1 /* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $ */ 2 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/errno.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #ifndef SCOPEDROUTING 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 #endif 96 97 #include <netinet/ip6.h> 98 #include <netinet6/ip6_var.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #ifndef SCOPEDROUTING 105 #include <netinet6/in6_pcb.h> 106 #endif 107 108 #include <net/net_osdep.h> 109 110 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 111 112 /* 113 * Definitions of some costant IP6 addresses. 114 */ 115 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 116 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 117 const struct in6_addr in6addr_nodelocal_allnodes = 118 IN6ADDR_NODELOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allnodes = 120 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 121 const struct in6_addr in6addr_linklocal_allrouters = 122 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 123 124 const struct in6_addr in6mask0 = IN6MASK0; 125 const struct in6_addr in6mask32 = IN6MASK32; 126 const struct in6_addr in6mask64 = IN6MASK64; 127 const struct in6_addr in6mask96 = IN6MASK96; 128 const struct in6_addr in6mask128 = IN6MASK128; 129 130 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 131 0, 0, IN6ADDR_ANY_INIT, 0}; 132 133 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 134 struct ifnet *, struct proc *)); 135 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 136 struct sockaddr_in6 *, int)); 137 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 138 139 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 140 141 int (*faithprefix_p)(struct in6_addr *); 142 143 /* 144 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 145 * This routine does actual work. 146 */ 147 static void 148 in6_ifloop_request(int cmd, struct ifaddr *ifa) 149 { 150 struct sockaddr_in6 all1_sa; 151 struct rtentry *nrt = NULL; 152 int e; 153 154 bzero(&all1_sa, sizeof(all1_sa)); 155 all1_sa.sin6_family = AF_INET6; 156 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 157 all1_sa.sin6_addr = in6mask128; 158 159 /* 160 * We specify the address itself as the gateway, and set the 161 * RTF_LLINFO flag, so that the corresponding host route would have 162 * the flag, and thus applications that assume traditional behavior 163 * would be happy. Note that we assume the caller of the function 164 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 165 * which changes the outgoing interface to the loopback interface. 166 */ 167 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 168 (struct sockaddr *)&all1_sa, 169 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 170 if (e != 0) { 171 log(LOG_ERR, "in6_ifloop_request: " 172 "%s operation failed for %s (errno=%d)\n", 173 cmd == RTM_ADD ? "ADD" : "DELETE", 174 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 175 e); 176 } 177 178 /* 179 * Make sure rt_ifa be equal to IFA, the second argument of the 180 * function. 181 * We need this because when we refer to rt_ifa->ia6_flags in 182 * ip6_input, we assume that the rt_ifa points to the address instead 183 * of the loopback address. 184 */ 185 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 186 IFAFREE(nrt->rt_ifa); 187 IFAREF(ifa); 188 nrt->rt_ifa = ifa; 189 } 190 191 /* 192 * Report the addition/removal of the address to the routing socket. 193 * XXX: since we called rtinit for a p2p interface with a destination, 194 * we end up reporting twice in such a case. Should we rather 195 * omit the second report? 196 */ 197 if (nrt) { 198 rt_newaddrmsg(cmd, ifa, e, nrt); 199 if (cmd == RTM_DELETE) { 200 if (nrt->rt_refcnt <= 0) { 201 /* XXX: we should free the entry ourselves. */ 202 nrt->rt_refcnt++; 203 rtfree(nrt); 204 } 205 } else { 206 /* the cmd must be RTM_ADD here */ 207 nrt->rt_refcnt--; 208 } 209 } 210 } 211 212 /* 213 * Add ownaddr as loopback rtentry. We previously add the route only if 214 * necessary (ex. on a p2p link). However, since we now manage addresses 215 * separately from prefixes, we should always add the route. We can't 216 * rely on the cloning mechanism from the corresponding interface route 217 * any more. 218 */ 219 static void 220 in6_ifaddloop(struct ifaddr *ifa) 221 { 222 struct rtentry *rt; 223 224 /* If there is no loopback entry, allocate one. */ 225 rt = rtalloc1(ifa->ifa_addr, 0, 0); 226 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 227 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 228 in6_ifloop_request(RTM_ADD, ifa); 229 if (rt) 230 rt->rt_refcnt--; 231 } 232 233 /* 234 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 235 * if it exists. 236 */ 237 static void 238 in6_ifremloop(struct ifaddr *ifa) 239 { 240 struct in6_ifaddr *ia; 241 struct rtentry *rt; 242 int ia_count = 0; 243 244 /* 245 * Some of BSD variants do not remove cloned routes 246 * from an interface direct route, when removing the direct route 247 * (see comments in net/net_osdep.h). Even for variants that do remove 248 * cloned routes, they could fail to remove the cloned routes when 249 * we handle multple addresses that share a common prefix. 250 * So, we should remove the route corresponding to the deleted address 251 * regardless of the result of in6_is_ifloop_auto(). 252 */ 253 254 /* 255 * Delete the entry only if exact one ifa exists. More than one ifa 256 * can exist if we assign a same single address to multiple 257 * (probably p2p) interfaces. 258 * XXX: we should avoid such a configuration in IPv6... 259 */ 260 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 261 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 262 ia_count++; 263 if (ia_count > 1) 264 break; 265 } 266 } 267 268 if (ia_count == 1) { 269 /* 270 * Before deleting, check if a corresponding loopbacked host 271 * route surely exists. With this check, we can avoid to 272 * delete an interface direct route whose destination is same 273 * as the address being removed. This can happen when remofing 274 * a subnet-router anycast address on an interface attahced 275 * to a shared medium. 276 */ 277 rt = rtalloc1(ifa->ifa_addr, 0, 0); 278 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 279 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 280 rt->rt_refcnt--; 281 in6_ifloop_request(RTM_DELETE, ifa); 282 } 283 } 284 } 285 286 int 287 in6_ifindex2scopeid(idx) 288 int idx; 289 { 290 struct ifnet *ifp; 291 struct ifaddr *ifa; 292 struct sockaddr_in6 *sin6; 293 294 if (idx < 0 || if_index < idx) 295 return -1; 296 ifp = ifindex2ifnet[idx]; 297 298 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 299 { 300 if (ifa->ifa_addr->sa_family != AF_INET6) 301 continue; 302 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 303 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 304 return sin6->sin6_scope_id & 0xffff; 305 } 306 307 return -1; 308 } 309 310 int 311 in6_mask2len(mask, lim0) 312 struct in6_addr *mask; 313 u_char *lim0; 314 { 315 int x = 0, y; 316 u_char *lim = lim0, *p; 317 318 if (lim0 == NULL || 319 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 320 lim = (u_char *)mask + sizeof(*mask); 321 for (p = (u_char *)mask; p < lim; x++, p++) { 322 if (*p != 0xff) 323 break; 324 } 325 y = 0; 326 if (p < lim) { 327 for (y = 0; y < 8; y++) { 328 if ((*p & (0x80 >> y)) == 0) 329 break; 330 } 331 } 332 333 /* 334 * when the limit pointer is given, do a stricter check on the 335 * remaining bits. 336 */ 337 if (p < lim) { 338 if (y != 0 && (*p & (0x00ff >> y)) != 0) 339 return(-1); 340 for (p = p + 1; p < lim; p++) 341 if (*p != 0) 342 return(-1); 343 } 344 345 return x * 8 + y; 346 } 347 348 void 349 in6_len2mask(mask, len) 350 struct in6_addr *mask; 351 int len; 352 { 353 int i; 354 355 bzero(mask, sizeof(*mask)); 356 for (i = 0; i < len / 8; i++) 357 mask->s6_addr8[i] = 0xff; 358 if (len % 8) 359 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 360 } 361 362 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 363 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 364 365 int 366 in6_control(so, cmd, data, ifp, p) 367 struct socket *so; 368 u_long cmd; 369 caddr_t data; 370 struct ifnet *ifp; 371 struct proc *p; 372 { 373 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 374 struct in6_ifaddr *ia = NULL; 375 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 376 int privileged; 377 378 privileged = 0; 379 if (p == NULL || !suser(p)) 380 privileged++; 381 382 switch (cmd) { 383 case SIOCGETSGCNT_IN6: 384 case SIOCGETMIFCNT_IN6: 385 return (mrt6_ioctl(cmd, data)); 386 } 387 388 if (ifp == NULL) 389 return(EOPNOTSUPP); 390 391 switch (cmd) { 392 case SIOCSNDFLUSH_IN6: 393 case SIOCSPFXFLUSH_IN6: 394 case SIOCSRTRFLUSH_IN6: 395 case SIOCSDEFIFACE_IN6: 396 case SIOCSIFINFO_FLAGS: 397 if (!privileged) 398 return(EPERM); 399 /* fall through */ 400 case OSIOCGIFINFO_IN6: 401 case SIOCGIFINFO_IN6: 402 case SIOCGDRLST_IN6: 403 case SIOCGPRLST_IN6: 404 case SIOCGNBRINFO_IN6: 405 case SIOCGDEFIFACE_IN6: 406 return(nd6_ioctl(cmd, data, ifp)); 407 } 408 409 switch (cmd) { 410 case SIOCSIFPREFIX_IN6: 411 case SIOCDIFPREFIX_IN6: 412 case SIOCAIFPREFIX_IN6: 413 case SIOCCIFPREFIX_IN6: 414 case SIOCSGIFPREFIX_IN6: 415 case SIOCGIFPREFIX_IN6: 416 log(LOG_NOTICE, 417 "prefix ioctls are now invalidated. " 418 "please use ifconfig.