xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 5de36205)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * All advertising materials mentioning features or use of this software
53  * must display the following acknowledgement:
54  *   This product includes software developed by Jeffrey M. Hsu.
55  *
56  * Copyright (c) 2001 Networks Associates Technologies, Inc.
57  * All rights reserved.
58  *
59  * This software was developed for the FreeBSD Project by Jonathan Lemon
60  * and NAI Labs, the Security Research Division of Network Associates, Inc.
61  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
62  * DARPA CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  * 3. The name of the author may not be used to endorse or promote
73  *    products derived from this software without specific prior written
74  *    permission.
75  *
76  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
77  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
78  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
79  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
80  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
81  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
82  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
83  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
84  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
85  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
86  * SUCH DAMAGE.
87  *
88  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
89  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.22 2005/03/04 05:57:50 hsu Exp $
90  */
91 
92 #include "opt_inet6.h"
93 #include "opt_ipsec.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/kernel.h>
98 #include <sys/sysctl.h>
99 #include <sys/malloc.h>
100 #include <sys/mbuf.h>
101 #include <sys/md5.h>
102 #include <sys/proc.h>		/* for proc0 declaration */
103 #include <sys/random.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/in_cksum.h>
107 
108 #include <sys/msgport2.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/in_var.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet/ip_var.h>
119 #include <netinet/ip6.h>
120 #ifdef INET6
121 #include <netinet/icmp6.h>
122 #include <netinet6/nd6.h>
123 #endif
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #ifdef INET6
136 #include <netinet6/ipsec6.h>
137 #endif
138 #include <netproto/key/key.h>
139 #endif /*IPSEC*/
140 
141 #ifdef FAST_IPSEC
142 #include <netproto/ipsec/ipsec.h>
143 #ifdef INET6
144 #include <netproto/ipsec/ipsec6.h>
145 #endif
146 #include <netproto/ipsec/key.h>
147 #define	IPSEC
148 #endif /*FAST_IPSEC*/
149 
150 #include <vm/vm_zone.h>
151 
152 static int tcp_syncookies = 1;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
154     &tcp_syncookies, 0,
155     "Use TCP SYN cookies if the syncache overflows");
156 
157 static void	 syncache_drop(struct syncache *, struct syncache_head *);
158 static void	 syncache_free(struct syncache *);
159 static void	 syncache_insert(struct syncache *, struct syncache_head *);
160 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
161 static int	 syncache_respond(struct syncache *, struct mbuf *);
162 static struct	 socket *syncache_socket(struct syncache *, struct socket *);
163 static void	 syncache_timer(void *);
164 static u_int32_t syncookie_generate(struct syncache *);
165 static struct syncache *syncookie_lookup(struct in_conninfo *,
166 		    struct tcphdr *, struct socket *);
167 
168 /*
169  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
170  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
171  * the odds are that the user has given up attempting to connect by then.
172  */
173 #define SYNCACHE_MAXREXMTS		3
174 
175 /* Arbitrary values */
176 #define TCP_SYNCACHE_HASHSIZE		512
177 #define TCP_SYNCACHE_BUCKETLIMIT	30
178 
179 struct netmsg_sc_timer {
180 	struct lwkt_msg nm_lmsg;
181 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
182 };
183 
184 struct msgrec {
185 	struct netmsg_sc_timer msg;
186 	lwkt_port_t port;		/* constant after init */
187 	int slot;			/* constant after init */
188 };
189 
190 static int syncache_timer_handler(lwkt_msg_t);
191 
192 struct tcp_syncache {
193 	struct	vm_zone *zone;
194 	u_int	hashsize;
195 	u_int	hashmask;
196 	u_int	bucket_limit;
197 	u_int	cache_limit;
198 	u_int	rexmt_limit;
199 	u_int	hash_secret;
200 };
201 static struct tcp_syncache tcp_syncache;
202 
203 struct tcp_syncache_percpu {
204 	struct syncache_head	*hashbase;
205 	u_int			cache_count;
206 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
207 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
208 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
209 };
210 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
211 
212 static struct lwkt_port syncache_null_rport;
213 
214 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
217      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
218 
219 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
220      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
221 
222 /* XXX JH */
223 #if 0
224 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
225      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
226 #endif
227 
228 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
229      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
230 
231 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
232      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
233 
234 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
235 
236 #define SYNCACHE_HASH(inc, mask)					\
237 	((tcp_syncache.hash_secret ^					\
238 	  (inc)->inc_faddr.s_addr ^					\
239 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
240 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
241 
242 #define SYNCACHE_HASH6(inc, mask)					\
243 	((tcp_syncache.hash_secret ^					\
244 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
245 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
246 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
247 
248 #define ENDPTS_EQ(a, b) (						\
249 	(a)->ie_fport == (b)->ie_fport &&				\
250 	(a)->ie_lport == (b)->ie_lport &&				\
251 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
252 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
253 )
254 
255 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
256 
257 static __inline void
258 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
259 		 struct syncache *sc, int slot)
260 {
261 	sc->sc_rxtslot = slot;
262 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
263 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
264 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
265 		callout_reset(&syncache_percpu->tt_timerq[slot],
266 			      TCPTV_RTOBASE * tcp_backoff[slot],
267 			      syncache_timer,
268 			      &syncache_percpu->mrec[slot]);
269 	}
270 }
271 
272 static void
273 syncache_free(struct syncache *sc)
274 {
275 	struct rtentry *rt;
276 #ifdef INET6
277 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
278 #else
279 	const boolean_t isipv6 = FALSE;
280 #endif
281 
282 	if (sc->sc_ipopts)
283 		m_free(sc->sc_ipopts);
284 
285 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
286 	if (rt != NULL) {
287 		/*
288 		 * If this is the only reference to a protocol-cloned
289 		 * route, remove it immediately.
