xref: /dragonfly/sys/netinet/tcp_syncache.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.31 2007/05/24 05:51:29 dillon Exp $
73  */
74 
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 
117 #ifdef IPSEC
118 #include <netinet6/ipsec.h>
119 #ifdef INET6
120 #include <netinet6/ipsec6.h>
121 #endif
122 #include <netproto/key/key.h>
123 #endif /*IPSEC*/
124 
125 #ifdef FAST_IPSEC
126 #include <netproto/ipsec/ipsec.h>
127 #ifdef INET6
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 #include <netproto/ipsec/key.h>
131 #define	IPSEC
132 #endif /*FAST_IPSEC*/
133 
134 #include <vm/vm_zone.h>
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *);
147 static void	 syncache_timer(void *);
148 static u_int32_t syncookie_generate(struct syncache *);
149 static struct syncache *syncookie_lookup(struct in_conninfo *,
150 		    struct tcphdr *, struct socket *);
151 
152 /*
153  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
155  * the odds are that the user has given up attempting to connect by then.
156  */
157 #define SYNCACHE_MAXREXMTS		3
158 
159 /* Arbitrary values */
160 #define TCP_SYNCACHE_HASHSIZE		512
161 #define TCP_SYNCACHE_BUCKETLIMIT	30
162 
163 struct netmsg_sc_timer {
164 	struct netmsg nm_netmsg;
165 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
166 };
167 
168 struct msgrec {
169 	struct netmsg_sc_timer msg;
170 	lwkt_port_t port;		/* constant after init */
171 	int slot;			/* constant after init */
172 };
173 
174 static void syncache_timer_handler(netmsg_t);
175 
176 struct tcp_syncache {
177 	struct	vm_zone *zone;
178 	u_int	hashsize;
179 	u_int	hashmask;
180 	u_int	bucket_limit;
181 	u_int	cache_limit;
182 	u_int	rexmt_limit;
183 	u_int	hash_secret;
184 };
185 static struct tcp_syncache tcp_syncache;
186 
187 struct tcp_syncache_percpu {
188 	struct syncache_head	*hashbase;
189 	u_int			cache_count;
190 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
191 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
192 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
193 };
194 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
195 
196 static struct lwkt_port syncache_null_rport;
197 
198 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
199 
200 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
201      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
202 
203 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
204      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
205 
206 /* XXX JH */
207 #if 0
208 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
209      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
210 #endif
211 
212 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
213      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
214 
215 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
216      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
217 
218 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
219 
220 #define SYNCACHE_HASH(inc, mask)					\
221 	((tcp_syncache.hash_secret ^					\
222 	  (inc)->inc_faddr.s_addr ^					\
223 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
224 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
225 
226 #define SYNCACHE_HASH6(inc, mask)					\
227 	((tcp_syncache.hash_secret ^					\
228 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
229 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
230 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
231 
232 #define ENDPTS_EQ(a, b) (						\
233 	(a)->ie_fport == (b)->ie_fport &&				\
234 	(a)->ie_lport == (b)->ie_lport &&				\
235 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
236 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
237 )
238 
239 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
240 
241 static __inline void
242 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
243 		 struct syncache *sc, int slot)
244 {
245 	sc->sc_rxtslot = slot;
246 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
247 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
248 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
249 		callout_reset(&syncache_percpu->tt_timerq[slot],
250 			      TCPTV_RTOBASE * tcp_backoff[slot],
251 			      syncache_timer,
252 			      &syncache_percpu->mrec[slot]);
253 	}
254 }
255 
256 static void
257 syncache_free(struct syncache *sc)
258 {
259 	struct rtentry *rt;
260 #ifdef INET6
261 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
262 #else
263 	const boolean_t isipv6 = FALSE;
264 #endif
265 
266 	if (sc->sc_ipopts)
267 		m_free(sc->sc_ipopts);
268 
269 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
270 	if (rt != NULL) {
271 		/*
272 		 * If this is the only reference to a protocol-cloned
273 		 * route, remove it immediately.
274 		 */
275 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
276 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
277 				  rt_mask(rt), rt->rt_flags, NULL);
278 		RTFREE(rt);
279 	}
280 
281 	zfree(tcp_syncache.zone, sc);
282 }
283 
284 void
285 syncache_init(void)
286 {
287 	int i, cpu;
288 
289 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
290 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
291 	tcp_syncache.cache_limit =
292 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
293 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
294 	tcp_syncache.hash_secret = karc4random();
295 
296 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
297 	    &tcp_syncache.hashsize);
298 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
299 	    &tcp_syncache.cache_limit);
300 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
301 	    &tcp_syncache.bucket_limit);
302 	if (!powerof2(tcp_syncache.hashsize)) {
303 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
304 		tcp_syncache.hashsize = 512;	/* safe default */
305 	}
306 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
307 
308 	lwkt_initport_replyonly_null(&syncache_null_rport);
309 
310 	for (cpu = 0; cpu < ncpus2; cpu++) {
311 		struct tcp_syncache_percpu *syncache_percpu;
312 
313 		syncache_percpu = &tcp_syncache_percpu[cpu];
314 		/* Allocate the hash table. */
315 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
316 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
317 		    M_SYNCACHE, M_WAITOK);
318 
319 		/* Initialize the hash buckets. */
320 		for (i = 0; i < tcp_syncache.hashsize; i++) {
321 			struct syncache_head *bucket;
322 
323 			bucket = &syncache_percpu->hashbase[i];
324 			TAILQ_INIT(&bucket->sch_bucket);
325 			bucket->sch_length = 0;
326 		}
327 
328 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
329 			/* Initialize the timer queues. */
330 			TAILQ_INIT(&syncache_percpu->timerq[i]);
331 			callout_init(&syncache_percpu->tt_timerq[i]);
332 
333 			syncache_percpu->mrec[i].slot = i;
334 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
335 			syncache_percpu->mrec[i].msg.nm_mrec =
336 			    &syncache_percpu->mrec[i];
337 			netmsg_init(&syncache_percpu->mrec[i].msg.nm_netmsg,
338 				    &syncache_null_rport, 0,
339 				    syncache_timer_handler);
340 		}
341 	}
342 
343 	/*
344 	 * Allocate the syncache entries.  Allow the zone to allocate one
345 	 * more entry than cache limit, so a new entry can bump out an
346 	 * older one.
