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
997 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
998 	 * for each protocol thread and must be removed in the context of
999 	 * that thread.  This is accomplished by chaining the message
1000 	 * through the cpus.
1001 	 *
1002 	 * If the inp is not wildcarded we simply detach, which will remove
1003 	 * the any hashes still present for this inp.
1004 	 */
1005 #ifdef SMP
1006 	if (inp->inp_flags & INP_WILDCARD_MP) {
1007 		struct netmsg_remwildcard *msg;
1008 
1009 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
1010 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
1011 			      M_LWKTMSG, M_INTWAIT);
1012 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1013 			    in_pcbremwildcardhash_handler);
1014 #ifdef INET6
1015 		msg->nm_isinet6 = isafinet6;
1016 #endif
1017 		msg->nm_inp = inp;
1018 		msg->nm_pcbinfo = &tcbinfo[cpu];
1019 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1020 	} else
1021 #endif
1022 	{
1023 		/* note: detach removes any wildcard hash entry */
1024 #ifdef INET6
1025 		if (isafinet6)
1026 			in6_pcbdetach(inp);
1027 		else
1028 #endif
1029 			in_pcbdetach(inp);
1030 	}
1031 	tcpstat.tcps_closed++;
1032 	return (NULL);
1033 }
1034 
1035 static __inline void
1036 tcp_drain_oncpu(struct inpcbhead *head)
1037 {
1038 	struct inpcb *inpb;
1039 	struct tcpcb *tcpb;
1040 	struct tseg_qent *te;
1041 
1042 	LIST_FOREACH(inpb, head, inp_list) {
1043 		if (inpb->inp_flags & INP_PLACEMARKER)
1044 			continue;
1045 		if ((tcpb = intotcpcb(inpb))) {
1046 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1047 				LIST_REMOVE(te, tqe_q);
1048 				m_freem(te->tqe_m);
1049 				FREE(te, M_TSEGQ);
1050 				tcp_reass_qsize--;
1051 			}
1052 		}
1053 	}
1054 }
1055 
1056 #ifdef SMP
1057 struct netmsg_tcp_drain {
1058 	struct netmsg		nm_netmsg;
1059 	struct inpcbhead	*nm_head;
1060 };
1061 
1062 static void
1063 tcp_drain_handler(netmsg_t netmsg)
1064 {
1065 	struct netmsg_tcp_drain *nm = (void *)netmsg;
1066 
1067 	tcp_drain_oncpu(nm->nm_head);
1068 	lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1069 }
1070 #endif
1071 
1072 void
1073 tcp_drain(void)
1074 {
1075 #ifdef SMP
1076 	int cpu;
1077 #endif
1078 
1079 	if (!do_tcpdrain)
1080 		return;
1081 
1082 	/*
1083 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1084 	 * if there is one...
1085 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1086 	 *	reassembly queue should be flushed, but in a situation
1087 	 *	where we're really low on mbufs, this is potentially
1088 	 *	useful.
1089 	 */
1090 #ifdef SMP
1091 	for (cpu = 0; cpu < ncpus2; cpu++) {
1092 		struct netmsg_tcp_drain *msg;
1093 
1094 		if (cpu == mycpu->gd_cpuid) {
1095 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1096 		} else {
1097 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1098 				    M_LWKTMSG, M_NOWAIT);
1099 			if (msg == NULL)
1100 				continue;
1101 			netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1102 				    tcp_drain_handler);
1103 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1104 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1105 		}
1106 	}
1107 #else
1108 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1109 #endif
1110 }
1111 
1112 /*
1113  * Notify a tcp user of an asynchronous error;
1114  * store error as soft error, but wake up user
1115  * (for now, won't do anything until can select for soft error).
1116  *
1117  * Do not wake up user since there currently is no mechanism for
1118  * reporting soft errors (yet - a kqueue filter may be added).
1119  */
1120 static void
1121 tcp_notify(struct inpcb *inp, int error)
1122 {
1123 	struct tcpcb *tp = intotcpcb(inp);
1124 
1125 	/*
1126 	 * Ignore some errors if we are hooked up.
1127 	 * If connection hasn't completed, has retransmitted several times,
1128 	 * and receives a second error, give up now.  This is better
1129 	 * than waiting a long time to establish a connection that
1130 	 * can never complete.
