1 /* 2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved. 4 * 5 * This code is derived from software contributed to The DragonFly Project 6 * by Jeffrey M. Hsu. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of The DragonFly Project nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific, prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * All advertising materials mentioning features or use of this software 36 * must display the following acknowledgement: 37 * This product includes software developed by Jeffrey M. Hsu. 38 * 39 * Copyright (c) 2001 Networks Associates Technologies, Inc. 40 * All rights reserved. 41 * 42 * This software was developed for the FreeBSD Project by Jonathan Lemon 43 * and NAI Labs, the Security Research Division of Network Associates, Inc. 44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the 45 * DARPA CHATS research program. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. The name of the author may not be used to endorse or promote 56 * products derived from this software without specific prior written 57 * permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $ 72 */ 73 74 #include "opt_inet.h" 75 #include "opt_inet6.h" 76 #include "opt_ipsec.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/sysctl.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/md5.h> 85 #include <sys/proc.h> /* for proc0 declaration */ 86 #include <sys/random.h> 87 #include <sys/socket.h> 88 #include <sys/socketvar.h> 89 #include <sys/in_cksum.h> 90 91 #include <sys/msgport2.h> 92 #include <net/netmsg2.h> 93 #include <net/netisr2.h> 94 95 #include <net/if.h> 96 #include <net/route.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/ip.h> 101 #include <netinet/in_var.h> 102 #include <netinet/in_pcb.h> 103 #include <netinet/ip_var.h> 104 #include <netinet/ip6.h> 105 #ifdef INET6 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #endif 109 #include <netinet6/ip6_var.h> 110 #include <netinet6/in6_pcb.h> 111 #include <netinet/tcp.h> 112 #include <netinet/tcp_fsm.h> 113 #include <netinet/tcp_seq.h> 114 #include <netinet/tcp_timer.h> 115 #include <netinet/tcp_timer2.h> 116 #include <netinet/tcp_var.h> 117 #include <netinet6/tcp6_var.h> 118 119 #ifdef IPSEC 120 #include <netinet6/ipsec.h> 121 #ifdef INET6 122 #include <netinet6/ipsec6.h> 123 #endif 124 #include <netproto/key/key.h> 125 #endif /*IPSEC*/ 126 127 #ifdef FAST_IPSEC 128 #include <netproto/ipsec/ipsec.h> 129 #ifdef INET6 130 #include <netproto/ipsec/ipsec6.h> 131 #endif 132 #include <netproto/ipsec/key.h> 133 #define IPSEC 134 #endif /*FAST_IPSEC*/ 135 136 static int tcp_syncookies = 1; 137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW, 138 &tcp_syncookies, 0, 139 "Use TCP SYN cookies if the syncache overflows"); 140 141 static void syncache_drop(struct syncache *, struct syncache_head *); 142 static void syncache_free(struct syncache *); 143 static void syncache_insert(struct syncache *, struct syncache_head *); 144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **); 145 static int syncache_respond(struct syncache *, struct mbuf *); 146 static struct socket *syncache_socket(struct syncache *, struct socket *, 147 struct mbuf *); 148 static void syncache_timer(void *); 149 static u_int32_t syncookie_generate(struct syncache *); 150 static struct syncache *syncookie_lookup(struct in_conninfo *, 151 struct tcphdr *, struct socket *); 152 153 /* 154 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies. 155 * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds 156 * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that 157 * the user has given up attempting to connect by then. 158 */ 159 #define SYNCACHE_MAXREXMTS 4 160 161 /* Arbitrary values */ 162 #define TCP_SYNCACHE_HASHSIZE 512 163 #define TCP_SYNCACHE_BUCKETLIMIT 30 164 165 struct netmsg_sc_timer { 166 struct netmsg_base base; 167 struct msgrec *nm_mrec; /* back pointer to containing msgrec */ 168 }; 169 170 struct msgrec { 171 struct netmsg_sc_timer msg; 172 lwkt_port_t port; /* constant after init */ 173 int slot; /* constant after init */ 174 }; 175 176 static void syncache_timer_handler(netmsg_t); 177 178 struct tcp_syncache { 179 u_int hashsize; 180 u_int hashmask; 181 u_int bucket_limit; 182 u_int cache_limit; 183 u_int rexmt_limit; 184 u_int hash_secret; 185 }; 186 static struct tcp_syncache tcp_syncache; 187 188 TAILQ_HEAD(syncache_list, syncache); 189 190 struct tcp_syncache_percpu { 191 struct syncache_head *hashbase; 192 u_int cache_count; 193 struct syncache_list timerq[SYNCACHE_MAXREXMTS + 1]; 194 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1]; 195 struct msgrec mrec[SYNCACHE_MAXREXMTS + 1]; 196 }; 197 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU]; 198 199 static struct lwkt_port syncache_null_rport; 200 201 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache"); 202 203 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD, 204 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache"); 205 206 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD, 207 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache"); 208 209 /* XXX JH */ 210 #if 0 211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD, 212 &tcp_syncache.cache_count, 0, "Current number of entries in syncache"); 213 #endif 214 215 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD, 216 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable"); 217 218 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW, 