347 	 */
348 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
349 	    tcp_syncache.cache_limit * ncpus2, ZONE_INTERRUPT, 0);
350 	tcp_syncache.cache_limit -= 1;
351 }
352 
353 static void
354 syncache_insert(struct syncache *sc, struct syncache_head *sch)
355 {
356 	struct tcp_syncache_percpu *syncache_percpu;
357 	struct syncache *sc2;
358 	int i;
359 
360 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
361 
362 	/*
363 	 * Make sure that we don't overflow the per-bucket
364 	 * limit or the total cache size limit.
365 	 */
366 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
367 		/*
368 		 * The bucket is full, toss the oldest element.
369 		 */
370 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
371 		sc2->sc_tp->ts_recent = ticks;
372 		syncache_drop(sc2, sch);
373 		tcpstat.tcps_sc_bucketoverflow++;
374 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
375 		/*
376 		 * The cache is full.  Toss the oldest entry in the
377 		 * entire cache.  This is the front entry in the
378 		 * first non-empty timer queue with the largest
379 		 * timeout value.
380 		 */
381 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
382 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
383 			if (sc2 != NULL)
384 				break;
385 		}
386 		sc2->sc_tp->ts_recent = ticks;
387 		syncache_drop(sc2, NULL);
388 		tcpstat.tcps_sc_cacheoverflow++;
389 	}
390 
391 	/* Initialize the entry's timer. */
392 	syncache_timeout(syncache_percpu, sc, 0);
393 
394 	/* Put it into the bucket. */
395 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
396 	sch->sch_length++;
397 	syncache_percpu->cache_count++;
398 	tcpstat.tcps_sc_added++;
399 }
400 
401 static void
402 syncache_drop(struct syncache *sc, struct syncache_head *sch)
403 {
404 	struct tcp_syncache_percpu *syncache_percpu;
405 #ifdef INET6
406 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
407 #else
408 	const boolean_t isipv6 = FALSE;
409 #endif
410 
411 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
412 
413 	if (sch == NULL) {
414 		if (isipv6) {
415 			sch = &syncache_percpu->hashbase[
416 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
417 		} else {
418 			sch = &syncache_percpu->hashbase[
419 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
420 		}
421 	}
422 
423 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
424 	sch->sch_length--;
425 	syncache_percpu->cache_count--;
426 
427 	/*
428 	 * Remove the entry from the syncache timer/timeout queue.  Note
429 	 * that we do not try to stop any running timer since we do not know
430 	 * whether the timer's message is in-transit or not.  Since timeouts
431 	 * are fairly long, taking an unneeded callout does not detrimentally
432 	 * effect performance.
433 	 */
434 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
435 
436 	syncache_free(sc);
437 }
438 
439 /*
440  * Place a timeout message on the TCP thread's message queue.
441  * This routine runs in soft interrupt context.
442  *
443  * An invariant is for this routine to be called, the callout must
444  * have been active.  Note that the callout is not deactivated until
445  * after the message has been processed in syncache_timer_handler() below.
446  */
447 static void
448 syncache_timer(void *p)
449 {
450 	struct netmsg_sc_timer *msg = p;
451 
452 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_netmsg.nm_lmsg);
453 }
454 
455 /*
456  * Service a timer message queued by timer expiration.
457  * This routine runs in the TCP protocol thread.
458  *
459  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
460  * If we have retransmitted an entry the maximum number of times, expire it.
461  *
462  * When we finish processing timed-out entries, we restart the timer if there
463  * are any entries still on the queue and deactivate it otherwise.  Only after
464  * a timer has been deactivated here can it be restarted by syncache_timeout().
465  */
466 static void
467 syncache_timer_handler(netmsg_t netmsg)
468 {
469 	struct tcp_syncache_percpu *syncache_percpu;
470 	struct syncache *sc, *nsc;
471 	struct inpcb *inp;
472 	int slot;
473 
474 	slot = ((struct netmsg_sc_timer *)netmsg)->nm_mrec->slot;
475 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
476 
477 	nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
478 	while (nsc != NULL) {
479 		if (ticks < nsc->sc_rxttime)
480 			break;	/* finished because timerq sorted by time */
481 		sc = nsc;
482 		inp = sc->sc_tp->t_inpcb;
483 		if (slot == SYNCACHE_MAXREXMTS ||
484 		    slot >= tcp_syncache.rexmt_limit ||
485 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
486 			nsc = TAILQ_NEXT(sc, sc_timerq);
487 			syncache_drop(sc, NULL);
488 			tcpstat.tcps_sc_stale++;
489 			continue;
490 		}
491 		/*
492 		 * syncache_respond() may call back into the syncache to
493 		 * to modify another entry, so do not obtain the next
494 		 * entry on the timer chain until it has completed.