1131 	 */
1132 	if (tp->t_state == TCPS_ESTABLISHED &&
1133 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1134 	      error == EHOSTDOWN)) {
1135 		return;
1136 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1137 	    tp->t_softerror)
1138 		tcp_drop(tp, error);
1139 	else
1140 		tp->t_softerror = error;
1141 #if 0
1142 	wakeup(&so->so_timeo);
1143 	sorwakeup(so);
1144 	sowwakeup(so);
1145 #endif
1146 }
1147 
1148 static int
1149 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1150 {
1151 	int error, i, n;
1152 	struct inpcb *marker;
1153 	struct inpcb *inp;
1154 	inp_gen_t gencnt;
1155 	globaldata_t gd;
1156 	int origcpu, ccpu;
1157 
1158 	error = 0;
1159 	n = 0;
1160 
1161 	/*
1162 	 * The process of preparing the TCB list is too time-consuming and
1163 	 * resource-intensive to repeat twice on every request.
1164 	 */
1165 	if (req->oldptr == NULL) {
1166 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1167 			gd = globaldata_find(ccpu);
1168 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1169 		}
1170 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1171 		return (0);
1172 	}
1173 
1174 	if (req->newptr != NULL)
1175 		return (EPERM);
1176 
1177 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1178 	marker->inp_flags |= INP_PLACEMARKER;
1179 
1180 	/*
1181 	 * OK, now we're committed to doing something.  Run the inpcb list
1182 	 * for each cpu in the system and construct the output.  Use a
1183 	 * list placemarker to deal with list changes occuring during
1184 	 * copyout blockages (but otherwise depend on being on the correct
1185 	 * cpu to avoid races).
1186 	 */
1187 	origcpu = mycpu->gd_cpuid;
1188 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1189 		globaldata_t rgd;
1190 		caddr_t inp_ppcb;
1191 		struct xtcpcb xt;
1192 		int cpu_id;
1193 
1194 		cpu_id = (origcpu + ccpu) % ncpus;
1195 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1196 			continue;
1197 		rgd = globaldata_find(cpu_id);
1198 		lwkt_setcpu_self(rgd);
1199 
1200 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1201 		n = tcbinfo[cpu_id].ipi_count;
1202 
1203 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1204 		i = 0;
1205 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1206 			/*
1207 			 * process a snapshot of pcbs, ignoring placemarkers
1208 			 * and using our own to allow SYSCTL_OUT to block.
1209 			 */
1210 			LIST_REMOVE(marker, inp_list);
1211 			LIST_INSERT_AFTER(inp, marker, inp_list);
1212 
1213 			if (inp->inp_flags & INP_PLACEMARKER)
1214 				continue;
1215 			if (inp->inp_gencnt > gencnt)
1216 				continue;
1217 			if (prison_xinpcb(req->td, inp))
1218 				continue;
1219 
1220 			xt.xt_len = sizeof xt;
1221 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1222 			inp_ppcb = inp->inp_ppcb;
1223 			if (inp_ppcb != NULL)
1224 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1225 			else
1226 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1227 			if (inp->inp_socket)
1228 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1229 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1230 				break;
1231 			++i;
1232 		}
1233 		LIST_REMOVE(marker, inp_list);
1234 		if (error == 0 && i < n) {
1235 			bzero(&xt, sizeof xt);
1236 			xt.xt_len = sizeof xt;
1237 			while (i < n) {
1238 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1239 				if (error)
1240 					break;
1241 				++i;
1242 			}
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * Make sure we are on the same cpu we were on originally, since
1248 	 * higher level callers expect this.  Also don't pollute caches with
1249 	 * migrated userland data by (eventually) returning to userland
1250 	 * on a different cpu.