\n"); 419 return(EOPNOTSUPP); 420 } 421 422 switch (cmd) { 423 case SIOCSSCOPE6: 424 if (!privileged) 425 return(EPERM); 426 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id)); 427 break; 428 case SIOCGSCOPE6: 429 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id)); 430 break; 431 case SIOCGSCOPE6DEF: 432 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id)); 433 break; 434 } 435 436 switch (cmd) { 437 case SIOCALIFADDR: 438 case SIOCDLIFADDR: 439 if (!privileged) 440 return(EPERM); 441 /* fall through */ 442 case SIOCGLIFADDR: 443 return in6_lifaddr_ioctl(so, cmd, data, ifp, p); 444 } 445 446 /* 447 * Find address for this interface, if it exists. 448 */ 449 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 450 struct sockaddr_in6 *sa6 = 451 (struct sockaddr_in6 *)&ifra->ifra_addr; 452 453 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 454 if (sa6->sin6_addr.s6_addr16[1] == 0) { 455 /* link ID is not embedded by the user */ 456 sa6->sin6_addr.s6_addr16[1] = 457 htons(ifp->if_index); 458 } else if (sa6->sin6_addr.s6_addr16[1] != 459 htons(ifp->if_index)) { 460 return(EINVAL); /* link ID contradicts */ 461 } 462 if (sa6->sin6_scope_id) { 463 if (sa6->sin6_scope_id != 464 (u_int32_t)ifp->if_index) 465 return(EINVAL); 466 sa6->sin6_scope_id = 0; /* XXX: good way? */ 467 } 468 } 469 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 470 } 471 472 switch (cmd) { 473 case SIOCSIFADDR_IN6: 474 case SIOCSIFDSTADDR_IN6: 475 case SIOCSIFNETMASK_IN6: 476 /* 477 * Since IPv6 allows a node to assign multiple addresses 478 * on a single interface, SIOCSIFxxx ioctls are not suitable 479 * and should be unused. 480 */ 481 /* we decided to obsolete this command (20000704) */ 482 return(EINVAL); 483 484 case SIOCDIFADDR_IN6: 485 /* 486 * for IPv4, we look for existing in_ifaddr here to allow 487 * "ifconfig if0 delete" to remove first IPv4 address on the 488 * interface. For IPv6, as the spec allow multiple interface 489 * address from the day one, we consider "remove the first one" 490 * semantics to be not preferable. 491 */ 492 if (ia == NULL) 493 return(EADDRNOTAVAIL); 494 /* FALLTHROUGH */ 495 case SIOCAIFADDR_IN6: 496 /* 497 * We always require users to specify a valid IPv6 address for 498 * the corresponding operation. 499 */ 500 if (ifra->ifra_addr.sin6_family != AF_INET6 || 501 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 502 return(EAFNOSUPPORT); 503 if (!privileged) 504 return(EPERM); 505 506 break; 507 508 case SIOCGIFADDR_IN6: 509 /* This interface is basically deprecated. use SIOCGIFCONF. */ 510 /* fall through */ 511 case SIOCGIFAFLAG_IN6: 512 case SIOCGIFNETMASK_IN6: 513 case SIOCGIFDSTADDR_IN6: 514 case SIOCGIFALIFETIME_IN6: 515 /* must think again about its semantics */ 516 if (ia == NULL) 517 return(EADDRNOTAVAIL); 518 break; 519 case SIOCSIFALIFETIME_IN6: 520 { 521 struct in6_addrlifetime *lt; 522 523 if (!privileged) 524 return(EPERM); 525 if (ia == NULL) 526 return(EADDRNOTAVAIL); 527 /* sanity for overflow - beware unsigned */ 528 lt = &ifr->ifr_ifru.ifru_lifetime; 529 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 530 && lt->ia6t_vltime + time_second < time_second) { 531 return EINVAL; 532 } 533 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 534 && lt->ia6t_pltime + time_second < time_second) { 535 return EINVAL; 536 } 537 break; 538 } 539 } 540 541 switch (cmd) { 542 543 case SIOCGIFADDR_IN6: 544 ifr->ifr_addr = ia->ia_addr; 545 break; 546 547 case SIOCGIFDSTADDR_IN6: 548 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 549 return(EINVAL); 550 /* 551 * XXX: should we check if ifa_dstaddr is NULL and return 552 * an error? 553 */ 554 ifr->ifr_dstaddr = ia->ia_dstaddr; 555 break; 556 557 case SIOCGIFNETMASK_IN6: 558 ifr->ifr_addr = ia->ia_prefixmask; 559 break; 560 561 case SIOCGIFAFLAG_IN6: 562 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 563 break; 564 565 case SIOCGIFSTAT_IN6: 566 if (ifp == NULL) 567 return EINVAL; 568 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax 569 || in6_ifstat[ifp->if_index] == NULL) { 570 /* return EAFNOSUPPORT? */ 571 bzero(&ifr->ifr_ifru.ifru_stat, 572 sizeof(ifr->ifr_ifru.ifru_stat)); 573 } else 574 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index]; 575 break; 576 577 case SIOCGIFSTAT_ICMP6: 578 if (ifp == NULL) 579 return EINVAL; 580 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax || 581 icmp6_ifstat[ifp->if_index] == NULL) { 582 /* return EAFNOSUPPORT? */ 583 bzero(&ifr->ifr_ifru.ifru_stat, 584 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 585 } else 586 ifr->ifr_ifru.ifru_icmp6stat = 587 *icmp6_ifstat[ifp->if_index]; 588 break; 589 590 case SIOCGIFALIFETIME_IN6: 591 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 592 break; 593 594 case SIOCSIFALIFETIME_IN6: 595 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 596 /* for sanity */ 597 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 598 ia->ia6_lifetime.ia6t_expire = 599 time_second + ia->ia6_lifetime.ia6t_vltime; 600 } else 601 ia->ia6_lifetime.ia6t_expire = 0; 602 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 603 ia->ia6_lifetime.ia6t_preferred = 604 time_second + ia->ia6_lifetime.ia6t_pltime; 605 } else 606 ia->ia6_lifetime.ia6t_preferred = 0; 607 break; 608 609 case SIOCAIFADDR_IN6: 610 { 611 int i, error = 0; 612 struct nd_prefix pr0, *pr; 613 614 /* 615 * first, make or update the interface address structure, 616 * and link it to the list. 617 */ 618 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 619 return(error); 620 621 /* 622 * then, make the prefix on-link on the interface. 623 * XXX: we'd rather create the prefix before the address, but 624 * we need at least one address to install the corresponding 625 * interface route, so we configure the address first. 626 */ 627 628 /* 629 * convert mask to prefix length (prefixmask has already 630 * been validated in in6_update_ifa(). 631 */ 632 bzero(&pr0, sizeof(pr0)); 633 pr0.ndpr_ifp = ifp; 634 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 635 NULL); 636 if (pr0.ndpr_plen == 128) 637 break; /* we don't need to install a host route. */ 638 pr0.ndpr_prefix = ifra->ifra_addr; 639 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 640 /* apply the mask for safety. */ 641 for (i = 0; i < 4; i++) { 642 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 643 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 644 } 645 /* 646 * XXX: since we don't have an API to set prefix (not address) 647 * lifetimes, we just use the same lifetimes as addresses. 648 * The (temporarily) installed lifetimes can be overridden by 649 * later advertised RAs (when accept_rtadv is non 0), which is 650 * an intended behavior. 651 */ 652 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 653 pr0.ndpr_raf_auto = 654 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 655 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 656 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 657 658 /* add the prefix if there's one. */ 659 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 660 /* 661 * nd6_prelist_add will install the corresponding 662 * interface route. 663 */ 664 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 665 return(error); 666 if (pr == NULL) { 667 log(LOG_ERR, "nd6_prelist_add succedded but " 668 "no prefix\n"); 669 return(EINVAL); /* XXX panic here? */ 670 } 671 } 672 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 673 == NULL) { 674 /* XXX: this should not happen! */ 675 log(LOG_ERR, "in6_control: addition succeeded, but" 676 " no ifaddr\n"); 677 } else { 678 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 679 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 680 ia->ia6_ndpr = pr; 681 pr->ndpr_refcnt++; 682 683 /* 684 * If this is the first autoconf address from 685 * the prefix, create a temporary address 686 * as well (when specified). 