1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */ 2 /* $DragonFly: src/sys/netinet6/ip6_output.c,v 1.14 2004/10/15 22:59:10 hsu Exp $ */ 3 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. All advertising materials mentioning features or use of this software 47 * must display the following acknowledgement: 48 * This product includes software developed by the University of 49 * California, Berkeley and its contributors. 50 * 4. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 67 */ 68 69 #include "opt_ip6fw.h" 70 #include "opt_inet.h" 71 #include "opt_inet6.h" 72 #include "opt_ipsec.h" 73 74 #include <sys/param.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/protosw.h> 79 #include <sys/socket.h> 80 #include <sys/socketvar.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/proc.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #include <net/pfil.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/ip6_var.h> 95 #include <netinet/in_pcb.h> 96 #include <netinet6/nd6.h> 97 98 #ifdef IPSEC 99 #include <netinet6/ipsec.h> 100 #ifdef INET6 101 #include <netinet6/ipsec6.h> 102 #endif 103 #include <netproto/key/key.h> 104 #endif /* IPSEC */ 105 106 #ifdef FAST_IPSEC 107 #include <netproto/ipsec/ipsec.h> 108 #include <netproto/ipsec/ipsec6.h> 109 #include <netproto/ipsec/key.h> 110 #endif /* FAST_IPSEC */ 111 112 #include <net/ip6fw/ip6_fw.h> 113 114 #include <net/net_osdep.h> 115 116 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 117 118 struct ip6_exthdrs { 119 struct mbuf *ip6e_ip6; 120 struct mbuf *ip6e_hbh; 121 struct mbuf *ip6e_dest1; 122 struct mbuf *ip6e_rthdr; 123 struct mbuf *ip6e_dest2; 124 }; 125 126 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *, 127 struct socket *, struct sockopt *sopt); 128 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *); 129 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **); 130 static int ip6_copyexthdr (struct mbuf **, caddr_t, int); 131 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr (struct mbuf *, struct ip6_exthdrs *); 135 136 /* 137 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 138 * header (with pri, len, nxt, hlim, src, dst). 139 * This function may modify ver and hlim only. 140 * The mbuf chain containing the packet will be freed. 141 * The mbuf opt, if present, will not be freed. 142 * 143 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 144 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 145 * which is rt_rmx.rmx_mtu. 146 */ 147 int 148 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 149 int flags, struct ip6_moptions *im6o, 150 struct ifnet **ifpp, /* XXX: just for statistics */ 151 struct inpcb *inp) 152 { 153 struct ip6_hdr *ip6, *mhip6; 154 struct ifnet *ifp, *origifp; 155 struct mbuf *m = m0; 156 int hlen, tlen, len, off; 157 struct route_in6 ip6route; 158 struct sockaddr_in6 *dst; 159 int error = 0; 160 struct in6_ifaddr *ia = NULL; 161 u_long mtu; 162 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 163 struct ip6_exthdrs exthdrs; 164 struct in6_addr finaldst; 165 struct route_in6 *ro_pmtu = NULL; 166 int hdrsplit = 0; 167 int needipsec = 0; 168 #ifdef IPSEC 169 int needipsectun = 0; 170 struct secpolicy *sp = NULL; 171 struct socket *so = inp ? inp->inp_socket : NULL; 172 173 ip6 = mtod(m, struct ip6_hdr *); 174 #endif /* IPSEC */ 175 #ifdef FAST_IPSEC 176 int needipsectun = 0; 177 struct secpolicy *sp = NULL; 178 179 ip6 = mtod(m, struct ip6_hdr *); 180 #endif /* FAST_IPSEC */ 181 182 #define MAKE_EXTHDR(hp, mp) \ 183 do { \ 184 if (hp) { \ 185 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 186 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 187 ((eh)->ip6e_len + 1) << 3); \ 188 if (error) \ 189 goto freehdrs; \ 190 } \ 191 } while (0) 192 193 bzero(&exthdrs, sizeof(exthdrs)); 194 195 if (opt) { 196 /* Hop-by-Hop options header */ 197 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 198 /* Destination options header(1st part) */ 199 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 200 /* Routing header */ 201 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 202 /* Destination options header(2nd part) */ 203 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 204 } 205 206 #ifdef IPSEC 207 /* get a security policy for this packet */ 208 if (so == NULL) 209 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 210 else 211 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 212 213 if (sp == NULL) { 214 ipsec6stat.out_inval++; 215 goto freehdrs; 216 } 217 218 error = 0; 219 220 /* check policy */ 221 switch (sp->policy) { 222 case IPSEC_POLICY_DISCARD: 223 /* 224 * This packet is just discarded. 225 */ 226 ipsec6stat.out_polvio++; 227 goto freehdrs; 228 229 case IPSEC_POLICY_BYPASS: 230 case IPSEC_POLICY_NONE: 231 /* no need to do IPsec. */ 232 needipsec = 0; 233 break; 234 235 case IPSEC_POLICY_IPSEC: 236 if (sp->req == NULL) { 237 /* acquire a policy */ 238 error = key_spdacquire(sp); 239 goto freehdrs; 240 } 241 needipsec = 1; 242 break; 243 244 case IPSEC_POLICY_ENTRUST: 245 default: 246 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 247 } 248 #endif /* IPSEC */ 249 #ifdef FAST_IPSEC 250 /* get a security policy for this packet */ 251 if (inp == NULL) 252 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 253 else 254 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 255 256 if (sp == NULL) { 257 newipsecstat.ips_out_inval++; 258 goto freehdrs; 259 } 260 261 error = 0; 262 263 /* check policy */ 264 switch (sp->policy) { 265 case IPSEC_POLICY_DISCARD: 266 /* 267 * This packet is just discarded. 268 */ 269 newipsecstat.ips_out_polvio++; 270 goto freehdrs; 271 272 case IPSEC_POLICY_BYPASS: 273 case IPSEC_POLICY_NONE: 274 /* no need to do IPsec. */ 275 needipsec = 0; 276 break; 277 278 case IPSEC_POLICY_IPSEC: 279 if (sp->req == NULL) { 280 /* acquire a policy */ 281 error = key_spdacquire(sp); 282 goto freehdrs; 283 } 284 needipsec = 1; 285 break; 286 287 case IPSEC_POLICY_ENTRUST: 288 default: 289 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 290 } 291 #endif /* FAST_IPSEC */ 292 293 /* 294 * Calculate the total length of the extension header chain. 295 * Keep the length of the unfragmentable part for fragmentation. 296 */ 297 optlen = 0; 298 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 299 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 300 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 301 unfragpartlen = optlen + sizeof(struct ip6_hdr); 302 /* NOTE: we don't add AH/ESP length here. do that later. */ 303 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 304 305 /* 306 * If we need IPsec, or there is at least one extension header, 307 * separate IP6 header from the payload. 308 */ 309 if ((needipsec || optlen) && !hdrsplit) { 310 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 311 m = NULL; 312 goto freehdrs; 313 } 314 m = exthdrs.ip6e_ip6; 315 hdrsplit++; 316 } 317 318 /* adjust pointer */ 319 ip6 = mtod(m, struct ip6_hdr *); 320 321 /* adjust mbuf packet header length */ 322 m->m_pkthdr.len += optlen; 323 plen = m->m_pkthdr.len - sizeof(*ip6); 324 325 /* If this is a jumbo payload, insert a jumbo payload option. */ 326 if (plen > IPV6_MAXPACKET) { 327 if (!hdrsplit) { 328 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 329 m = NULL; 330 goto freehdrs; 331 } 332 m = exthdrs.ip6e_ip6; 333 hdrsplit++; 334 } 335 /* adjust pointer */ 336 ip6 = mtod(m, struct ip6_hdr *); 337 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 338 goto freehdrs; 339 ip6->ip6_plen = 0; 340 } else 341 ip6->ip6_plen = htons(plen); 342 343 /* 344 * Concatenate headers and fill in next header fields. 