1251 	 */
1252 	lwkt_setcpu_self(globaldata_find(origcpu));
1253 	kfree(marker, M_TEMP);
1254 	return (error);
1255 }
1256 
1257 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1258 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1259 
1260 static int
1261 tcp_getcred(SYSCTL_HANDLER_ARGS)
1262 {
1263 	struct sockaddr_in addrs[2];
1264 	struct inpcb *inp;
1265 	int cpu;
1266 	int error;
1267 
1268 	error = priv_check(req->td, PRIV_ROOT);
1269 	if (error != 0)
1270 		return (error);
1271 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1272 	if (error != 0)
1273 		return (error);
1274 	crit_enter();
1275 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1276 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1277 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1278 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1279 	if (inp == NULL || inp->inp_socket == NULL) {
1280 		error = ENOENT;
1281 		goto out;
1282 	}
1283 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1284 out:
1285 	crit_exit();
1286 	return (error);
1287 }
1288 
1289 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1290     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1291 
1292 #ifdef INET6
1293 static int
1294 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1295 {
1296 	struct sockaddr_in6 addrs[2];
1297 	struct inpcb *inp;
1298 	int error;
1299 	boolean_t mapped = FALSE;
1300 
1301 	error = priv_check(req->td, PRIV_ROOT);
1302 	if (error != 0)
1303 		return (error);
1304 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1305 	if (error != 0)
1306 		return (error);
1307 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1308 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1309 			mapped = TRUE;
1310 		else
1311 			return (EINVAL);
1312 	}
1313 	crit_enter();
1314 	if (mapped) {
1315 		inp = in_pcblookup_hash(&tcbinfo[0],
1316 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1317 		    addrs[1].sin6_port,
1318 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1319 		    addrs[0].sin6_port,
1320 		    0, NULL);
1321 	} else {
1322 		inp = in6_pcblookup_hash(&tcbinfo[0],
1323 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1324 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1325 		    0, NULL);
1326 	}
1327 	if (inp == NULL || inp->inp_socket == NULL) {
1328 		error = ENOENT;
1329 		goto out;
1330 	}
1331 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1332 out:
1333 	crit_exit();
1334 	return (error);
1335 }
1336 
1337 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1338 	    0, 0,
1339 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1340 #endif
1341 
1342 struct netmsg_tcp_notify {
1343 	struct netmsg	nm_nmsg;
1344 	void		(*nm_notify)(struct inpcb *, int);
1345 	struct in_addr	nm_faddr;
1346 	int		nm_arg;
1347 };
1348 
1349 static void
1350 tcp_notifyall_oncpu(struct netmsg *netmsg)
1351 {
1352 	struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1353 	int nextcpu;
1354 
1355 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1356 			nmsg->nm_arg, nmsg->nm_notify);
1357 
1358 	nextcpu = mycpuid + 1;
1359 	if (nextcpu < ncpus2)
1360 		lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1361 	else
1362 		lwkt_replymsg(&netmsg->nm_lmsg, 0);
1363 }
1364 
1365 void
1366 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1367 {
1368 	struct ip *ip = vip;
1369 	struct tcphdr *th;
1370 	struct in_addr faddr;
1371 	struct inpcb *inp;
1372 	struct tcpcb *tp;
1373 	void (*notify)(struct inpcb *, int) = tcp_notify;
1374 	tcp_seq icmpseq;
1375 	int arg, cpu;
1376 
1377 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1378 		return;
1379 	}
1380 
1381 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1382 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1383 		return;
1384 
1385 	arg = inetctlerrmap[cmd];
1386 	if (cmd == PRC_QUENCH) {
1387 		notify = tcp_quench;
1388 	} else if (icmp_may_rst &&
1389 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1390 		    cmd == PRC_UNREACH_PORT ||
1391 		    cmd == PRC_TIMXCEED_INTRANS) &&
1392 		   ip != NULL) {