219 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions"); 220 221 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache"); 222 223 #define SYNCACHE_HASH(inc, mask) \ 224 ((tcp_syncache.hash_secret ^ \ 225 (inc)->inc_faddr.s_addr ^ \ 226 ((inc)->inc_faddr.s_addr >> 16) ^ \ 227 (inc)->inc_fport ^ (inc)->inc_lport) & mask) 228 229 #define SYNCACHE_HASH6(inc, mask) \ 230 ((tcp_syncache.hash_secret ^ \ 231 (inc)->inc6_faddr.s6_addr32[0] ^ \ 232 (inc)->inc6_faddr.s6_addr32[3] ^ \ 233 (inc)->inc_fport ^ (inc)->inc_lport) & mask) 234 235 #define ENDPTS_EQ(a, b) ( \ 236 (a)->ie_fport == (b)->ie_fport && \ 237 (a)->ie_lport == (b)->ie_lport && \ 238 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \ 239 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \ 240 ) 241 242 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0) 243 244 static __inline int 245 syncache_rto(int slot) 246 { 247 if (tcp_low_rtobase) 248 return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]); 249 else 250 return (TCPTV_RTOBASE * tcp_syn_backoff[slot]); 251 } 252 253 static __inline void 254 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu, 255 struct syncache *sc, int slot) 256 { 257 int rto; 258 259 if (slot > 0) { 260 /* 261 * Record the time that we spent in SYN|ACK 262 * retransmition. 263 * 264 * Needed by RFC3390 and RFC6298. 265 */ 266 sc->sc_rxtused += syncache_rto(slot - 1); 267 } 268 sc->sc_rxtslot = slot; 269 270 rto = syncache_rto(slot); 271 sc->sc_rxttime = ticks + rto; 272 273 TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq); 274 if (!callout_active(&syncache_percpu->tt_timerq[slot])) { 275 callout_reset(&syncache_percpu->tt_timerq[slot], rto, 276 syncache_timer, &syncache_percpu->mrec[slot]); 277 } 278 } 279 280 static void 281 syncache_free(struct syncache *sc) 282 { 283 struct rtentry *rt; 284 #ifdef INET6 285 const boolean_t isipv6 = sc->sc_inc.inc_isipv6; 286 #else 287 const boolean_t isipv6 = FALSE; 288 #endif 289 290 if (sc->sc_ipopts) 291 m_free(sc->sc_ipopts); 292 293 rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt; 294 if (rt != NULL) { 295 /* 296 * If this is the only reference to a protocol-cloned 297 * route, remove it immediately. 298 */ 299 if ((rt->rt_flags & (RTF_WASCLONED | RTF_LLINFO)) == 300 RTF_WASCLONED && rt->rt_refcnt == 1) { 301 rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 302 rt_mask(rt), rt->rt_flags, NULL); 303 } 304 RTFREE(rt); 305 } 306 kfree(sc, M_SYNCACHE); 307 } 308 309 void 310 syncache_init(void) 311 { 312 int i, cpu; 313 314 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE; 315 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT; 316 tcp_syncache.cache_limit = 317 tcp_syncache.hashsize * tcp_syncache.bucket_limit; 318 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS; 319 tcp_syncache.hash_secret = karc4random(); 320 321 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize", 322 &tcp_syncache.hashsize); 323 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit", 324 &tcp_syncache.cache_limit); 325 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit", 326 &tcp_syncache.bucket_limit); 327 if (!powerof2(tcp_syncache.hashsize)) { 328 kprintf("WARNING: syncache hash size is not a power of 2.\n"); 329 tcp_syncache.hashsize = 512; /* safe default */ 330 } 331 tcp_syncache.hashmask = tcp_syncache.hashsize - 1; 332 333 lwkt_initport_replyonly_null(&syncache_null_rport); 334 335 for (cpu = 0; cpu < ncpus2; cpu++) { 336 struct tcp_syncache_percpu *syncache_percpu; 337 338 syncache_percpu = &tcp_syncache_percpu[cpu]; 339 /* Allocate the hash table. */ 340 syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head), 341 M_SYNCACHE, M_WAITOK); 342 343 /* Initialize the hash buckets. */ 344 for (i = 0; i < tcp_syncache.hashsize; i++) { 345 struct syncache_head *bucket; 346 347 bucket = &syncache_percpu->hashbase[i]; 348 TAILQ_INIT(&bucket->sch_bucket); 349 bucket->sch_length = 0; 350 } 351 352 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) { 353 /* Initialize the timer queues. */ 354 TAILQ_INIT(&syncache_percpu->timerq[i]); 355 callout_init_mp(&syncache_percpu->tt_timerq[i]); 356 357 syncache_percpu->mrec[i].slot = i; 358 syncache_percpu->mrec[i].port = netisr_cpuport(cpu); 359 syncache_percpu->mrec[i].msg.nm_mrec = 360 &syncache_percpu->mrec[i]; 361 netmsg_init(&syncache_percpu->mrec[i].msg.base, 362 NULL, &syncache_null_rport, 363 0, syncache_timer_handler); 364 } 365 } 366 } 367 368 static void 369 syncache_insert(struct syncache *sc, struct syncache_head *sch) 370 { 371 struct tcp_syncache_percpu *syncache_percpu; 372 struct syncache *sc2; 373 int i; 374 375 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid]; 376 377 /* 378 * Make sure that we don't overflow the per-bucket 379 * limit or the total cache size limit. 380 */ 381 if (sch->sch_length >= tcp_syncache.bucket_limit) { 382 /* 383 * The bucket is full, toss the oldest element. 384 */ 385 sc2 = TAILQ_FIRST(&sch->sch_bucket); 386 if (sc2->sc_tp != NULL) 387 sc2->sc_tp->ts_recent = ticks; 388 syncache_drop(sc2, sch); 389 tcpstat.tcps_sc_bucketoverflow++; 390 } else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) { 391 /* 392 * The cache is full. Toss the oldest entry in the 393 * entire cache. This is the front entry in the 394 * first non-empty timer queue with the largest 395 * timeout value. 