290 		 */
291 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
292 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
293 				  rt_mask(rt), rt->rt_flags, NULL);
294 		RTFREE(rt);
295 	}
296 
297 	zfree(tcp_syncache.zone, sc);
298 }
299 
300 void
301 syncache_init(void)
302 {
303 	int i, cpu;
304 
305 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
306 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
307 	tcp_syncache.cache_limit =
308 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
309 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
310 	tcp_syncache.hash_secret = arc4random();
311 
312 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
313 	    &tcp_syncache.hashsize);
314 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
315 	    &tcp_syncache.cache_limit);
316 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
317 	    &tcp_syncache.bucket_limit);
318 	if (!powerof2(tcp_syncache.hashsize)) {
319 		printf("WARNING: syncache hash size is not a power of 2.\n");
320 		tcp_syncache.hashsize = 512;	/* safe default */
321 	}
322 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
323 
324 	lwkt_initport_null_rport(&syncache_null_rport, NULL);
325 
326 	for (cpu = 0; cpu < ncpus2; cpu++) {
327 		struct tcp_syncache_percpu *syncache_percpu;
328 
329 		syncache_percpu = &tcp_syncache_percpu[cpu];
330 		/* Allocate the hash table. */
331 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
332 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
333 		    M_SYNCACHE, M_WAITOK);
334 
335 		/* Initialize the hash buckets. */
336 		for (i = 0; i < tcp_syncache.hashsize; i++) {
337 			struct syncache_head *bucket;
338 
339 			bucket = &syncache_percpu->hashbase[i];
340 			TAILQ_INIT(&bucket->sch_bucket);
341 			bucket->sch_length = 0;
342 		}
343 
344 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
345 			/* Initialize the timer queues. */
346 			TAILQ_INIT(&syncache_percpu->timerq[i]);
347 			callout_init(&syncache_percpu->tt_timerq[i]);
348 
349 			syncache_percpu->mrec[i].slot = i;
350 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
351 			syncache_percpu->mrec[i].msg.nm_mrec =
352 			    &syncache_percpu->mrec[i];
353 			lwkt_initmsg(&syncache_percpu->mrec[i].msg.nm_lmsg,
354 			    &syncache_null_rport, 0,
355 			    lwkt_cmd_func(syncache_timer_handler),
356 			    lwkt_cmd_op_none);
357 		}
358 	}
359 
360 	/*
361 	 * Allocate the syncache entries.  Allow the zone to allocate one
362 	 * more entry than cache limit, so a new entry can bump out an
363 	 * older one.
364 	 */
365 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
366 	    tcp_syncache.cache_limit, ZONE_INTERRUPT, 0);
367 	tcp_syncache.cache_limit -= 1;
368 }
369 
370 static void
371 syncache_insert(sc, sch)
372 	struct syncache *sc;
373 	struct syncache_head *sch;
374 {
375 	struct tcp_syncache_percpu *syncache_percpu;
376 	struct syncache *sc2;
377 	int i;
378 
379 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
380 
381 	/*
382 	 * Make sure that we don't overflow the per-bucket
383 	 * limit or the total cache size limit.
384 	 */
385 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
386 		/*
387 		 * The bucket is full, toss the oldest element.
388 		 */
389 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
390 		sc2->sc_tp->ts_recent = ticks;
391 		syncache_drop(sc2, sch);
392 		tcpstat.tcps_sc_bucketoverflow++;
393 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
394 		/*
395 		 * The cache is full.  Toss the oldest entry in the
396 		 * entire cache.  This is the front entry in the
397 		 * first non-empty timer queue with the largest
398 		 * timeout value.
399 		 */
400 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
401 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
402 			if (sc2 != NULL)
403 				break;
404 		}
405 		sc2->sc_tp->ts_recent = ticks;
406 		syncache_drop(sc2, NULL);
407 		tcpstat.tcps_sc_cacheoverflow++;
408 	}
409 
410 	/* Initialize the entry's timer. */
411 	syncache_timeout(syncache_percpu, sc, 0);
412 
413 	/* Put it into the bucket. */
414 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
415 	sch->sch_length++;
416 	syncache_percpu->cache_count++;
417 	tcpstat.tcps_sc_added++;
418 }
419 
420 static void
421 syncache_drop(sc, sch)
422 	struct syncache *sc;
423 	struct syncache_head *sch;
424 {
425 	struct tcp_syncache_percpu *syncache_percpu;
426 #ifdef INET6
427 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
428 #else
429 	const boolean_t isipv6 = FALSE;
430 #endif
431 
432 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
433 
434 	if (sch == NULL) {
435 		if (isipv6) {
436 			sch = &syncache_percpu->hashbase[
437 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
438 		} else {
439 			sch = &syncache_percpu->hashbase[
440 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
441 		}
442 	}
443 
444 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
445 	sch->sch_length--;
446 	syncache_percpu->cache_count--;
447 
448 	/*
449 	 * Remove the entry from the syncache timer/timeout queue.  Note
450 	 * that we do not try to stop any running timer since we do not know
451 	 * whether the timer's message is in-transit or not.  Since timeouts
452 	 * are fairly long, taking an unneeded callout does not detrimentally
453 	 * effect performance.
454 	 */
455 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
456 
457 	syncache_free(sc);
458 }
459 
460 /*
461  * Place a timeout message on the TCP thread's message queue.
462  * This routine runs in soft interrupt context.
463  *
464  * An invariant is for this routine to be called, the callout must
465  * have been active.  Note that the callout is not deactivated until
466  * after the message has been processed in syncache_timer_handler() below.
467  */
468 static void
469 syncache_timer(void *p)
470 {
471 	struct netmsg_sc_timer *msg = p;
472 
473 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_lmsg);
474 }
475 
476 /*
477  * Service a timer message queued by timer expiration.