495 		 */
496 		syncache_respond(sc, NULL);
497 		nsc = TAILQ_NEXT(sc, sc_timerq);
498 		tcpstat.tcps_sc_retransmitted++;
499 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
500 		syncache_timeout(syncache_percpu, sc, slot + 1);
501 	}
502 	if (nsc != NULL)
503 		callout_reset(&syncache_percpu->tt_timerq[slot],
504 		    nsc->sc_rxttime - ticks, syncache_timer,
505 		    &syncache_percpu->mrec[slot]);
506 	else
507 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
508 
509 	lwkt_replymsg(&netmsg->nm_lmsg, 0);
510 }
511 
512 /*
513  * Find an entry in the syncache.
514  */
515 struct syncache *
516 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
517 {
518 	struct tcp_syncache_percpu *syncache_percpu;
519 	struct syncache *sc;
520 	struct syncache_head *sch;
521 
522 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
523 #ifdef INET6
524 	if (inc->inc_isipv6) {
525 		sch = &syncache_percpu->hashbase[
526 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
527 		*schp = sch;
528 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
529 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
530 				return (sc);
531 	} else
532 #endif
533 	{
534 		sch = &syncache_percpu->hashbase[
535 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
536 		*schp = sch;
537 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
538 #ifdef INET6
539 			if (sc->sc_inc.inc_isipv6)
540 				continue;
541 #endif
542 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
543 				return (sc);
544 		}
545 	}
546 	return (NULL);
547 }
548 
549 /*
550  * This function is called when we get a RST for a
551  * non-existent connection, so that we can see if the
552  * connection is in the syn cache.  If it is, zap it.
553  */
554 void
555 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
556 {
557 	struct syncache *sc;
558 	struct syncache_head *sch;
559 
560 	sc = syncache_lookup(inc, &sch);
561 	if (sc == NULL)
562 		return;
563 	/*
564 	 * If the RST bit is set, check the sequence number to see
565 	 * if this is a valid reset segment.
566 	 * RFC 793 page 37:
567 	 *   In all states except SYN-SENT, all reset (RST) segments
568 	 *   are validated by checking their SEQ-fields.  A reset is
569 	 *   valid if its sequence number is in the window.
570 	 *
571 	 *   The sequence number in the reset segment is normally an
572 	 *   echo of our outgoing acknowlegement numbers, but some hosts
573 	 *   send a reset with the sequence number at the rightmost edge
574 	 *   of our receive window, and we have to handle this case.
575 	 */
576 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
577 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
578 		syncache_drop(sc, sch);
579 		tcpstat.tcps_sc_reset++;
580 	}
581 }
582 
583 void
584 syncache_badack(struct in_conninfo *inc)
585 {
586 	struct syncache *sc;
587 	struct syncache_head *sch;
588 
589 	sc = syncache_lookup(inc, &sch);
590 	if (sc != NULL) {
591 		syncache_drop(sc, sch);
592 		tcpstat.tcps_sc_badack++;
593 	}
594 }
595 
596 void
597 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
598 {
599 	struct syncache *sc;
600 	struct syncache_head *sch;
601 
602 	/* we are called at splnet() here */
603 	sc = syncache_lookup(inc, &sch);
604 	if (sc == NULL)
605 		return;
606 
607 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
608 	if (ntohl(th->th_seq) != sc->sc_iss)
609 		return;
610 
611 	/*
612 	 * If we've rertransmitted 3 times and this is our second error,
613 	 * we remove the entry.  Otherwise, we allow it to continue on.
614 	 * This prevents us from incorrectly nuking an entry during a
615 	 * spurious network outage.
616 	 *
617 	 * See tcp_notify().
618 	 */
619 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
620 		sc->sc_flags |= SCF_UNREACH;
621 		return;
622 	}
623 	syncache_drop(sc, sch);
624 	tcpstat.tcps_sc_unreach++;
625 }
626 
627 /*
628  * Build a new TCP socket structure from a syncache entry.
629  */
630 static struct socket *
631 syncache_socket(struct syncache *sc, struct socket *lso)
632 {
633 	struct inpcb *inp = NULL, *linp;
634 	struct socket *so;
635 	struct tcpcb *tp;
636 #ifdef INET6
637 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
638 #else
639 	const boolean_t isipv6 = FALSE;
640 #endif
641 
642 	/*
643 	 * Ok, create the full blown connection, and set things up
644 	 * as they would have been set up if we had created the
645 	 * connection when the SYN arrived.  If we can't create
646 	 * the connection, abort it.
647 	 */
648 	so = sonewconn(lso, SS_ISCONNECTED);
649 	if (so == NULL) {
650 		/*
651 		 * Drop the connection; we will send a RST if the peer
652 		 * retransmits the ACK,
653 		 */
654 		tcpstat.tcps_listendrop++;
655 		goto abort;
656 	}
657 
658 	inp = so->so_pcb;
659 
660 	/*
661 	 * Insert new socket into hash list.