345 * Here we have, on "m" 346 * IPv6 payload 347 * and we insert headers accordingly. Finally, we should be getting: 348 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 349 * 350 * during the header composing process, "m" points to IPv6 header. 351 * "mprev" points to an extension header prior to esp. 352 */ 353 { 354 u_char *nexthdrp = &ip6->ip6_nxt; 355 struct mbuf *mprev = m; 356 357 /* 358 * we treat dest2 specially. this makes IPsec processing 359 * much easier. the goal here is to make mprev point the 360 * mbuf prior to dest2. 361 * 362 * result: IPv6 dest2 payload 363 * m and mprev will point to IPv6 header. 364 */ 365 if (exthdrs.ip6e_dest2) { 366 if (!hdrsplit) 367 panic("assumption failed: hdr not split"); 368 exthdrs.ip6e_dest2->m_next = m->m_next; 369 m->m_next = exthdrs.ip6e_dest2; 370 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 371 ip6->ip6_nxt = IPPROTO_DSTOPTS; 372 } 373 374 #define MAKE_CHAIN(m, mp, p, i)\ 375 do {\ 376 if (m) {\ 377 if (!hdrsplit) \ 378 panic("assumption failed: hdr not split"); \ 379 *mtod((m), u_char *) = *(p);\ 380 *(p) = (i);\ 381 p = mtod((m), u_char *);\ 382 (m)->m_next = (mp)->m_next;\ 383 (mp)->m_next = (m);\ 384 (mp) = (m);\ 385 }\ 386 } while (0) 387 /* 388 * result: IPv6 hbh dest1 rthdr dest2 payload 389 * m will point to IPv6 header. mprev will point to the 390 * extension header prior to dest2 (rthdr in the above case). 391 */ 392 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 393 nexthdrp, IPPROTO_HOPOPTS); 394 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 395 nexthdrp, IPPROTO_DSTOPTS); 396 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 397 nexthdrp, IPPROTO_ROUTING); 398 399 #if defined(IPSEC) || defined(FAST_IPSEC) 400 if (!needipsec) 401 goto skip_ipsec2; 402 403 /* 404 * pointers after IPsec headers are not valid any more. 405 * other pointers need a great care too. 406 * (IPsec routines should not mangle mbufs prior to AH/ESP) 407 */ 408 exthdrs.ip6e_dest2 = NULL; 409 410 { 411 struct ip6_rthdr *rh = NULL; 412 int segleft_org = 0; 413 struct ipsec_output_state state; 414 415 if (exthdrs.ip6e_rthdr) { 416 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 417 segleft_org = rh->ip6r_segleft; 418 rh->ip6r_segleft = 0; 419 } 420 421 bzero(&state, sizeof(state)); 422 state.m = m; 423 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 424 &needipsectun); 425 m = state.m; 426 if (error) { 427 /* mbuf is already reclaimed in ipsec6_output_trans. */ 428 m = NULL; 429 switch (error) { 430 case EHOSTUNREACH: 431 case ENETUNREACH: 432 case EMSGSIZE: 433 case ENOBUFS: 434 case ENOMEM: 435 break; 436 default: 437 printf("ip6_output (ipsec): error code %d\n", error); 438 /* fall through */ 439 case ENOENT: 440 /* don't show these error codes to the user */ 441 error = 0; 442 break; 443 } 444 goto bad; 445 } 446 if (exthdrs.ip6e_rthdr) { 447 /* ah6_output doesn't modify mbuf chain */ 448 rh->ip6r_segleft = segleft_org; 449 } 450 } 451 skip_ipsec2:; 452 #endif 453 } 454 455 /* 456 * If there is a routing header, replace destination address field 457 * with the first hop of the routing header. 458 */ 459 if (exthdrs.ip6e_rthdr) { 460 struct ip6_rthdr *rh = 461 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 462 struct ip6_rthdr *)); 463 struct ip6_rthdr0 *rh0; 464 465 finaldst = ip6->ip6_dst; 466 switch (rh->ip6r_type) { 467 case IPV6_RTHDR_TYPE_0: 468 rh0 = (struct ip6_rthdr0 *)rh; 469 ip6->ip6_dst = rh0->ip6r0_addr[0]; 470 bcopy((caddr_t)&rh0->ip6r0_addr[1], 471 (caddr_t)&rh0->ip6r0_addr[0], 472 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 473 ); 474 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 475 break; 476 default: /* is it possible? */ 477 error = EINVAL; 478 goto bad; 479 } 480 } 481 482 /* Source address validation */ 483 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 484 (flags & IPV6_DADOUTPUT) == 0) { 485 error = EOPNOTSUPP; 486 ip6stat.ip6s_badscope++; 487 goto bad; 488 } 489 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 490 error = EOPNOTSUPP; 491 ip6stat.ip6s_badscope++; 492 goto bad; 493 } 494 495 ip6stat.ip6s_localout++; 496 497 /* 498 * Route packet. 499 */ 500 if (ro == 0) { 501 ro = &ip6route; 502 bzero((caddr_t)ro, sizeof(*ro)); 503 } 504 ro_pmtu = ro; 505 if (opt && opt->ip6po_rthdr) 506 ro = &opt->ip6po_route; 507 dst = (struct sockaddr_in6 *)&ro->ro_dst; 508 /* 509 * If there is a cached route, 510 * check that it is to the same destination 511 * and is still up. If not, free it and try again. 512 */ 513 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 514 dst->sin6_family != AF_INET6 || 515 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 516 RTFREE(ro->ro_rt); 517 ro->ro_rt = (struct rtentry *)0; 518 } 519 if (ro->ro_rt == 0) { 520 bzero(dst, sizeof(*dst)); 521 dst->sin6_family = AF_INET6; 522 dst->sin6_len = sizeof(struct sockaddr_in6); 523 dst->sin6_addr = ip6->ip6_dst; 524 #ifdef SCOPEDROUTING 525 /* XXX: sin6_scope_id should already be fixed at this point */ 526 if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr)) 527 dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]); 528 #endif 529 } 530 #if defined(IPSEC) || defined(FAST_IPSEC) 531 if (needipsec && needipsectun) { 532 struct ipsec_output_state state; 533 534 /* 535 * All the extension headers will become inaccessible 536 * (since they can be encrypted). 537 * Don't panic, we need no more updates to extension headers 538 * on inner IPv6 packet (since they are now encapsulated). 539 * 540 * IPv6 [ESP|AH] IPv6 [extension headers] payload 541 */ 542 bzero(&exthdrs, sizeof(exthdrs)); 543 exthdrs.ip6e_ip6 = m; 544 545 bzero(&state, sizeof(state)); 546 state.m = m; 547 state.ro = (struct route *)ro; 548 state.dst = (struct sockaddr *)dst; 549 550 error = ipsec6_output_tunnel(&state, sp, flags); 551 552 m = state.m; 553 ro = (struct route_in6 *)state.ro; 554 dst = (struct sockaddr_in6 *)state.dst; 555 if (error) { 556 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 557 m0 = m = NULL; 558 m = NULL; 559 switch (error) { 560 case EHOSTUNREACH: 561 case ENETUNREACH: 562 case EMSGSIZE: 563 case ENOBUFS: 564 case ENOMEM: 565 break; 566 default: 567 printf("ip6_output (ipsec): error code %d\n", error); 568 /* fall through */ 569 case ENOENT: 570 /* don't show these error codes to the user */ 571 error = 0; 572 break; 573 } 574 goto bad; 575 } 576 577 exthdrs.ip6e_ip6 = m; 578 } 579 #endif /* IPSEC */ 580 581 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 582 /* Unicast */ 583 584 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 585 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 586 /* xxx 587 * interface selection comes here 588 * if an interface is specified from an upper layer, 589 * ifp must point it. 590 */ 591 if (ro->ro_rt == 0) { 592 /* 593 * non-bsdi always clone routes, if parent is 594 * PRF_CLONING. 