478  * This routine runs in the TCP protocol thread.
479  *
480  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
481  * If we have retransmitted an entry the maximum number of times, expire it.
482  *
483  * When we finish processing timed-out entries, we restart the timer if there
484  * are any entries still on the queue and deactivate it otherwise.  Only after
485  * a timer has been deactivated here can it be restarted by syncache_timeout().
486  */
487 static int
488 syncache_timer_handler(lwkt_msg_t msg)
489 {
490 	struct tcp_syncache_percpu *syncache_percpu;
491 	struct syncache *sc, *nsc;
492 	struct inpcb *inp;
493 	int slot;
494 
495 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
496 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
497 
498 	nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
499 	while (nsc != NULL) {
500 		if (ticks < nsc->sc_rxttime)
501 			break;	/* finished because timerq sorted by time */
502 		sc = nsc;
503 		inp = sc->sc_tp->t_inpcb;
504 		if (slot == SYNCACHE_MAXREXMTS ||
505 		    slot >= tcp_syncache.rexmt_limit ||
506 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
507 			nsc = TAILQ_NEXT(sc, sc_timerq);
508 			syncache_drop(sc, NULL);
509 			tcpstat.tcps_sc_stale++;
510 			continue;
511 		}
512 		/*
513 		 * syncache_respond() may call back into the syncache to
514 		 * to modify another entry, so do not obtain the next
515 		 * entry on the timer chain until it has completed.
516 		 */
517 		syncache_respond(sc, NULL);
518 		nsc = TAILQ_NEXT(sc, sc_timerq);
519 		tcpstat.tcps_sc_retransmitted++;
520 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
521 		syncache_timeout(syncache_percpu, sc, slot + 1);
522 	}
523 	if (nsc != NULL)
524 		callout_reset(&syncache_percpu->tt_timerq[slot],
525 		    nsc->sc_rxttime - ticks, syncache_timer,
526 		    &syncache_percpu->mrec[slot]);
527 	else
528 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
529 
530 	lwkt_replymsg(msg, 0);
531 	return (EASYNC);
532 }
533 
534 /*
535  * Find an entry in the syncache.
536  */
537 struct syncache *
538 syncache_lookup(inc, schp)
539 	struct in_conninfo *inc;
540 	struct syncache_head **schp;
541 {
542 	struct tcp_syncache_percpu *syncache_percpu;
543 	struct syncache *sc;
544 	struct syncache_head *sch;
545 
546 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
547 #ifdef INET6
548 	if (inc->inc_isipv6) {
549 		sch = &syncache_percpu->hashbase[
550 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
551 		*schp = sch;
552 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
553 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
554 				return (sc);
555 	} else
556 #endif
557 	{
558 		sch = &syncache_percpu->hashbase[
559 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
560 		*schp = sch;
561 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
562 #ifdef INET6
563 			if (sc->sc_inc.inc_isipv6)
564 				continue;
565 #endif
566 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
567 				return (sc);
568 		}
569 	}
570 	return (NULL);
571 }
572 
573 /*
574  * This function is called when we get a RST for a
575  * non-existent connection, so that we can see if the
576  * connection is in the syn cache.  If it is, zap it.
577  */
578 void
579 syncache_chkrst(inc, th)
580 	struct in_conninfo *inc;
581 	struct tcphdr *th;
582 {
583 	struct syncache *sc;
584 	struct syncache_head *sch;
585 
586 	sc = syncache_lookup(inc, &sch);
587 	if (sc == NULL)
588 		return;
589 	/*
590 	 * If the RST bit is set, check the sequence number to see
591 	 * if this is a valid reset segment.
592 	 * RFC 793 page 37:
593 	 *   In all states except SYN-SENT, all reset (RST) segments
594 	 *   are validated by checking their SEQ-fields.  A reset is
595 	 *   valid if its sequence number is in the window.
596 	 *
597 	 *   The sequence number in the reset segment is normally an
598 	 *   echo of our outgoing acknowlegement numbers, but some hosts
599 	 *   send a reset with the sequence number at the rightmost edge
600 	 *   of our receive window, and we have to handle this case.
601 	 */
602 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
603 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
604 		syncache_drop(sc, sch);
605 		tcpstat.tcps_sc_reset++;
606 	}
607 }
608 
609 void
610 syncache_badack(inc)
611 	struct in_conninfo *inc;
612 {
613 	struct syncache *sc;
614 	struct syncache_head *sch;
615 
616 	sc = syncache_lookup(inc, &sch);
617 	if (sc != NULL) {
618 		syncache_drop(sc, sch);
619 		tcpstat.tcps_sc_badack++;
620 	}
621 }
622 
623 void
624 syncache_unreach(inc, th)
625 	struct in_conninfo *inc;
626 	struct tcphdr *th;
627 {
628 	struct syncache *sc;
629 	struct syncache_head *sch;
630 
631 	/* we are called at splnet() here */
632 	sc = syncache_lookup(inc, &sch);
633 	if (sc == NULL)
634 		return;
635 
636 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
637 	if (ntohl(th->th_seq) != sc->sc_iss)
638 		return;
639 
640 	/*
641 	 * If we've rertransmitted 3 times and this is our second error,
642 	 * we remove the entry.  Otherwise, we allow it to continue on.
643 	 * This prevents us from incorrectly nuking an entry during a
644 	 * spurious network outage.
645 	 *
646 	 * See tcp_notify().
647 	 */
648 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
649 		sc->sc_flags |= SCF_UNREACH;
650 		return;
651 	}
652 	syncache_drop(sc, sch);
653 	tcpstat.tcps_sc_unreach++;
654 }
655 
656 /*
657  * Build a new TCP socket structure from a syncache entry.