662 	 */
663 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
664 	if (isipv6) {
665 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
666 	} else {
667 #ifdef INET6
668 		inp->inp_vflag &= ~INP_IPV6;
669 		inp->inp_vflag |= INP_IPV4;
670 #endif
671 		inp->inp_laddr = sc->sc_inc.inc_laddr;
672 	}
673 	inp->inp_lport = sc->sc_inc.inc_lport;
674 	if (in_pcbinsporthash(inp) != 0) {
675 		/*
676 		 * Undo the assignments above if we failed to
677 		 * put the PCB on the hash lists.
678 		 */
679 		if (isipv6)
680 			inp->in6p_laddr = kin6addr_any;
681 		else
682 			inp->inp_laddr.s_addr = INADDR_ANY;
683 		inp->inp_lport = 0;
684 		goto abort;
685 	}
686 	linp = so->so_pcb;
687 #ifdef IPSEC
688 	/* copy old policy into new socket's */
689 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
690 		kprintf("syncache_expand: could not copy policy\n");
691 #endif
692 	if (isipv6) {
693 		struct in6_addr laddr6;
694 		struct sockaddr_in6 sin6;
695 		/*
696 		 * Inherit socket options from the listening socket.
697 		 * Note that in6p_inputopts are not (and should not be)
698 		 * copied, since it stores previously received options and is
699 		 * used to detect if each new option is different than the
700 		 * previous one and hence should be passed to a user.
701 		 * If we copied in6p_inputopts, a user would not be able to
702 		 * receive options just after calling the accept system call.
703 		 */
704 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
705 		if (linp->in6p_outputopts)
706 			inp->in6p_outputopts =
707 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
708 		inp->in6p_route = sc->sc_route6;
709 		sc->sc_route6.ro_rt = NULL;
710 
711 		sin6.sin6_family = AF_INET6;
712 		sin6.sin6_len = sizeof sin6;
713 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
714 		sin6.sin6_port = sc->sc_inc.inc_fport;
715 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
716 		laddr6 = inp->in6p_laddr;
717 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
718 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
719 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
720 			inp->in6p_laddr = laddr6;
721 			goto abort;
722 		}
723 	} else {
724 		struct in_addr laddr;
725 		struct sockaddr_in sin;
726 
727 		inp->inp_options = ip_srcroute();
728 		if (inp->inp_options == NULL) {
729 			inp->inp_options = sc->sc_ipopts;
730 			sc->sc_ipopts = NULL;
731 		}
732 		inp->inp_route = sc->sc_route;
733 		sc->sc_route.ro_rt = NULL;
734 
735 		sin.sin_family = AF_INET;
736 		sin.sin_len = sizeof sin;
737 		sin.sin_addr = sc->sc_inc.inc_faddr;
738 		sin.sin_port = sc->sc_inc.inc_fport;
739 		bzero(sin.sin_zero, sizeof sin.sin_zero);
740 		laddr = inp->inp_laddr;
741 		if (inp->inp_laddr.s_addr == INADDR_ANY)
742 			inp->inp_laddr = sc->sc_inc.inc_laddr;
743 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
744 			inp->inp_laddr = laddr;
745 			goto abort;
746 		}
747 	}
748 
749 	tp = intotcpcb(inp);
750 	tp->t_state = TCPS_SYN_RECEIVED;
751 	tp->iss = sc->sc_iss;
752 	tp->irs = sc->sc_irs;
753 	tcp_rcvseqinit(tp);
754 	tcp_sendseqinit(tp);
755 	tp->snd_wl1 = sc->sc_irs;
756 	tp->rcv_up = sc->sc_irs + 1;
757 	tp->rcv_wnd = sc->sc_wnd;
758 	tp->rcv_adv += tp->rcv_wnd;
759 
760 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
761 	if (sc->sc_flags & SCF_NOOPT)
762 		tp->t_flags |= TF_NOOPT;
763 	if (sc->sc_flags & SCF_WINSCALE) {
764 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
765 		tp->requested_s_scale = sc->sc_requested_s_scale;
766 		tp->request_r_scale = sc->sc_request_r_scale;
767 	}
768 	if (sc->sc_flags & SCF_TIMESTAMP) {
769 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
770 		tp->ts_recent = sc->sc_tsrecent;
771 		tp->ts_recent_age = ticks;
772 	}
773 	if (sc->sc_flags & SCF_CC) {
774 		/*
775 		 * Initialization of the tcpcb for transaction;
776 		 *   set SND.WND = SEG.WND,
777 		 *   initialize CCsend and CCrecv.
778 		 */
779 		tp->t_flags |= TF_REQ_CC | TF_RCVD_CC;
780 		tp->cc_send = sc->sc_cc_send;
781 		tp->cc_recv = sc->sc_cc_recv;
782 	}
783 	if (sc->sc_flags & SCF_SACK_PERMITTED)
784 		tp->t_flags |= TF_SACK_PERMITTED;
785 
786 	tcp_mss(tp, sc->sc_peer_mss);
787 
788 	/*
789 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
790 	 */
791 	if (sc->sc_rxtslot != 0)
792 		tp->snd_cwnd = tp->t_maxseg;
793 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
794 
795 	tcpstat.tcps_accepts++;
796 	return (so);
797 
798 abort:
799 	if (so != NULL)
800 		soabort(so);
801 	return (NULL);
802 }
803 
804 /*
805  * This function gets called when we receive an ACK for a
806  * socket in the LISTEN state.  We look up the connection
807  * in the syncache, and if its there, we pull it out of
808  * the cache and turn it into a full-blown connection in
809  * the SYN-RECEIVED state.