396 */ 397 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) { 398 sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]); 399 while (sc2 && (sc2->sc_flags & SCF_MARKER)) 400 sc2 = TAILQ_NEXT(sc2, sc_timerq); 401 if (sc2 != NULL) 402 break; 403 } 404 if (sc2->sc_tp != NULL) 405 sc2->sc_tp->ts_recent = ticks; 406 syncache_drop(sc2, NULL); 407 tcpstat.tcps_sc_cacheoverflow++; 408 } 409 410 /* Initialize the entry's timer. */ 411 syncache_timeout(syncache_percpu, sc, 0); 412 413 /* Put it into the bucket. */ 414 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash); 415 sch->sch_length++; 416 syncache_percpu->cache_count++; 417 tcpstat.tcps_sc_added++; 418 } 419 420 void 421 syncache_destroy(struct tcpcb *tp, struct tcpcb *tp_inh) 422 { 423 struct tcp_syncache_percpu *syncache_percpu; 424 struct syncache_head *bucket; 425 struct syncache *sc; 426 int i; 427 428 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid]; 429 sc = NULL; 430 431 for (i = 0; i < tcp_syncache.hashsize; i++) { 432 bucket = &syncache_percpu->hashbase[i]; 433 TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) { 434 if (sc->sc_tp == tp) 435 sc->sc_tp = tp_inh; 436 } 437 } 438 } 439 440 static void 441 syncache_drop(struct syncache *sc, struct syncache_head *sch) 442 { 443 struct tcp_syncache_percpu *syncache_percpu; 444 #ifdef INET6 445 const boolean_t isipv6 = sc->sc_inc.inc_isipv6; 446 #else 447 const boolean_t isipv6 = FALSE; 448 #endif 449 450 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid]; 451 452 if (sch == NULL) { 453 if (isipv6) { 454 sch = &syncache_percpu->hashbase[ 455 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)]; 456 } else { 457 sch = &syncache_percpu->hashbase[ 458 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)]; 459 } 460 } 461 462 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash); 463 sch->sch_length--; 464 syncache_percpu->cache_count--; 465 466 /* 467 * Cleanup 468 */ 469 sc->sc_tp = NULL; 470 471 /* 472 * Remove the entry from the syncache timer/timeout queue. Note 473 * that we do not try to stop any running timer since we do not know 474 * whether the timer's message is in-transit or not. Since timeouts 475 * are fairly long, taking an unneeded callout does not detrimentally 476 * effect performance. 477 */ 478 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq); 479 480 syncache_free(sc); 481 } 482 483 /* 484 * Place a timeout message on the TCP thread's message queue. 485 * This routine runs in soft interrupt context. 486 * 487 * An invariant is for this routine to be called, the callout must 488 * have been active. Note that the callout is not deactivated until 489 * after the message has been processed in syncache_timer_handler() below. 490 */ 491 static void 492 syncache_timer(void *p) 493 { 494 struct netmsg_sc_timer *msg = p; 495 496 lwkt_sendmsg_oncpu(msg->nm_mrec->port, &msg->base.lmsg); 497 } 498 499 /* 500 * Service a timer message queued by timer expiration. 501 * This routine runs in the TCP protocol thread. 502 * 503 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted. 504 * If we have retransmitted an entry the maximum number of times, expire it. 505 * 506 * When we finish processing timed-out entries, we restart the timer if there 507 * are any entries still on the queue and deactivate it otherwise. Only after 508 * a timer has been deactivated here can it be restarted by syncache_timeout(). 509 */ 510 static void 511 syncache_timer_handler(netmsg_t msg) 512 { 513 struct tcp_syncache_percpu *syncache_percpu; 514 struct syncache *sc; 515 struct syncache marker; 516 struct syncache_list *list; 517 struct inpcb *inp; 518 int slot; 519 520 slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot; 521 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid]; 522 523 list = &syncache_percpu->timerq[slot]; 524 525 /* 526 * Use a marker to keep our place in the scan. syncache_drop() 527 * can block and cause any next pointer we cache to become stale. 528 */ 529 marker.sc_flags = SCF_MARKER; 530 TAILQ_INSERT_HEAD(list, &marker, sc_timerq); 531 532 while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) { 533 /* 534 * Move the marker. 535 */ 536 TAILQ_REMOVE(list, &marker, sc_timerq); 537 TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq); 538 539 if (sc->sc_flags & SCF_MARKER) 540 continue; 541 542 if (ticks < sc->sc_rxttime) 543 break; /* finished because timerq sorted by time */ 544 if (sc->sc_tp == NULL) { 545 syncache_drop(sc, NULL); 546 tcpstat.tcps_sc_stale++; 547 continue; 548 } 549 inp = sc->sc_tp->t_inpcb; 550 if (slot == SYNCACHE_MAXREXMTS || 551 slot >= tcp_syncache.rexmt_limit || 552 inp == NULL || 553 inp->inp_gencnt != sc->sc_inp_gencnt) { 554 syncache_drop(sc, NULL); 555 tcpstat.tcps_sc_stale++; 556 continue; 557 } 558 /* 559 * syncache_respond() may call back into the syncache to 560 * to modify another entry, so do not obtain the next 561 * entry on the timer chain until it has completed. 562 */ 563 syncache_respond(sc, NULL); 564 tcpstat.tcps_sc_retransmitted++; 565 TAILQ_REMOVE(list, sc, sc_timerq); 566 syncache_timeout(syncache_percpu, sc, slot + 1); 567 } 568 TAILQ_REMOVE(list, &marker, sc_timerq); 569 570 if (sc != NULL) { 571 callout_reset(&syncache_percpu->tt_timerq[slot], 572 sc->sc_rxttime - ticks, syncache_timer, 573 &syncache_percpu->mrec[slot]); 574 } else { 575 callout_deactivate(&syncache_percpu->tt_timerq[slot]); 576 } 577 lwkt_replymsg(&msg->base.lmsg, 0); 578 } 579 580 /* 581 * Find an entry in the syncache. 