xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 8a0bcd56)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
73  */
74 
75 #include "opt_inet.h"
76 #include "opt_inet6.h"
77 #include "opt_ipsec.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/md5.h>
86 #include <sys/proc.h>		/* for proc0 declaration */
87 #include <sys/random.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/in_cksum.h>
91 
92 #include <sys/msgport2.h>
93 #include <net/netmsg2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
156  * the odds are that the user has given up attempting to connect by then.
157  */
158 #define SYNCACHE_MAXREXMTS		3
159 
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE		512
162 #define TCP_SYNCACHE_BUCKETLIMIT	30
163 
164 struct netmsg_sc_timer {
165 	struct netmsg_base base;
166 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
167 };
168 
169 struct msgrec {
170 	struct netmsg_sc_timer msg;
171 	lwkt_port_t port;		/* constant after init */
172 	int slot;			/* constant after init */
173 };
174 
175 static void syncache_timer_handler(netmsg_t);
176 
177 struct tcp_syncache {
178 	u_int	hashsize;
179 	u_int	hashmask;
180 	u_int	bucket_limit;
181 	u_int	cache_limit;
182 	u_int	rexmt_limit;
183 	u_int	hash_secret;
184 };
185 static struct tcp_syncache tcp_syncache;
186 
187 TAILQ_HEAD(syncache_list, syncache);
188 
189 struct tcp_syncache_percpu {
190 	struct syncache_head	*hashbase;
191 	u_int			cache_count;
192 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
193 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
195 };
196 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
197 
198 static struct lwkt_port syncache_null_rport;
199 
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
201 
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
203      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
204 
205 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
206      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
207 
208 /* XXX JH */
209 #if 0
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
211      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
212 #endif
213 
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
215      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
216 
217 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
218      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
219 
220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 
222 #define SYNCACHE_HASH(inc, mask)					\
223 	((tcp_syncache.hash_secret ^					\
224 	  (inc)->inc_faddr.s_addr ^					\
225 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
226 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 
228 #define SYNCACHE_HASH6(inc, mask)					\
229 	((tcp_syncache.hash_secret ^					\
230 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
231 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
232 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 
234 #define ENDPTS_EQ(a, b) (						\
235 	(a)->ie_fport == (b)->ie_fport &&				\
236 	(a)->ie_lport == (b)->ie_lport &&				\
237 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
238 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
239 )
240 
241 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242 
243 static __inline void
244 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
245 		 struct syncache *sc, int slot)
246 {
247 	sc->sc_rxtslot = slot;
248 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
249 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
250 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
251 		callout_reset(&syncache_percpu->tt_timerq[slot],
252 			      TCPTV_RTOBASE * tcp_backoff[slot],
253 			      syncache_timer,
254 			      &syncache_percpu->mrec[slot]);
255 	}
256 }
257 
258 static void
259 syncache_free(struct syncache *sc)
260 {
261 	struct rtentry *rt;
262 #ifdef INET6
263 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
264 #else
265 	const boolean_t isipv6 = FALSE;
266 #endif
267 
268 	if (sc->sc_ipopts)
269 		m_free(sc->sc_ipopts);
270 
271 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
272 	if (rt != NULL) {
273 		/*
274 		 * If this is the only reference to a protocol-cloned
275 		 * route, remove it immediately.
276 		 */
277 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
278 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
279 				  rt_mask(rt), rt->rt_flags, NULL);
280 		RTFREE(rt);
281 	}
282 	kfree(sc, M_SYNCACHE);
283 }
284 
285 void
286 syncache_init(void)
287 {
288 	int i, cpu;
289 
290 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
291 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
292 	tcp_syncache.cache_limit =
293 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
294 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
295 	tcp_syncache.hash_secret = karc4random();
296 
297 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
298 	    &tcp_syncache.hashsize);
299 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
300 	    &tcp_syncache.cache_limit);
301 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
302 	    &tcp_syncache.bucket_limit);
303 	if (!powerof2(tcp_syncache.hashsize)) {
304 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
305 		tcp_syncache.hashsize = 512;	/* safe default */
306 	}
307 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
308 
309 	lwkt_initport_replyonly_null(&syncache_null_rport);
310 
311 	for (cpu = 0; cpu < ncpus2; cpu++) {
312 		struct tcp_syncache_percpu *syncache_percpu;
313 
314 		syncache_percpu = &tcp_syncache_percpu[cpu];
315 		/* Allocate the hash table. */
316 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
317 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
318 		    M_SYNCACHE, M_WAITOK);
319 
320 		/* Initialize the hash buckets. */
321 		for (i = 0; i < tcp_syncache.hashsize; i++) {
322 			struct syncache_head *bucket;
323 
324 			bucket = &syncache_percpu->hashbase[i];
325 			TAILQ_INIT(&bucket->sch_bucket);
326 			bucket->sch_length = 0;
327 		}
328 
329 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
330 			/* Initialize the timer queues. */
331 			TAILQ_INIT(&syncache_percpu->timerq[i]);
332 			callout_init(&syncache_percpu->tt_timerq[i]);
333 
334 			syncache_percpu->mrec[i].slot = i;
335 			syncache_percpu->mrec[i].port = cpu_portfn(cpu);
336 			syncache_percpu->mrec[i].msg.nm_mrec =
337 				    &syncache_percpu->mrec[i];
338 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
339 				    NULL, &syncache_null_rport,
340 				    0, syncache_timer_handler);
341 		}
342 	}
343 }
344 
345 static void
346 syncache_insert(struct syncache *sc, struct syncache_head *sch)
347 {
348 	struct tcp_syncache_percpu *syncache_percpu;
349 	struct syncache *sc2;
350 	int i;
351 
352 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
353 
354 	/*
355 	 * Make sure that we don't overflow the per-bucket
356 	 * limit or the total cache size limit.