810  */
811 int
812 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
813 		struct mbuf *m)
814 {
815 	struct syncache *sc;
816 	struct syncache_head *sch;
817 	struct socket *so;
818 
819 	sc = syncache_lookup(inc, &sch);
820 	if (sc == NULL) {
821 		/*
822 		 * There is no syncache entry, so see if this ACK is
823 		 * a returning syncookie.  To do this, first:
824 		 *  A. See if this socket has had a syncache entry dropped in
825 		 *     the past.  We don't want to accept a bogus syncookie
826 		 *     if we've never received a SYN.
827 		 *  B. check that the syncookie is valid.  If it is, then
828 		 *     cobble up a fake syncache entry, and return.
829 		 */
830 		if (!tcp_syncookies)
831 			return (0);
832 		sc = syncookie_lookup(inc, th, *sop);
833 		if (sc == NULL)
834 			return (0);
835 		sch = NULL;
836 		tcpstat.tcps_sc_recvcookie++;
837 	}
838 
839 	/*
840 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
841 	 */
842 	if (th->th_ack != sc->sc_iss + 1)
843 		return (0);
844 
845 	so = syncache_socket(sc, *sop);
846 	if (so == NULL) {
847 #if 0
848 resetandabort:
849 		/* XXXjlemon check this - is this correct? */
850 		tcp_respond(NULL, m, m, th,
851 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
852 #endif
853 		m_freem(m);			/* XXX only needed for above */
854 		tcpstat.tcps_sc_aborted++;
855 	} else {
856 		tcpstat.tcps_sc_completed++;
857 	}
858 	if (sch == NULL)
859 		syncache_free(sc);
860 	else
861 		syncache_drop(sc, sch);
862 	*sop = so;
863 	return (1);
864 }
865 
866 /*
867  * Given a LISTEN socket and an inbound SYN request, add
868  * this to the syn cache, and send back a segment:
869  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
870  * to the source.
871  *
872  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
873  * Doing so would require that we hold onto the data and deliver it
874  * to the application.  However, if we are the target of a SYN-flood
875  * DoS attack, an attacker could send data which would eventually
876  * consume all available buffer space if it were ACKed.  By not ACKing
877  * the data, we avoid this DoS scenario.
878  */
879 int
880 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
881 	     struct socket **sop, struct mbuf *m)
882 {
883 	struct tcp_syncache_percpu *syncache_percpu;
884 	struct tcpcb *tp;
885 	struct socket *so;
886 	struct syncache *sc = NULL;
887 	struct syncache_head *sch;
888 	struct mbuf *ipopts = NULL;
889 	struct rmxp_tao *taop;
890 	int win;
891 
892 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
893 	so = *sop;
894 	tp = sototcpcb(so);
895 
896 	/*
897 	 * Remember the IP options, if any.
898 	 */
899 #ifdef INET6
900 	if (!inc->inc_isipv6)
901 #endif
902 		ipopts = ip_srcroute();
903 
904 	/*
905 	 * See if we already have an entry for this connection.
906 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
907 	 *
908 	 * XXX
909 	 * The syncache should be re-initialized with the contents
910 	 * of the new SYN which may have different options.
911 	 */
912 	sc = syncache_lookup(inc, &sch);
913 	if (sc != NULL) {
914 		tcpstat.tcps_sc_dupsyn++;
915 		if (ipopts) {
916 			/*
917 			 * If we were remembering a previous source route,
918 			 * forget it and use the new one we've been given.
919 			 */
920 			if (sc->sc_ipopts)
921 				m_free(sc->sc_ipopts);
922 			sc->sc_ipopts = ipopts;
923 		}
924 		/*
925 		 * Update timestamp if present.
926 		 */
927 		if (sc->sc_flags & SCF_TIMESTAMP)
928 			sc->sc_tsrecent = to->to_tsval;
929 
930 		/* Just update the TOF_SACK_PERMITTED for now. */
931 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
932 			sc->sc_flags |= SCF_SACK_PERMITTED;
933 		else
934 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
935 
936 		/*
937 		 * PCB may have changed, pick up new values.
938 		 */
939 		sc->sc_tp = tp;
940 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
941 		if (syncache_respond(sc, m) == 0) {
942 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
943 			    sc, sc_timerq);
944 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
945 			tcpstat.tcps_sndacks++;
946 			tcpstat.tcps_sndtotal++;
947 		}
948 		*sop = NULL;
949 		return (1);
950 	}
951 
952 	/*
953 	 * This allocation is guaranteed to succeed because we
954 	 * preallocate one more syncache entry than cache_limit.
955 	 */
956 	sc = zalloc(tcp_syncache.zone);
957 
958 	/*
959 	 * Fill in the syncache values.
960 	 */
961 	sc->sc_tp = tp;
962 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
963 	sc->sc_ipopts = ipopts;
964 	sc->sc_inc.inc_fport = inc->inc_fport;
965 	sc->sc_inc.inc_lport = inc->inc_lport;
966 #ifdef INET6
967 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
968 	if (inc->inc_isipv6) {
969 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
970 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
971 		sc->sc_route6.ro_rt = NULL;
972 	} else
973 #endif
974 	{
975 		sc->sc_inc.inc_faddr = inc->inc_faddr;
976 		sc->sc_inc.inc_laddr = inc->inc_laddr;
977 		sc->sc_route.ro_rt = NULL;
978 	}
979 	sc->sc_irs = th->th_seq;
980 	sc->sc_flags = 0;
981 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
982 	if (tcp_syncookies)
983 		sc->sc_iss = syncookie_generate(sc);
984 	else
985 		sc->sc_iss = karc4random();
986 
987 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
988 	win = ssb_space(&so->so_rcv);
989 	win = imax(win, 0);
990 	win = imin(win, TCP_MAXWIN);
991 	sc->sc_wnd = win;
992 
993 	if (tcp_do_rfc1323) {
994 		/*
995 		 * A timestamp received in a SYN makes
996 		 * it ok to send timestamp requests and replies.