595 */ 596 rtalloc((struct route *)ro); 597 } 598 if (ro->ro_rt == 0) { 599 ip6stat.ip6s_noroute++; 600 error = EHOSTUNREACH; 601 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 602 goto bad; 603 } 604 ia = ifatoia6(ro->ro_rt->rt_ifa); 605 ifp = ro->ro_rt->rt_ifp; 606 ro->ro_rt->rt_use++; 607 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 608 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 609 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 610 611 in6_ifstat_inc(ifp, ifs6_out_request); 612 613 /* 614 * Check if the outgoing interface conflicts with 615 * the interface specified by ifi6_ifindex (if specified). 616 * Note that loopback interface is always okay. 617 * (this may happen when we are sending a packet to one of 618 * our own addresses.) 619 */ 620 if (opt && opt->ip6po_pktinfo 621 && opt->ip6po_pktinfo->ipi6_ifindex) { 622 if (!(ifp->if_flags & IFF_LOOPBACK) 623 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 624 ip6stat.ip6s_noroute++; 625 in6_ifstat_inc(ifp, ifs6_out_discard); 626 error = EHOSTUNREACH; 627 goto bad; 628 } 629 } 630 631 if (opt && opt->ip6po_hlim != -1) 632 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 633 } else { 634 /* Multicast */ 635 struct in6_multi *in6m; 636 637 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 638 639 /* 640 * See if the caller provided any multicast options 641 */ 642 ifp = NULL; 643 if (im6o != NULL) { 644 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 645 if (im6o->im6o_multicast_ifp != NULL) 646 ifp = im6o->im6o_multicast_ifp; 647 } else 648 ip6->ip6_hlim = ip6_defmcasthlim; 649 650 /* 651 * See if the caller provided the outgoing interface 652 * as an ancillary data. 653 * Boundary check for ifindex is assumed to be already done. 654 */ 655 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 656 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 657 658 /* 659 * If the destination is a node-local scope multicast, 660 * the packet should be loop-backed only. 661 */ 662 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 663 /* 664 * If the outgoing interface is already specified, 665 * it should be a loopback interface. 666 */ 667 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 668 ip6stat.ip6s_badscope++; 669 error = ENETUNREACH; /* XXX: better error? */ 670 /* XXX correct ifp? */ 671 in6_ifstat_inc(ifp, ifs6_out_discard); 672 goto bad; 673 } else { 674 ifp = &loif[0]; 675 } 676 } 677 678 if (opt && opt->ip6po_hlim != -1) 679 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 680 681 /* 682 * If caller did not provide an interface lookup a 683 * default in the routing table. This is either a 684 * default for the speicfied group (i.e. a host 685 * route), or a multicast default (a route for the 686 * ``net'' ff00::/8). 687 */ 688 if (ifp == NULL) { 689 if (ro->ro_rt == 0) { 690 ro->ro_rt = rtalloc1((struct sockaddr *) 691 &ro->ro_dst, 0, 0UL); 692 } 693 if (ro->ro_rt == 0) { 694 ip6stat.ip6s_noroute++; 695 error = EHOSTUNREACH; 696 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 697 goto bad; 698 } 699 ia = ifatoia6(ro->ro_rt->rt_ifa); 700 ifp = ro->ro_rt->rt_ifp; 701 ro->ro_rt->rt_use++; 702 } 703 704 if ((flags & IPV6_FORWARDING) == 0) 705 in6_ifstat_inc(ifp, ifs6_out_request); 706 in6_ifstat_inc(ifp, ifs6_out_mcast); 707 708 /* 709 * Confirm that the outgoing interface supports multicast. 710 */ 711 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 712 ip6stat.ip6s_noroute++; 713 in6_ifstat_inc(ifp, ifs6_out_discard); 714 error = ENETUNREACH; 715 goto bad; 716 } 717 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 718 if (in6m != NULL && 719 (im6o == NULL || im6o->im6o_multicast_loop)) { 720 /* 721 * If we belong to the destination multicast group 722 * on the outgoing interface, and the caller did not 723 * forbid loopback, loop back a copy. 724 */ 725 ip6_mloopback(ifp, m, dst); 726 } else { 727 /* 728 * If we are acting as a multicast router, perform 729 * multicast forwarding as if the packet had just 730 * arrived on the interface to which we are about 731 * to send. The multicast forwarding function 732 * recursively calls this function, using the 733 * IPV6_FORWARDING flag to prevent infinite recursion. 734 * 735 * Multicasts that are looped back by ip6_mloopback(), 736 * above, will be forwarded by the ip6_input() routine, 737 * if necessary. 738 */ 739 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 740 if (ip6_mforward(ip6, ifp, m) != 0) { 741 m_freem(m); 742 goto done; 743 } 744 } 745 } 746 /* 747 * Multicasts with a hoplimit of zero may be looped back, 748 * above, but must not be transmitted on a network. 749 * Also, multicasts addressed to the loopback interface 750 * are not sent -- the above call to ip6_mloopback() will 751 * loop back a copy if this host actually belongs to the 752 * destination group on the loopback interface. 753 */ 754 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 755 m_freem(m); 756 goto done; 757 } 758 } 759 760 /* 761 * Fill the outgoing inteface to tell the upper layer 762 * to increment per-interface statistics. 763 */ 764 if (ifpp) 765 *ifpp = ifp; 766 767 /* 768 * Determine path MTU. 769 */ 770 if (ro_pmtu != ro) { 771 /* The first hop and the final destination may differ. */ 772 struct sockaddr_in6 *sin6_fin = 773 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 774 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 775 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 776 &finaldst))) { 777 RTFREE(ro_pmtu->ro_rt); 778 ro_pmtu->ro_rt = (struct rtentry *)0; 779 } 780 if (ro_pmtu->ro_rt == 0) { 781 bzero(sin6_fin, sizeof(*sin6_fin)); 782 sin6_fin->sin6_family = AF_INET6; 783 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 784 sin6_fin->sin6_addr = finaldst; 785 786 rtalloc((struct route *)ro_pmtu); 787 } 788 } 789 if (ro_pmtu->ro_rt != NULL) { 790 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 791 792 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 793 if (mtu > ifmtu || mtu == 0) { 794 /* 795 * The MTU on the route is larger than the MTU on 796 * the interface! This shouldn't happen, unless the 797 * MTU of the interface has been changed after the 798 * interface was brought up. Change the MTU in the 799 * route to match the interface MTU (as long as the 800 * field isn't locked). 801 * 802 * if MTU on the route is 0, we need to fix the MTU. 803 * this case happens with path MTU discovery timeouts. 804 */ 805 mtu = ifmtu; 806 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 807 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 808 } 809 } else { 810 mtu = nd_ifinfo[ifp->if_index].linkmtu; 811 } 812 813 /* 814 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting 815 */ 816 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU) 817 mtu = IPV6_MMTU; 818 819 /* Fake scoped addresses */ 820 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 821 /* 822 * If source or destination address is a scoped address, and 823 * the packet is going to be sent to a loopback interface, 824 * we should keep the original interface. 825 */ 826 827 /* 828 * XXX: this is a very experimental and temporary solution. 829 * We eventually have sockaddr_in6 and use the sin6_scope_id 830 * field of the structure here. 831 * We rely on the consistency between two scope zone ids 832 * of source and destination, which should already be assured. 833 * Larger scopes than link will be supported in the future. 