357 	 */
358 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
359 		/*
360 		 * The bucket is full, toss the oldest element.
361 		 */
362 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
363 		sc2->sc_tp->ts_recent = ticks;
364 		syncache_drop(sc2, sch);
365 		tcpstat.tcps_sc_bucketoverflow++;
366 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
367 		/*
368 		 * The cache is full.  Toss the oldest entry in the
369 		 * entire cache.  This is the front entry in the
370 		 * first non-empty timer queue with the largest
371 		 * timeout value.
372 		 */
373 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
374 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
375 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
376 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
377 			if (sc2 != NULL)
378 				break;
379 		}
380 		sc2->sc_tp->ts_recent = ticks;
381 		syncache_drop(sc2, NULL);
382 		tcpstat.tcps_sc_cacheoverflow++;
383 	}
384 
385 	/* Initialize the entry's timer. */
386 	syncache_timeout(syncache_percpu, sc, 0);
387 
388 	/* Put it into the bucket. */
389 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
390 	sch->sch_length++;
391 	syncache_percpu->cache_count++;
392 	tcpstat.tcps_sc_added++;
393 }
394 
395 void
396 syncache_destroy(struct tcpcb *tp)
397 {
398 	struct tcp_syncache_percpu *syncache_percpu;
399 	struct syncache_head *bucket;
400 	struct syncache *sc;
401 	int i;
402 
403 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
404 	sc = NULL;
405 
406 	for (i = 0; i < tcp_syncache.hashsize; i++) {
407 		bucket = &syncache_percpu->hashbase[i];
408 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
409 			if (sc->sc_tp == tp) {
410 				sc->sc_tp = NULL;
411 				tp->t_flags &= ~TF_SYNCACHE;
412 				break;
413 			}
414 		}
415 	}
416 }
417 
418 static void
419 syncache_drop(struct syncache *sc, struct syncache_head *sch)
420 {
421 	struct tcp_syncache_percpu *syncache_percpu;
422 #ifdef INET6
423 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
424 #else
425 	const boolean_t isipv6 = FALSE;
426 #endif
427 
428 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
429 
430 	if (sch == NULL) {
431 		if (isipv6) {
432 			sch = &syncache_percpu->hashbase[
433 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
434 		} else {
435 			sch = &syncache_percpu->hashbase[
436 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
437 		}
438 	}
439 
440 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
441 	sch->sch_length--;
442 	syncache_percpu->cache_count--;
443 
444 	/*
445 	 * Cleanup
446 	 */
447 	if (sc->sc_tp) {
448 		sc->sc_tp->t_flags &= ~TF_SYNCACHE;
449 		sc->sc_tp = NULL;
450 	}
451 
452 	/*
453 	 * Remove the entry from the syncache timer/timeout queue.  Note
454 	 * that we do not try to stop any running timer since we do not know
455 	 * whether the timer's message is in-transit or not.  Since timeouts
456 	 * are fairly long, taking an unneeded callout does not detrimentally
457 	 * effect performance.
458 	 */
459 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
460 
461 	syncache_free(sc);
462 }
463 
464 /*
465  * Place a timeout message on the TCP thread's message queue.
466  * This routine runs in soft interrupt context.
467  *
468  * An invariant is for this routine to be called, the callout must
469  * have been active.  Note that the callout is not deactivated until
470  * after the message has been processed in syncache_timer_handler() below.
471  */
472 static void
473 syncache_timer(void *p)
474 {
475 	struct netmsg_sc_timer *msg = p;
476 
477 	lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
478 }
479 
480 /*
481  * Service a timer message queued by timer expiration.
482  * This routine runs in the TCP protocol thread.
483  *
484  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
485  * If we have retransmitted an entry the maximum number of times, expire it.
486  *
487  * When we finish processing timed-out entries, we restart the timer if there
488  * are any entries still on the queue and deactivate it otherwise.  Only after
489  * a timer has been deactivated here can it be restarted by syncache_timeout().
490  */
491 static void
492 syncache_timer_handler(netmsg_t msg)
493 {
494 	struct tcp_syncache_percpu *syncache_percpu;
495 	struct syncache *sc;
496 	struct syncache marker;
497 	struct syncache_list *list;
498 	struct inpcb *inp;
499 	int slot;
500 
501 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
502 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
503 
504 	list = &syncache_percpu->timerq[slot];
505 
506 	/*
507 	 * Use a marker to keep our place in the scan.  syncache_drop()
508 	 * can block and cause any next pointer we cache to become stale.
509 	 */
510 	marker.sc_flags = SCF_MARKER;
511 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
512 
513 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
514 		/*
515 		 * Move the marker.