687 */ 688 if (ip6_use_tempaddr && 689 pr->ndpr_refcnt == 1) { 690 int e; 691 if ((e = in6_tmpifadd(ia, 1)) != 0) { 692 log(LOG_NOTICE, "in6_control: " 693 "failed to create a " 694 "temporary address, " 695 "errno=%d\n", 696 e); 697 } 698 } 699 } 700 701 /* 702 * this might affect the status of autoconfigured 703 * addresses, that is, this address might make 704 * other addresses detached. 705 */ 706 pfxlist_onlink_check(); 707 } 708 break; 709 } 710 711 case SIOCDIFADDR_IN6: 712 { 713 int i = 0; 714 struct nd_prefix pr0, *pr; 715 716 /* 717 * If the address being deleted is the only one that owns 718 * the corresponding prefix, expire the prefix as well. 719 * XXX: theoretically, we don't have to warry about such 720 * relationship, since we separate the address management 721 * and the prefix management. We do this, however, to provide 722 * as much backward compatibility as possible in terms of 723 * the ioctl operation. 724 */ 725 bzero(&pr0, sizeof(pr0)); 726 pr0.ndpr_ifp = ifp; 727 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 728 NULL); 729 if (pr0.ndpr_plen == 128) 730 goto purgeaddr; 731 pr0.ndpr_prefix = ia->ia_addr; 732 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 733 for (i = 0; i < 4; i++) { 734 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 735 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 736 } 737 /* 738 * The logic of the following condition is a bit complicated. 739 * We expire the prefix when 740 * 1. the address obeys autoconfiguration and it is the 741 * only owner of the associated prefix, or 742 * 2. the address does not obey autoconf and there is no 743 * other owner of the prefix. 744 */ 745 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 746 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 747 pr->ndpr_refcnt == 1) || 748 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 749 pr->ndpr_refcnt == 0))) { 750 pr->ndpr_expire = 1; /* XXX: just for expiration */ 751 } 752 753 purgeaddr: 754 in6_purgeaddr(&ia->ia_ifa); 755 break; 756 } 757 758 default: 759 if (ifp == NULL || ifp->if_ioctl == 0) 760 return(EOPNOTSUPP); 761 return((*ifp->if_ioctl)(ifp, cmd, data)); 762 } 763 764 return(0); 765 } 766 767 /* 768 * Update parameters of an IPv6 interface address. 769 * If necessary, a new entry is created and linked into address chains. 770 * This function is separated from in6_control(). 771 * XXX: should this be performed under splnet()? 772 */ 773 int 774 in6_update_ifa(ifp, ifra, ia) 775 struct ifnet *ifp; 776 struct in6_aliasreq *ifra; 777 struct in6_ifaddr *ia; 778 { 779 int error = 0, hostIsNew = 0, plen = -1; 780 struct in6_ifaddr *oia; 781 struct sockaddr_in6 dst6; 782 struct in6_addrlifetime *lt; 783 784 /* Validate parameters */ 785 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 786 return(EINVAL); 787 788 /* 789 * The destination address for a p2p link must have a family 790 * of AF_UNSPEC or AF_INET6. 791 */ 792 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 793 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 794 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 795 return(EAFNOSUPPORT); 796 /* 797 * validate ifra_prefixmask. don't check sin6_family, netmask 798 * does not carry fields other than sin6_len. 799 */ 800 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 801 return(EINVAL); 802 /* 803 * Because the IPv6 address architecture is classless, we require 804 * users to specify a (non 0) prefix length (mask) for a new address. 805 * We also require the prefix (when specified) mask is valid, and thus 806 * reject a non-consecutive mask. 807 */ 808 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 809 return(EINVAL); 810 if (ifra->ifra_prefixmask.sin6_len != 0) { 811 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 812 (u_char *)&ifra->ifra_prefixmask + 813 ifra->ifra_prefixmask.sin6_len); 814 if (plen <= 0) 815 return(EINVAL); 816 } 817 else { 818 /* 819 * In this case, ia must not be NULL. We just use its prefix 820 * length. 821 */ 822 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 823 } 824 /* 825 * If the destination address on a p2p interface is specified, 826 * and the address is a scoped one, validate/set the scope 827 * zone identifier. 828 */ 829 dst6 = ifra->ifra_dstaddr; 830 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 831 (dst6.sin6_family == AF_INET6)) { 832 int scopeid; 833 834 #ifndef SCOPEDROUTING 835 if ((error = in6_recoverscope(&dst6, 836 &ifra->ifra_dstaddr.sin6_addr, 837 ifp)) != 0) 838 return(error); 839 #endif 840 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 841 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 842 dst6.sin6_scope_id = scopeid; 843 else if (dst6.sin6_scope_id != scopeid) 844 return(EINVAL); /* scope ID mismatch. */ 845 #ifndef SCOPEDROUTING 846 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 847 != 0) 848 return(error); 849 dst6.sin6_scope_id = 0; /* XXX */ 850 #endif 851 } 852 /* 853 * The destination address can be specified only for a p2p or a 854 * loopback interface. If specified, the corresponding prefix length 855 * must be 128. 856 */ 857 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 858 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 859 /* XXX: noisy message */ 860 log(LOG_INFO, "in6_update_ifa: a destination can be " 861 "specified for a p2p or a loopback IF only\n"); 862 return(EINVAL); 863 } 864 if (plen != 128) { 865 /* 866 * The following message seems noisy, but we dare to 867 * add it for diagnosis. 868 */ 869 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 870 "when dstaddr is specified\n"); 871 return(EINVAL); 872 } 873 } 874 /* lifetime consistency check */ 875 lt = &ifra->ifra_lifetime; 876 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 877 && lt->ia6t_vltime + time_second < time_second) { 878 return EINVAL; 879 } 880 if (lt->ia6t_vltime == 0) { 881 /* 882 * the following log might be noisy, but this is a typical 883 * configuration mistake or a tool's bug. 884 */ 885 log(LOG_INFO, 886 "in6_update_ifa: valid lifetime is 0 for %s\n", 887 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 888 } 889 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 890 && lt->ia6t_pltime + time_second < time_second) { 891 return EINVAL; 892 } 893 894 /* 895 * If this is a new address, allocate a new ifaddr and link it 896 * into chains. 897 */ 898 if (ia == NULL) { 899 hostIsNew = 1; 900 /* 901 * When in6_update_ifa() is called in a process of a received 902 * RA, it is called under splnet(). So, we should call malloc 903 * with M_NOWAIT. 904 */ 905 ia = (struct in6_ifaddr *) 906 malloc(sizeof(*ia), M_IFADDR, M_NOWAIT); 907 if (ia == NULL) 908 return (ENOBUFS); 909 bzero((caddr_t)ia, sizeof(*ia)); 910 /* Initialize the address and masks */ 911 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 912 ia->ia_addr.sin6_family = AF_INET6; 913 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 914 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 915 /* 916 * XXX: some functions expect that ifa_dstaddr is not 917 * NULL for p2p interfaces. 918 */ 919 ia->ia_ifa.ifa_dstaddr 920 = (struct sockaddr *)&ia->ia_dstaddr; 921 } else { 922 ia->ia_ifa.ifa_dstaddr = NULL; 923 } 924 ia->ia_ifa.ifa_netmask 925 = (struct sockaddr *)&ia->ia_prefixmask; 926 927 ia->ia_ifp = ifp; 928 if ((oia = in6_ifaddr) != NULL) { 929 for ( ; oia->ia_next; oia = oia->ia_next) 930 continue; 931 oia->ia_next = ia; 932 } else 933 in6_ifaddr = ia; 934 935 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 936 ifa_list); 937 } 938 939 /* set prefix mask */ 940 if (ifra->ifra_prefixmask.sin6_len) { 941 /* 942 * We prohibit changing the prefix length of an existing 943 * address, because 944 * + such an operation should be rare in IPv6, and 945 * + the operation would confuse prefix management. 946 */ 947 if (ia->ia_prefixmask.sin6_len && 948 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 949 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 950 " existing (%s) address should not be changed\n", 951 ip6_sprintf(&ia->ia_addr.sin6_addr)); 952 error = EINVAL; 953 goto unlink; 954 } 955 ia->ia_prefixmask = ifra->ifra_prefixmask; 956 } 957 958 /* 959 * If a new destination address is specified, scrub the old one and 960 * install the new destination. Note that the interface must be 961 * p2p or loopback (see the check above.) 