658  */
659 static struct socket *
660 syncache_socket(sc, lso)
661 	struct syncache *sc;
662 	struct socket *lso;
663 {
664 	struct inpcb *inp = NULL, *linp;
665 	struct socket *so;
666 	struct tcpcb *tp;
667 #ifdef INET6
668 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
669 #else
670 	const boolean_t isipv6 = FALSE;
671 #endif
672 
673 	/*
674 	 * Ok, create the full blown connection, and set things up
675 	 * as they would have been set up if we had created the
676 	 * connection when the SYN arrived.  If we can't create
677 	 * the connection, abort it.
678 	 */
679 	so = sonewconn(lso, SS_ISCONNECTED);
680 	if (so == NULL) {
681 		/*
682 		 * Drop the connection; we will send a RST if the peer
683 		 * retransmits the ACK,
684 		 */
685 		tcpstat.tcps_listendrop++;
686 		goto abort;
687 	}
688 
689 	inp = so->so_pcb;
690 
691 	/*
692 	 * Insert new socket into hash list.
693 	 */
694 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
695 	if (isipv6) {
696 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
697 	} else {
698 #ifdef INET6
699 		inp->inp_vflag &= ~INP_IPV6;
700 		inp->inp_vflag |= INP_IPV4;
701 #endif
702 		inp->inp_laddr = sc->sc_inc.inc_laddr;
703 	}
704 	inp->inp_lport = sc->sc_inc.inc_lport;
705 	if (in_pcbinsporthash(inp) != 0) {
706 		/*
707 		 * Undo the assignments above if we failed to
708 		 * put the PCB on the hash lists.
709 		 */
710 		if (isipv6)
711 			inp->in6p_laddr = in6addr_any;
712 		else
713 			inp->inp_laddr.s_addr = INADDR_ANY;
714 		inp->inp_lport = 0;
715 		goto abort;
716 	}
717 	linp = so->so_pcb;
718 #ifdef IPSEC
719 	/* copy old policy into new socket's */
720 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
721 		printf("syncache_expand: could not copy policy\n");
722 #endif
723 	if (isipv6) {
724 		struct in6_addr laddr6;
725 		struct sockaddr_in6 sin6;
726 		/*
727 		 * Inherit socket options from the listening socket.
728 		 * Note that in6p_inputopts are not (and should not be)
729 		 * copied, since it stores previously received options and is
730 		 * used to detect if each new option is different than the
731 		 * previous one and hence should be passed to a user.
732 		 * If we copied in6p_inputopts, a user would not be able to
733 		 * receive options just after calling the accept system call.
734 		 */
735 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
736 		if (linp->in6p_outputopts)
737 			inp->in6p_outputopts =
738 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
739 		inp->in6p_route = sc->sc_route6;
740 		sc->sc_route6.ro_rt = NULL;
741 
742 		sin6.sin6_family = AF_INET6;
743 		sin6.sin6_len = sizeof sin6;
744 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
745 		sin6.sin6_port = sc->sc_inc.inc_fport;
746 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
747 		laddr6 = inp->in6p_laddr;
748 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
749 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
750 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
751 			inp->in6p_laddr = laddr6;
752 			goto abort;
753 		}
754 	} else {
755 		struct in_addr laddr;
756 		struct sockaddr_in sin;
757 
758 		inp->inp_options = ip_srcroute();
759 		if (inp->inp_options == NULL) {
760 			inp->inp_options = sc->sc_ipopts;
761 			sc->sc_ipopts = NULL;
762 		}
763 		inp->inp_route = sc->sc_route;
764 		sc->sc_route.ro_rt = NULL;
765 
766 		sin.sin_family = AF_INET;
767 		sin.sin_len = sizeof sin;
768 		sin.sin_addr = sc->sc_inc.inc_faddr;
769 		sin.sin_port = sc->sc_inc.inc_fport;
770 		bzero(sin.sin_zero, sizeof sin.sin_zero);
771 		laddr = inp->inp_laddr;
772 		if (inp->inp_laddr.s_addr == INADDR_ANY)
773 			inp->inp_laddr = sc->sc_inc.inc_laddr;
774 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
775 			inp->inp_laddr = laddr;
776 			goto abort;
777 		}
778 	}
779 
780 	tp = intotcpcb(inp);
781 	tp->t_state = TCPS_SYN_RECEIVED;
782 	tp->iss = sc->sc_iss;
783 	tp->irs = sc->sc_irs;
784 	tcp_rcvseqinit(tp);
785 	tcp_sendseqinit(tp);
786 	tp->snd_wl1 = sc->sc_irs;
787 	tp->rcv_up = sc->sc_irs + 1;
788 	tp->rcv_wnd = sc->sc_wnd;
789 	tp->rcv_adv += tp->rcv_wnd;
790 
791 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
792 	if (sc->sc_flags & SCF_NOOPT)
793 		tp->t_flags |= TF_NOOPT;
794 	if (sc->sc_flags & SCF_WINSCALE) {
795 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
796 		tp->requested_s_scale = sc->sc_requested_s_scale;
797 		tp->request_r_scale = sc->sc_request_r_scale;
798 	}
799 	if (sc->sc_flags & SCF_TIMESTAMP) {
800 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
801 		tp->ts_recent = sc->sc_tsrecent;
802 		tp->ts_recent_age = ticks;
803 	}
804 	if (sc->sc_flags & SCF_CC) {
805 		/*
806 		 * Initialization of the tcpcb for transaction;
807 		 *   set SND.WND = SEG.WND,
808 		 *   initialize CCsend and CCrecv.