997 		 */
998 		if (to->to_flags & TOF_TS) {
999 			sc->sc_tsrecent = to->to_tsval;
1000 			sc->sc_flags |= SCF_TIMESTAMP;
1001 		}
1002 		if (to->to_flags & TOF_SCALE) {
1003 			int wscale = 0;
1004 
1005 			/* Compute proper scaling value from buffer space */
1006 			while (wscale < TCP_MAX_WINSHIFT &&
1007 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat)
1008 				wscale++;
1009 			sc->sc_request_r_scale = wscale;
1010 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1011 			sc->sc_flags |= SCF_WINSCALE;
1012 		}
1013 	}
1014 	if (tcp_do_rfc1644) {
1015 		/*
1016 		 * A CC or CC.new option received in a SYN makes
1017 		 * it ok to send CC in subsequent segments.
1018 		 */
1019 		if (to->to_flags & (TOF_CC | TOF_CCNEW)) {
1020 			sc->sc_cc_recv = to->to_cc;
1021 			sc->sc_cc_send = CC_INC(tcp_ccgen);
1022 			sc->sc_flags |= SCF_CC;
1023 		}
1024 	}
1025 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1026 		sc->sc_flags |= SCF_SACK_PERMITTED;
1027 	if (tp->t_flags & TF_NOOPT)
1028 		sc->sc_flags = SCF_NOOPT;
1029 
1030 	/*
1031 	 * XXX
1032 	 * We have the option here of not doing TAO (even if the segment
1033 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1034 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
1035 	 * also. However, there should be a hueristic to determine when to
1036 	 * do this, and is not present at the moment.
1037 	 */
1038 
1039 	/*
1040 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1041 	 * - compare SEG.CC against cached CC from the same host, if any.
1042 	 * - if SEG.CC > chached value, SYN must be new and is accepted
1043 	 *	immediately: save new CC in the cache, mark the socket
1044 	 *	connected, enter ESTABLISHED state, turn on flag to
1045 	 *	send a SYN in the next segment.
1046 	 *	A virtual advertised window is set in rcv_adv to
1047 	 *	initialize SWS prevention.  Then enter normal segment
1048 	 *	processing: drop SYN, process data and FIN.
1049 	 * - otherwise do a normal 3-way handshake.
1050 	 */
1051 	taop = tcp_gettaocache(&sc->sc_inc);
1052 	if (to->to_flags & TOF_CC) {
1053 		if ((tp->t_flags & TF_NOPUSH) &&
1054 		    sc->sc_flags & SCF_CC &&
1055 		    taop != NULL && taop->tao_cc != 0 &&
1056 		    CC_GT(to->to_cc, taop->tao_cc)) {
1057 			sc->sc_rxtslot = 0;
1058 			so = syncache_socket(sc, *sop);
1059 			if (so != NULL) {
1060 				taop->tao_cc = to->to_cc;
1061 				*sop = so;
1062 			}
1063 			syncache_free(sc);
1064 			return (so != NULL);
1065 		}
1066 	} else {
1067 		/*
1068 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1069 		 */
1070 		if (taop != NULL)
1071 			taop->tao_cc = 0;
1072 	}
1073 	/*
1074 	 * TAO test failed or there was no CC option,
1075 	 *    do a standard 3-way handshake.
1076 	 */
1077 	if (syncache_respond(sc, m) == 0) {
1078 		syncache_insert(sc, sch);
1079 		tcpstat.tcps_sndacks++;
1080 		tcpstat.tcps_sndtotal++;
1081 	} else {
1082 		syncache_free(sc);
1083 		tcpstat.tcps_sc_dropped++;
1084 	}
1085 	*sop = NULL;
1086 	return (1);
1087 }
1088 
1089 static int
1090 syncache_respond(struct syncache *sc, struct mbuf *m)
1091 {
1092 	u_int8_t *optp;
1093 	int optlen, error;
1094 	u_int16_t tlen, hlen, mssopt;
1095 	struct ip *ip = NULL;
1096 	struct rtentry *rt;
1097 	struct tcphdr *th;
1098 	struct ip6_hdr *ip6 = NULL;
1099 #ifdef INET6
1100 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1101 #else
1102 	const boolean_t isipv6 = FALSE;
1103 #endif
1104 
1105 	if (isipv6) {
1106 		rt = tcp_rtlookup6(&sc->sc_inc);
1107 		if (rt != NULL)
1108 			mssopt = rt->rt_ifp->if_mtu -
1109 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1110 		else
1111 			mssopt = tcp_v6mssdflt;
1112 		hlen = sizeof(struct ip6_hdr);
1113 	} else {
1114 		rt = tcp_rtlookup(&sc->sc_inc);
1115 		if (rt != NULL)
1116 			mssopt = rt->rt_ifp->if_mtu -
1117 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1118 		else
1119 			mssopt = tcp_mssdflt;
1120 		hlen = sizeof(struct ip);
1121 	}
1122 
1123 	/* Compute the size of the TCP options. */
1124 	if (sc->sc_flags & SCF_NOOPT) {
1125 		optlen = 0;
1126 	} else {
1127 		optlen = TCPOLEN_MAXSEG +
1128 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1129 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1130 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0) +
1131 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1132 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1133 	}
1134 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1135 
1136 	/*
1137 	 * XXX
1138 	 * assume that the entire packet will fit in a header mbuf
1139 	 */
1140 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1141 
1142 	/*
1143 	 * XXX shouldn't this reuse the mbuf if possible ?