1393 		notify = tcp_drop_syn_sent;
1394 	} else if (cmd == PRC_MSGSIZE) {
1395 		struct icmp *icmp = (struct icmp *)
1396 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1397 
1398 		arg = ntohs(icmp->icmp_nextmtu);
1399 		notify = tcp_mtudisc;
1400 	} else if (PRC_IS_REDIRECT(cmd)) {
1401 		ip = NULL;
1402 		notify = in_rtchange;
1403 	} else if (cmd == PRC_HOSTDEAD) {
1404 		ip = NULL;
1405 	}
1406 
1407 	if (ip != NULL) {
1408 		crit_enter();
1409 		th = (struct tcphdr *)((caddr_t)ip +
1410 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1411 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1412 				  ip->ip_src.s_addr, th->th_sport);
1413 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1414 					ip->ip_src, th->th_sport, 0, NULL);
1415 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1416 			icmpseq = htonl(th->th_seq);
1417 			tp = intotcpcb(inp);
1418 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1419 			    SEQ_LT(icmpseq, tp->snd_max))
1420 				(*notify)(inp, arg);
1421 		} else {
1422 			struct in_conninfo inc;
1423 
1424 			inc.inc_fport = th->th_dport;
1425 			inc.inc_lport = th->th_sport;
1426 			inc.inc_faddr = faddr;
1427 			inc.inc_laddr = ip->ip_src;
1428 #ifdef INET6
1429 			inc.inc_isipv6 = 0;
1430 #endif
1431 			syncache_unreach(&inc, th);
1432 		}
1433 		crit_exit();
1434 	} else {
1435 		struct netmsg_tcp_notify nmsg;
1436 
1437 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1438 		netmsg_init(&nmsg.nm_nmsg, &curthread->td_msgport, 0,
1439 			    tcp_notifyall_oncpu);
1440 		nmsg.nm_faddr = faddr;
1441 		nmsg.nm_arg = arg;
1442 		nmsg.nm_notify = notify;
1443 
1444 		lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1445 	}
1446 }
1447 
1448 #ifdef INET6
1449 void
1450 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1451 {
1452 	struct tcphdr th;
1453 	void (*notify) (struct inpcb *, int) = tcp_notify;
1454 	struct ip6_hdr *ip6;
1455 	struct mbuf *m;
1456 	struct ip6ctlparam *ip6cp = NULL;
1457 	const struct sockaddr_in6 *sa6_src = NULL;
1458 	int off;
1459 	struct tcp_portonly {
1460 		u_int16_t th_sport;
1461 		u_int16_t th_dport;
1462 	} *thp;
1463 	int arg;
1464 
1465 	if (sa->sa_family != AF_INET6 ||
1466 	    sa->sa_len != sizeof(struct sockaddr_in6))
1467 		return;
1468 
1469 	arg = 0;
1470 	if (cmd == PRC_QUENCH)
1471 		notify = tcp_quench;
1472 	else if (cmd == PRC_MSGSIZE) {
1473 		struct ip6ctlparam *ip6cp = d;
1474 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1475 
1476 		arg = ntohl(icmp6->icmp6_mtu);
1477 		notify = tcp_mtudisc;
1478 	} else if (!PRC_IS_REDIRECT(cmd) &&
1479 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1480 		return;
1481 	}
1482 
1483 	/* if the parameter is from icmp6, decode it. */
1484 	if (d != NULL) {
1485 		ip6cp = (struct ip6ctlparam *)d;
1486 		m = ip6cp->ip6c_m;
1487 		ip6 = ip6cp->ip6c_ip6;
1488 		off = ip6cp->ip6c_off;
1489 		sa6_src = ip6cp->ip6c_src;
1490 	} else {
1491 		m = NULL;
1492 		ip6 = NULL;
1493 		off = 0;	/* fool gcc */
1494 		sa6_src = &sa6_any;
1495 	}
1496 
1497 	if (ip6 != NULL) {
1498 		struct in_conninfo inc;
1499 		/*
1500 		 * XXX: We assume that when IPV6 is non NULL,
1501 		 * M and OFF are valid.
1502 		 */
1503 
1504 		/* check if we can safely examine src and dst ports */
1505 		if (m->m_pkthdr.len < off + sizeof *thp)
1506 			return;
1507 
1508 		bzero(&th, sizeof th);
1509 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1510 
1511 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1512 		    (struct sockaddr *)ip6cp->ip6c_src,
1513 		    th.th_sport, cmd, arg, notify);
1514 
1515 		inc.inc_fport = th.th_dport;
1516 		inc.inc_lport = th.th_sport;
1517 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1518 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1519 		inc.inc_isipv6 = 1;
1520 		syncache_unreach(&inc, &th);
1521 	} else
1522 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1523 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1524 }
1525 #endif
1526 
1527 /*
1528  * Following is where TCP initial sequence number generation occurs.