516 		 */
517 		TAILQ_REMOVE(list, &marker, sc_timerq);
518 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
519 
520 		if (sc->sc_flags & SCF_MARKER)
521 			continue;
522 
523 		if (ticks < sc->sc_rxttime)
524 			break;	/* finished because timerq sorted by time */
525 		if (sc->sc_tp == NULL) {
526 			syncache_drop(sc, NULL);
527 			tcpstat.tcps_sc_stale++;
528 			continue;
529 		}
530 		inp = sc->sc_tp->t_inpcb;
531 		if (slot == SYNCACHE_MAXREXMTS ||
532 		    slot >= tcp_syncache.rexmt_limit ||
533 		    inp == NULL ||
534 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
535 			syncache_drop(sc, NULL);
536 			tcpstat.tcps_sc_stale++;
537 			continue;
538 		}
539 		/*
540 		 * syncache_respond() may call back into the syncache to
541 		 * to modify another entry, so do not obtain the next
542 		 * entry on the timer chain until it has completed.
543 		 */
544 		syncache_respond(sc, NULL);
545 		tcpstat.tcps_sc_retransmitted++;
546 		TAILQ_REMOVE(list, sc, sc_timerq);
547 		syncache_timeout(syncache_percpu, sc, slot + 1);
548 	}
549 	TAILQ_REMOVE(list, &marker, sc_timerq);
550 
551 	if (sc != NULL) {
552 		callout_reset(&syncache_percpu->tt_timerq[slot],
553 			      sc->sc_rxttime - ticks, syncache_timer,
554 			      &syncache_percpu->mrec[slot]);
555 	} else {
556 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
557 	}
558 	lwkt_replymsg(&msg->base.lmsg, 0);
559 }
560 
561 /*
562  * Find an entry in the syncache.
563  */
564 struct syncache *
565 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
566 {
567 	struct tcp_syncache_percpu *syncache_percpu;
568 	struct syncache *sc;
569 	struct syncache_head *sch;
570 
571 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
572 #ifdef INET6
573 	if (inc->inc_isipv6) {
574 		sch = &syncache_percpu->hashbase[
575 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
576 		*schp = sch;
577 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
578 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
579 				return (sc);
580 	} else
581 #endif
582 	{
583 		sch = &syncache_percpu->hashbase[
584 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
585 		*schp = sch;
586 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
587 #ifdef INET6
588 			if (sc->sc_inc.inc_isipv6)
589 				continue;
590 #endif
591 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
592 				return (sc);
593 		}
594 	}
595 	return (NULL);
596 }
597 
598 /*
599  * This function is called when we get a RST for a
600  * non-existent connection, so that we can see if the
601  * connection is in the syn cache.  If it is, zap it.
602  */
603 void
604 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
605 {
606 	struct syncache *sc;
607 	struct syncache_head *sch;
608 
609 	sc = syncache_lookup(inc, &sch);
610 	if (sc == NULL) {
611 		return;
612 	}
613 	/*
614 	 * If the RST bit is set, check the sequence number to see
615 	 * if this is a valid reset segment.
616 	 * RFC 793 page 37:
617 	 *   In all states except SYN-SENT, all reset (RST) segments
618 	 *   are validated by checking their SEQ-fields.  A reset is
619 	 *   valid if its sequence number is in the window.
620 	 *
621 	 *   The sequence number in the reset segment is normally an
622 	 *   echo of our outgoing acknowlegement numbers, but some hosts
623 	 *   send a reset with the sequence number at the rightmost edge
624 	 *   of our receive window, and we have to handle this case.
625 	 */
626 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
627 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
628 		syncache_drop(sc, sch);
629 		tcpstat.tcps_sc_reset++;
630 	}
631 }
632 
633 void
634 syncache_badack(struct in_conninfo *inc)
635 {
636 	struct syncache *sc;
637 	struct syncache_head *sch;
638 
639 	sc = syncache_lookup(inc, &sch);
640 	if (sc != NULL) {
641 		syncache_drop(sc, sch);
642 		tcpstat.tcps_sc_badack++;
643 	}
644 }
645 
646 void
647 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
648 {
649 	struct syncache *sc;
650 	struct syncache_head *sch;
651 
652 	/* we are called at splnet() here */
653 	sc = syncache_lookup(inc, &sch);
654 	if (sc == NULL)
655 		return;
656 
657 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
658 	if (ntohl(th->th_seq) != sc->sc_iss)
659 		return;
660 
661 	/*
662 	 * If we've rertransmitted 3 times and this is our second error,
663 	 * we remove the entry.  Otherwise, we allow it to continue on.
664 	 * This prevents us from incorrectly nuking an entry during a
665 	 * spurious network outage.
666 	 *
667 	 * See tcp_notify().
668 	 */
669 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
670 		sc->sc_flags |= SCF_UNREACH;
671 		return;
672 	}
673 	syncache_drop(sc, sch);
674 	tcpstat.tcps_sc_unreach++;
675 }
676 
677 /*
678  * Build a new TCP socket structure from a syncache entry.
679  *
680  * This is called from the context of the SYN+ACK
681  */
682 static struct socket *
683 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
684 {
685 	struct inpcb *inp = NULL, *linp;
686 	struct socket *so;
687 	struct tcpcb *tp;
688 	lwkt_port_t port;
689 #ifdef INET6
690 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
691 #else
692 	const boolean_t isipv6 = FALSE;
693 #endif
694 
695 	/*
696 	 * Ok, create the full blown connection, and set things up
697 	 * as they would have been set up if we had created the
698 	 * connection when the SYN arrived.  If we can't create
699 	 * the connection, abort it.
700 	 *
701 	 * Set the protocol processing port for the socket to the current
702 	 * port (that the connection came in on).