962 */ 963 if (dst6.sin6_family == AF_INET6 && 964 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 965 &ia->ia_dstaddr.sin6_addr)) { 966 int e; 967 968 if ((ia->ia_flags & IFA_ROUTE) != 0 && 969 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 970 != 0) { 971 log(LOG_ERR, "in6_update_ifa: failed to remove " 972 "a route to the old destination: %s\n", 973 ip6_sprintf(&ia->ia_addr.sin6_addr)); 974 /* proceed anyway... */ 975 } 976 else 977 ia->ia_flags &= ~IFA_ROUTE; 978 ia->ia_dstaddr = dst6; 979 } 980 981 /* reset the interface and routing table appropriately. */ 982 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 983 goto unlink; 984 985 /* 986 * Beyond this point, we should call in6_purgeaddr upon an error, 987 * not just go to unlink. 988 */ 989 990 #if 0 /* disable this mechanism for now */ 991 /* update prefix list */ 992 if (hostIsNew && 993 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 994 int iilen; 995 996 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 997 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 998 in6_purgeaddr((struct ifaddr *)ia); 999 return(error); 1000 } 1001 } 1002 #endif 1003 1004 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1005 struct sockaddr_in6 mltaddr, mltmask; 1006 struct in6_multi *in6m; 1007 1008 if (hostIsNew) { 1009 /* 1010 * join solicited multicast addr for new host id 1011 */ 1012 struct in6_addr llsol; 1013 bzero(&llsol, sizeof(struct in6_addr)); 1014 llsol.s6_addr16[0] = htons(0xff02); 1015 llsol.s6_addr16[1] = htons(ifp->if_index); 1016 llsol.s6_addr32[1] = 0; 1017 llsol.s6_addr32[2] = htonl(1); 1018 llsol.s6_addr32[3] = 1019 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1020 llsol.s6_addr8[12] = 0xff; 1021 (void)in6_addmulti(&llsol, ifp, &error); 1022 if (error != 0) { 1023 log(LOG_WARNING, 1024 "in6_update_ifa: addmulti failed for " 1025 "%s on %s (errno=%d)\n", 1026 ip6_sprintf(&llsol), if_name(ifp), 1027 error); 1028 in6_purgeaddr((struct ifaddr *)ia); 1029 return(error); 1030 } 1031 } 1032 1033 bzero(&mltmask, sizeof(mltmask)); 1034 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1035 mltmask.sin6_family = AF_INET6; 1036 mltmask.sin6_addr = in6mask32; 1037 1038 /* 1039 * join link-local all-nodes address 1040 */ 1041 bzero(&mltaddr, sizeof(mltaddr)); 1042 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1043 mltaddr.sin6_family = AF_INET6; 1044 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1045 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1046 1047 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1048 if (in6m == NULL) { 1049 rtrequest(RTM_ADD, 1050 (struct sockaddr *)&mltaddr, 1051 (struct sockaddr *)&ia->ia_addr, 1052 (struct sockaddr *)&mltmask, 1053 RTF_UP|RTF_CLONING, /* xxx */ 1054 (struct rtentry **)0); 1055 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1056 if (error != 0) { 1057 log(LOG_WARNING, 1058 "in6_update_ifa: addmulti failed for " 1059 "%s on %s (errno=%d)\n", 1060 ip6_sprintf(&mltaddr.sin6_addr), 1061 if_name(ifp), error); 1062 } 1063 } 1064 1065 /* 1066 * join node information group address 1067 */ 1068 #define hostnamelen strlen(hostname) 1069 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1070 == 0) { 1071 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1072 if (in6m == NULL && ia != NULL) { 1073 (void)in6_addmulti(&mltaddr.sin6_addr, 1074 ifp, &error); 1075 if (error != 0) { 1076 log(LOG_WARNING, "in6_update_ifa: " 1077 "addmulti failed for " 1078 "%s on %s (errno=%d)\n", 1079 ip6_sprintf(&mltaddr.sin6_addr), 1080 if_name(ifp), error); 1081 } 1082 } 1083 } 1084 #undef hostnamelen 1085 1086 /* 1087 * join node-local all-nodes address, on loopback. 1088 * XXX: since "node-local" is obsoleted by interface-local, 1089 * we have to join the group on every interface with 1090 * some interface-boundary restriction. 1091 */ 1092 if (ifp->if_flags & IFF_LOOPBACK) { 1093 struct in6_ifaddr *ia_loop; 1094 1095 struct in6_addr loop6 = in6addr_loopback; 1096 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1097 1098 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1099 1100 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1101 if (in6m == NULL && ia_loop != NULL) { 1102 rtrequest(RTM_ADD, 1103 (struct sockaddr *)&mltaddr, 1104 (struct sockaddr *)&ia_loop->ia_addr, 1105 (struct sockaddr *)&mltmask, 1106 RTF_UP, 1107 (struct rtentry **)0); 1108 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1109 &error); 1110 if (error != 0) { 1111 log(LOG_WARNING, "in6_update_ifa: " 1112 "addmulti failed for %s on %s " 1113 "(errno=%d)\n", 1114 ip6_sprintf(&mltaddr.sin6_addr), 1115 if_name(ifp), error); 1116 } 1117 } 1118 } 1119 } 1120 1121 ia->ia6_flags = ifra->ifra_flags; 1122 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1123 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1124 1125 ia->ia6_lifetime = ifra->ifra_lifetime; 1126 /* for sanity */ 1127 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1128 ia->ia6_lifetime.ia6t_expire = 1129 time_second + ia->ia6_lifetime.ia6t_vltime; 1130 } else 1131 ia->ia6_lifetime.ia6t_expire = 0; 1132 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1133 ia->ia6_lifetime.ia6t_preferred = 1134 time_second + ia->ia6_lifetime.ia6t_pltime; 1135 } else 1136 ia->ia6_lifetime.ia6t_preferred = 0; 1137 1138 /* 1139 * make sure to initialize ND6 information. this is to workaround 1140 * issues with interfaces with IPv6 addresses, which have never brought 1141 * up. We are assuming that it is safe to nd6_ifattach multiple times. 1142 */ 1143 nd6_ifattach(ifp); 1144 1145 /* 1146 * Perform DAD, if needed. 1147 * XXX It may be of use, if we can administratively 1148 * disable DAD. 1149 */ 1150 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1151 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1152 nd6_dad_start((struct ifaddr *)ia, NULL); 1153 } 1154 1155 return(error); 1156 1157 unlink: 1158 /* 1159 * XXX: if a change of an existing address failed, keep the entry 1160 * anyway. 1161 */ 1162 if (hostIsNew) 1163 in6_unlink_ifa(ia, ifp); 1164 return(error); 1165 } 1166 1167 void 1168 in6_purgeaddr(ifa) 1169 struct ifaddr *ifa; 1170 { 1171 struct ifnet *ifp = ifa->ifa_ifp; 1172 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1173 1174 /* stop DAD processing */ 1175 nd6_dad_stop(ifa); 1176 1177 /* 1178 * delete route to the destination of the address being purged. 1179 * The interface must be p2p or loopback in this case. 1180 */ 1181 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1182 int e; 1183 1184 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1185 != 0) { 1186 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1187 "a route to the p2p destination: %s on %s, " 1188 "errno=%d\n", 1189 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1190 e); 1191 /* proceed anyway... */ 1192 } 1193 else 1194 ia->ia_flags &= ~IFA_ROUTE; 1195 } 1196 1197 /* Remove ownaddr's loopback rtentry, if it exists. */ 1198 in6_ifremloop(&(ia->ia_ifa)); 1199 1200 if (ifp->if_flags & IFF_MULTICAST) { 1201 /* 1202 * delete solicited multicast addr for deleting host id 1203 */ 1204 struct in6_multi *in6m; 1205 struct in6_addr llsol; 1206 bzero(&llsol, sizeof(struct in6_addr)); 1207 llsol.s6_addr16[0] = htons(0xff02); 1208 llsol.s6_addr16[1] = htons(ifp->if_index); 1209 llsol.s6_addr32[1] = 0; 1210 llsol.s6_addr32[2] = htonl(1); 1211 llsol.s6_addr32[3] = 1212 ia->ia_addr.sin6_addr.s6_addr32[3]; 1213 llsol.s6_addr8[12] = 0xff; 1214 1215 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1216 if (in6m) 1217 in6_delmulti(in6m); 1218 } 1219 1220 in6_unlink_ifa(ia, ifp); 1221 } 1222 1223 static void 1224 in6_unlink_ifa(ia, ifp) 1225 struct in6_ifaddr *ia; 1226 struct ifnet *ifp; 1227 { 1228 int plen, iilen; 1229 struct in6_ifaddr *oia; 1230 int s = splnet(); 1231 1232 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1233 1234 oia = ia; 1235 if (oia == (ia = in6_ifaddr)) 1236 in6_ifaddr = ia->ia_next; 1237 else { 1238 while (ia->ia_next && (ia->ia_next != oia)) 1239 ia = ia->ia_next; 1240 if (ia->ia_next) 1241 ia->ia_next = oia->ia_next; 1242 else { 1243 /* search failed */ 1244 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1245 } 1246 } 1247 1248 if (oia->ia6_ifpr) { /* check for safety */ 1249 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1250 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1251 in6_prefix_remove_ifid(iilen, oia); 1252 } 1253 1254 /* 1255 * When an autoconfigured address is being removed, release the 1256 * reference to the base prefix. Also, since the release might 1257 * affect the status of other (detached) addresses, call 1258 * pfxlist_onlink_check(). 