1529  *
1530  * There are two places where we must use initial sequence numbers:
1531  * 1.  In SYN-ACK packets.
1532  * 2.  In SYN packets.
1533  *
1534  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1535  * tcp_syncache.c for details.
1536  *
1537  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1538  * depends on this property.  In addition, these ISNs should be
1539  * unguessable so as to prevent connection hijacking.  To satisfy
1540  * the requirements of this situation, the algorithm outlined in
1541  * RFC 1948 is used to generate sequence numbers.
1542  *
1543  * Implementation details:
1544  *
1545  * Time is based off the system timer, and is corrected so that it
1546  * increases by one megabyte per second.  This allows for proper
1547  * recycling on high speed LANs while still leaving over an hour
1548  * before rollover.
1549  *
1550  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1551  * between seeding of isn_secret.  This is normally set to zero,
1552  * as reseeding should not be necessary.
1553  *
1554  */
1555 
1556 #define	ISN_BYTES_PER_SECOND 1048576
1557 
1558 u_char isn_secret[32];
1559 int isn_last_reseed;
1560 MD5_CTX isn_ctx;
1561 
1562 tcp_seq
1563 tcp_new_isn(struct tcpcb *tp)
1564 {
1565 	u_int32_t md5_buffer[4];
1566 	tcp_seq new_isn;
1567 
1568 	/* Seed if this is the first use, reseed if requested. */
1569 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1570 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1571 		< (u_int)ticks))) {
1572 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1573 		isn_last_reseed = ticks;
1574 	}
1575 
1576 	/* Compute the md5 hash and return the ISN. */
1577 	MD5Init(&isn_ctx);
1578 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1579 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1580 #ifdef INET6
1581 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1582 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1583 			  sizeof(struct in6_addr));
1584 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1585 			  sizeof(struct in6_addr));
1586 	} else
1587 #endif
1588 	{
1589 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1590 			  sizeof(struct in_addr));
1591 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1592 			  sizeof(struct in_addr));
1593 	}
1594 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1595 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1596 	new_isn = (tcp_seq) md5_buffer[0];
1597 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1598 	return (new_isn);
1599 }
1600 
1601 /*
1602  * When a source quench is received, close congestion window
1603  * to one segment.  We will gradually open it again as we proceed.
1604  */
1605 void
1606 tcp_quench(struct inpcb *inp, int error)
1607 {
1608 	struct tcpcb *tp = intotcpcb(inp);
1609 
1610 	if (tp != NULL) {
1611 		tp->snd_cwnd = tp->t_maxseg;
1612 		tp->snd_wacked = 0;
1613 	}
1614 }
1615 
1616 /*
1617  * When a specific ICMP unreachable message is received and the
1618  * connection state is SYN-SENT, drop the connection.  This behavior
1619  * is controlled by the icmp_may_rst sysctl.
1620  */
1621 void
1622 tcp_drop_syn_sent(struct inpcb *inp, int error)
1623 {
1624 	struct tcpcb *tp = intotcpcb(inp);
1625 
1626 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1627 		tcp_drop(tp, error);
1628 }
1629 
1630 /*
1631  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1632  * based on the new value in the route.  Also nudge TCP to send something,
1633  * since we know the packet we just sent was dropped.
1634  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1635  */
1636 void
1637 tcp_mtudisc(struct inpcb *inp, int mtu)
1638 {
1639 	struct tcpcb *tp = intotcpcb(inp);
1640 	struct rtentry *rt;
1641 	struct socket *so = inp->inp_socket;
1642 	int maxopd, mss;
1643 #ifdef INET6
1644 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1645 #else
1646 	const boolean_t isipv6 = FALSE;
1647 #endif
1648 
1649 	if (tp == NULL)
1650 		return;
1651 
1652 	/*
1653 	 * If no MTU is provided in the ICMP message, use the
1654 	 * next lower likely value, as specified in RFC 1191.
1655 	 */
1656 	if (mtu == 0) {
1657 		int oldmtu;
1658 
1659 		oldmtu = tp->t_maxopd +
1660 		    (isipv6 ?