703 	 */
704 	so = sonewconn(lso, SS_ISCONNECTED);
705 	if (so == NULL) {
706 		/*
707 		 * Drop the connection; we will send a RST if the peer
708 		 * retransmits the ACK,
709 		 */
710 		tcpstat.tcps_listendrop++;
711 		goto abort;
712 	}
713 
714 	/*
715 	 * Insert new socket into hash list.
716 	 */
717 	inp = so->so_pcb;
718 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
719 	if (isipv6) {
720 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
721 	} else {
722 #ifdef INET6
723 		inp->inp_vflag &= ~INP_IPV6;
724 		inp->inp_vflag |= INP_IPV4;
725 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
726 #endif
727 		inp->inp_laddr = sc->sc_inc.inc_laddr;
728 	}
729 	inp->inp_lport = sc->sc_inc.inc_lport;
730 	if (in_pcbinsporthash(inp) != 0) {
731 		/*
732 		 * Undo the assignments above if we failed to
733 		 * put the PCB on the hash lists.
734 		 */
735 		if (isipv6)
736 			inp->in6p_laddr = kin6addr_any;
737 		else
738 			inp->inp_laddr.s_addr = INADDR_ANY;
739 		inp->inp_lport = 0;
740 		goto abort;
741 	}
742 	linp = lso->so_pcb;
743 #ifdef IPSEC
744 	/* copy old policy into new socket's */
745 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
746 		kprintf("syncache_expand: could not copy policy\n");
747 #endif
748 	if (isipv6) {
749 		struct in6_addr laddr6;
750 		struct sockaddr_in6 sin6;
751 		/*
752 		 * Inherit socket options from the listening socket.
753 		 * Note that in6p_inputopts are not (and should not be)
754 		 * copied, since it stores previously received options and is
755 		 * used to detect if each new option is different than the
756 		 * previous one and hence should be passed to a user.
757 		 * If we copied in6p_inputopts, a user would not be able to
758 		 * receive options just after calling the accept system call.
759 		 */
760 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
761 		if (linp->in6p_outputopts)
762 			inp->in6p_outputopts =
763 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
764 		inp->in6p_route = sc->sc_route6;
765 		sc->sc_route6.ro_rt = NULL;
766 
767 		sin6.sin6_family = AF_INET6;
768 		sin6.sin6_len = sizeof sin6;
769 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
770 		sin6.sin6_port = sc->sc_inc.inc_fport;
771 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
772 		laddr6 = inp->in6p_laddr;
773 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
774 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
775 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
776 			inp->in6p_laddr = laddr6;
777 			goto abort;
778 		}
779 	} else {
780 		struct in_addr laddr;
781 		struct sockaddr_in sin;
782 
783 		inp->inp_options = ip_srcroute(m);
784 		if (inp->inp_options == NULL) {
785 			inp->inp_options = sc->sc_ipopts;
786 			sc->sc_ipopts = NULL;
787 		}
788 		inp->inp_route = sc->sc_route;
789 		sc->sc_route.ro_rt = NULL;
790 
791 		sin.sin_family = AF_INET;
792 		sin.sin_len = sizeof sin;
793 		sin.sin_addr = sc->sc_inc.inc_faddr;
794 		sin.sin_port = sc->sc_inc.inc_fport;
795 		bzero(sin.sin_zero, sizeof sin.sin_zero);
796 		laddr = inp->inp_laddr;
797 		if (inp->inp_laddr.s_addr == INADDR_ANY)
798 			inp->inp_laddr = sc->sc_inc.inc_laddr;
799 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
800 			inp->inp_laddr = laddr;
801 			goto abort;
802 		}
803 	}
804 
805 	/*
806 	 * The current port should be in the context of the SYN+ACK and
807 	 * so should match the tcp address port.
808 	 *
809 	 * XXX we may be running on the netisr thread instead of a tcp
810 	 *     thread, in which case port will not match
811 	 *     curthread->td_msgport.
812 	 */
813 	if (isipv6) {
814 		port = tcp6_addrport();
815 	} else {
816 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
817 				    inp->inp_laddr.s_addr, inp->inp_lport);
818 	}
819 	if (port != &curthread->td_msgport) {
820 		print_backtrace(-1);
821 		kprintf("TCP PORT MISMATCH %p vs %p\n",
822 			port, &curthread->td_msgport);
823 	}
824 	/*KKASSERT(port == &curthread->td_msgport);*/
825 
826 	tp = intotcpcb(inp);
827 	tp->t_state = TCPS_SYN_RECEIVED;
828 	tp->iss = sc->sc_iss;
829 	tp->irs = sc->sc_irs;
830 	tcp_rcvseqinit(tp);
831 	tcp_sendseqinit(tp);
832 	tp->snd_wl1 = sc->sc_irs;
833 	tp->rcv_up = sc->sc_irs + 1;
834 	tp->rcv_wnd = sc->sc_wnd;
835 	tp->rcv_adv += tp->rcv_wnd;
836 
837 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
838 	if (sc->sc_flags & SCF_NOOPT)
839 		tp->t_flags |= TF_NOOPT;
840 	if (sc->sc_flags & SCF_WINSCALE) {
841 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
842 		tp->requested_s_scale = sc->sc_requested_s_scale;
843 		tp->request_r_scale = sc->sc_request_r_scale;
844 	}
845 	if (sc->sc_flags & SCF_TIMESTAMP) {
846 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
847 		tp->ts_recent = sc->sc_tsrecent;
848 		tp->ts_recent_age = ticks;
849 	}
850 	if (sc->sc_flags & SCF_SACK_PERMITTED)
851 		tp->t_flags |= TF_SACK_PERMITTED;
852 
853 #ifdef TCP_SIGNATURE
854 	if (sc->sc_flags & SCF_SIGNATURE)
855 		tp->t_flags |= TF_SIGNATURE;
856 #endif /* TCP_SIGNATURE */
857 
858 
859 	tcp_mss(tp, sc->sc_peer_mss);
860 
861 	/*
862 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
863 	 */
864 	if (sc->sc_rxtslot != 0)
865 		tp->snd_cwnd = tp->t_maxseg;
866 	tcp_create_timermsg(tp, port);
867 	tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep);
868 
869 	tcpstat.tcps_accepts++;
870 	return (so);
871 
872 abort:
873 	if (so != NULL)
874 		soabort_oncpu(so);
875 	return (NULL);
876 }
877 
878 /*
879  * This function gets called when we receive an ACK for a
880  * socket in the LISTEN state.  We look up the connection
881  * in the syncache, and if its there, we pull it out of
882  * the cache and turn it into a full-blown connection in
883  * the SYN-RECEIVED state.