1144 	 * Create the IP+TCP header from scratch.
1145 	 */
1146 	if (m)
1147 		m_freem(m);
1148 
1149 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1150 	if (m == NULL)
1151 		return (ENOBUFS);
1152 	m->m_data += max_linkhdr;
1153 	m->m_len = tlen;
1154 	m->m_pkthdr.len = tlen;
1155 	m->m_pkthdr.rcvif = NULL;
1156 
1157 	if (isipv6) {
1158 		ip6 = mtod(m, struct ip6_hdr *);
1159 		ip6->ip6_vfc = IPV6_VERSION;
1160 		ip6->ip6_nxt = IPPROTO_TCP;
1161 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1162 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1163 		ip6->ip6_plen = htons(tlen - hlen);
1164 		/* ip6_hlim is set after checksum */
1165 		/* ip6_flow = ??? */
1166 
1167 		th = (struct tcphdr *)(ip6 + 1);
1168 	} else {
1169 		ip = mtod(m, struct ip *);
1170 		ip->ip_v = IPVERSION;
1171 		ip->ip_hl = sizeof(struct ip) >> 2;
1172 		ip->ip_len = tlen;
1173 		ip->ip_id = 0;
1174 		ip->ip_off = 0;
1175 		ip->ip_sum = 0;
1176 		ip->ip_p = IPPROTO_TCP;
1177 		ip->ip_src = sc->sc_inc.inc_laddr;
1178 		ip->ip_dst = sc->sc_inc.inc_faddr;
1179 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1180 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1181 
1182 		/*
1183 		 * See if we should do MTU discovery.  Route lookups are
1184 		 * expensive, so we will only unset the DF bit if:
1185 		 *
1186 		 *	1) path_mtu_discovery is disabled
1187 		 *	2) the SCF_UNREACH flag has been set
1188 		 */
1189 		if (path_mtu_discovery
1190 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1191 		       ip->ip_off |= IP_DF;
1192 		}
1193 
1194 		th = (struct tcphdr *)(ip + 1);
1195 	}
1196 	th->th_sport = sc->sc_inc.inc_lport;
1197 	th->th_dport = sc->sc_inc.inc_fport;
1198 
1199 	th->th_seq = htonl(sc->sc_iss);
1200 	th->th_ack = htonl(sc->sc_irs + 1);
1201 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1202 	th->th_x2 = 0;
1203 	th->th_flags = TH_SYN | TH_ACK;
1204 	th->th_win = htons(sc->sc_wnd);
1205 	th->th_urp = 0;
1206 
1207 	/* Tack on the TCP options. */
1208 	if (optlen == 0)
1209 		goto no_options;
1210 	optp = (u_int8_t *)(th + 1);
1211 	*optp++ = TCPOPT_MAXSEG;
1212 	*optp++ = TCPOLEN_MAXSEG;
1213 	*optp++ = (mssopt >> 8) & 0xff;
1214 	*optp++ = mssopt & 0xff;
1215 
1216 	if (sc->sc_flags & SCF_WINSCALE) {
1217 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1218 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1219 		    sc->sc_request_r_scale);
1220 		optp += 4;
1221 	}
1222 
1223 	if (sc->sc_flags & SCF_TIMESTAMP) {
1224 		u_int32_t *lp = (u_int32_t *)(optp);
1225 
1226 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1227 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1228 		*lp++ = htonl(ticks);
1229 		*lp   = htonl(sc->sc_tsrecent);
1230 		optp += TCPOLEN_TSTAMP_APPA;
1231 	}
1232 
1233 	/*
1234 	 * Send CC and CC.echo if we received CC from our peer.
1235 	 */
1236 	if (sc->sc_flags & SCF_CC) {
1237 		u_int32_t *lp = (u_int32_t *)(optp);
1238 
1239 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1240 		*lp++ = htonl(sc->sc_cc_send);
1241 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1242 		*lp   = htonl(sc->sc_cc_recv);
1243 		optp += TCPOLEN_CC_APPA * 2;
1244 	}
1245 
1246 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1247 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1248 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1249 	}
1250 
1251 no_options:
1252 	if (isipv6) {
1253 		struct route_in6 *ro6 = &sc->sc_route6;
1254 
1255 		th->th_sum = 0;
1256 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1257 		ip6->ip6_hlim = in6_selecthlim(NULL,
1258 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1259 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1260 				sc->sc_tp->t_inpcb);
1261 	} else {
1262 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1263 				       htons(tlen - hlen + IPPROTO_TCP));
1264 		m->m_pkthdr.csum_flags = CSUM_TCP;
1265 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1266 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1267 				sc->sc_tp->t_inpcb);
1268 	}
1269 	return (error);
1270 }
1271 
1272 /*
1273  * cookie layers:
1274  *
1275  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1276  *	| peer iss                                                      |
1277  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1278  *	|                     0                       |(A)|             |
1279  * (A): peer mss index
1280  */
1281 
1282 /*
1283  * The values below are chosen to minimize the size of the tcp_secret
1284  * table, as well as providing roughly a 16 second lifetime for the cookie.