809 		 */
810 		tp->t_flags |= TF_REQ_CC | TF_RCVD_CC;
811 		tp->cc_send = sc->sc_cc_send;
812 		tp->cc_recv = sc->sc_cc_recv;
813 	}
814 	if (sc->sc_flags & SCF_SACK_PERMITTED)
815 		tp->t_flags |= TF_SACK_PERMITTED;
816 
817 	tcp_mss(tp, sc->sc_peer_mss);
818 
819 	/*
820 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
821 	 */
822 	if (sc->sc_rxtslot != 0)
823 		tp->snd_cwnd = tp->t_maxseg;
824 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
825 
826 	tcpstat.tcps_accepts++;
827 	return (so);
828 
829 abort:
830 	if (so != NULL)
831 		soabort(so);
832 	return (NULL);
833 }
834 
835 /*
836  * This function gets called when we receive an ACK for a
837  * socket in the LISTEN state.  We look up the connection
838  * in the syncache, and if its there, we pull it out of
839  * the cache and turn it into a full-blown connection in
840  * the SYN-RECEIVED state.
841  */
842 int
843 syncache_expand(inc, th, sop, m)
844 	struct in_conninfo *inc;
845 	struct tcphdr *th;
846 	struct socket **sop;
847 	struct mbuf *m;
848 {
849 	struct syncache *sc;
850 	struct syncache_head *sch;
851 	struct socket *so;
852 
853 	sc = syncache_lookup(inc, &sch);
854 	if (sc == NULL) {
855 		/*
856 		 * There is no syncache entry, so see if this ACK is
857 		 * a returning syncookie.  To do this, first:
858 		 *  A. See if this socket has had a syncache entry dropped in
859 		 *     the past.  We don't want to accept a bogus syncookie
860 		 *     if we've never received a SYN.
861 		 *  B. check that the syncookie is valid.  If it is, then
862 		 *     cobble up a fake syncache entry, and return.
863 		 */
864 		if (!tcp_syncookies)
865 			return (0);
866 		sc = syncookie_lookup(inc, th, *sop);
867 		if (sc == NULL)
868 			return (0);
869 		sch = NULL;
870 		tcpstat.tcps_sc_recvcookie++;
871 	}
872 
873 	/*
874 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
875 	 */
876 	if (th->th_ack != sc->sc_iss + 1)
877 		return (0);
878 
879 	so = syncache_socket(sc, *sop);
880 	if (so == NULL) {
881 #if 0
882 resetandabort:
883 		/* XXXjlemon check this - is this correct? */
884 		tcp_respond(NULL, m, m, th,
885 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
886 #endif
887 		m_freem(m);			/* XXX only needed for above */
888 		tcpstat.tcps_sc_aborted++;
889 	} else {
890 		tcpstat.tcps_sc_completed++;
891 	}
892 	if (sch == NULL)
893 		syncache_free(sc);
894 	else
895 		syncache_drop(sc, sch);
896 	*sop = so;
897 	return (1);
898 }
899 
900 /*
901  * Given a LISTEN socket and an inbound SYN request, add
902  * this to the syn cache, and send back a segment:
903  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
904  * to the source.
905  *
906  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
907  * Doing so would require that we hold onto the data and deliver it
908  * to the application.  However, if we are the target of a SYN-flood
909  * DoS attack, an attacker could send data which would eventually
910  * consume all available buffer space if it were ACKed.  By not ACKing
911  * the data, we avoid this DoS scenario.
912  */
913 int
914 syncache_add(inc, to, th, sop, m)
915 	struct in_conninfo *inc;
916 	struct tcpopt *to;
917 	struct tcphdr *th;
918 	struct socket **sop;
919 	struct mbuf *m;
920 {
921 	struct tcp_syncache_percpu *syncache_percpu;
922 	struct tcpcb *tp;
923 	struct socket *so;
924 	struct syncache *sc = NULL;
925 	struct syncache_head *sch;
926 	struct mbuf *ipopts = NULL;
927 	struct rmxp_tao *taop;
928 	int win;
929 
930 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
931 	so = *sop;
932 	tp = sototcpcb(so);
933 
934 	/*
935 	 * Remember the IP options, if any.
936 	 */
937 #ifdef INET6
938 	if (!inc->inc_isipv6)
939 #endif
940 		ipopts = ip_srcroute();
941 
942 	/*
943 	 * See if we already have an entry for this connection.
944 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
945 	 *
946 	 * XXX
947 	 * The syncache should be re-initialized with the contents
948 	 * of the new SYN which may have different options.
949 	 */
950 	sc = syncache_lookup(inc, &sch);
951 	if (sc != NULL) {
952 		tcpstat.tcps_sc_dupsyn++;
953 		if (ipopts) {
954 			/*
955 			 * If we were remembering a previous source route,
956 			 * forget it and use the new one we've been given.
957 			 */
958 			if (sc->sc_ipopts)
959 				m_free(sc->sc_ipopts);
960 			sc->sc_ipopts = ipopts;
961 		}
962 		/*
963 		 * Update timestamp if present.
964 		 */
965 		if (sc->sc_flags & SCF_TIMESTAMP)
966 			sc->sc_tsrecent = to->to_tsval;
967 
968 		/* Just update the TOF_SACK_PERMITTED for now. */
969 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
970 			sc->sc_flags |= SCF_SACK_PERMITTED;
971 		else
972 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
973 
974 		/*
975 		 * PCB may have changed, pick up new values.
976 		 */
977 		sc->sc_tp = tp;
978 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
979 		if (syncache_respond(sc, m) == 0) {
980 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
981 			    sc, sc_timerq);
982 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
983 			tcpstat.tcps_sndacks++;
984 			tcpstat.tcps_sndtotal++;
985 		}
986 		*sop = NULL;
987 		return (1);
988 	}
989 
990 	/*
991 	 * This allocation is guaranteed to succeed because we
992 	 * preallocate one more syncache entry than cache_limit.