884  */
885 int
886 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
887 		struct mbuf *m)
888 {
889 	struct syncache *sc;
890 	struct syncache_head *sch;
891 	struct socket *so;
892 
893 	sc = syncache_lookup(inc, &sch);
894 	if (sc == NULL) {
895 		/*
896 		 * There is no syncache entry, so see if this ACK is
897 		 * a returning syncookie.  To do this, first:
898 		 *  A. See if this socket has had a syncache entry dropped in
899 		 *     the past.  We don't want to accept a bogus syncookie
900 		 *     if we've never received a SYN.
901 		 *  B. check that the syncookie is valid.  If it is, then
902 		 *     cobble up a fake syncache entry, and return.
903 		 */
904 		if (!tcp_syncookies)
905 			return (0);
906 		sc = syncookie_lookup(inc, th, *sop);
907 		if (sc == NULL)
908 			return (0);
909 		sch = NULL;
910 		tcpstat.tcps_sc_recvcookie++;
911 	}
912 
913 	/*
914 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
915 	 */
916 	if (th->th_ack != sc->sc_iss + 1)
917 		return (0);
918 
919 	so = syncache_socket(sc, *sop, m);
920 	if (so == NULL) {
921 #if 0
922 resetandabort:
923 		/* XXXjlemon check this - is this correct? */
924 		tcp_respond(NULL, m, m, th,
925 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
926 #endif
927 		m_freem(m);			/* XXX only needed for above */
928 		tcpstat.tcps_sc_aborted++;
929 	} else {
930 		tcpstat.tcps_sc_completed++;
931 	}
932 	if (sch == NULL)
933 		syncache_free(sc);
934 	else
935 		syncache_drop(sc, sch);
936 	*sop = so;
937 	return (1);
938 }
939 
940 /*
941  * Given a LISTEN socket and an inbound SYN request, add
942  * this to the syn cache, and send back a segment:
943  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
944  * to the source.
945  *
946  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
947  * Doing so would require that we hold onto the data and deliver it
948  * to the application.  However, if we are the target of a SYN-flood
949  * DoS attack, an attacker could send data which would eventually
950  * consume all available buffer space if it were ACKed.  By not ACKing
951  * the data, we avoid this DoS scenario.
952  */
953 int
954 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
955 	     struct socket **sop, struct mbuf *m)
956 {
957 	struct tcp_syncache_percpu *syncache_percpu;
958 	struct tcpcb *tp;
959 	struct socket *so;
960 	struct syncache *sc = NULL;
961 	struct syncache_head *sch;
962 	struct mbuf *ipopts = NULL;
963 	int win;
964 
965 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
966 	so = *sop;
967 	tp = sototcpcb(so);
968 
969 	/*
970 	 * Remember the IP options, if any.
971 	 */
972 #ifdef INET6
973 	if (!inc->inc_isipv6)
974 #endif
975 		ipopts = ip_srcroute(m);
976 
977 	/*
978 	 * See if we already have an entry for this connection.
979 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
980 	 *
981 	 * XXX
982 	 * The syncache should be re-initialized with the contents
983 	 * of the new SYN which may have different options.
984 	 */
985 	sc = syncache_lookup(inc, &sch);
986 	if (sc != NULL) {
987 		tcpstat.tcps_sc_dupsyn++;
988 		if (ipopts) {
989 			/*
990 			 * If we were remembering a previous source route,
991 			 * forget it and use the new one we've been given.
992 			 */
993 			if (sc->sc_ipopts)
994 				m_free(sc->sc_ipopts);
995 			sc->sc_ipopts = ipopts;
996 		}
997 		/*
998 		 * Update timestamp if present.
999 		 */
1000 		if (sc->sc_flags & SCF_TIMESTAMP)
1001 			sc->sc_tsrecent = to->to_tsval;
1002 
1003 		/* Just update the TOF_SACK_PERMITTED for now. */
1004 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1005 			sc->sc_flags |= SCF_SACK_PERMITTED;
1006 		else
1007 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1008 
1009 		/*
1010 		 * PCB may have changed, pick up new values.