834 */ 835 origifp = NULL; 836 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 837 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 838 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 839 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 840 /* 841 * XXX: origifp can be NULL even in those two cases above. 842 * For example, if we remove the (only) link-local address 843 * from the loopback interface, and try to send a link-local 844 * address without link-id information. Then the source 845 * address is ::1, and the destination address is the 846 * link-local address with its s6_addr16[1] being zero. 847 * What is worse, if the packet goes to the loopback interface 848 * by a default rejected route, the null pointer would be 849 * passed to looutput, and the kernel would hang. 850 * The following last resort would prevent such disaster. 851 */ 852 if (origifp == NULL) 853 origifp = ifp; 854 } 855 else 856 origifp = ifp; 857 #ifndef SCOPEDROUTING 858 /* 859 * clear embedded scope identifiers if necessary. 860 * in6_clearscope will touch the addresses only when necessary. 861 */ 862 in6_clearscope(&ip6->ip6_src); 863 in6_clearscope(&ip6->ip6_dst); 864 #endif 865 866 /* 867 * Check with the firewall... 868 */ 869 if (ip6_fw_enable && ip6_fw_chk_ptr) { 870 u_short port = 0; 871 m->m_pkthdr.rcvif = NULL; /* XXX */ 872 /* If ipfw says divert, we have to just drop packet */ 873 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 874 m_freem(m); 875 goto done; 876 } 877 if (!m) { 878 error = EACCES; 879 goto done; 880 } 881 } 882 883 /* 884 * If the outgoing packet contains a hop-by-hop options header, 885 * it must be examined and processed even by the source node. 886 * (RFC 2460, section 4.) 887 */ 888 if (exthdrs.ip6e_hbh) { 889 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 890 u_int32_t dummy1; /* XXX unused */ 891 u_int32_t dummy2; /* XXX unused */ 892 893 #ifdef DIAGNOSTIC 894 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 895 panic("ip6e_hbh is not continuous"); 896 #endif 897 /* 898 * XXX: if we have to send an ICMPv6 error to the sender, 899 * we need the M_LOOP flag since icmp6_error() expects 900 * the IPv6 and the hop-by-hop options header are 901 * continuous unless the flag is set. 902 */ 903 m->m_flags |= M_LOOP; 904 m->m_pkthdr.rcvif = ifp; 905 if (ip6_process_hopopts(m, 906 (u_int8_t *)(hbh + 1), 907 ((hbh->ip6h_len + 1) << 3) - 908 sizeof(struct ip6_hbh), 909 &dummy1, &dummy2) < 0) { 910 /* m was already freed at this point */ 911 error = EINVAL;/* better error? */ 912 goto done; 913 } 914 m->m_flags &= ~M_LOOP; /* XXX */ 915 m->m_pkthdr.rcvif = NULL; 916 } 917 918 /* 919 * Run through list of hooks for output packets. 920 */ 921 if (pfil_has_hooks(&inet6_pfil_hook)) { 922 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT); 923 if (error != 0 || m == NULL) 924 goto done; 925 ip6 = mtod(m, struct ip6_hdr *); 926 } 927 928 /* 929 * Send the packet to the outgoing interface. 930 * If necessary, do IPv6 fragmentation before sending. 931 */ 932 tlen = m->m_pkthdr.len; 933 if (tlen <= mtu 934 #ifdef notyet 935 /* 936 * On any link that cannot convey a 1280-octet packet in one piece, 937 * link-specific fragmentation and reassembly must be provided at 938 * a layer below IPv6. [RFC 2460, sec.5] 939 * Thus if the interface has ability of link-level fragmentation, 940 * we can just send the packet even if the packet size is 941 * larger than the link's MTU. 942 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 943 */ 944 945 || ifp->if_flags & IFF_FRAGMENTABLE 946 #endif 947 ) 948 { 949 /* Record statistics for this interface address. */ 950 if (ia && !(flags & IPV6_FORWARDING)) { 951 ia->ia_ifa.if_opackets++; 952 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 953 } 954 #ifdef IPSEC 955 /* clean ipsec history once it goes out of the node */ 956 ipsec_delaux(m); 957 #endif 958 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 959 goto done; 960 } else if (mtu < IPV6_MMTU) { 961 /* 962 * note that path MTU is never less than IPV6_MMTU 963 * (see icmp6_input). 964 */ 965 error = EMSGSIZE; 966 in6_ifstat_inc(ifp, ifs6_out_fragfail); 967 goto bad; 968 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 969 error = EMSGSIZE; 970 in6_ifstat_inc(ifp, ifs6_out_fragfail); 971 goto bad; 972 } else { 973 struct mbuf **mnext, *m_frgpart; 974 struct ip6_frag *ip6f; 975 u_int32_t id = htonl(ip6_id++); 976 u_char nextproto; 977 978 /* 979 * Too large for the destination or interface; 980 * fragment if possible. 981 * Must be able to put at least 8 bytes per fragment. 982 */ 983 hlen = unfragpartlen; 984 if (mtu > IPV6_MAXPACKET) 985 mtu = IPV6_MAXPACKET; 986 987 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 988 if (len < 8) { 989 error = EMSGSIZE; 990 in6_ifstat_inc(ifp, ifs6_out_fragfail); 991 goto bad; 992 } 993 994 mnext = &m->m_nextpkt; 995 996 /* 997 * Change the next header field of the last header in the 998 * unfragmentable part. 999 */ 1000 if (exthdrs.ip6e_rthdr) { 1001 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1002 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1003 } else if (exthdrs.ip6e_dest1) { 1004 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1005 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1006 } else if (exthdrs.ip6e_hbh) { 1007 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1008 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1009 } else { 1010 nextproto = ip6->ip6_nxt; 1011 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1012 } 1013 1014 /* 1015 * Loop through length of segment after first fragment, 1016 * make new header and copy data of each part and link onto 1017 * chain. 1018 */ 1019 m0 = m; 1020 for (off = hlen; off < tlen; off += len) { 1021 MGETHDR(m, MB_DONTWAIT, MT_HEADER); 1022 if (!m) { 1023 error = ENOBUFS; 1024 ip6stat.ip6s_odropped++; 1025 goto sendorfree; 1026 } 1027 m->m_pkthdr.rcvif = NULL; 1028 m->m_flags = m0->m_flags & M_COPYFLAGS; 1029 *mnext = m; 1030 mnext = &m->m_nextpkt; 1031 m->m_data += max_linkhdr; 1032 mhip6 = mtod(m, struct ip6_hdr *); 1033 *mhip6 = *ip6; 1034 m->m_len = sizeof(*mhip6); 1035 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1036 if (error) { 1037 ip6stat.ip6s_odropped++; 1038 goto sendorfree; 1039 } 1040 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1041 if (off + len >= tlen) 1042 len = tlen - off; 1043 else 1044 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1045 mhip6->ip6_plen = htons((u_short)(len + hlen + 1046 sizeof(*ip6f) - 1047 sizeof(struct ip6_hdr))); 1048 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1049 error = ENOBUFS; 1050 ip6stat.ip6s_odropped++; 1051 goto sendorfree; 1052 } 1053 m_cat(m, m_frgpart); 1054 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1055 m->m_pkthdr.rcvif = (struct ifnet *)0; 1056 ip6f->ip6f_reserved = 0; 1057 ip6f->ip6f_ident = id; 1058 ip6f->ip6f_nxt = nextproto; 1059 ip6stat.ip6s_ofragments++; 1060 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1061 } 1062 1063 in6_ifstat_inc(ifp, ifs6_out_fragok); 1064 } 1065 1066 /* 1067 * Remove leading garbages. 