582 */ 583 struct syncache * 584 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp) 585 { 586 struct tcp_syncache_percpu *syncache_percpu; 587 struct syncache *sc; 588 struct syncache_head *sch; 589 590 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid]; 591 #ifdef INET6 592 if (inc->inc_isipv6) { 593 sch = &syncache_percpu->hashbase[ 594 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)]; 595 *schp = sch; 596 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) 597 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) 598 return (sc); 599 } else 600 #endif 601 { 602 sch = &syncache_percpu->hashbase[ 603 SYNCACHE_HASH(inc, tcp_syncache.hashmask)]; 604 *schp = sch; 605 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) { 606 #ifdef INET6 607 if (sc->sc_inc.inc_isipv6) 608 continue; 609 #endif 610 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) 611 return (sc); 612 } 613 } 614 return (NULL); 615 } 616 617 /* 618 * This function is called when we get a RST for a 619 * non-existent connection, so that we can see if the 620 * connection is in the syn cache. If it is, zap it. 621 */ 622 void 623 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th) 624 { 625 struct syncache *sc; 626 struct syncache_head *sch; 627 628 sc = syncache_lookup(inc, &sch); 629 if (sc == NULL) { 630 return; 631 } 632 /* 633 * If the RST bit is set, check the sequence number to see 634 * if this is a valid reset segment. 635 * RFC 793 page 37: 636 * In all states except SYN-SENT, all reset (RST) segments 637 * are validated by checking their SEQ-fields. A reset is 638 * valid if its sequence number is in the window. 639 * 640 * The sequence number in the reset segment is normally an 641 * echo of our outgoing acknowlegement numbers, but some hosts 642 * send a reset with the sequence number at the rightmost edge 643 * of our receive window, and we have to handle this case. 644 */ 645 if (SEQ_GEQ(th->th_seq, sc->sc_irs) && 646 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) { 647 syncache_drop(sc, sch); 648 tcpstat.tcps_sc_reset++; 649 } 650 } 651 652 void 653 syncache_badack(struct in_conninfo *inc) 654 { 655 struct syncache *sc; 656 struct syncache_head *sch; 657 658 sc = syncache_lookup(inc, &sch); 659 if (sc != NULL) { 660 syncache_drop(sc, sch); 661 tcpstat.tcps_sc_badack++; 662 } 663 } 664 665 void 666 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th) 667 { 668 struct syncache *sc; 669 struct syncache_head *sch; 670 671 /* we are called at splnet() here */ 672 sc = syncache_lookup(inc, &sch); 673 if (sc == NULL) 674 return; 675 676 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */ 677 if (ntohl(th->th_seq) != sc->sc_iss) 678 return; 679 680 /* 681 * If we've rertransmitted 3 times and this is our second error, 682 * we remove the entry. Otherwise, we allow it to continue on. 683 * This prevents us from incorrectly nuking an entry during a 684 * spurious network outage. 685 * 686 * See tcp_notify(). 687 */ 688 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) { 689 sc->sc_flags |= SCF_UNREACH; 690 return; 691 } 692 syncache_drop(sc, sch); 693 tcpstat.tcps_sc_unreach++; 694 } 695 696 /* 697 * Build a new TCP socket structure from a syncache entry. 698 * 699 * This is called from the context of the SYN+ACK 700 */ 701 static struct socket * 702 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m) 703 { 704 struct inpcb *inp = NULL, *linp; 705 struct socket *so; 706 struct tcpcb *tp, *ltp; 707 lwkt_port_t port; 708 #ifdef INET6 709 const boolean_t isipv6 = sc->sc_inc.inc_isipv6; 710 #else 711 const boolean_t isipv6 = FALSE; 712 #endif 713 struct sockaddr_in sin_faddr; 714 struct sockaddr_in6 sin6_faddr; 715 struct sockaddr *faddr; 716 717 if (isipv6) { 718 faddr = (struct sockaddr *)&sin6_faddr; 719 sin6_faddr.sin6_family = AF_INET6; 720 sin6_faddr.sin6_len = sizeof(sin6_faddr); 721 sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr; 722 sin6_faddr.sin6_port = sc->sc_inc.inc_fport; 723 sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0; 724 } else { 725 faddr = (struct sockaddr *)&sin_faddr; 726 sin_faddr.sin_family = AF_INET; 727 sin_faddr.sin_len = sizeof(sin_faddr); 728 sin_faddr.sin_addr = sc->sc_inc.inc_faddr; 729 sin_faddr.sin_port = sc->sc_inc.inc_fport; 730 bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero)); 731 } 732 733 /* 734 * Ok, create the full blown connection, and set things up 735 * as they would have been set up if we had created the 736 * connection when the SYN arrived. If we can't create 737 * the connection, abort it. 738 * 739 * Set the protocol processing port for the socket to the current 740 * port (that the connection came in on). 741 */ 742 so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr); 743 if (so == NULL) { 744 /* 745 * Drop the connection; we will send a RST if the peer 746 * retransmits the ACK, 747 */ 748 tcpstat.tcps_listendrop++; 749 goto abort; 750 } 751 752 /* 753 * Insert new socket into hash list. 754 */ 755 inp = so->so_pcb; 756 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6; 757 if (isipv6) { 758 inp->in6p_laddr = sc->sc_inc.inc6_laddr; 759 } else { 760 #ifdef INET6 761 inp->inp_vflag &= ~INP_IPV6; 762 inp->inp_vflag |= INP_IPV4; 763 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 764 #endif 765 inp->inp_laddr = sc->sc_inc.inc_laddr; 766 } 767 inp->inp_lport = sc->sc_inc.inc_lport; 768 if (in_pcbinsporthash(inp) != 0) { 769 /* 770 * Undo the assignments above if we failed to 771 * put the PCB on the hash lists. 