1011 		 */
1012 		if (sc->sc_tp) {
1013 			sc->sc_tp->t_flags &= ~TF_SYNCACHE;
1014 			tp->t_flags |= TF_SYNCACHE;
1015 		}
1016 		sc->sc_tp = tp;
1017 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1018 		if (syncache_respond(sc, m) == 0) {
1019 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1020 				     sc, sc_timerq);
1021 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1022 			tcpstat.tcps_sndacks++;
1023 			tcpstat.tcps_sndtotal++;
1024 		}
1025 		*sop = NULL;
1026 		return (1);
1027 	}
1028 
1029 	/*
1030 	 * Fill in the syncache values.
1031 	 */
1032 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1033 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1034 	sc->sc_ipopts = ipopts;
1035 	sc->sc_inc.inc_fport = inc->inc_fport;
1036 	sc->sc_inc.inc_lport = inc->inc_lport;
1037 	sc->sc_tp = tp;
1038 	tp->t_flags |= TF_SYNCACHE;
1039 #ifdef INET6
1040 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1041 	if (inc->inc_isipv6) {
1042 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1043 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1044 		sc->sc_route6.ro_rt = NULL;
1045 	} else
1046 #endif
1047 	{
1048 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1049 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1050 		sc->sc_route.ro_rt = NULL;
1051 	}
1052 	sc->sc_irs = th->th_seq;
1053 	sc->sc_flags = 0;
1054 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1055 	if (tcp_syncookies)
1056 		sc->sc_iss = syncookie_generate(sc);
1057 	else
1058 		sc->sc_iss = karc4random();
1059 
1060 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1061 	win = ssb_space(&so->so_rcv);
1062 	win = imax(win, 0);
1063 	win = imin(win, TCP_MAXWIN);
1064 	sc->sc_wnd = win;
1065 
1066 	if (tcp_do_rfc1323) {
1067 		/*
1068 		 * A timestamp received in a SYN makes
1069 		 * it ok to send timestamp requests and replies.
1070 		 */
1071 		if (to->to_flags & TOF_TS) {
1072 			sc->sc_tsrecent = to->to_tsval;
1073 			sc->sc_flags |= SCF_TIMESTAMP;
1074 		}
1075 		if (to->to_flags & TOF_SCALE) {
1076 			int wscale = TCP_MIN_WINSHIFT;
1077 
1078 			/* Compute proper scaling value from buffer space */
1079 			while (wscale < TCP_MAX_WINSHIFT &&
1080 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1081 				wscale++;
1082 			}
1083 			sc->sc_request_r_scale = wscale;
1084 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1085 			sc->sc_flags |= SCF_WINSCALE;
1086 		}
1087 	}
1088 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1089 		sc->sc_flags |= SCF_SACK_PERMITTED;
1090 	if (tp->t_flags & TF_NOOPT)
1091 		sc->sc_flags = SCF_NOOPT;
1092 #ifdef TCP_SIGNATURE
1093 	/*
1094 	 * If listening socket requested TCP digests, and received SYN
1095 	 * contains the option, flag this in the syncache so that
1096 	 * syncache_respond() will do the right thing with the SYN+ACK.
1097 	 * XXX Currently we always record the option by default and will
1098 	 * attempt to use it in syncache_respond().
1099 	 */
1100 	if (to->to_flags & TOF_SIGNATURE)
1101 		sc->sc_flags = SCF_SIGNATURE;
1102 #endif /* TCP_SIGNATURE */
1103 
1104 	if (syncache_respond(sc, m) == 0) {
1105 		syncache_insert(sc, sch);
1106 		tcpstat.tcps_sndacks++;
1107 		tcpstat.tcps_sndtotal++;
1108 	} else {
1109 		syncache_free(sc);
1110 		tcpstat.tcps_sc_dropped++;
1111 	}
1112 	*sop = NULL;
1113 	return (1);
1114 }
1115 
1116 static int
1117 syncache_respond(struct syncache *sc, struct mbuf *m)
1118 {
1119 	u_int8_t *optp;
1120 	int optlen, error;
1121 	u_int16_t tlen, hlen, mssopt;
1122 	struct ip *ip = NULL;
1123 	struct rtentry *rt;
1124 	struct tcphdr *th;
1125 	struct ip6_hdr *ip6 = NULL;
1126 #ifdef INET6
1127 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1128 #else
1129 	const boolean_t isipv6 = FALSE;
1130 #endif
1131 
1132 	if (isipv6) {
1133 		rt = tcp_rtlookup6(&sc->sc_inc);
1134 		if (rt != NULL)
1135 			mssopt = rt->rt_ifp->if_mtu -
1136 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1137 		else
1138 			mssopt = tcp_v6mssdflt;
1139 		hlen = sizeof(struct ip6_hdr);
1140 	} else {
1141 		rt = tcp_rtlookup(&sc->sc_inc);
1142 		if (rt != NULL)
1143 			mssopt = rt->rt_ifp->if_mtu -
1144 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1145 		else
1146 			mssopt = tcp_mssdflt;
1147 		hlen = sizeof(struct ip);
1148 	}
1149 
1150 	/* Compute the size of the TCP options. */
1151 	if (sc->sc_flags & SCF_NOOPT) {
1152 		optlen = 0;
1153 	} else {
1154 		optlen = TCPOLEN_MAXSEG +
1155 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1156 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1157 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1158 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1159 #ifdef TCP_SIGNATURE
1160 				optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1161 						(TCPOLEN_SIGNATURE + 2) : 0);
1162 #endif /* TCP_SIGNATURE */
1163 	}
1164 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1165 
1166 	/*
1167 	 * XXX
1168 	 * assume that the entire packet will fit in a header mbuf
1169 	 */
1170 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1171 
1172 	/*
1173 	 * XXX shouldn't this reuse the mbuf if possible ?