1661 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1662 		     sizeof(struct tcpiphdr));
1663 		mtu = ip_next_mtu(oldmtu, 0);
1664 	}
1665 
1666 	if (isipv6)
1667 		rt = tcp_rtlookup6(&inp->inp_inc);
1668 	else
1669 		rt = tcp_rtlookup(&inp->inp_inc);
1670 	if (rt != NULL) {
1671 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1672 
1673 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1674 			mtu = rt->rt_rmx.rmx_mtu;
1675 
1676 		maxopd = mtu -
1677 		    (isipv6 ?
1678 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1679 		     sizeof(struct tcpiphdr));
1680 
1681 		/*
1682 		 * XXX - The following conditional probably violates the TCP
1683 		 * spec.  The problem is that, since we don't know the
1684 		 * other end's MSS, we are supposed to use a conservative
1685 		 * default.  But, if we do that, then MTU discovery will
1686 		 * never actually take place, because the conservative
1687 		 * default is much less than the MTUs typically seen
1688 		 * on the Internet today.  For the moment, we'll sweep
1689 		 * this under the carpet.
1690 		 *
1691 		 * The conservative default might not actually be a problem
1692 		 * if the only case this occurs is when sending an initial
1693 		 * SYN with options and data to a host we've never talked
1694 		 * to before.  Then, they will reply with an MSS value which
1695 		 * will get recorded and the new parameters should get
1696 		 * recomputed.  For Further Study.
1697 		 */
1698 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1699 			maxopd = taop->tao_mssopt;
1700 	} else
1701 		maxopd = mtu -
1702 		    (isipv6 ?
1703 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1704 		     sizeof(struct tcpiphdr));
1705 
1706 	if (tp->t_maxopd <= maxopd)
1707 		return;
1708 	tp->t_maxopd = maxopd;
1709 
1710 	mss = maxopd;
1711 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1712 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1713 		mss -= TCPOLEN_TSTAMP_APPA;
1714 
1715 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1716 			   (TF_REQ_CC | TF_RCVD_CC))
1717 		mss -= TCPOLEN_CC_APPA;
1718 
1719 	/* round down to multiple of MCLBYTES */
1720 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1721 	if (mss > MCLBYTES)
1722 		mss &= ~(MCLBYTES - 1);
1723 #else
1724 	if (mss > MCLBYTES)
1725 		mss = (mss / MCLBYTES) * MCLBYTES;
1726 #endif
1727 
1728 	if (so->so_snd.ssb_hiwat < mss)
1729 		mss = so->so_snd.ssb_hiwat;
1730 
1731 	tp->t_maxseg = mss;
1732 	tp->t_rtttime = 0;
1733 	tp->snd_nxt = tp->snd_una;
1734 	tcp_output(tp);
1735 	tcpstat.tcps_mturesent++;
1736 }
1737 
1738 /*
1739  * Look-up the routing entry to the peer of this inpcb.  If no route
1740  * is found and it cannot be allocated the return NULL.  This routine
1741  * is called by TCP routines that access the rmx structure and by tcp_mss
1742  * to get the interface MTU.
1743  */
1744 struct rtentry *
1745 tcp_rtlookup(struct in_conninfo *inc)
1746 {
1747 	struct route *ro = &inc->inc_route;
1748 
1749 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1750 		/* No route yet, so try to acquire one */
1751 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1752 			/*
1753 			 * unused portions of the structure MUST be zero'd
1754 			 * out because rtalloc() treats it as opaque data
1755 			 */
1756 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1757 			ro->ro_dst.sa_family = AF_INET;
1758 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1759 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1760 			    inc->inc_faddr;
1761 			rtalloc(ro);
1762 		}
1763 	}
1764 	return (ro->ro_rt);
1765 }
1766 
1767 #ifdef INET6
1768 struct rtentry *
1769 tcp_rtlookup6(struct in_conninfo *inc)
1770 {
1771 	struct route_in6 *ro6 = &inc->inc6_route;
1772 
1773 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1774 		/* No route yet, so try to acquire one */
1775 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1776 			/*
1777 			 * unused portions of the structure MUST be zero'd
1778 			 * out because rtalloc() treats it as opaque data
1779 			 */
1780 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1781 			ro6->ro_dst.sin6_family = AF_INET6;
1782 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1783 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1784 			rtalloc((struct route *)ro6);
1785 		}
1786 	}
1787 	return (ro6->ro_rt);
1788 }
1789 #endif
1790 
1791 #ifdef IPSEC
1792 /* compute ESP/AH header size for TCP, including outer IP header. */
1793 size_t