772 */ 773 if (isipv6) 774 inp->in6p_laddr = kin6addr_any; 775 else 776 inp->inp_laddr.s_addr = INADDR_ANY; 777 inp->inp_lport = 0; 778 goto abort; 779 } 780 linp = lso->so_pcb; 781 #ifdef IPSEC 782 /* copy old policy into new socket's */ 783 if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp)) 784 kprintf("syncache_expand: could not copy policy\n"); 785 #endif 786 if (isipv6) { 787 struct in6_addr laddr6; 788 /* 789 * Inherit socket options from the listening socket. 790 * Note that in6p_inputopts are not (and should not be) 791 * copied, since it stores previously received options and is 792 * used to detect if each new option is different than the 793 * previous one and hence should be passed to a user. 794 * If we copied in6p_inputopts, a user would not be able to 795 * receive options just after calling the accept system call. 796 */ 797 inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS; 798 if (linp->in6p_outputopts) 799 inp->in6p_outputopts = 800 ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT); 801 inp->in6p_route = sc->sc_route6; 802 sc->sc_route6.ro_rt = NULL; 803 804 laddr6 = inp->in6p_laddr; 805 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) 806 inp->in6p_laddr = sc->sc_inc.inc6_laddr; 807 if (in6_pcbconnect(inp, faddr, &thread0)) { 808 inp->in6p_laddr = laddr6; 809 goto abort; 810 } 811 } else { 812 struct in_addr laddr; 813 814 inp->inp_options = ip_srcroute(m); 815 if (inp->inp_options == NULL) { 816 inp->inp_options = sc->sc_ipopts; 817 sc->sc_ipopts = NULL; 818 } 819 inp->inp_route = sc->sc_route; 820 sc->sc_route.ro_rt = NULL; 821 822 laddr = inp->inp_laddr; 823 if (inp->inp_laddr.s_addr == INADDR_ANY) 824 inp->inp_laddr = sc->sc_inc.inc_laddr; 825 if (in_pcbconnect(inp, faddr, &thread0)) { 826 inp->inp_laddr = laddr; 827 goto abort; 828 } 829 } 830 831 /* 832 * The current port should be in the context of the SYN+ACK and 833 * so should match the tcp address port. 834 */ 835 if (isipv6) { 836 port = tcp6_addrport(); 837 } else { 838 port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport, 839 inp->inp_laddr.s_addr, inp->inp_lport); 840 } 841 KASSERT(port == &curthread->td_msgport, 842 ("TCP PORT MISMATCH %p vs %p\n", port, &curthread->td_msgport)); 843 844 tp = intotcpcb(inp); 845 tp->t_state = TCPS_SYN_RECEIVED; 846 tp->iss = sc->sc_iss; 847 tp->irs = sc->sc_irs; 848 tcp_rcvseqinit(tp); 849 tcp_sendseqinit(tp); 850 tp->snd_wnd = sc->sc_sndwnd; 851 tp->snd_wl1 = sc->sc_irs; 852 tp->rcv_up = sc->sc_irs + 1; 853 tp->rcv_wnd = sc->sc_wnd; 854 tp->rcv_adv += tp->rcv_wnd; 855 856 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY); 857 if (sc->sc_flags & SCF_NOOPT) 858 tp->t_flags |= TF_NOOPT; 859 if (sc->sc_flags & SCF_WINSCALE) { 860 tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE; 861 tp->snd_scale = sc->sc_requested_s_scale; 862 tp->request_r_scale = sc->sc_request_r_scale; 863 } 864 if (sc->sc_flags & SCF_TIMESTAMP) { 865 tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP; 866 tp->ts_recent = sc->sc_tsrecent; 867 tp->ts_recent_age = ticks; 868 } 869 if (sc->sc_flags & SCF_SACK_PERMITTED) 870 tp->t_flags |= TF_SACK_PERMITTED; 871 872 #ifdef TCP_SIGNATURE 873 if (sc->sc_flags & SCF_SIGNATURE) 874 tp->t_flags |= TF_SIGNATURE; 875 #endif /* TCP_SIGNATURE */ 876 877 tp->t_rxtsyn = sc->sc_rxtused; 878 tcp_mss(tp, sc->sc_peer_mss); 879 880 /* 881 * Inherit some properties from the listen socket 882 */ 883 ltp = intotcpcb(linp); 884 tp->t_keepinit = ltp->t_keepinit; 885 tp->t_keepidle = ltp->t_keepidle; 886 tp->t_keepintvl = ltp->t_keepintvl; 887 tp->t_keepcnt = ltp->t_keepcnt; 888 tp->t_maxidle = ltp->t_maxidle; 889 890 tcp_create_timermsg(tp, port); 891 tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep); 892 893 tcpstat.tcps_accepts++; 894 return (so); 895 896 abort: 897 if (so != NULL) 898 soabort_oncpu(so); 899 return (NULL); 900 } 901 902 /* 903 * This function gets called when we receive an ACK for a 904 * socket in the LISTEN state. We look up the connection 905 * in the syncache, and if its there, we pull it out of 906 * the cache and turn it into a full-blown connection in 907 * the SYN-RECEIVED state. 908 */ 909 int 910 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop, 911 struct mbuf *m) 912 { 913 struct syncache *sc; 914 struct syncache_head *sch; 915 struct socket *so; 916 917 sc = syncache_lookup(inc, &sch); 918 if (sc == NULL) { 919 /* 920 * There is no syncache entry, so see if this ACK is 921 * a returning syncookie. To do this, first: 922 * A. See if this socket has had a syncache entry dropped in 923 * the past. We don't want to accept a bogus syncookie 924 * if we've never received a SYN. 925 * B. check that the syncookie is valid. If it is, then 926 * cobble up a fake syncache entry, and return. 927 */ 928 if (!tcp_syncookies) 929 return (0); 930 sc = syncookie_lookup(inc, th, *sop); 931 if (sc == NULL) 932 return (0); 933 sch = NULL; 934 tcpstat.tcps_sc_recvcookie++; 935 } 936 937 /* 938 * If seg contains an ACK, but not for our SYN/ACK, send a RST. 939 */ 940 if (th->th_ack != sc->sc_iss + 1) 941 return (0); 942 943 so = syncache_socket(sc, *sop, m); 944 if (so == NULL) { 945 #if 0 946 resetandabort: 947 /* XXXjlemon check this - is this correct? */ 948 tcp_respond(NULL, m, m, th, 949 th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK); 950 #endif 951 m_freem(m); /* XXX only needed for above */ 952 tcpstat.tcps_sc_aborted++; 953 } else { 954 tcpstat.tcps_sc_completed++; 955 } 956 if (sch == NULL) 957 syncache_free(sc); 958 else 959 syncache_drop(sc, sch); 960 *sop = so; 961 return (1); 962 } 963 964 /* 965 * Given a LISTEN socket and an inbound SYN request, add 966 * this to the syn cache, and send back a segment: 967 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> 968 * to the source. 