1174 	 * Create the IP+TCP header from scratch.
1175 	 */
1176 	if (m)
1177 		m_freem(m);
1178 
1179 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1180 	if (m == NULL)
1181 		return (ENOBUFS);
1182 	m->m_data += max_linkhdr;
1183 	m->m_len = tlen;
1184 	m->m_pkthdr.len = tlen;
1185 	m->m_pkthdr.rcvif = NULL;
1186 
1187 	if (isipv6) {
1188 		ip6 = mtod(m, struct ip6_hdr *);
1189 		ip6->ip6_vfc = IPV6_VERSION;
1190 		ip6->ip6_nxt = IPPROTO_TCP;
1191 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1192 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1193 		ip6->ip6_plen = htons(tlen - hlen);
1194 		/* ip6_hlim is set after checksum */
1195 		/* ip6_flow = ??? */
1196 
1197 		th = (struct tcphdr *)(ip6 + 1);
1198 	} else {
1199 		ip = mtod(m, struct ip *);
1200 		ip->ip_v = IPVERSION;
1201 		ip->ip_hl = sizeof(struct ip) >> 2;
1202 		ip->ip_len = tlen;
1203 		ip->ip_id = 0;
1204 		ip->ip_off = 0;
1205 		ip->ip_sum = 0;
1206 		ip->ip_p = IPPROTO_TCP;
1207 		ip->ip_src = sc->sc_inc.inc_laddr;
1208 		ip->ip_dst = sc->sc_inc.inc_faddr;
1209 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1210 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1211 
1212 		/*
1213 		 * See if we should do MTU discovery.  Route lookups are
1214 		 * expensive, so we will only unset the DF bit if:
1215 		 *
1216 		 *	1) path_mtu_discovery is disabled
1217 		 *	2) the SCF_UNREACH flag has been set
1218 		 */
1219 		if (path_mtu_discovery
1220 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1221 		       ip->ip_off |= IP_DF;
1222 		}
1223 
1224 		th = (struct tcphdr *)(ip + 1);
1225 	}
1226 	th->th_sport = sc->sc_inc.inc_lport;
1227 	th->th_dport = sc->sc_inc.inc_fport;
1228 
1229 	th->th_seq = htonl(sc->sc_iss);
1230 	th->th_ack = htonl(sc->sc_irs + 1);
1231 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1232 	th->th_x2 = 0;
1233 	th->th_flags = TH_SYN | TH_ACK;
1234 	th->th_win = htons(sc->sc_wnd);
1235 	th->th_urp = 0;
1236 
1237 	/* Tack on the TCP options. */
1238 	if (optlen == 0)
1239 		goto no_options;
1240 	optp = (u_int8_t *)(th + 1);
1241 	*optp++ = TCPOPT_MAXSEG;
1242 	*optp++ = TCPOLEN_MAXSEG;
1243 	*optp++ = (mssopt >> 8) & 0xff;
1244 	*optp++ = mssopt & 0xff;
1245 
1246 	if (sc->sc_flags & SCF_WINSCALE) {
1247 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1248 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1249 		    sc->sc_request_r_scale);
1250 		optp += 4;
1251 	}
1252 
1253 	if (sc->sc_flags & SCF_TIMESTAMP) {
1254 		u_int32_t *lp = (u_int32_t *)(optp);
1255 
1256 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1257 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1258 		*lp++ = htonl(ticks);
1259 		*lp   = htonl(sc->sc_tsrecent);
1260 		optp += TCPOLEN_TSTAMP_APPA;
1261 	}
1262 
1263 #ifdef TCP_SIGNATURE
1264 	/*
1265 	 * Handle TCP-MD5 passive opener response.
1266 	 */
1267 	if (sc->sc_flags & SCF_SIGNATURE) {
1268 		u_int8_t *bp = optp;
1269 		int i;
1270 
1271 		*bp++ = TCPOPT_SIGNATURE;
1272 		*bp++ = TCPOLEN_SIGNATURE;
1273 		for (i = 0; i < TCP_SIGLEN; i++)
1274 			*bp++ = 0;
1275 		tcpsignature_compute(m, 0, optlen,
1276 				optp + 2, IPSEC_DIR_OUTBOUND);
1277 		*bp++ = TCPOPT_NOP;
1278 		*bp++ = TCPOPT_EOL;
1279 		optp += TCPOLEN_SIGNATURE + 2;
1280 }
1281 #endif /* TCP_SIGNATURE */
1282 
1283 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1284 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1285 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1286 	}
1287 
1288 no_options:
1289 	if (isipv6) {
1290 		struct route_in6 *ro6 = &sc->sc_route6;
1291 
1292 		th->th_sum = 0;
1293 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1294 		ip6->ip6_hlim = in6_selecthlim(NULL,
1295 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1296 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1297 				sc->sc_tp->t_inpcb);
1298 	} else {
1299 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1300 				       htons(tlen - hlen + IPPROTO_TCP));
1301 		m->m_pkthdr.csum_flags = CSUM_TCP;
1302 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1303 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1304 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1305 	}
1306 	return (error);
1307 }
1308 
1309 /*
1310  * cookie layers:
1311  *
1312  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1313  *	| peer iss                                                      |
1314  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1315  *	|                     0                       |(A)|             |
1316  * (A): peer mss index
1317  */
1318 
1319 /*
1320  * The values below are chosen to minimize the size of the tcp_secret
1321  * table, as well as providing roughly a 16 second lifetime for the cookie.