1259 */ 1260 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1261 if (oia->ia6_ndpr == NULL) { 1262 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1263 "%p has no prefix\n", oia); 1264 } else { 1265 oia->ia6_ndpr->ndpr_refcnt--; 1266 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1267 oia->ia6_ndpr = NULL; 1268 } 1269 1270 pfxlist_onlink_check(); 1271 } 1272 1273 /* 1274 * release another refcnt for the link from in6_ifaddr. 1275 * Note that we should decrement the refcnt at least once for all *BSD. 1276 */ 1277 IFAFREE(&oia->ia_ifa); 1278 1279 splx(s); 1280 } 1281 1282 void 1283 in6_purgeif(ifp) 1284 struct ifnet *ifp; 1285 { 1286 struct ifaddr *ifa, *nifa; 1287 1288 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1289 { 1290 nifa = TAILQ_NEXT(ifa, ifa_list); 1291 if (ifa->ifa_addr->sa_family != AF_INET6) 1292 continue; 1293 in6_purgeaddr(ifa); 1294 } 1295 1296 in6_ifdetach(ifp); 1297 } 1298 1299 /* 1300 * SIOC[GAD]LIFADDR. 1301 * SIOCGLIFADDR: get first address. (?) 1302 * SIOCGLIFADDR with IFLR_PREFIX: 1303 * get first address that matches the specified prefix. 1304 * SIOCALIFADDR: add the specified address. 1305 * SIOCALIFADDR with IFLR_PREFIX: 1306 * add the specified prefix, filling hostid part from 1307 * the first link-local address. prefixlen must be <= 64. 1308 * SIOCDLIFADDR: delete the specified address. 1309 * SIOCDLIFADDR with IFLR_PREFIX: 1310 * delete the first address that matches the specified prefix. 1311 * return values: 1312 * EINVAL on invalid parameters 1313 * EADDRNOTAVAIL on prefix match failed/specified address not found 1314 * other values may be returned from in6_ioctl() 1315 * 1316 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1317 * this is to accomodate address naming scheme other than RFC2374, 1318 * in the future. 1319 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1320 * address encoding scheme. (see figure on page 8) 1321 */ 1322 static int 1323 in6_lifaddr_ioctl(so, cmd, data, ifp, p) 1324 struct socket *so; 1325 u_long cmd; 1326 caddr_t data; 1327 struct ifnet *ifp; 1328 struct proc *p; 1329 { 1330 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1331 struct ifaddr *ifa; 1332 struct sockaddr *sa; 1333 1334 /* sanity checks */ 1335 if (!data || !ifp) { 1336 panic("invalid argument to in6_lifaddr_ioctl"); 1337 /*NOTRECHED*/ 1338 } 1339 1340 switch (cmd) { 1341 case SIOCGLIFADDR: 1342 /* address must be specified on GET with IFLR_PREFIX */ 1343 if ((iflr->flags & IFLR_PREFIX) == 0) 1344 break; 1345 /* FALLTHROUGH */ 1346 case SIOCALIFADDR: 1347 case SIOCDLIFADDR: 1348 /* address must be specified on ADD and DELETE */ 1349 sa = (struct sockaddr *)&iflr->addr; 1350 if (sa->sa_family != AF_INET6) 1351 return EINVAL; 1352 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1353 return EINVAL; 1354 /* XXX need improvement */ 1355 sa = (struct sockaddr *)&iflr->dstaddr; 1356 if (sa->sa_family && sa->sa_family != AF_INET6) 1357 return EINVAL; 1358 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1359 return EINVAL; 1360 break; 1361 default: /* shouldn't happen */ 1362 #if 0 1363 panic("invalid cmd to in6_lifaddr_ioctl"); 1364 /* NOTREACHED */ 1365 #else 1366 return EOPNOTSUPP; 1367 #endif 1368 } 1369 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1370 return EINVAL; 1371 1372 switch (cmd) { 1373 case SIOCALIFADDR: 1374 { 1375 struct in6_aliasreq ifra; 1376 struct in6_addr *hostid = NULL; 1377 int prefixlen; 1378 1379 if ((iflr->flags & IFLR_PREFIX) != 0) { 1380 struct sockaddr_in6 *sin6; 1381 1382 /* 1383 * hostid is to fill in the hostid part of the 1384 * address. hostid points to the first link-local 1385 * address attached to the interface. 1386 */ 1387 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1388 if (!ifa) 1389 return EADDRNOTAVAIL; 1390 hostid = IFA_IN6(ifa); 1391 1392 /* prefixlen must be <= 64. */ 1393 if (64 < iflr->prefixlen) 1394 return EINVAL; 1395 prefixlen = iflr->prefixlen; 1396 1397 /* hostid part must be zero. */ 1398 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1399 if (sin6->sin6_addr.s6_addr32[2] != 0 1400 || sin6->sin6_addr.s6_addr32[3] != 0) { 1401 return EINVAL; 1402 } 1403 } else 1404 prefixlen = iflr->prefixlen; 1405 1406 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1407 bzero(&ifra, sizeof(ifra)); 1408 bcopy(iflr->iflr_name, ifra.ifra_name, 1409 sizeof(ifra.ifra_name)); 1410 1411 bcopy(&iflr->addr, &ifra.ifra_addr, 1412 ((struct sockaddr *)&iflr->addr)->sa_len); 1413 if (hostid) { 1414 /* fill in hostid part */ 1415 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1416 hostid->s6_addr32[2]; 1417 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1418 hostid->s6_addr32[3]; 1419 } 1420 1421 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1422 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1423 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1424 if (hostid) { 1425 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1426 hostid->s6_addr32[2]; 1427 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1428 hostid->s6_addr32[3]; 1429 } 1430 } 1431 1432 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1433 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1434 1435 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1436 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p); 1437 } 1438 case SIOCGLIFADDR: 1439 case SIOCDLIFADDR: 1440 { 1441 struct in6_ifaddr *ia; 1442 struct in6_addr mask, candidate, match; 1443 struct sockaddr_in6 *sin6; 1444 int cmp; 1445 1446 bzero(&mask, sizeof(mask)); 1447 if (iflr->flags & IFLR_PREFIX) { 1448 /* lookup a prefix rather than address. */ 1449 in6_len2mask(&mask, iflr->prefixlen); 1450 1451 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1452 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1453 match.s6_addr32[0] &= mask.s6_addr32[0]; 1454 match.s6_addr32[1] &= mask.s6_addr32[1]; 1455 match.s6_addr32[2] &= mask.s6_addr32[2]; 1456 match.s6_addr32[3] &= mask.s6_addr32[3]; 1457 1458 /* if you set extra bits, that's wrong */ 1459 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1460 return EINVAL; 1461 1462 cmp = 1; 1463 } else { 1464 if (cmd == SIOCGLIFADDR) { 1465 /* on getting an address, take the 1st match */ 1466 cmp = 0; /* XXX */ 1467 } else { 1468 /* on deleting an address, do exact match */ 1469 in6_len2mask(&mask, 128); 1470 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1471 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1472 1473 cmp = 1; 1474 } 1475 } 1476 1477 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1478 { 1479 if (ifa->ifa_addr->sa_family != AF_INET6) 1480 continue; 1481 if (!cmp) 1482 break; 1483 1484 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1485 #ifndef SCOPEDROUTING 1486 /* 1487 * XXX: this is adhoc, but is necessary to allow 1488 * a user to specify fe80::/64 (not /10) for a 1489 * link-local address. 1490 */ 1491 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1492 candidate.s6_addr16[1] = 0; 1493 #endif 1494 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1495 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1496 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1497 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1498 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1499 break; 1500 } 1501 if (!ifa) 1502 return EADDRNOTAVAIL; 1503 ia = ifa2ia6(ifa); 1504 1505 if (cmd == SIOCGLIFADDR) { 1506 #ifndef SCOPEDROUTING 1507 struct sockaddr_in6 *s6; 1508 #endif 1509 1510 /* fill in the if_laddrreq structure */ 1511 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1512 #ifndef SCOPEDROUTING /* XXX see above */ 1513 s6 = (struct sockaddr_in6 *)&iflr->addr; 1514 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1515 s6->sin6_addr.s6_addr16[1] = 0; 1516 s6->sin6_scope_id = 1517 in6_addr2scopeid(ifp, &s6->sin6_addr); 1518 } 1519 #endif 1520 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1521 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1522 ia->ia_dstaddr.sin6_len); 1523 #ifndef SCOPEDROUTING /* XXX see above */ 1524 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1525 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1526 s6->sin6_addr.s6_addr16[1] = 0; 1527 s6->sin6_scope_id = 1528 in6_addr2scopeid(ifp, 1529 &s6->sin6_addr); 1530 } 1531 #endif 1532 } else 1533 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1534 1535 iflr->prefixlen = 1536 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1537 NULL); 1538 1539 iflr->flags = ia->ia6_flags; /* XXX */ 1540 1541 return 0; 1542 } else { 1543 struct in6_aliasreq ifra; 1544 1545 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1546 bzero(&ifra, sizeof(ifra)); 1547 bcopy(iflr->iflr_name, ifra.ifra_name, 1548 sizeof(ifra.ifra_name)); 1549 1550 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1551 ia->ia_addr.sin6_len); 1552 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1553 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1554 ia->ia_dstaddr.sin6_len); 1555 } else { 1556 bzero(&ifra.ifra_dstaddr, 1557 sizeof(ifra.ifra_dstaddr)); 1558 } 1559 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1560 ia->ia_prefixmask.sin6_len); 1561 1562 ifra.ifra_flags = ia->ia6_flags; 1563 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1564 ifp, p); 1565 } 1566 } 1567 } 1568 1569 return EOPNOTSUPP; /* just for safety */ 1570 } 1571 1572 /* 1573 * Initialize an interface's intetnet6 address 1574 * and routing table entry. 