969 * 970 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN. 971 * Doing so would require that we hold onto the data and deliver it 972 * to the application. However, if we are the target of a SYN-flood 973 * DoS attack, an attacker could send data which would eventually 974 * consume all available buffer space if it were ACKed. By not ACKing 975 * the data, we avoid this DoS scenario. 976 */ 977 int 978 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, 979 struct socket *so, struct mbuf *m) 980 { 981 struct tcp_syncache_percpu *syncache_percpu; 982 struct tcpcb *tp; 983 struct syncache *sc = NULL; 984 struct syncache_head *sch; 985 struct mbuf *ipopts = NULL; 986 int win; 987 988 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid]; 989 tp = sototcpcb(so); 990 991 /* 992 * Remember the IP options, if any. 993 */ 994 #ifdef INET6 995 if (!inc->inc_isipv6) 996 #endif 997 ipopts = ip_srcroute(m); 998 999 /* 1000 * See if we already have an entry for this connection. 1001 * If we do, resend the SYN,ACK, and reset the retransmit timer. 1002 * 1003 * XXX 1004 * The syncache should be re-initialized with the contents 1005 * of the new SYN which may have different options. 1006 */ 1007 sc = syncache_lookup(inc, &sch); 1008 if (sc != NULL) { 1009 tcpstat.tcps_sc_dupsyn++; 1010 if (ipopts) { 1011 /* 1012 * If we were remembering a previous source route, 1013 * forget it and use the new one we've been given. 1014 */ 1015 if (sc->sc_ipopts) 1016 m_free(sc->sc_ipopts); 1017 sc->sc_ipopts = ipopts; 1018 } 1019 /* 1020 * Update timestamp if present. 1021 */ 1022 if (sc->sc_flags & SCF_TIMESTAMP) 1023 sc->sc_tsrecent = to->to_tsval; 1024 1025 /* Just update the TOF_SACK_PERMITTED for now. */ 1026 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED)) 1027 sc->sc_flags |= SCF_SACK_PERMITTED; 1028 else 1029 sc->sc_flags &= ~SCF_SACK_PERMITTED; 1030 1031 /* Update initial send window */ 1032 sc->sc_sndwnd = th->th_win; 1033 1034 /* 1035 * PCB may have changed, pick up new values. 1036 */ 1037 sc->sc_tp = tp; 1038 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt; 1039 if (syncache_respond(sc, m) == 0) { 1040 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], 1041 sc, sc_timerq); 1042 syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot); 1043 tcpstat.tcps_sndacks++; 1044 tcpstat.tcps_sndtotal++; 1045 } 1046 return (1); 1047 } 1048 1049 /* 1050 * Fill in the syncache values. 1051 */ 1052 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO); 1053 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt; 1054 sc->sc_ipopts = ipopts; 1055 sc->sc_inc.inc_fport = inc->inc_fport; 1056 sc->sc_inc.inc_lport = inc->inc_lport; 1057 sc->sc_tp = tp; 1058 #ifdef INET6 1059 sc->sc_inc.inc_isipv6 = inc->inc_isipv6; 1060 if (inc->inc_isipv6) { 1061 sc->sc_inc.inc6_faddr = inc->inc6_faddr; 1062 sc->sc_inc.inc6_laddr = inc->inc6_laddr; 1063 sc->sc_route6.ro_rt = NULL; 1064 } else 1065 #endif 1066 { 1067 sc->sc_inc.inc_faddr = inc->inc_faddr; 1068 sc->sc_inc.inc_laddr = inc->inc_laddr; 1069 sc->sc_route.ro_rt = NULL; 1070 } 1071 sc->sc_irs = th->th_seq; 1072 sc->sc_flags = 0; 1073 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0; 1074 if (tcp_syncookies) 1075 sc->sc_iss = syncookie_generate(sc); 1076 else 1077 sc->sc_iss = karc4random(); 1078 1079 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */ 1080 win = ssb_space(&so->so_rcv); 1081 win = imax(win, 0); 1082 win = imin(win, TCP_MAXWIN); 1083 sc->sc_wnd = win; 1084 1085 if (tcp_do_rfc1323) { 1086 /* 1087 * A timestamp received in a SYN makes 1088 * it ok to send timestamp requests and replies. 1089 */ 1090 if (to->to_flags & TOF_TS) { 1091 sc->sc_tsrecent = to->to_tsval; 1092 sc->sc_flags |= SCF_TIMESTAMP; 1093 } 1094 if (to->to_flags & TOF_SCALE) { 1095 int wscale = TCP_MIN_WINSHIFT; 1096 1097 /* Compute proper scaling value from buffer space */ 1098 while (wscale < TCP_MAX_WINSHIFT && 1099 (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) { 1100 wscale++; 1101 } 1102 sc->sc_request_r_scale = wscale; 1103 sc->sc_requested_s_scale = to->to_requested_s_scale; 1104 sc->sc_flags |= SCF_WINSCALE; 1105 } 1106 } 1107 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED)) 1108 sc->sc_flags |= SCF_SACK_PERMITTED; 1109 if (tp->t_flags & TF_NOOPT) 1110 sc->sc_flags = SCF_NOOPT; 1111 #ifdef TCP_SIGNATURE 1112 /* 1113 * If listening socket requested TCP digests, and received SYN 1114 * contains the option, flag this in the syncache so that 1115 * syncache_respond() will do the right thing with the SYN+ACK. 1116 * XXX Currently we always record the option by default and will 1117 * attempt to use it in syncache_respond(). 