1068 */ 1069 sendorfree: 1070 m = m0->m_nextpkt; 1071 m0->m_nextpkt = 0; 1072 m_freem(m0); 1073 for (m0 = m; m; m = m0) { 1074 m0 = m->m_nextpkt; 1075 m->m_nextpkt = 0; 1076 if (error == 0) { 1077 /* Record statistics for this interface address. */ 1078 if (ia) { 1079 ia->ia_ifa.if_opackets++; 1080 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1081 } 1082 #ifdef IPSEC 1083 /* clean ipsec history once it goes out of the node */ 1084 ipsec_delaux(m); 1085 #endif 1086 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1087 } else 1088 m_freem(m); 1089 } 1090 1091 if (error == 0) 1092 ip6stat.ip6s_fragmented++; 1093 1094 done: 1095 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1096 RTFREE(ro->ro_rt); 1097 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1098 RTFREE(ro_pmtu->ro_rt); 1099 } 1100 1101 #ifdef IPSEC 1102 if (sp != NULL) 1103 key_freesp(sp); 1104 #endif /* IPSEC */ 1105 #ifdef FAST_IPSEC 1106 if (sp != NULL) 1107 KEY_FREESP(&sp); 1108 #endif /* FAST_IPSEC */ 1109 1110 return(error); 1111 1112 freehdrs: 1113 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1114 m_freem(exthdrs.ip6e_dest1); 1115 m_freem(exthdrs.ip6e_rthdr); 1116 m_freem(exthdrs.ip6e_dest2); 1117 /* fall through */ 1118 bad: 1119 m_freem(m); 1120 goto done; 1121 } 1122 1123 static int 1124 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1125 { 1126 struct mbuf *m; 1127 1128 if (hlen > MCLBYTES) 1129 return(ENOBUFS); /* XXX */ 1130 1131 MGET(m, MB_DONTWAIT, MT_DATA); 1132 if (!m) 1133 return(ENOBUFS); 1134 1135 if (hlen > MLEN) { 1136 MCLGET(m, MB_DONTWAIT); 1137 if ((m->m_flags & M_EXT) == 0) { 1138 m_free(m); 1139 return(ENOBUFS); 1140 } 1141 } 1142 m->m_len = hlen; 1143 if (hdr) 1144 bcopy(hdr, mtod(m, caddr_t), hlen); 1145 1146 *mp = m; 1147 return(0); 1148 } 1149 1150 /* 1151 * Insert jumbo payload option. 1152 */ 1153 static int 1154 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1155 { 1156 struct mbuf *mopt; 1157 u_char *optbuf; 1158 u_int32_t v; 1159 1160 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1161 1162 /* 1163 * If there is no hop-by-hop options header, allocate new one. 1164 * If there is one but it doesn't have enough space to store the 1165 * jumbo payload option, allocate a cluster to store the whole options. 1166 * Otherwise, use it to store the options. 1167 */ 1168 if (exthdrs->ip6e_hbh == 0) { 1169 MGET(mopt, MB_DONTWAIT, MT_DATA); 1170 if (mopt == 0) 1171 return(ENOBUFS); 1172 mopt->m_len = JUMBOOPTLEN; 1173 optbuf = mtod(mopt, u_char *); 1174 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1175 exthdrs->ip6e_hbh = mopt; 1176 } else { 1177 struct ip6_hbh *hbh; 1178 1179 mopt = exthdrs->ip6e_hbh; 1180 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1181 /* 1182 * XXX assumption: 1183 * - exthdrs->ip6e_hbh is not referenced from places 1184 * other than exthdrs. 1185 * - exthdrs->ip6e_hbh is not an mbuf chain. 1186 */ 1187 int oldoptlen = mopt->m_len; 1188 struct mbuf *n; 1189 1190 /* 1191 * XXX: give up if the whole (new) hbh header does 1192 * not fit even in an mbuf cluster. 1193 */ 1194 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1195 return(ENOBUFS); 1196 1197 /* 1198 * As a consequence, we must always prepare a cluster 1199 * at this point. 1200 */ 1201 MGET(n, MB_DONTWAIT, MT_DATA); 1202 if (n) { 1203 MCLGET(n, MB_DONTWAIT); 1204 if ((n->m_flags & M_EXT) == 0) { 1205 m_freem(n); 1206 n = NULL; 1207 } 1208 } 1209 if (!n) 1210 return(ENOBUFS); 1211 n->m_len = oldoptlen + JUMBOOPTLEN; 1212 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1213 oldoptlen); 1214 optbuf = mtod(n, caddr_t) + oldoptlen; 1215 m_freem(mopt); 1216 mopt = exthdrs->ip6e_hbh = n; 1217 } else { 1218 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1219 mopt->m_len += JUMBOOPTLEN; 1220 } 1221 optbuf[0] = IP6OPT_PADN; 1222 optbuf[1] = 1; 1223 1224 /* 1225 * Adjust the header length according to the pad and 1226 * the jumbo payload option. 1227 */ 1228 hbh = mtod(mopt, struct ip6_hbh *); 1229 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1230 } 1231 1232 /* fill in the option. */ 1233 optbuf[2] = IP6OPT_JUMBO; 1234 optbuf[3] = 4; 1235 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1236 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1237 1238 /* finally, adjust the packet header length */ 1239 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1240 1241 return(0); 1242 #undef JUMBOOPTLEN 1243 } 1244 1245 /* 1246 * Insert fragment header and copy unfragmentable header portions. 1247 */ 1248 static int 1249 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1250 struct ip6_frag **frghdrp) 1251 { 1252 struct mbuf *n, *mlast; 1253 1254 if (hlen > sizeof(struct ip6_hdr)) { 1255 n = m_copym(m0, sizeof(struct ip6_hdr), 1256 hlen - sizeof(struct ip6_hdr), MB_DONTWAIT); 1257 if (n == 0) 1258 return(ENOBUFS); 1259 m->m_next = n; 1260 } else 1261 n = m; 1262 1263 /* Search for the last mbuf of unfragmentable part. */ 1264 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1265 ; 1266 1267 if ((mlast->m_flags & M_EXT) == 0 && 1268 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1269 /* use the trailing space of the last mbuf for the fragment hdr */ 1270 *frghdrp = 1271 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1272 mlast->m_len += sizeof(struct ip6_frag); 1273 m->m_pkthdr.len += sizeof(struct ip6_frag); 1274 } else { 1275 /* allocate a new mbuf for the fragment header */ 1276 struct mbuf *mfrg; 1277 1278 MGET(mfrg, MB_DONTWAIT, MT_DATA); 1279 if (mfrg == 0) 1280 return(ENOBUFS); 1281 mfrg->m_len = sizeof(struct ip6_frag); 1282 *frghdrp = mtod(mfrg, struct ip6_frag *); 1283 mlast->m_next = mfrg; 1284 } 1285 1286 return(0); 1287 } 1288 1289 /* 1290 * IP6 socket option processing. 1291 */ 1292 int 1293 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1294 { 1295 int privileged; 1296 struct inpcb *in6p = sotoinpcb(so); 1297 int error, optval; 1298 int level, op, optname; 1299 int optlen; 1300 struct thread *td; 1301 1302 if (sopt) { 1303 level = sopt->sopt_level; 1304 op = sopt->sopt_dir; 1305 optname = sopt->sopt_name; 1306 optlen = sopt->sopt_valsize; 1307 td = sopt->sopt_td; 1308 } else { 1309 panic("ip6_ctloutput: arg soopt is NULL"); 1310 /* NOT REACHED */ 1311 td = NULL; 1312 } 1313 error = optval = 0; 1314 1315 privileged = (td == NULL || suser(td)) ? 0 : 1; 1316 1317 if (level == IPPROTO_IPV6) { 1318 switch (op) { 1319 1320 case SOPT_SET: 1321 switch (optname) { 1322 case IPV6_PKTOPTIONS: 1323 { 1324 struct mbuf *m; 1325 1326 error = soopt_getm(sopt, &m); /* XXX */ 1327 if (error != NULL) 1328 break; 1329 error = soopt_mcopyin(sopt, m); /* XXX */ 1330 if (error != NULL) 1331 break; 1332 error = ip6_pcbopts(&in6p->in6p_outputopts, 1333 m, so, sopt); 1334 m_freem(m); /* XXX */ 1335 break; 1336 } 1337 1338 /* 1339 * Use of some Hop-by-Hop options or some 1340 * Destination options, might require special 1341 * privilege. That is, normal applications 1342 * (without special privilege) might be forbidden 1343 * from setting certain options in outgoing packets, 1344 * and might never see certain options in received 1345 * packets. [RFC 2292 Section 6] 1346 * KAME specific note: 1347 * KAME prevents non-privileged users from sending or 1348 * receiving ANY hbh/dst options in order to avoid 1349 * overhead of parsing options in the kernel. 