1575 */ 1576 static int 1577 in6_ifinit(ifp, ia, sin6, newhost) 1578 struct ifnet *ifp; 1579 struct in6_ifaddr *ia; 1580 struct sockaddr_in6 *sin6; 1581 int newhost; 1582 { 1583 int error = 0, plen, ifacount = 0; 1584 int s = splimp(); 1585 struct ifaddr *ifa; 1586 1587 /* 1588 * Give the interface a chance to initialize 1589 * if this is its first address, 1590 * and to validate the address if necessary. 1591 */ 1592 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1593 { 1594 if (ifa->ifa_addr == NULL) 1595 continue; /* just for safety */ 1596 if (ifa->ifa_addr->sa_family != AF_INET6) 1597 continue; 1598 ifacount++; 1599 } 1600 1601 ia->ia_addr = *sin6; 1602 1603 if (ifacount <= 1 && ifp->if_ioctl && 1604 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1605 splx(s); 1606 return(error); 1607 } 1608 splx(s); 1609 1610 ia->ia_ifa.ifa_metric = ifp->if_metric; 1611 1612 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1613 1614 /* 1615 * Special case: 1616 * If the destination address is specified for a point-to-point 1617 * interface, install a route to the destination as an interface 1618 * direct route. 1619 */ 1620 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1621 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1622 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1623 RTF_UP | RTF_HOST)) != 0) 1624 return(error); 1625 ia->ia_flags |= IFA_ROUTE; 1626 } 1627 if (plen < 128) { 1628 /* 1629 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1630 */ 1631 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1632 } 1633 1634 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1635 if (newhost) { 1636 /* set the rtrequest function to create llinfo */ 1637 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1638 in6_ifaddloop(&(ia->ia_ifa)); 1639 } 1640 1641 return(error); 1642 } 1643 1644 /* 1645 * Add an address to the list of IP6 multicast addresses for a 1646 * given interface. 1647 */ 1648 struct in6_multi * 1649 in6_addmulti(maddr6, ifp, errorp) 1650 struct in6_addr *maddr6; 1651 struct ifnet *ifp; 1652 int *errorp; 1653 { 1654 struct in6_multi *in6m; 1655 struct sockaddr_in6 sin6; 1656 struct ifmultiaddr *ifma; 1657 int s = splnet(); 1658 1659 *errorp = 0; 1660 1661 /* 1662 * Call generic routine to add membership or increment 1663 * refcount. It wants addresses in the form of a sockaddr, 1664 * so we build one here (being careful to zero the unused bytes). 1665 */ 1666 bzero(&sin6, sizeof sin6); 1667 sin6.sin6_family = AF_INET6; 1668 sin6.sin6_len = sizeof sin6; 1669 sin6.sin6_addr = *maddr6; 1670 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1671 if (*errorp) { 1672 splx(s); 1673 return 0; 1674 } 1675 1676 /* 1677 * If ifma->ifma_protospec is null, then if_addmulti() created 1678 * a new record. Otherwise, we are done. 1679 */ 1680 if (ifma->ifma_protospec != 0) 1681 return ifma->ifma_protospec; 1682 1683 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1684 at interrupt time? If so, need to fix if_addmulti. XXX */ 1685 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1686 if (in6m == NULL) { 1687 splx(s); 1688 return (NULL); 1689 } 1690 1691 bzero(in6m, sizeof *in6m); 1692 in6m->in6m_addr = *maddr6; 1693 in6m->in6m_ifp = ifp; 1694 in6m->in6m_ifma = ifma; 1695 ifma->ifma_protospec = in6m; 1696 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1697 1698 /* 1699 * Let MLD6 know that we have joined a new IP6 multicast 1700 * group. 1701 */ 1702 mld6_start_listening(in6m); 1703 splx(s); 1704 return(in6m); 1705 } 1706 1707 /* 1708 * Delete a multicast address record. 1709 */ 1710 void 1711 in6_delmulti(in6m) 1712 struct in6_multi *in6m; 1713 { 1714 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1715 int s = splnet(); 1716 1717 if (ifma->ifma_refcount == 1) { 1718 /* 1719 * No remaining claims to this record; let MLD6 know 1720 * that we are leaving the multicast group. 1721 */ 1722 mld6_stop_listening(in6m); 1723 ifma->ifma_protospec = 0; 1724 LIST_REMOVE(in6m, in6m_entry); 1725 free(in6m, M_IPMADDR); 1726 } 1727 /* XXX - should be separate API for when we have an ifma? */ 1728 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1729 splx(s); 1730 } 1731 1732 /* 1733 * Find an IPv6 interface link-local address specific to an interface. 1734 */ 1735 struct in6_ifaddr * 1736 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1737 struct ifnet *ifp; 1738 int ignoreflags; 1739 { 1740 struct ifaddr *ifa; 1741 1742 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1743 { 1744 if (ifa->ifa_addr == NULL) 1745 continue; /* just for safety */ 1746 if (ifa->ifa_addr->sa_family != AF_INET6) 1747 continue; 1748 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1749 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1750 ignoreflags) != 0) 1751 continue; 1752 break; 1753 } 1754 } 1755 1756 return((struct in6_ifaddr *)ifa); 1757 } 1758 1759 1760 /* 1761 * find the internet address corresponding to a given interface and address. 1762 */ 1763 struct in6_ifaddr * 1764 in6ifa_ifpwithaddr(ifp, addr) 1765 struct ifnet *ifp; 1766 struct in6_addr *addr; 1767 { 1768 struct ifaddr *ifa; 1769 1770 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1771 { 1772 if (ifa->ifa_addr == NULL) 1773 continue; /* just for safety */ 1774 if (ifa->ifa_addr->sa_family != AF_INET6) 1775 continue; 1776 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1777 break; 1778 } 1779 1780 return((struct in6_ifaddr *)ifa); 1781 } 1782 1783 /* 1784 * Convert IP6 address to printable (loggable) representation. 1785 */ 1786 static char digits[] = "0123456789abcdef"; 1787 static int ip6round = 0; 1788 char * 1789 ip6_sprintf(addr) 1790 const struct in6_addr *addr; 1791 { 1792 static char ip6buf[8][48]; 1793 int i; 1794 char *cp; 1795 u_short *a = (u_short *)addr; 1796 u_char *d; 1797 int dcolon = 0; 1798 1799 ip6round = (ip6round + 1) & 7; 1800 cp = ip6buf[ip6round]; 1801 1802 for (i = 0; i < 8; i++) { 1803 if (dcolon == 1) { 1804 if (*a == 0) { 1805 if (i == 7) 1806 *cp++ = ':'; 1807 a++; 1808 continue; 1809 } else 1810 dcolon = 2; 1811 } 1812 if (*a == 0) { 1813 if (dcolon == 0 && *(a + 1) == 0) { 1814 if (i == 0) 1815 *cp++ = ':'; 1816 *cp++ = ':'; 1817 dcolon = 1; 1818 } else { 1819 *cp++ = '0'; 1820 *cp++ = ':'; 1821 } 1822 a++; 1823 continue; 1824 } 1825 d = (u_char *)a; 1826 *cp++ = digits[*d >> 4]; 1827 *cp++ = digits[*d++ & 0xf]; 1828 *cp++ = digits[*d >> 4]; 1829 *cp++ = digits[*d & 0xf]; 1830 *cp++ = ':'; 1831 a++; 1832 } 1833 *--cp = 0; 1834 return(ip6buf[ip6round]); 1835 } 1836 1837 int 1838 in6_localaddr(in6) 1839 struct in6_addr *in6; 1840 { 1841 struct in6_ifaddr *ia; 1842 1843 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1844 return 1; 1845 1846 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1847 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1848 &ia->ia_prefixmask.sin6_addr)) 1849 return 1; 1850 1851 return (0); 1852 } 1853 1854 int 1855 in6_is_addr_deprecated(sa6) 1856 struct sockaddr_in6 *sa6; 1857 { 1858 struct in6_ifaddr *ia; 1859 1860 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1861 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1862 &sa6->sin6_addr) && 1863 #ifdef SCOPEDROUTING 1864 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1865 #endif 1866 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1867 return(1); /* true */ 1868 1869 /* XXX: do we still have to go thru the rest of the list? */ 1870 } 1871 1872 return(0); /* false */ 1873 } 1874 1875 /* 1876 * return length of part which dst and src are equal 1877 * hard coding... 