993 	 */
994 	sc = zalloc(tcp_syncache.zone);
995 
996 	/*
997 	 * Fill in the syncache values.
998 	 */
999 	sc->sc_tp = tp;
1000 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1001 	sc->sc_ipopts = ipopts;
1002 	sc->sc_inc.inc_fport = inc->inc_fport;
1003 	sc->sc_inc.inc_lport = inc->inc_lport;
1004 #ifdef INET6
1005 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1006 	if (inc->inc_isipv6) {
1007 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1008 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1009 		sc->sc_route6.ro_rt = NULL;
1010 	} else
1011 #endif
1012 	{
1013 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1014 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1015 		sc->sc_route.ro_rt = NULL;
1016 	}
1017 	sc->sc_irs = th->th_seq;
1018 	sc->sc_flags = 0;
1019 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1020 	if (tcp_syncookies)
1021 		sc->sc_iss = syncookie_generate(sc);
1022 	else
1023 		sc->sc_iss = arc4random();
1024 
1025 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
1026 	win = sbspace(&so->so_rcv);
1027 	win = imax(win, 0);
1028 	win = imin(win, TCP_MAXWIN);
1029 	sc->sc_wnd = win;
1030 
1031 	if (tcp_do_rfc1323) {
1032 		/*
1033 		 * A timestamp received in a SYN makes
1034 		 * it ok to send timestamp requests and replies.
1035 		 */
1036 		if (to->to_flags & TOF_TS) {
1037 			sc->sc_tsrecent = to->to_tsval;
1038 			sc->sc_flags |= SCF_TIMESTAMP;
1039 		}
1040 		if (to->to_flags & TOF_SCALE) {
1041 			int wscale = 0;
1042 
1043 			/* Compute proper scaling value from buffer space */
1044 			while (wscale < TCP_MAX_WINSHIFT &&
1045 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
1046 				wscale++;
1047 			sc->sc_request_r_scale = wscale;
1048 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1049 			sc->sc_flags |= SCF_WINSCALE;
1050 		}
1051 	}
1052 	if (tcp_do_rfc1644) {
1053 		/*
1054 		 * A CC or CC.new option received in a SYN makes
1055 		 * it ok to send CC in subsequent segments.
1056 		 */
1057 		if (to->to_flags & (TOF_CC | TOF_CCNEW)) {
1058 			sc->sc_cc_recv = to->to_cc;
1059 			sc->sc_cc_send = CC_INC(tcp_ccgen);
1060 			sc->sc_flags |= SCF_CC;
1061 		}
1062 	}
1063 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1064 		sc->sc_flags |= SCF_SACK_PERMITTED;
1065 	if (tp->t_flags & TF_NOOPT)
1066 		sc->sc_flags = SCF_NOOPT;
1067 
1068 	/*
1069 	 * XXX
1070 	 * We have the option here of not doing TAO (even if the segment
1071 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1072 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
1073 	 * also. However, there should be a hueristic to determine when to
1074 	 * do this, and is not present at the moment.
1075 	 */
1076 
1077 	/*
1078 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1079 	 * - compare SEG.CC against cached CC from the same host, if any.
1080 	 * - if SEG.CC > chached value, SYN must be new and is accepted
1081 	 *	immediately: save new CC in the cache, mark the socket
1082 	 *	connected, enter ESTABLISHED state, turn on flag to
1083 	 *	send a SYN in the next segment.
1084 	 *	A virtual advertised window is set in rcv_adv to
1085 	 *	initialize SWS prevention.  Then enter normal segment
1086 	 *	processing: drop SYN, process data and FIN.
1087 	 * - otherwise do a normal 3-way handshake.
1088 	 */
1089 	taop = tcp_gettaocache(&sc->sc_inc);
1090 	if (to->to_flags & TOF_CC) {
1091 		if ((tp->t_flags & TF_NOPUSH) &&
1092 		    sc->sc_flags & SCF_CC &&
1093 		    taop != NULL && taop->tao_cc != 0 &&
1094 		    CC_GT(to->to_cc, taop->tao_cc)) {
1095 			sc->sc_rxtslot = 0;
1096 			so = syncache_socket(sc, *sop);
1097 			if (so != NULL) {
1098 				taop->tao_cc = to->to_cc;
1099 				*sop = so;
1100 			}
1101 			syncache_free(sc);
1102 			return (so != NULL);
1103 		}
1104 	} else {
1105 		/*
1106 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1107 		 */
1108 		if (taop != NULL)
1109 			taop->tao_cc = 0;
1110 	}
1111 	/*
1112 	 * TAO test failed or there was no CC option,
1113 	 *    do a standard 3-way handshake.