1350 */ 1351 case IPV6_UNICAST_HOPS: 1352 case IPV6_CHECKSUM: 1353 case IPV6_FAITH: 1354 1355 case IPV6_V6ONLY: 1356 if (optlen != sizeof(int)) { 1357 error = EINVAL; 1358 break; 1359 } 1360 error = sooptcopyin(sopt, &optval, 1361 sizeof optval, sizeof optval); 1362 if (error) 1363 break; 1364 switch (optname) { 1365 1366 case IPV6_UNICAST_HOPS: 1367 if (optval < -1 || optval >= 256) 1368 error = EINVAL; 1369 else { 1370 /* -1 = kernel default */ 1371 in6p->in6p_hops = optval; 1372 1373 if ((in6p->in6p_vflag & 1374 INP_IPV4) != 0) 1375 in6p->inp_ip_ttl = optval; 1376 } 1377 break; 1378 #define OPTSET(bit) \ 1379 do { \ 1380 if (optval) \ 1381 in6p->in6p_flags |= (bit); \ 1382 else \ 1383 in6p->in6p_flags &= ~(bit); \ 1384 } while (0) 1385 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1386 1387 case IPV6_CHECKSUM: 1388 in6p->in6p_cksum = optval; 1389 break; 1390 1391 case IPV6_FAITH: 1392 OPTSET(IN6P_FAITH); 1393 break; 1394 1395 case IPV6_V6ONLY: 1396 /* 1397 * make setsockopt(IPV6_V6ONLY) 1398 * available only prior to bind(2). 1399 * see ipng mailing list, Jun 22 2001. 1400 */ 1401 if (in6p->in6p_lport || 1402 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1403 { 1404 error = EINVAL; 1405 break; 1406 } 1407 OPTSET(IN6P_IPV6_V6ONLY); 1408 if (optval) 1409 in6p->in6p_vflag &= ~INP_IPV4; 1410 else 1411 in6p->in6p_vflag |= INP_IPV4; 1412 break; 1413 } 1414 break; 1415 1416 case IPV6_PKTINFO: 1417 case IPV6_HOPLIMIT: 1418 case IPV6_HOPOPTS: 1419 case IPV6_DSTOPTS: 1420 case IPV6_RTHDR: 1421 /* RFC 2292 */ 1422 if (optlen != sizeof(int)) { 1423 error = EINVAL; 1424 break; 1425 } 1426 error = sooptcopyin(sopt, &optval, 1427 sizeof optval, sizeof optval); 1428 if (error) 1429 break; 1430 switch (optname) { 1431 case IPV6_PKTINFO: 1432 OPTSET(IN6P_PKTINFO); 1433 break; 1434 case IPV6_HOPLIMIT: 1435 OPTSET(IN6P_HOPLIMIT); 1436 break; 1437 case IPV6_HOPOPTS: 1438 /* 1439 * Check super-user privilege. 1440 * See comments for IPV6_RECVHOPOPTS. 1441 */ 1442 if (!privileged) 1443 return(EPERM); 1444 OPTSET(IN6P_HOPOPTS); 1445 break; 1446 case IPV6_DSTOPTS: 1447 if (!privileged) 1448 return(EPERM); 1449 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1450 break; 1451 case IPV6_RTHDR: 1452 OPTSET(IN6P_RTHDR); 1453 break; 1454 } 1455 break; 1456 #undef OPTSET 1457 1458 case IPV6_MULTICAST_IF: 1459 case IPV6_MULTICAST_HOPS: 1460 case IPV6_MULTICAST_LOOP: 1461 case IPV6_JOIN_GROUP: 1462 case IPV6_LEAVE_GROUP: 1463 { 1464 struct mbuf *m; 1465 if (sopt->sopt_valsize > MLEN) { 1466 error = EMSGSIZE; 1467 break; 1468 } 1469 /* XXX */ 1470 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER); 1471 if (m == 0) { 1472 error = ENOBUFS; 1473 break; 1474 } 1475 m->m_len = sopt->sopt_valsize; 1476 error = sooptcopyin(sopt, mtod(m, char *), 1477 m->m_len, m->m_len); 1478 error = ip6_setmoptions(sopt->sopt_name, 1479 &in6p->in6p_moptions, 1480 m); 1481 (void)m_free(m); 1482 } 1483 break; 1484 1485 case IPV6_PORTRANGE: 1486 error = sooptcopyin(sopt, &optval, 1487 sizeof optval, sizeof optval); 1488 if (error) 1489 break; 1490 1491 switch (optval) { 1492 case IPV6_PORTRANGE_DEFAULT: 1493 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1494 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1495 break; 1496 1497 case IPV6_PORTRANGE_HIGH: 1498 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1499 in6p->in6p_flags |= IN6P_HIGHPORT; 1500 break; 1501 1502 case IPV6_PORTRANGE_LOW: 1503 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1504 in6p->in6p_flags |= IN6P_LOWPORT; 1505 break; 1506 1507 default: 1508 error = EINVAL; 1509 break; 1510 } 1511 break; 1512 1513 #if defined(IPSEC) || defined(FAST_IPSEC) 1514 case IPV6_IPSEC_POLICY: 1515 { 1516 caddr_t req = NULL; 1517 size_t len = 0; 1518 struct mbuf *m; 1519 1520 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1521 break; 1522 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1523 break; 1524 if (m) { 1525 req = mtod(m, caddr_t); 1526 len = m->m_len; 1527 } 1528 error = ipsec6_set_policy(in6p, optname, req, 1529 len, privileged); 1530 m_freem(m); 1531 } 1532 break; 1533 #endif /* KAME IPSEC */ 1534 1535 case IPV6_FW_ADD: 1536 case IPV6_FW_DEL: 1537 case IPV6_FW_FLUSH: 1538 case IPV6_FW_ZERO: 1539 { 1540 struct mbuf *m; 1541 struct mbuf **mp = &m; 1542 1543 if (ip6_fw_ctl_ptr == NULL) 1544 return EINVAL; 1545 /* XXX */ 1546 if ((error = soopt_getm(sopt, &m)) != 0) 1547 break; 1548 /* XXX */ 1549 if ((error = soopt_mcopyin(sopt, m)) != 0) 1550 break; 1551 error = (*ip6_fw_ctl_ptr)(optname, mp); 1552 m = *mp; 1553 } 1554 break; 1555 1556 default: 1557 error = ENOPROTOOPT; 1558 break; 1559 } 1560 break; 1561 1562 case SOPT_GET: 1563 switch (optname) { 1564 1565 case IPV6_PKTOPTIONS: 1566 if (in6p->in6p_options) { 1567 struct mbuf *m; 1568 m = m_copym(in6p->in6p_options, 1569 0, M_COPYALL, MB_WAIT); 1570 error = soopt_mcopyout(sopt, m); 1571 if (error == 0) 1572 m_freem(m); 1573 } else 1574 sopt->sopt_valsize = 0; 1575 break; 1576 1577 case IPV6_UNICAST_HOPS: 1578 case IPV6_CHECKSUM: 1579 1580 case IPV6_FAITH: 1581 case IPV6_V6ONLY: 1582 case IPV6_PORTRANGE: 1583 switch (optname) { 1584 1585 case IPV6_UNICAST_HOPS: 1586 optval = in6p->in6p_hops; 1587 break; 1588 1589 case IPV6_CHECKSUM: 1590 optval = in6p->in6p_cksum; 1591 break; 1592 1593 case IPV6_FAITH: 1594 optval = OPTBIT(IN6P_FAITH); 1595 break; 1596 1597 case IPV6_V6ONLY: 1598 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1599 break; 1600 1601 case IPV6_PORTRANGE: 1602 { 1603 int flags; 1604 flags = in6p->in6p_flags; 1605 if (flags & IN6P_HIGHPORT) 1606 optval = IPV6_PORTRANGE_HIGH; 1607 else if (flags & IN6P_LOWPORT) 1608 optval = IPV6_PORTRANGE_LOW; 1609 else 1610 optval = 0; 1611 break; 1612 } 1613 } 1614 error = sooptcopyout(sopt, &optval, 1615 sizeof optval); 1616 break; 1617 1618 case IPV6_PKTINFO: 1619 case IPV6_HOPLIMIT: 1620 case IPV6_HOPOPTS: 1621 case IPV6_RTHDR: 1622 case IPV6_DSTOPTS: 1623 if (optname == IPV6_HOPOPTS || 1624 optname == IPV6_DSTOPTS || 1625 !privileged) 1626 return(EPERM); 1627 switch (optname) { 1628 case IPV6_PKTINFO: 1629 optval = OPTBIT(IN6P_PKTINFO); 1630 break; 1631 case IPV6_HOPLIMIT: 1632 optval = OPTBIT(IN6P_HOPLIMIT); 1633 break; 1634 case IPV6_HOPOPTS: 1635 if (!privileged) 1636 return(EPERM); 1637 optval = OPTBIT(IN6P_HOPOPTS); 1638 break; 1639 case IPV6_RTHDR: 1640 optval = OPTBIT(IN6P_RTHDR); 1641 break; 1642 case IPV6_DSTOPTS: 1643 if (!privileged) 1644 return(EPERM); 1645 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1646 break; 1647 } 1648 error = sooptcopyout(sopt, &optval, 1649 sizeof optval); 1650 break; 1651 1652 case IPV6_MULTICAST_IF: 1653 case IPV6_MULTICAST_HOPS: 1654 case IPV6_MULTICAST_LOOP: 1655 case IPV6_JOIN_GROUP: 1656 case IPV6_LEAVE_GROUP: 1657 { 1658 struct mbuf *m; 1659 error = ip6_getmoptions(sopt->sopt_name, 1660 in6p->in6p_moptions, &m); 1661 if (error == 0) 1662 error = sooptcopyout(sopt, 1663 mtod(m, char *), m->m_len); 1664 m_freem(m); 1665 } 1666 break; 1667 1668 #if defined(IPSEC) || defined(FAST_IPSEC) 1669 case IPV6_IPSEC_POLICY: 1670 { 1671 caddr_t req = NULL; 1672 size_t len = 0; 1673 struct mbuf *m = NULL; 1674 struct mbuf **mp = &m; 1675 1676 error = soopt_getm(sopt, &m); /* XXX */ 1677 if (error != NULL) 1678 break; 1679 error = soopt_mcopyin(sopt, m); /* XXX */ 1680 if (error != NULL) 1681 break; 1682 if (m) { 1683 req = mtod(m, caddr_t); 1684 len = m->m_len; 1685 } 1686 error = ipsec6_get_policy(in6p, req, len, mp); 1687 if (error == 0) 1688 error = soopt_mcopyout(sopt, m); /*XXX*/ 1689 if (error == 0 && m) 1690 m_freem(m); 1691 break; 1692 } 1693 #endif /* KAME IPSEC */ 1694 1695 case IPV6_FW_GET: 1696 { 1697 struct mbuf *m; 1698 struct mbuf **mp = &m; 1699 1700 if (ip6_fw_ctl_ptr == NULL) 1701 { 1702 return EINVAL; 1703 } 1704 error = (*ip6_fw_ctl_ptr)(optname, mp); 1705 if (error == 0) 1706 error = soopt_mcopyout(sopt, m); /* XXX */ 1707 if (error == 0 && m) 1708 m_freem(m); 1709 } 1710 break; 1711 1712 default: 1713 error = ENOPROTOOPT; 1714 break; 1715 } 1716 break; 1717 } 1718 } else { 1719 error = EINVAL; 1720 } 1721 return(error); 1722 } 1723 1724 /* 1725 * Set up IP6 options in pcb for insertion in output packets or 1726 * specifying behavior of outgoing packets. 