1322  */
1323 
1324 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1325 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1326 
1327 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1328 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1329 #define SYNCOOKIE_TIMEOUT \
1330     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1331 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1332 
1333 static struct {
1334 	u_int32_t	ts_secbits[4];
1335 	u_int		ts_expire;
1336 } tcp_secret[SYNCOOKIE_NSECRETS];
1337 
1338 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1339 
1340 static MD5_CTX syn_ctx;
1341 
1342 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1343 
1344 struct md5_add {
1345 	u_int32_t laddr, faddr;
1346 	u_int32_t secbits[4];
1347 	u_int16_t lport, fport;
1348 };
1349 
1350 #ifdef CTASSERT
1351 CTASSERT(sizeof(struct md5_add) == 28);
1352 #endif
1353 
1354 /*
1355  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1356  * original SYN was accepted, the connection is established.  The second
1357  * SYN is inflight, and if it arrives with an ISN that falls within the
1358  * receive window, the connection is killed.
1359  *
1360  * However, since cookies have other problems, this may not be worth
1361  * worrying about.
1362  */
1363 
1364 static u_int32_t
1365 syncookie_generate(struct syncache *sc)
1366 {
1367 	u_int32_t md5_buffer[4];
1368 	u_int32_t data;
1369 	int idx, i;
1370 	struct md5_add add;
1371 #ifdef INET6
1372 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1373 #else
1374 	const boolean_t isipv6 = FALSE;
1375 #endif
1376 
1377 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1378 	if (tcp_secret[idx].ts_expire < ticks) {
1379 		for (i = 0; i < 4; i++)
1380 			tcp_secret[idx].ts_secbits[i] = karc4random();
1381 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1382 	}
1383 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1384 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1385 			break;
1386 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1387 	data ^= sc->sc_irs;				/* peer's iss */
1388 	MD5Init(&syn_ctx);
1389 	if (isipv6) {
1390 		MD5Add(sc->sc_inc.inc6_laddr);
1391 		MD5Add(sc->sc_inc.inc6_faddr);
1392 		add.laddr = 0;
1393 		add.faddr = 0;
1394 	} else {
1395 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1396 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1397 	}
1398 	add.lport = sc->sc_inc.inc_lport;
1399 	add.fport = sc->sc_inc.inc_fport;
1400 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1401 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1402 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1403 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1404 	MD5Add(add);
1405 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1406 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1407 	return (data);
1408 }
1409 
1410 static struct syncache *
1411 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1412 {
1413 	u_int32_t md5_buffer[4];
1414 	struct syncache *sc;
1415 	u_int32_t data;
1416 	int wnd, idx;
1417 	struct md5_add add;
1418 
1419 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1420 	idx = data & SYNCOOKIE_WNDMASK;
1421 	if (tcp_secret[idx].ts_expire < ticks ||
1422 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1423 		return (NULL);
1424 	MD5Init(&syn_ctx);
1425 #ifdef INET6
1426 	if (inc->inc_isipv6) {
1427 		MD5Add(inc->inc6_laddr);
1428 		MD5Add(inc->inc6_faddr);
1429 		add.laddr = 0;
1430 		add.faddr = 0;
1431 	} else
1432 #endif
1433 	{
1434 		add.laddr = inc->inc_laddr.s_addr;
1435 		add.faddr = inc->inc_faddr.s_addr;
1436 	}
1437 	add.lport = inc->inc_lport;
1438 	add.fport = inc->inc_fport;
1439 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1440 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1441 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1442 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1443 	MD5Add(add);
1444 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1445 	data ^= md5_buffer[0];
1446 	if (data & ~SYNCOOKIE_DATAMASK)
1447 		return (NULL);
1448 	data = data >> SYNCOOKIE_WNDBITS;
1449 
1450 	/*
1451 	 * Fill in the syncache values.
1452 	 * XXX duplicate code from syncache_add
1453 	 */
1454 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1455 	sc->sc_ipopts = NULL;
1456 	sc->sc_inc.inc_fport = inc->inc_fport;
1457 	sc->sc_inc.inc_lport = inc->inc_lport;
1458 #ifdef INET6
1459 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1460 	if (inc->inc_isipv6) {
1461 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1462 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1463 		sc->sc_route6.ro_rt = NULL;
1464 	} else
1465 #endif
1466 	{
1467 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1468 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1469 		sc->sc_route.ro_rt = NULL;
1470 	}
1471 	sc->sc_irs = th->th_seq - 1;
1472 	sc->sc_iss = th->th_ack - 1;
1473 	wnd = ssb_space(&so->so_rcv);
1474 	wnd = imax(wnd, 0);
1475 	wnd = imin(wnd, TCP_MAXWIN);
1476 	sc->sc_wnd = wnd;
1477 	sc->sc_flags = 0;
1478 	sc->sc_rxtslot = 0;
1479 	sc->sc_peer_mss = tcp_msstab[data];
1480 	return (sc);
1481 }
1482