1794 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1795 {
1796 	struct inpcb *inp;
1797 	struct mbuf *m;
1798 	size_t hdrsiz;
1799 	struct ip *ip;
1800 	struct tcphdr *th;
1801 
1802 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1803 		return (0);
1804 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1805 	if (!m)
1806 		return (0);
1807 
1808 #ifdef INET6
1809 	if (inp->inp_vflag & INP_IPV6) {
1810 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1811 
1812 		th = (struct tcphdr *)(ip6 + 1);
1813 		m->m_pkthdr.len = m->m_len =
1814 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1815 		tcp_fillheaders(tp, ip6, th);
1816 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1817 	} else
1818 #endif
1819 	{
1820 		ip = mtod(m, struct ip *);
1821 		th = (struct tcphdr *)(ip + 1);
1822 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1823 		tcp_fillheaders(tp, ip, th);
1824 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1825 	}
1826 
1827 	m_free(m);
1828 	return (hdrsiz);
1829 }
1830 #endif
1831 
1832 /*
1833  * Return a pointer to the cached information about the remote host.
1834  * The cached information is stored in the protocol specific part of
1835  * the route metrics.
1836  */
1837 struct rmxp_tao *
1838 tcp_gettaocache(struct in_conninfo *inc)
1839 {
1840 	struct rtentry *rt;
1841 
1842 #ifdef INET6
1843 	if (inc->inc_isipv6)
1844 		rt = tcp_rtlookup6(inc);
1845 	else
1846 #endif
1847 		rt = tcp_rtlookup(inc);
1848 
1849 	/* Make sure this is a host route and is up. */
1850 	if (rt == NULL ||
1851 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1852 		return (NULL);
1853 
1854 	return (rmx_taop(rt->rt_rmx));
1855 }
1856 
1857 /*
1858  * Clear all the TAO cache entries, called from tcp_init.
1859  *
1860  * XXX
1861  * This routine is just an empty one, because we assume that the routing
1862  * routing tables are initialized at the same time when TCP, so there is
1863  * nothing in the cache left over.
1864  */
1865 static void
1866 tcp_cleartaocache(void)
1867 {
1868 }
1869 
1870 /*
1871  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1872  *
1873  * This code attempts to calculate the bandwidth-delay product as a
1874  * means of determining the optimal window size to maximize bandwidth,
1875  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1876  * routers.  This code also does a fairly good job keeping RTTs in check
1877  * across slow links like modems.  We implement an algorithm which is very
1878  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1879  * transmitter side of a TCP connection and so only effects the transmit
1880  * side of the connection.
1881  *
1882  * BACKGROUND:  TCP makes no provision for the management of buffer space
1883  * at the end points or at the intermediate routers and switches.  A TCP
1884  * stream, whether using NewReno or not, will eventually buffer as
1885  * many packets as it is able and the only reason this typically works is
1886  * due to the fairly small default buffers made available for a connection
1887  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1888  * scaling it is now fairly easy for even a single TCP connection to blow-out
1889  * all available buffer space not only on the local interface, but on
1890  * intermediate routers and switches as well.  NewReno makes a misguided
1891  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1892  * then backing off, then steadily increasing the window again until another
1893  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1894  * is only made worse as network loads increase and the idea of intentionally
1895  * blowing out network buffers is, frankly, a terrible way to manage network
1896  * resources.
1897  *
1898  * It is far better to limit the transmit window prior to the failure
1899  * condition being achieved.  There are two general ways to do this:  First
1900  * you can 'scan' through different transmit window sizes and locate the
1901  * point where the RTT stops increasing, indicating that you have filled the
1902  * pipe, then scan backwards until you note that RTT stops decreasing, then
1903  * repeat ad-infinitum.  This method works in principle but has severe
1904  * implementation issues due to RTT variances, timer granularity, and
1905  * instability in the algorithm which can lead to many false positives and
1906  * create oscillations as well as interact badly with other TCP streams
1907  * implementing the same algorithm.