1727 */ 1728 static int 1729 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so, 1730 struct sockopt *sopt) 1731 { 1732 struct ip6_pktopts *opt = *pktopt; 1733 int error = 0; 1734 struct thread *td = sopt->sopt_td; 1735 int priv = 0; 1736 1737 /* turn off any old options. */ 1738 if (opt) { 1739 #ifdef DIAGNOSTIC 1740 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1741 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1742 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1743 printf("ip6_pcbopts: all specified options are cleared.\n"); 1744 #endif 1745 ip6_clearpktopts(opt, 1, -1); 1746 } else 1747 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1748 *pktopt = NULL; 1749 1750 if (!m || m->m_len == 0) { 1751 /* 1752 * Only turning off any previous options, regardless of 1753 * whether the opt is just created or given. 1754 */ 1755 free(opt, M_IP6OPT); 1756 return(0); 1757 } 1758 1759 /* set options specified by user. */ 1760 if (suser(td) == 0) 1761 priv = 1; 1762 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) { 1763 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */ 1764 free(opt, M_IP6OPT); 1765 return(error); 1766 } 1767 *pktopt = opt; 1768 return(0); 1769 } 1770 1771 /* 1772 * initialize ip6_pktopts. beware that there are non-zero default values in 1773 * the struct. 1774 */ 1775 void 1776 init_ip6pktopts(struct ip6_pktopts *opt) 1777 { 1778 1779 bzero(opt, sizeof(*opt)); 1780 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1781 } 1782 1783 void 1784 ip6_clearpktopts(struct ip6_pktopts *pktopt, int needfree, int optname) 1785 { 1786 if (pktopt == NULL) 1787 return; 1788 1789 if (optname == -1) { 1790 if (needfree && pktopt->ip6po_pktinfo) 1791 free(pktopt->ip6po_pktinfo, M_IP6OPT); 1792 pktopt->ip6po_pktinfo = NULL; 1793 } 1794 if (optname == -1) 1795 pktopt->ip6po_hlim = -1; 1796 if (optname == -1) { 1797 if (needfree && pktopt->ip6po_nexthop) 1798 free(pktopt->ip6po_nexthop, M_IP6OPT); 1799 pktopt->ip6po_nexthop = NULL; 1800 } 1801 if (optname == -1) { 1802 if (needfree && pktopt->ip6po_hbh) 1803 free(pktopt->ip6po_hbh, M_IP6OPT); 1804 pktopt->ip6po_hbh = NULL; 1805 } 1806 if (optname == -1) { 1807 if (needfree && pktopt->ip6po_dest1) 1808 free(pktopt->ip6po_dest1, M_IP6OPT); 1809 pktopt->ip6po_dest1 = NULL; 1810 } 1811 if (optname == -1) { 1812 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1813 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 1814 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1815 if (pktopt->ip6po_route.ro_rt) { 1816 RTFREE(pktopt->ip6po_route.ro_rt); 1817 pktopt->ip6po_route.ro_rt = NULL; 1818 } 1819 } 1820 if (optname == -1) { 1821 if (needfree && pktopt->ip6po_dest2) 1822 free(pktopt->ip6po_dest2, M_IP6OPT); 1823 pktopt->ip6po_dest2 = NULL; 1824 } 1825 } 1826 1827 #define PKTOPT_EXTHDRCPY(type) \ 1828 do {\ 1829 if (src->type) {\ 1830 int hlen =\ 1831 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1832 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 1833 if (dst->type == NULL && canwait == M_NOWAIT)\ 1834 goto bad;\ 1835 bcopy(src->type, dst->type, hlen);\ 1836 }\ 1837 } while (0) 1838 1839 struct ip6_pktopts * 1840 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 1841 { 1842 struct ip6_pktopts *dst; 1843 1844 if (src == NULL) { 1845 printf("ip6_clearpktopts: invalid argument\n"); 1846 return(NULL); 1847 } 1848 1849 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 1850 if (dst == NULL && canwait == M_NOWAIT) 1851 return (NULL); 1852 bzero(dst, sizeof(*dst)); 1853 1854 dst->ip6po_hlim = src->ip6po_hlim; 1855 if (src->ip6po_pktinfo) { 1856 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1857 M_IP6OPT, canwait); 1858 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 1859 goto bad; 1860 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1861 } 1862 if (src->ip6po_nexthop) { 1863 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 1864 M_IP6OPT, canwait); 1865 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 1866 goto bad; 1867 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 1868 src->ip6po_nexthop->sa_len); 1869 } 1870 PKTOPT_EXTHDRCPY(ip6po_hbh); 1871 PKTOPT_EXTHDRCPY(ip6po_dest1); 1872 PKTOPT_EXTHDRCPY(ip6po_dest2); 1873 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1874 return(dst); 1875 1876 bad: 1877 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 1878 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 1879 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 1880 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 1881 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 1882 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 1883 free(dst, M_IP6OPT); 1884 return(NULL); 1885 } 1886 #undef PKTOPT_EXTHDRCPY 1887 1888 void 1889 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1890 { 1891 if (pktopt == NULL) 1892 return; 1893 1894 ip6_clearpktopts(pktopt, 1, -1); 1895 1896 free(pktopt, M_IP6OPT); 1897 } 1898 1899 /* 1900 * Set the IP6 multicast options in response to user setsockopt(). 1901 */ 1902 static int 1903 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 1904 { 1905 int error = 0; 1906 u_int loop, ifindex; 1907 struct ipv6_mreq *mreq; 1908 struct ifnet *ifp; 1909 struct ip6_moptions *im6o = *im6op; 1910 struct route_in6 ro; 1911 struct sockaddr_in6 *dst; 1912 struct in6_multi_mship *imm; 1913 struct thread *td = curthread; /* XXX */ 1914 1915 if (im6o == NULL) { 1916 /* 1917 * No multicast option buffer attached to the pcb; 1918 * allocate one and initialize to default values. 1919 */ 1920 im6o = (struct ip6_moptions *) 1921 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1922 1923 if (im6o == NULL) 1924 return(ENOBUFS); 1925 *im6op = im6o; 1926 im6o->im6o_multicast_ifp = NULL; 1927 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1928 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1929 LIST_INIT(&im6o->im6o_memberships); 1930 } 1931 1932 switch (optname) { 1933 1934 case IPV6_MULTICAST_IF: 1935 /* 1936 * Select the interface for outgoing multicast packets. 1937 */ 1938 if (m == NULL || m->m_len != sizeof(u_int)) { 1939 error = EINVAL; 1940 break; 1941 } 1942 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1943 if (ifindex < 0 || if_index < ifindex) { 1944 error = ENXIO; /* XXX EINVAL? */ 1945 break; 1946 } 1947 ifp = ifindex2ifnet[ifindex]; 1948 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1949 error = EADDRNOTAVAIL; 1950 break; 1951 } 1952 im6o->im6o_multicast_ifp = ifp; 1953 break; 1954 1955 case IPV6_MULTICAST_HOPS: 1956 { 1957 /* 1958 * Set the IP6 hoplimit for outgoing multicast packets. 