1118 */ 1119 if (to->to_flags & TOF_SIGNATURE) 1120 sc->sc_flags = SCF_SIGNATURE; 1121 #endif /* TCP_SIGNATURE */ 1122 sc->sc_sndwnd = th->th_win; 1123 1124 if (syncache_respond(sc, m) == 0) { 1125 syncache_insert(sc, sch); 1126 tcpstat.tcps_sndacks++; 1127 tcpstat.tcps_sndtotal++; 1128 } else { 1129 syncache_free(sc); 1130 tcpstat.tcps_sc_dropped++; 1131 } 1132 return (1); 1133 } 1134 1135 static int 1136 syncache_respond(struct syncache *sc, struct mbuf *m) 1137 { 1138 u_int8_t *optp; 1139 int optlen, error; 1140 u_int16_t tlen, hlen, mssopt; 1141 struct ip *ip = NULL; 1142 struct rtentry *rt; 1143 struct tcphdr *th; 1144 struct ip6_hdr *ip6 = NULL; 1145 #ifdef INET6 1146 const boolean_t isipv6 = sc->sc_inc.inc_isipv6; 1147 #else 1148 const boolean_t isipv6 = FALSE; 1149 #endif 1150 1151 if (isipv6) { 1152 rt = tcp_rtlookup6(&sc->sc_inc); 1153 if (rt != NULL) 1154 mssopt = rt->rt_ifp->if_mtu - 1155 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)); 1156 else 1157 mssopt = tcp_v6mssdflt; 1158 hlen = sizeof(struct ip6_hdr); 1159 } else { 1160 rt = tcp_rtlookup(&sc->sc_inc); 1161 if (rt != NULL) 1162 mssopt = rt->rt_ifp->if_mtu - 1163 (sizeof(struct ip) + sizeof(struct tcphdr)); 1164 else 1165 mssopt = tcp_mssdflt; 1166 hlen = sizeof(struct ip); 1167 } 1168 1169 /* Compute the size of the TCP options. */ 1170 if (sc->sc_flags & SCF_NOOPT) { 1171 optlen = 0; 1172 } else { 1173 optlen = TCPOLEN_MAXSEG + 1174 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) + 1175 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) + 1176 ((sc->sc_flags & SCF_SACK_PERMITTED) ? 1177 TCPOLEN_SACK_PERMITTED_ALIGNED : 0); 1178 #ifdef TCP_SIGNATURE 1179 optlen += ((sc->sc_flags & SCF_SIGNATURE) ? 1180 (TCPOLEN_SIGNATURE + 2) : 0); 1181 #endif /* TCP_SIGNATURE */ 1182 } 1183 tlen = hlen + sizeof(struct tcphdr) + optlen; 1184 1185 /* 1186 * XXX 1187 * assume that the entire packet will fit in a header mbuf 1188 */ 1189 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small")); 1190 1191 /* 1192 * XXX shouldn't this reuse the mbuf if possible ? 1193 * Create the IP+TCP header from scratch. 1194 */ 1195 if (m) 1196 m_freem(m); 1197 1198 m = m_gethdr(MB_DONTWAIT, MT_HEADER); 1199 if (m == NULL) 1200 return (ENOBUFS); 1201 m->m_data += max_linkhdr; 1202 m->m_len = tlen; 1203 m->m_pkthdr.len = tlen; 1204 m->m_pkthdr.rcvif = NULL; 1205 if (tcp_prio_synack) 1206 m->m_flags |= M_PRIO; 1207 1208 if (isipv6) { 1209 ip6 = mtod(m, struct ip6_hdr *); 1210 ip6->ip6_vfc = IPV6_VERSION; 1211 ip6->ip6_nxt = IPPROTO_TCP; 1212 ip6->ip6_src = sc->sc_inc.inc6_laddr; 1213 ip6->ip6_dst = sc->sc_inc.inc6_faddr; 1214 ip6->ip6_plen = htons(tlen - hlen); 1215 /* ip6_hlim is set after checksum */ 1216 /* ip6_flow = ??? */ 1217 1218 th = (struct tcphdr *)(ip6 + 1); 1219 } else { 1220 ip = mtod(m, struct ip *); 1221 ip->ip_v = IPVERSION; 1222 ip->ip_hl = sizeof(struct ip) >> 2; 1223 ip->ip_len = tlen; 1224 ip->ip_id = 0; 1225 ip->ip_off = 0; 1226 ip->ip_sum = 0; 1227 ip->ip_p = IPPROTO_TCP; 1228 ip->ip_src = sc->sc_inc.inc_laddr; 1229 ip->ip_dst = sc->sc_inc.inc_faddr; 1230 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */ 1231 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */ 1232 1233 /* 1234 * See if we should do MTU discovery. Route lookups are 1235 * expensive, so we will only unset the DF bit if: 1236 * 1237 * 1) path_mtu_discovery is disabled 1238 * 2) the SCF_UNREACH flag has been set 1239 */ 1240 if (path_mtu_discovery 1241 && ((sc->sc_flags & SCF_UNREACH) == 0)) { 1242 ip->ip_off |= IP_DF; 1243 } 1244 1245 th = (struct tcphdr *)(ip + 1); 1246 } 1247 th->th_sport = sc->sc_inc.inc_lport; 1248 th->th_dport = sc->sc_inc.inc_fport; 1249 1250 th->th_seq = htonl(sc->sc_iss); 1251 th->th_ack = htonl(sc->sc_irs + 1); 1252 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 1253 th->th_x2 = 0; 1254 th->th_flags = TH_SYN | TH_ACK; 1255 th->th_win = htons(sc->sc_wnd); 1256 th->th_urp = 0; 1257 1258 /* Tack on the TCP options. */ 1259 if (optlen == 0) 1260 goto no_options; 1261 optp = (u_int8_t *)(th + 1); 1262 *optp++ = TCPOPT_MAXSEG; 1263 *optp++ = TCPOLEN_MAXSEG; 1264 *optp++ = (mssopt >> 8) & 0xff; 1265 *optp++ = mssopt & 0xff; 1266 1267 if (sc->sc_flags & SCF_WINSCALE) { 1268 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 | 1269 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 | 1270 sc->sc_request_r_scale); 1271 optp += 4; 1272 } 1273 1274 if (sc->sc_flags & SCF_TIMESTAMP) { 1275 u_int32_t *lp = (u_int32_t *)(optp); 1276 1277 /* Form timestamp option as shown in appendix A of RFC 1323. */ 1278 *lp++ = htonl(TCPOPT_TSTAMP_HDR); 1279 *lp++ = htonl(ticks); 1280 *lp = htonl(sc->sc_tsrecent); 1281 optp += TCPOLEN_TSTAMP_APPA; 1282 } 1283 1284 #ifdef TCP_SIGNATURE 1285 /* 1286 * Handle TCP-MD5 passive opener response. 1287 */ 1288 if (sc->sc_flags & SCF_SIGNATURE) { 1289 u_int8_t *bp = optp; 1290 int i; 1291 1292 *bp++ = TCPOPT_SIGNATURE; 1293 *bp++ = TCPOLEN_SIGNATURE; 1294 for (i = 0; i < TCP_SIGLEN; i++) 1295 *bp++ = 0; 1296 tcpsignature_compute(m, 0, optlen, 1297 optp + 2, IPSEC_DIR_OUTBOUND); 1298 *bp++ = TCPOPT_NOP; 1299 *bp++ = TCPOPT_EOL; 1300 optp += TCPOLEN_SIGNATURE + 2; 1301 } 1302 #endif /* TCP_SIGNATURE */ 1303 1304 if (sc->sc_flags & SCF_SACK_PERMITTED) { 1305 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED); 1306 optp += TCPOLEN_SACK_PERMITTED_ALIGNED; 1307 } 1308 1309 no_options: 1310 if (isipv6) { 1311 struct route_in6 *ro6 = &sc->sc_route6; 1312 1313 th->th_sum = 0; 1314 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen); 1315 ip6->ip6_hlim = in6_selecthlim(NULL, 1316 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL); 1317 error = ip6_output(m, NULL, ro6, 0, NULL, NULL, 1318 sc->sc_tp->t_inpcb); 1319 } else { 1320 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1321 htons(tlen - hlen + IPPROTO_TCP)); 1322 m->m_pkthdr.csum_flags = CSUM_TCP; 1323 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 1324 m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen; 1325 error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 1326 IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb); 1327 } 1328 return (error); 1329 } 1330 1331 /* 1332 * cookie layers: 1333 * 1334 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .| 1335 * | peer iss | 1336 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .| 1337 * | 0 |(A)| | 1338 * (A): peer mss index 1339 */ 1340 1341 /* 1342 * The values below are chosen to minimize the size of the tcp_secret 1343 * table, as well as providing roughly a 16 second lifetime for the cookie. 1344 */ 1345 1346 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */ 1347 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */ 1348 1349 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1) 1350 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS) 1351 #define SYNCOOKIE_TIMEOUT \ 1352 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT)) 1353 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK) 1354 1355 static struct { 1356 u_int32_t ts_secbits[4]; 1357 u_int ts_expire; 1358 } tcp_secret[SYNCOOKIE_NSECRETS]; 1359 1360 static int tcp_msstab[] = { 0, 536, 1460, 8960 }; 1361 1362 static MD5_CTX syn_ctx; 1363 1364 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v)) 1365 1366 struct md5_add { 1367 u_int32_t laddr, faddr; 1368 u_int32_t secbits[4]; 1369 u_int16_t lport, fport; 1370 }; 1371 1372 #ifdef CTASSERT 1373 CTASSERT(sizeof(struct md5_add) == 28); 1374 #endif 1375 1376 /* 1377 * Consider the problem of a recreated (and retransmitted) cookie. If the 1378 * original SYN was accepted, the connection is established. The second 1379 * SYN is inflight, and if it arrives with an ISN that falls within the 1380 * receive window, the connection is killed. 1381 * 1382 * However, since cookies have other problems, this may not be worth 1383 * worrying about. 1384 */ 1385 1386 static u_int32_t 1387 syncookie_generate(struct syncache *sc) 1388 { 1389 u_int32_t md5_buffer[4]; 1390 u_int32_t data; 1391 int idx, i; 1392 struct md5_add add; 1393 #ifdef INET6 1394 const boolean_t isipv6 = sc->sc_inc.inc_isipv6; 1395 #else 1396 const boolean_t isipv6 = FALSE; 1397 #endif 1398 1399 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK; 1400 if (tcp_secret[idx].ts_expire < ticks) { 1401 for (i = 0; i < 4; i++) 1402 tcp_secret[idx].ts_secbits[i] = karc4random(); 1403 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT; 1404 } 1405 for (data = NELEM(tcp_msstab) - 1; data > 0; data--) 1406 if (tcp_msstab[data] <= sc->sc_peer_mss) 1407 break; 1408 data = (data << SYNCOOKIE_WNDBITS) | idx; 1409 data ^= sc->sc_irs; /* peer's iss */ 1410 MD5Init(&syn_ctx); 1411 if (isipv6) { 1412 MD5Add(sc->sc_inc.inc6_laddr); 1413 MD5Add(sc->sc_inc.inc6_faddr); 1414 add.laddr = 0; 1415 add.faddr = 0; 1416 } else { 1417 add.laddr = sc->sc_inc.inc_laddr.s_addr; 1418 add.faddr = sc->sc_inc.inc_faddr.s_addr; 1419 } 1420 add.lport = sc->sc_inc.inc_lport; 1421 add.fport = sc->sc_inc.inc_fport; 1422 add.secbits[0] = tcp_secret[idx].ts_secbits[0]; 1423 add.secbits[1] = tcp_secret[idx].ts_secbits[1]; 1424 add.secbits[2] = tcp_secret[idx].ts_secbits[2]; 1425 add.secbits[3] = tcp_secret[idx].ts_secbits[3]; 1426 MD5Add(add); 1427 MD5Final((u_char *)&md5_buffer, &syn_ctx); 1428 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK); 1429 return (data); 1430 } 1431 1432 static struct syncache * 1433 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so) 1434 { 1435 u_int32_t md5_buffer[4]; 1436 struct syncache *sc; 1437 u_int32_t data; 1438 int wnd, idx; 1439 struct md5_add add; 1440 1441 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */ 1442 idx = data & SYNCOOKIE_WNDMASK; 1443 if (tcp_secret[idx].ts_expire < ticks || 1444 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks) 1445 return (NULL); 1446 MD5Init(&syn_ctx); 1447 #ifdef INET6 1448 if (inc->inc_isipv6) { 1449 MD5Add(inc->inc6_laddr); 1450 MD5Add(inc->inc6_faddr); 1451 add.laddr = 0; 1452 add.faddr = 0; 1453 } else 1454 #endif 1455 { 1456 add.laddr = inc->inc_laddr.s_addr; 1457 add.faddr = inc->inc_faddr.s_addr; 1458 } 1459 add.lport = inc->inc_lport; 1460 add.fport = inc->inc_fport; 1461 add.secbits[0] = tcp_secret[idx].ts_secbits[0]; 1462 add.secbits[1] = tcp_secret[idx].ts_secbits[1]; 1463 add.secbits[2] = tcp_secret[idx].ts_secbits[2]; 1464 add.secbits[3] = tcp_secret[idx].ts_secbits[3]; 1465 MD5Add(add); 1466 MD5Final((u_char *)&md5_buffer, &syn_ctx); 1467 data ^= md5_buffer[0]; 1468 if (data & ~SYNCOOKIE_DATAMASK) 1469 return (NULL); 1470 data = data >> SYNCOOKIE_WNDBITS; 1471 1472 /* 1473 * Fill in the syncache values. 1474 * XXX duplicate code from syncache_add 1475 */ 1476 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO); 1477 sc->sc_ipopts = NULL; 1478 sc->sc_inc.inc_fport = inc->inc_fport; 1479 sc->sc_inc.inc_lport = inc->inc_lport; 1480 #ifdef INET6 1481 sc->sc_inc.inc_isipv6 = inc->inc_isipv6; 1482 if (inc->inc_isipv6) { 1483 sc->sc_inc.inc6_faddr = inc->inc6_faddr; 1484 sc->sc_inc.inc6_laddr = inc->inc6_laddr; 1485 sc->sc_route6.ro_rt = NULL; 1486 } else 1487 #endif 1488 { 1489 sc->sc_inc.inc_faddr = inc->inc_faddr; 1490 sc->sc_inc.inc_laddr = inc->inc_laddr; 1491 sc->sc_route.ro_rt = NULL; 1492 } 1493 sc->sc_irs = th->th_seq - 1; 1494 sc->sc_iss = th->th_ack - 1; 1495 wnd = ssb_space(&so->so_rcv); 1496 wnd = imax(wnd, 0); 1497 wnd = imin(wnd, TCP_MAXWIN); 1498 sc->sc_wnd = wnd; 1499 sc->sc_flags = 0; 1500 sc->sc_rxtslot = 0; 1501 sc->sc_peer_mss = tcp_msstab[data]; 1502 return (sc); 1503 } 1504