1114 	 */
1115 	if (syncache_respond(sc, m) == 0) {
1116 		syncache_insert(sc, sch);
1117 		tcpstat.tcps_sndacks++;
1118 		tcpstat.tcps_sndtotal++;
1119 	} else {
1120 		syncache_free(sc);
1121 		tcpstat.tcps_sc_dropped++;
1122 	}
1123 	*sop = NULL;
1124 	return (1);
1125 }
1126 
1127 static int
1128 syncache_respond(sc, m)
1129 	struct syncache *sc;
1130 	struct mbuf *m;
1131 {
1132 	u_int8_t *optp;
1133 	int optlen, error;
1134 	u_int16_t tlen, hlen, mssopt;
1135 	struct ip *ip = NULL;
1136 	struct rtentry *rt;
1137 	struct tcphdr *th;
1138 	struct ip6_hdr *ip6 = NULL;
1139 #ifdef INET6
1140 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1141 #else
1142 	const boolean_t isipv6 = FALSE;
1143 #endif
1144 
1145 	if (isipv6) {
1146 		rt = tcp_rtlookup6(&sc->sc_inc);
1147 		if (rt != NULL)
1148 			mssopt = rt->rt_ifp->if_mtu -
1149 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1150 		else
1151 			mssopt = tcp_v6mssdflt;
1152 		hlen = sizeof(struct ip6_hdr);
1153 	} else {
1154 		rt = tcp_rtlookup(&sc->sc_inc);
1155 		if (rt != NULL)
1156 			mssopt = rt->rt_ifp->if_mtu -
1157 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1158 		else
1159 			mssopt = tcp_mssdflt;
1160 		hlen = sizeof(struct ip);
1161 	}
1162 
1163 	/* Compute the size of the TCP options. */
1164 	if (sc->sc_flags & SCF_NOOPT) {
1165 		optlen = 0;
1166 	} else {
1167 		optlen = TCPOLEN_MAXSEG +
1168 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1169 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1170 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0) +
1171 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1172 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1173 	}
1174 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1175 
1176 	/*
1177 	 * XXX
1178 	 * assume that the entire packet will fit in a header mbuf
1179 	 */
1180 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1181 
1182 	/*
1183 	 * XXX shouldn't this reuse the mbuf if possible ?
1184 	 * Create the IP+TCP header from scratch.
1185 	 */
1186 	if (m)
1187 		m_freem(m);
1188 
1189 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1190 	if (m == NULL)
1191 		return (ENOBUFS);
1192 	m->m_data += max_linkhdr;
1193 	m->m_len = tlen;
1194 	m->m_pkthdr.len = tlen;
1195 	m->m_pkthdr.rcvif = NULL;
1196 
1197 	if (isipv6) {
1198 		ip6 = mtod(m, struct ip6_hdr *);
1199 		ip6->ip6_vfc = IPV6_VERSION;
1200 		ip6->ip6_nxt = IPPROTO_TCP;
1201 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1202 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1203 		ip6->ip6_plen = htons(tlen - hlen);
1204 		/* ip6_hlim is set after checksum */
1205 		/* ip6_flow = ??? */
1206 
1207 		th = (struct tcphdr *)(ip6 + 1);
1208 	} else {
1209 		ip = mtod(m, struct ip *);
1210 		ip->ip_v = IPVERSION;
1211 		ip->ip_hl = sizeof(struct ip) >> 2;
1212 		ip->ip_len = tlen;
1213 		ip->ip_id = 0;
1214 		ip->ip_off = 0;
1215 		ip->ip_sum = 0;
1216 		ip->ip_p = IPPROTO_TCP;
1217 		ip->ip_src = sc->sc_inc.inc_laddr;
1218 		ip->ip_dst = sc->sc_inc.inc_faddr;
1219 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1220 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1221 
1222 		/*
1223 		 * See if we should do MTU discovery.  Route lookups are
1224 		 * expensive, so we will only unset the DF bit if:
1225 		 *
1226 		 *	1) path_mtu_discovery is disabled
1227 		 *	2) the SCF_UNREACH flag has been set
1228 		 */
1229 		if (path_mtu_discovery
1230 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1231 		       ip->ip_off |= IP_DF;
1232 		}
1233 
1234 		th = (struct tcphdr *)(ip + 1);
1235 	}
1236 	th->th_sport = sc->sc_inc.inc_lport;
1237 	th->th_dport = sc->sc_inc.inc_fport;
1238 
1239 	th->th_seq = htonl(sc->sc_iss);
1240 	th->th_ack = htonl(sc->sc_irs + 1);
1241 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1242 	th->th_x2 = 0;
1243 	th->th_flags = TH_SYN | TH_ACK;
1244 	th->th_win = htons(sc->sc_wnd);
1245 	th->th_urp = 0;
1246 
1247 	/* Tack on the TCP options. */
1248 	if (optlen == 0)
1249 		goto no_options;
1250 	optp = (u_int8_t *)(th + 1);
1251 	*optp++ = TCPOPT_MAXSEG;
1252 	*optp++ = TCPOLEN_MAXSEG;
1253 	*optp++ = (mssopt >> 8) & 0xff;
1254 	*optp++ = mssopt & 0xff;
1255 
1256 	if (sc->sc_flags & SCF_WINSCALE) {
1257 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1258 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1259 		    sc->sc_request_r_scale);
1260 		optp += 4;
1261 	}
1262 
1263 	if (sc->sc_flags & SCF_TIMESTAMP) {
1264 		u_int32_t *lp = (u_int32_t *)(optp);
1265 
1266 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1267 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1268 		*lp++ = htonl(ticks);
1269 		*lp   = htonl(sc->sc_tsrecent);
1270 		optp += TCPOLEN_TSTAMP_APPA;
1271 	}
1272 
1273 	/*
1274 	 * Send CC and CC.echo if we received CC from our peer.
1275 	 */
1276 	if (sc->sc_flags & SCF_CC) {
1277 		u_int32_t *lp = (u_int32_t *)(optp);
1278 
1279 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1280 		*lp++ = htonl(sc->sc_cc_send);
1281 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1282 		*lp   = htonl(sc->sc_cc_recv);
1283 		optp += TCPOLEN_CC_APPA * 2;
1284 	}
1285 
1286 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1287 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1288 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1289 	}
1290 
1291 no_options:
1292 	if (isipv6) {
1293 		struct route_in6 *ro6 = &sc->sc_route6;
1294 
1295 		th->th_sum = 0;
1296 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1297 		ip6->ip6_hlim = in6_selecthlim(NULL,
1298 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1299 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1300 				sc->sc_tp->t_inpcb);
1301 	} else {
1302 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1303 				       htons(tlen - hlen + IPPROTO_TCP));
1304 		m->m_pkthdr.csum_flags = CSUM_TCP;
1305 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1306 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1307 				sc->sc_tp->t_inpcb);
1308 	}
1309 	return (error);
1310 }
1311 
1312 /*
1313  * cookie layers:
1314  *
1315  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1316  *	| peer iss                                                      |
1317  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1318  *	|                     0                       |(A)|             |
1319  * (A): peer mss index
1320  */
1321 
1322 /*
1323  * The values below are chosen to minimize the size of the tcp_secret
1324  * table, as well as providing roughly a 16 second lifetime for the cookie.