1878 */ 1879 int 1880 in6_matchlen(src, dst) 1881 struct in6_addr *src, *dst; 1882 { 1883 int match = 0; 1884 u_char *s = (u_char *)src, *d = (u_char *)dst; 1885 u_char *lim = s + 16, r; 1886 1887 while (s < lim) 1888 if ((r = (*d++ ^ *s++)) != 0) { 1889 while (r < 128) { 1890 match++; 1891 r <<= 1; 1892 } 1893 break; 1894 } else 1895 match += 8; 1896 return match; 1897 } 1898 1899 /* XXX: to be scope conscious */ 1900 int 1901 in6_are_prefix_equal(p1, p2, len) 1902 struct in6_addr *p1, *p2; 1903 int len; 1904 { 1905 int bytelen, bitlen; 1906 1907 /* sanity check */ 1908 if (0 > len || len > 128) { 1909 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1910 len); 1911 return(0); 1912 } 1913 1914 bytelen = len / 8; 1915 bitlen = len % 8; 1916 1917 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1918 return(0); 1919 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1920 p2->s6_addr[bytelen] >> (8 - bitlen)) 1921 return(0); 1922 1923 return(1); 1924 } 1925 1926 void 1927 in6_prefixlen2mask(maskp, len) 1928 struct in6_addr *maskp; 1929 int len; 1930 { 1931 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1932 int bytelen, bitlen, i; 1933 1934 /* sanity check */ 1935 if (0 > len || len > 128) { 1936 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1937 len); 1938 return; 1939 } 1940 1941 bzero(maskp, sizeof(*maskp)); 1942 bytelen = len / 8; 1943 bitlen = len % 8; 1944 for (i = 0; i < bytelen; i++) 1945 maskp->s6_addr[i] = 0xff; 1946 if (bitlen) 1947 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1948 } 1949 1950 /* 1951 * return the best address out of the same scope 1952 */ 1953 struct in6_ifaddr * 1954 in6_ifawithscope(oifp, dst) 1955 struct ifnet *oifp; 1956 struct in6_addr *dst; 1957 { 1958 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1959 int blen = -1; 1960 struct ifaddr *ifa; 1961 struct ifnet *ifp; 1962 struct in6_ifaddr *ifa_best = NULL; 1963 1964 if (oifp == NULL) { 1965 #if 0 1966 printf("in6_ifawithscope: output interface is not specified\n"); 1967 #endif 1968 return(NULL); 1969 } 1970 1971 /* 1972 * We search for all addresses on all interfaces from the beginning. 1973 * Comparing an interface with the outgoing interface will be done 1974 * only at the final stage of tiebreaking. 1975 */ 1976 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1977 { 1978 /* 1979 * We can never take an address that breaks the scope zone 1980 * of the destination. 1981 */ 1982 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1983 continue; 1984 1985 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1986 { 1987 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1988 1989 if (ifa->ifa_addr->sa_family != AF_INET6) 1990 continue; 1991 1992 src_scope = in6_addrscope(IFA_IN6(ifa)); 1993 1994 /* 1995 * Don't use an address before completing DAD 1996 * nor a duplicated address. 1997 */ 1998 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1999 IN6_IFF_NOTREADY) 2000 continue; 2001 2002 /* XXX: is there any case to allow anycasts? */ 2003 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2004 IN6_IFF_ANYCAST) 2005 continue; 2006 2007 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2008 IN6_IFF_DETACHED) 2009 continue; 2010 2011 /* 2012 * If this is the first address we find, 2013 * keep it anyway. 2014 */ 2015 if (ifa_best == NULL) 2016 goto replace; 2017 2018 /* 2019 * ifa_best is never NULL beyond this line except 2020 * within the block labeled "replace". 2021 */ 2022 2023 /* 2024 * If ifa_best has a smaller scope than dst and 2025 * the current address has a larger one than 2026 * (or equal to) dst, always replace ifa_best. 2027 * Also, if the current address has a smaller scope 2028 * than dst, ignore it unless ifa_best also has a 2029 * smaller scope. 2030 * Consequently, after the two if-clause below, 2031 * the followings must be satisfied: 2032 * (scope(src) < scope(dst) && 2033 * scope(best) < scope(dst)) 2034 * OR 2035 * (scope(best) >= scope(dst) && 2036 * scope(src) >= scope(dst)) 2037 */ 2038 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2039 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2040 goto replace; /* (A) */ 2041 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2042 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2043 continue; /* (B) */ 2044 2045 /* 2046 * A deprecated address SHOULD NOT be used in new 2047 * communications if an alternate (non-deprecated) 2048 * address is available and has sufficient scope. 2049 * RFC 2462, Section 5.5.4. 2050 */ 2051 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2052 IN6_IFF_DEPRECATED) { 2053 /* 2054 * Ignore any deprecated addresses if 2055 * specified by configuration. 2056 */ 2057 if (!ip6_use_deprecated) 2058 continue; 2059 2060 /* 2061 * If we have already found a non-deprecated 2062 * candidate, just ignore deprecated addresses. 2063 */ 2064 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2065 == 0) 2066 continue; 2067 } 2068 2069 /* 2070 * A non-deprecated address is always preferred 2071 * to a deprecated one regardless of scopes and 2072 * address matching (Note invariants ensured by the 2073 * conditions (A) and (B) above.) 2074 */ 2075 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2076 (((struct in6_ifaddr *)ifa)->ia6_flags & 2077 IN6_IFF_DEPRECATED) == 0) 2078 goto replace; 2079 2080 /* 2081 * When we use temporary addresses described in 2082 * RFC 3041, we prefer temporary addresses to 2083 * public autoconf addresses. Again, note the 2084 * invariants from (A) and (B). Also note that we 2085 * don't have any preference between static addresses 2086 * and autoconf addresses (despite of whether or not 2087 * the latter is temporary or public.) 2088 */ 2089 if (ip6_use_tempaddr) { 2090 struct in6_ifaddr *ifat; 2091 2092 ifat = (struct in6_ifaddr *)ifa; 2093 if ((ifa_best->ia6_flags & 2094 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2095 == IN6_IFF_AUTOCONF && 2096 (ifat->ia6_flags & 2097 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2098 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2099 goto replace; 2100 } 2101 if ((ifa_best->ia6_flags & 2102 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2103 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2104 (ifat->ia6_flags & 2105 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2106 == IN6_IFF_AUTOCONF) { 2107 continue; 2108 } 2109 } 2110 2111 /* 2112 * At this point, we have two cases: 2113 * 1. we are looking at a non-deprecated address, 2114 * and ifa_best is also non-deprecated. 2115 * 2. we are looking at a deprecated address, 2116 * and ifa_best is also deprecated. 2117 * Also, we do not have to consider a case where 2118 * the scope of if_best is larger(smaller) than dst and 2119 * the scope of the current address is smaller(larger) 2120 * than dst. Such a case has already been covered. 2121 * Tiebreaking is done according to the following 2122 * items: 2123 * - the scope comparison between the address and 2124 * dst (dscopecmp) 2125 * - the scope comparison between the address and 2126 * ifa_best (bscopecmp) 2127 * - if the address match dst longer than ifa_best 2128 * (matchcmp) 2129 * - if the address is on the outgoing I/F (outI/F) 2130 * 2131 * Roughly speaking, the selection policy is 2132 * - the most important item is scope. The same scope 2133 * is best. Then search for a larger scope. 2134 * Smaller scopes are the last resort. 2135 * - A deprecated address is chosen only when we have 2136 * no address that has an enough scope, but is 2137 * prefered to any addresses of smaller scopes 2138 * (this must be already done above.) 2139 * - addresses on the outgoing I/F are preferred to 2140 * ones on other interfaces if none of above 2141 * tiebreaks. In the table below, the column "bI" 2142 * means if the best_ifa is on the outgoing 2143 * interface, and the column "sI" means if the ifa 2144 * is on the outgoing interface. 2145 * - If there is no other reasons to choose one, 2146 * longest address match against dst is considered. 2147 * 2148 * The precise decision table is as follows: 2149 * dscopecmp bscopecmp match bI oI | replace? 