1908  *
1909  * The second method is to limit the window to the bandwidth delay product
1910  * of the link.  This is the method we implement.  RTT variances and our
1911  * own manipulation of the congestion window, bwnd, can potentially
1912  * destabilize the algorithm.  For this reason we have to stabilize the
1913  * elements used to calculate the window.  We do this by using the minimum
1914  * observed RTT, the long term average of the observed bandwidth, and
1915  * by adding two segments worth of slop.  It isn't perfect but it is able
1916  * to react to changing conditions and gives us a very stable basis on
1917  * which to extend the algorithm.
1918  */
1919 void
1920 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1921 {
1922 	u_long bw;
1923 	u_long bwnd;
1924 	int save_ticks;
1925 	int delta_ticks;
1926 
1927 	/*
1928 	 * If inflight_enable is disabled in the middle of a tcp connection,
1929 	 * make sure snd_bwnd is effectively disabled.
1930 	 */
1931 	if (!tcp_inflight_enable) {
1932 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1933 		tp->snd_bandwidth = 0;
1934 		return;
1935 	}
1936 
1937 	/*
1938 	 * Validate the delta time.  If a connection is new or has been idle
1939 	 * a long time we have to reset the bandwidth calculator.
1940 	 */
1941 	save_ticks = ticks;
1942 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1943 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1944 		tp->t_bw_rtttime = ticks;
1945 		tp->t_bw_rtseq = ack_seq;
1946 		if (tp->snd_bandwidth == 0)
1947 			tp->snd_bandwidth = tcp_inflight_min;
1948 		return;
1949 	}
1950 	if (delta_ticks == 0)
1951 		return;
1952 
1953 	/*
1954 	 * Sanity check, plus ignore pure window update acks.
1955 	 */
1956 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1957 		return;
1958 
1959 	/*
1960 	 * Figure out the bandwidth.  Due to the tick granularity this
1961 	 * is a very rough number and it MUST be averaged over a fairly
1962 	 * long period of time.  XXX we need to take into account a link
1963 	 * that is not using all available bandwidth, but for now our
1964 	 * slop will ramp us up if this case occurs and the bandwidth later
1965 	 * increases.
1966 	 */
1967 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1968 	tp->t_bw_rtttime = save_ticks;
1969 	tp->t_bw_rtseq = ack_seq;
1970 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1971 
1972 	tp->snd_bandwidth = bw;
1973 
1974 	/*
1975 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1976 	 * segments.  The additional slop puts us squarely in the sweet
1977 	 * spot and also handles the bandwidth run-up case.  Without the
1978 	 * slop we could be locking ourselves into a lower bandwidth.
1979 	 *
1980 	 * Situations Handled:
1981 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1982 	 *	    high speed LANs, allowing larger TCP buffers to be
1983 	 *	    specified, and also does a good job preventing
1984 	 *	    over-queueing of packets over choke points like modems
1985 	 *	    (at least for the transmit side).
1986 	 *
1987 	 *	(2) Is able to handle changing network loads (bandwidth
1988 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1989 	 *	    increases).
1990 	 *
1991 	 *	(3) Theoretically should stabilize in the face of multiple
1992 	 *	    connections implementing the same algorithm (this may need
1993 	 *	    a little work).
1994 	 *
1995 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1996 	 *	    be adjusted with a sysctl but typically only needs to be on
1997 	 *	    very slow connections.  A value no smaller then 5 should
1998 	 *	    be used, but only reduce this default if you have no other
1999 	 *	    choice.
2000 	 */
2001 
2002 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2003 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2004 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
2005 #undef USERTT
2006 
2007 	if (tcp_inflight_debug > 0) {
2008 		static int ltime;
2009 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2010 			ltime = ticks;
2011 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2012 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2013 		}
2014 	}
2015 	if ((long)bwnd < tcp_inflight_min)
2016 		bwnd = tcp_inflight_min;
2017 	if (bwnd > tcp_inflight_max)
2018 		bwnd = tcp_inflight_max;
2019 	if ((long)bwnd < tp->t_maxseg * 2)
2020 		bwnd = tp->t_maxseg * 2;
2021 	tp->snd_bwnd = bwnd;
2022 }
2023