1325  */
1326 
1327 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1328 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1329 
1330 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1331 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1332 #define SYNCOOKIE_TIMEOUT \
1333     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1334 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1335 
1336 static struct {
1337 	u_int32_t	ts_secbits[4];
1338 	u_int		ts_expire;
1339 } tcp_secret[SYNCOOKIE_NSECRETS];
1340 
1341 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1342 
1343 static MD5_CTX syn_ctx;
1344 
1345 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1346 
1347 struct md5_add {
1348 	u_int32_t laddr, faddr;
1349 	u_int32_t secbits[4];
1350 	u_int16_t lport, fport;
1351 };
1352 
1353 #ifdef CTASSERT
1354 CTASSERT(sizeof(struct md5_add) == 28);
1355 #endif
1356 
1357 /*
1358  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1359  * original SYN was accepted, the connection is established.  The second
1360  * SYN is inflight, and if it arrives with an ISN that falls within the
1361  * receive window, the connection is killed.
1362  *
1363  * However, since cookies have other problems, this may not be worth
1364  * worrying about.
1365  */
1366 
1367 static u_int32_t
1368 syncookie_generate(struct syncache *sc)
1369 {
1370 	u_int32_t md5_buffer[4];
1371 	u_int32_t data;
1372 	int idx, i;
1373 	struct md5_add add;
1374 #ifdef INET6
1375 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1376 #else
1377 	const boolean_t isipv6 = FALSE;
1378 #endif
1379 
1380 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1381 	if (tcp_secret[idx].ts_expire < ticks) {
1382 		for (i = 0; i < 4; i++)
1383 			tcp_secret[idx].ts_secbits[i] = arc4random();
1384 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1385 	}
1386 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1387 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1388 			break;
1389 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1390 	data ^= sc->sc_irs;				/* peer's iss */
1391 	MD5Init(&syn_ctx);
1392 	if (isipv6) {
1393 		MD5Add(sc->sc_inc.inc6_laddr);
1394 		MD5Add(sc->sc_inc.inc6_faddr);
1395 		add.laddr = 0;
1396 		add.faddr = 0;
1397 	} else {
1398 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1399 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1400 	}
1401 	add.lport = sc->sc_inc.inc_lport;
1402 	add.fport = sc->sc_inc.inc_fport;
1403 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1404 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1405 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1406 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1407 	MD5Add(add);
1408 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1409 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1410 	return (data);
1411 }
1412 
1413 static struct syncache *
1414 syncookie_lookup(inc, th, so)
1415 	struct in_conninfo *inc;
1416 	struct tcphdr *th;
1417 	struct socket *so;
1418 {
1419 	u_int32_t md5_buffer[4];
1420 	struct syncache *sc;
1421 	u_int32_t data;
1422 	int wnd, idx;
1423 	struct md5_add add;
1424 
1425 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1426 	idx = data & SYNCOOKIE_WNDMASK;
1427 	if (tcp_secret[idx].ts_expire < ticks ||
1428 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1429 		return (NULL);
1430 	MD5Init(&syn_ctx);
1431 #ifdef INET6
1432 	if (inc->inc_isipv6) {
1433 		MD5Add(inc->inc6_laddr);
1434 		MD5Add(inc->inc6_faddr);
1435 		add.laddr = 0;
1436 		add.faddr = 0;
1437 	} else
1438 #endif
1439 	{
1440 		add.laddr = inc->inc_laddr.s_addr;
1441 		add.faddr = inc->inc_faddr.s_addr;
1442 	}
1443 	add.lport = inc->inc_lport;
1444 	add.fport = inc->inc_fport;
1445 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1446 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1447 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1448 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1449 	MD5Add(add);
1450 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1451 	data ^= md5_buffer[0];
1452 	if (data & ~SYNCOOKIE_DATAMASK)
1453 		return (NULL);
1454 	data = data >> SYNCOOKIE_WNDBITS;
1455 
1456 	/*
1457 	 * This allocation is guaranteed to succeed because we
1458 	 * preallocate one more syncache entry than cache_limit.
1459 	 */
1460 	sc = zalloc(tcp_syncache.zone);
1461 
1462 	/*
1463 	 * Fill in the syncache values.
1464 	 * XXX duplicate code from syncache_add
1465 	 */
1466 	sc->sc_ipopts = NULL;
1467 	sc->sc_inc.inc_fport = inc->inc_fport;
1468 	sc->sc_inc.inc_lport = inc->inc_lport;
1469 #ifdef INET6
1470 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1471 	if (inc->inc_isipv6) {
1472 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1473 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1474 		sc->sc_route6.ro_rt = NULL;
1475 	} else
1476 #endif
1477 	{
1478 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1479 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1480 		sc->sc_route.ro_rt = NULL;
1481 	}
1482 	sc->sc_irs = th->th_seq - 1;
1483 	sc->sc_iss = th->th_ack - 1;
1484 	wnd = sbspace(&so->so_rcv);
1485 	wnd = imax(wnd, 0);
1486 	wnd = imin(wnd, TCP_MAXWIN);
1487 	sc->sc_wnd = wnd;
1488 	sc->sc_flags = 0;
1489 	sc->sc_rxtslot = 0;
1490 	sc->sc_peer_mss = tcp_msstab[data];
1491 	return (sc);
1492 }
1493