2150 * N/A equal N/A Y N | No (1) 2151 * N/A equal N/A N Y | Yes (2) 2152 * N/A equal larger N/A | Yes (3) 2153 * N/A equal !larger N/A | No (4) 2154 * larger larger N/A N/A | No (5) 2155 * larger smaller N/A N/A | Yes (6) 2156 * smaller larger N/A N/A | Yes (7) 2157 * smaller smaller N/A N/A | No (8) 2158 * equal smaller N/A N/A | Yes (9) 2159 * equal larger (already done at A above) 2160 */ 2161 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2162 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2163 2164 if (bscopecmp == 0) { 2165 struct ifnet *bifp = ifa_best->ia_ifp; 2166 2167 if (bifp == oifp && ifp != oifp) /* (1) */ 2168 continue; 2169 if (bifp != oifp && ifp == oifp) /* (2) */ 2170 goto replace; 2171 2172 /* 2173 * Both bifp and ifp are on the outgoing 2174 * interface, or both two are on a different 2175 * interface from the outgoing I/F. 2176 * now we need address matching against dst 2177 * for tiebreaking. 2178 */ 2179 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2180 matchcmp = tlen - blen; 2181 if (matchcmp > 0) /* (3) */ 2182 goto replace; 2183 continue; /* (4) */ 2184 } 2185 if (dscopecmp > 0) { 2186 if (bscopecmp > 0) /* (5) */ 2187 continue; 2188 goto replace; /* (6) */ 2189 } 2190 if (dscopecmp < 0) { 2191 if (bscopecmp > 0) /* (7) */ 2192 goto replace; 2193 continue; /* (8) */ 2194 } 2195 2196 /* now dscopecmp must be 0 */ 2197 if (bscopecmp < 0) 2198 goto replace; /* (9) */ 2199 2200 replace: 2201 ifa_best = (struct in6_ifaddr *)ifa; 2202 blen = tlen >= 0 ? tlen : 2203 in6_matchlen(IFA_IN6(ifa), dst); 2204 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2205 } 2206 } 2207 2208 /* count statistics for future improvements */ 2209 if (ifa_best == NULL) 2210 ip6stat.ip6s_sources_none++; 2211 else { 2212 if (oifp == ifa_best->ia_ifp) 2213 ip6stat.ip6s_sources_sameif[best_scope]++; 2214 else 2215 ip6stat.ip6s_sources_otherif[best_scope]++; 2216 2217 if (best_scope == dst_scope) 2218 ip6stat.ip6s_sources_samescope[best_scope]++; 2219 else 2220 ip6stat.ip6s_sources_otherscope[best_scope]++; 2221 2222 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2223 ip6stat.ip6s_sources_deprecated[best_scope]++; 2224 } 2225 2226 return(ifa_best); 2227 } 2228 2229 /* 2230 * return the best address out of the same scope. if no address was 2231 * found, return the first valid address from designated IF. 2232 */ 2233 struct in6_ifaddr * 2234 in6_ifawithifp(ifp, dst) 2235 struct ifnet *ifp; 2236 struct in6_addr *dst; 2237 { 2238 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2239 struct ifaddr *ifa; 2240 struct in6_ifaddr *besta = 0; 2241 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2242 2243 dep[0] = dep[1] = NULL; 2244 2245 /* 2246 * We first look for addresses in the same scope. 2247 * If there is one, return it. 2248 * If two or more, return one which matches the dst longest. 2249 * If none, return one of global addresses assigned other ifs. 2250 */ 2251 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2252 { 2253 if (ifa->ifa_addr->sa_family != AF_INET6) 2254 continue; 2255 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2256 continue; /* XXX: is there any case to allow anycast? */ 2257 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2258 continue; /* don't use this interface */ 2259 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2260 continue; 2261 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2262 if (ip6_use_deprecated) 2263 dep[0] = (struct in6_ifaddr *)ifa; 2264 continue; 2265 } 2266 2267 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2268 /* 2269 * call in6_matchlen() as few as possible 2270 */ 2271 if (besta) { 2272 if (blen == -1) 2273 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2274 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2275 if (tlen > blen) { 2276 blen = tlen; 2277 besta = (struct in6_ifaddr *)ifa; 2278 } 2279 } else 2280 besta = (struct in6_ifaddr *)ifa; 2281 } 2282 } 2283 if (besta) 2284 return(besta); 2285 2286 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2287 { 2288 if (ifa->ifa_addr->sa_family != AF_INET6) 2289 continue; 2290 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2291 continue; /* XXX: is there any case to allow anycast? */ 2292 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2293 continue; /* don't use this interface */ 2294 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2295 continue; 2296 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2297 if (ip6_use_deprecated) 2298 dep[1] = (struct in6_ifaddr *)ifa; 2299 continue; 2300 } 2301 2302 return (struct in6_ifaddr *)ifa; 2303 } 2304 2305 /* use the last-resort values, that are, deprecated addresses */ 2306 if (dep[0]) 2307 return dep[0]; 2308 if (dep[1]) 2309 return dep[1]; 2310 2311 return NULL; 2312 } 2313 2314 /* 2315 * perform DAD when interface becomes IFF_UP. 2316 */ 2317 void 2318 in6_if_up(ifp) 2319 struct ifnet *ifp; 2320 { 2321 struct ifaddr *ifa; 2322 struct in6_ifaddr *ia; 2323 int dad_delay; /* delay ticks before DAD output */ 2324 2325 /* 2326 * special cases, like 6to4, are handled in in6_ifattach 2327 */ 2328 in6_ifattach(ifp, NULL); 2329 2330 dad_delay = 0; 2331 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2332 { 2333 if (ifa->ifa_addr->sa_family != AF_INET6) 2334 continue; 2335 ia = (struct in6_ifaddr *)ifa; 2336 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2337 nd6_dad_start(ifa, &dad_delay); 2338 } 2339 } 2340 2341 int 2342 in6if_do_dad(ifp) 2343 struct ifnet *ifp; 2344 { 2345 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2346 return(0); 2347 2348 switch (ifp->if_type) { 2349 #ifdef IFT_DUMMY 2350 case IFT_DUMMY: 2351 #endif 2352 case IFT_FAITH: 2353 /* 2354 * These interfaces do not have the IFF_LOOPBACK flag, 2355 * but loop packets back. We do not have to do DAD on such 2356 * interfaces. We should even omit it, because loop-backed 2357 * NS would confuse the DAD procedure. 2358 */ 2359 return(0); 2360 default: 2361 /* 2362 * Our DAD routine requires the interface up and running. 2363 * However, some interfaces can be up before the RUNNING 2364 * status. Additionaly, users may try to assign addresses 2365 * before the interface becomes up (or running). 2366 * We simply skip DAD in such a case as a work around. 2367 * XXX: we should rather mark "tentative" on such addresses, 2368 * and do DAD after the interface becomes ready. 2369 */ 2370 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2371 (IFF_UP|IFF_RUNNING)) 2372 return(0); 2373 2374 return(1); 2375 } 2376 } 2377 2378 /* 2379 * Calculate max IPv6 MTU through all the interfaces and store it 2380 * to in6_maxmtu. 2381 */ 2382 void 2383 in6_setmaxmtu() 2384 { 2385 unsigned long maxmtu = 0; 2386 struct ifnet *ifp; 2387 2388 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2389 { 2390 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2391 nd_ifinfo[ifp->if_index].linkmtu > maxmtu) 2392 maxmtu = nd_ifinfo[ifp->if_index].linkmtu; 2393 } 2394 if (maxmtu) /* update only when maxmtu is positive */ 2395 in6_maxmtu = maxmtu; 2396 } 2397 2398 /* 2399 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2400 * v4 mapped addr or v4 compat addr 2401 */ 2402 void 2403 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2404 { 2405 bzero(sin, sizeof(*sin)); 2406 sin->sin_len = sizeof(struct sockaddr_in); 2407 sin->sin_family = AF_INET; 2408 sin->sin_port = sin6->sin6_port; 2409 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2410 } 2411 2412 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2413 void 2414 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2415 { 2416 bzero(sin6, sizeof(*sin6)); 2417 sin6->sin6_len = sizeof(struct sockaddr_in6); 2418 sin6->sin6_family = AF_INET6; 2419 sin6->sin6_port = sin->sin_port; 2420 sin6->sin6_addr.s6_addr32[0] = 0; 2421 sin6->sin6_addr.s6_addr32[1] = 0; 2422 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2423 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2424 } 2425 2426 /* Convert sockaddr_in6 into sockaddr_in. */ 2427 void 2428 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2429 { 2430 struct sockaddr_in *sin_p; 2431 struct sockaddr_in6 sin6; 2432 2433 /* 2434 * Save original sockaddr_in6 addr and convert it 2435 * to sockaddr_in. 2436 */ 2437 sin6 = *(struct sockaddr_in6 *)nam; 2438 sin_p = (struct sockaddr_in *)nam; 2439 in6_sin6_2_sin(sin_p, &sin6); 2440 } 2441 2442 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2443 void 2444 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2445 { 2446 struct sockaddr_in *sin_p; 2447 struct sockaddr_in6 *sin6_p; 2448 2449 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2450 M_WAITOK); 2451 sin_p = (struct sockaddr_in *)*nam; 2452 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2453 FREE(*nam, M_SONAME); 2454 *nam = (struct sockaddr *)sin6_p; 2455 } 2456