1285  */
1286 
1287 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1288 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1289 
1290 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1291 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1292 #define SYNCOOKIE_TIMEOUT \
1293     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1294 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1295 
1296 static struct {
1297 	u_int32_t	ts_secbits[4];
1298 	u_int		ts_expire;
1299 } tcp_secret[SYNCOOKIE_NSECRETS];
1300 
1301 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1302 
1303 static MD5_CTX syn_ctx;
1304 
1305 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1306 
1307 struct md5_add {
1308 	u_int32_t laddr, faddr;
1309 	u_int32_t secbits[4];
1310 	u_int16_t lport, fport;
1311 };
1312 
1313 #ifdef CTASSERT
1314 CTASSERT(sizeof(struct md5_add) == 28);
1315 #endif
1316 
1317 /*
1318  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1319  * original SYN was accepted, the connection is established.  The second
1320  * SYN is inflight, and if it arrives with an ISN that falls within the
1321  * receive window, the connection is killed.
1322  *
1323  * However, since cookies have other problems, this may not be worth
1324  * worrying about.
1325  */
1326 
1327 static u_int32_t
1328 syncookie_generate(struct syncache *sc)
1329 {
1330 	u_int32_t md5_buffer[4];
1331 	u_int32_t data;
1332 	int idx, i;
1333 	struct md5_add add;
1334 #ifdef INET6
1335 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1336 #else
1337 	const boolean_t isipv6 = FALSE;
1338 #endif
1339 
1340 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1341 	if (tcp_secret[idx].ts_expire < ticks) {
1342 		for (i = 0; i < 4; i++)
1343 			tcp_secret[idx].ts_secbits[i] = karc4random();
1344 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1345 	}
1346 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1347 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1348 			break;
1349 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1350 	data ^= sc->sc_irs;				/* peer's iss */
1351 	MD5Init(&syn_ctx);
1352 	if (isipv6) {
1353 		MD5Add(sc->sc_inc.inc6_laddr);
1354 		MD5Add(sc->sc_inc.inc6_faddr);
1355 		add.laddr = 0;
1356 		add.faddr = 0;
1357 	} else {
1358 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1359 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1360 	}
1361 	add.lport = sc->sc_inc.inc_lport;
1362 	add.fport = sc->sc_inc.inc_fport;
1363 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1364 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1365 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1366 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1367 	MD5Add(add);
1368 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1369 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1370 	return (data);
1371 }
1372 
1373 static struct syncache *
1374 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1375 {
1376 	u_int32_t md5_buffer[4];
1377 	struct syncache *sc;
1378 	u_int32_t data;
1379 	int wnd, idx;
1380 	struct md5_add add;
1381 
1382 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1383 	idx = data & SYNCOOKIE_WNDMASK;
1384 	if (tcp_secret[idx].ts_expire < ticks ||
1385 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1386 		return (NULL);
1387 	MD5Init(&syn_ctx);
1388 #ifdef INET6
1389 	if (inc->inc_isipv6) {
1390 		MD5Add(inc->inc6_laddr);
1391 		MD5Add(inc->inc6_faddr);
1392 		add.laddr = 0;
1393 		add.faddr = 0;
1394 	} else
1395 #endif
1396 	{
1397 		add.laddr = inc->inc_laddr.s_addr;
1398 		add.faddr = inc->inc_faddr.s_addr;
1399 	}
1400 	add.lport = inc->inc_lport;
1401 	add.fport = inc->inc_fport;
1402 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1403 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1404 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1405 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1406 	MD5Add(add);
1407 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1408 	data ^= md5_buffer[0];
1409 	if (data & ~SYNCOOKIE_DATAMASK)
1410 		return (NULL);
1411 	data = data >> SYNCOOKIE_WNDBITS;
1412 
1413 	/*
1414 	 * This allocation is guaranteed to succeed because we
1415 	 * preallocate one more syncache entry than cache_limit.
1416 	 */
1417 	sc = zalloc(tcp_syncache.zone);
1418 
1419 	/*
1420 	 * Fill in the syncache values.
1421 	 * XXX duplicate code from syncache_add
1422 	 */
1423 	sc->sc_ipopts = NULL;
1424 	sc->sc_inc.inc_fport = inc->inc_fport;
1425 	sc->sc_inc.inc_lport = inc->inc_lport;
1426 #ifdef INET6
1427 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1428 	if (inc->inc_isipv6) {
1429 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1430 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1431 		sc->sc_route6.ro_rt = NULL;
1432 	} else
1433 #endif
1434 	{
1435 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1436 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1437 		sc->sc_route.ro_rt = NULL;
1438 	}
1439 	sc->sc_irs = th->th_seq - 1;
1440 	sc->sc_iss = th->th_ack - 1;
1441 	wnd = ssb_space(&so->so_rcv);
1442 	wnd = imax(wnd, 0);
1443 	wnd = imin(wnd, TCP_MAXWIN);
1444 	sc->sc_wnd = wnd;
1445 	sc->sc_flags = 0;
1446 	sc->sc_rxtslot = 0;
1447 	sc->sc_peer_mss = tcp_msstab[data];
1448 	return (sc);
1449 }
1450