1959 */ 1960 int optval; 1961 if (m == NULL || m->m_len != sizeof(int)) { 1962 error = EINVAL; 1963 break; 1964 } 1965 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1966 if (optval < -1 || optval >= 256) 1967 error = EINVAL; 1968 else if (optval == -1) 1969 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1970 else 1971 im6o->im6o_multicast_hlim = optval; 1972 break; 1973 } 1974 1975 case IPV6_MULTICAST_LOOP: 1976 /* 1977 * Set the loopback flag for outgoing multicast packets. 1978 * Must be zero or one. 1979 */ 1980 if (m == NULL || m->m_len != sizeof(u_int)) { 1981 error = EINVAL; 1982 break; 1983 } 1984 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1985 if (loop > 1) { 1986 error = EINVAL; 1987 break; 1988 } 1989 im6o->im6o_multicast_loop = loop; 1990 break; 1991 1992 case IPV6_JOIN_GROUP: 1993 /* 1994 * Add a multicast group membership. 1995 * Group must be a valid IP6 multicast address. 1996 */ 1997 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1998 error = EINVAL; 1999 break; 2000 } 2001 mreq = mtod(m, struct ipv6_mreq *); 2002 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2003 /* 2004 * We use the unspecified address to specify to accept 2005 * all multicast addresses. Only super user is allowed 2006 * to do this. 2007 */ 2008 if (suser(td)) 2009 { 2010 error = EACCES; 2011 break; 2012 } 2013 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2014 error = EINVAL; 2015 break; 2016 } 2017 2018 /* 2019 * If the interface is specified, validate it. 2020 */ 2021 if (mreq->ipv6mr_interface < 0 2022 || if_index < mreq->ipv6mr_interface) { 2023 error = ENXIO; /* XXX EINVAL? */ 2024 break; 2025 } 2026 /* 2027 * If no interface was explicitly specified, choose an 2028 * appropriate one according to the given multicast address. 2029 */ 2030 if (mreq->ipv6mr_interface == 0) { 2031 /* 2032 * If the multicast address is in node-local scope, 2033 * the interface should be a loopback interface. 2034 * Otherwise, look up the routing table for the 2035 * address, and choose the outgoing interface. 2036 * XXX: is it a good approach? 2037 */ 2038 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2039 ifp = &loif[0]; 2040 } else { 2041 ro.ro_rt = NULL; 2042 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2043 bzero(dst, sizeof(*dst)); 2044 dst->sin6_len = sizeof(struct sockaddr_in6); 2045 dst->sin6_family = AF_INET6; 2046 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2047 rtalloc((struct route *)&ro); 2048 if (ro.ro_rt == NULL) { 2049 error = EADDRNOTAVAIL; 2050 break; 2051 } 2052 ifp = ro.ro_rt->rt_ifp; 2053 rtfree(ro.ro_rt); 2054 } 2055 } else 2056 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2057 2058 /* 2059 * See if we found an interface, and confirm that it 2060 * supports multicast 2061 */ 2062 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2063 error = EADDRNOTAVAIL; 2064 break; 2065 } 2066 /* 2067 * Put interface index into the multicast address, 2068 * if the address has link-local scope. 2069 */ 2070 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2071 mreq->ipv6mr_multiaddr.s6_addr16[1] 2072 = htons(mreq->ipv6mr_interface); 2073 } 2074 /* 2075 * See if the membership already exists. 2076 */ 2077 for (imm = im6o->im6o_memberships.lh_first; 2078 imm != NULL; imm = imm->i6mm_chain.le_next) 2079 if (imm->i6mm_maddr->in6m_ifp == ifp && 2080 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2081 &mreq->ipv6mr_multiaddr)) 2082 break; 2083 if (imm != NULL) { 2084 error = EADDRINUSE; 2085 break; 2086 } 2087 /* 2088 * Everything looks good; add a new record to the multicast 2089 * address list for the given interface. 2090 */ 2091 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2092 if (imm == NULL) { 2093 error = ENOBUFS; 2094 break; 2095 } 2096 if ((imm->i6mm_maddr = 2097 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2098 free(imm, M_IPMADDR); 2099 break; 2100 } 2101 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2102 break; 2103 2104 case IPV6_LEAVE_GROUP: 2105 /* 2106 * Drop a multicast group membership. 2107 * Group must be a valid IP6 multicast address. 2108 */ 2109 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2110 error = EINVAL; 2111 break; 2112 } 2113 mreq = mtod(m, struct ipv6_mreq *); 2114 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2115 if (suser(td)) { 2116 error = EACCES; 2117 break; 2118 } 2119 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2120 error = EINVAL; 2121 break; 2122 } 2123 /* 2124 * If an interface address was specified, get a pointer 2125 * to its ifnet structure. 2126 */ 2127 if (mreq->ipv6mr_interface < 0 2128 || if_index < mreq->ipv6mr_interface) { 2129 error = ENXIO; /* XXX EINVAL? */ 2130 break; 2131 } 2132 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2133 /* 2134 * Put interface index into the multicast address, 2135 * if the address has link-local scope. 2136 */ 2137 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2138 mreq->ipv6mr_multiaddr.s6_addr16[1] 2139 = htons(mreq->ipv6mr_interface); 2140 } 2141 /* 2142 * Find the membership in the membership list. 2143 */ 2144 for (imm = im6o->im6o_memberships.lh_first; 2145 imm != NULL; imm = imm->i6mm_chain.le_next) { 2146 if ((ifp == NULL || 2147 imm->i6mm_maddr->in6m_ifp == ifp) && 2148 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2149 &mreq->ipv6mr_multiaddr)) 2150 break; 2151 } 2152 if (imm == NULL) { 2153 /* Unable to resolve interface */ 2154 error = EADDRNOTAVAIL; 2155 break; 2156 } 2157 /* 2158 * Give up the multicast address record to which the 2159 * membership points. 2160 */ 2161 LIST_REMOVE(imm, i6mm_chain); 2162 in6_delmulti(imm->i6mm_maddr); 2163 free(imm, M_IPMADDR); 2164 break; 2165 2166 default: 2167 error = EOPNOTSUPP; 2168 break; 2169 } 2170 2171 /* 2172 * If all options have default values, no need to keep the mbuf. 2173 */ 2174 if (im6o->im6o_multicast_ifp == NULL && 2175 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2176 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2177 im6o->im6o_memberships.lh_first == NULL) { 2178 free(*im6op, M_IPMOPTS); 2179 *im6op = NULL; 2180 } 2181 2182 return(error); 2183 } 2184 2185 /* 2186 * Return the IP6 multicast options in response to user getsockopt(). 2187 */ 2188 static int 2189 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2190 { 2191 u_int *hlim, *loop, *ifindex; 2192 2193 *mp = m_get(MB_WAIT, MT_HEADER); /* XXX */ 2194 2195 switch (optname) { 2196 2197 case IPV6_MULTICAST_IF: 2198 ifindex = mtod(*mp, u_int *); 2199 (*mp)->m_len = sizeof(u_int); 2200 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2201 *ifindex = 0; 2202 else 2203 *ifindex = im6o->im6o_multicast_ifp->if_index; 2204 return(0); 2205 2206 case IPV6_MULTICAST_HOPS: 2207 hlim = mtod(*mp, u_int *); 2208 (*mp)->m_len = sizeof(u_int); 2209 if (im6o == NULL) 2210 *hlim = ip6_defmcasthlim; 2211 else 2212 *hlim = im6o->im6o_multicast_hlim; 2213 return(0); 2214 2215 case IPV6_MULTICAST_LOOP: 2216 loop = mtod(*mp, u_int *); 2217 (*mp)->m_len = sizeof(u_int); 2218 if (im6o == NULL) 2219 *loop = ip6_defmcasthlim; 2220 else 2221 *loop = im6o->im6o_multicast_loop; 2222 return(0); 2223 2224 default: 2225 return(EOPNOTSUPP); 2226 } 2227 } 2228 2229 /* 2230 * Discard the IP6 multicast options. 2231 */ 2232 void 2233 ip6_freemoptions(struct ip6_moptions *im6o) 2234 { 2235 struct in6_multi_mship *imm; 2236 2237 if (im6o == NULL) 2238 return; 2239 2240 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2241 LIST_REMOVE(imm, i6mm_chain); 2242 if (imm->i6mm_maddr) 2243 in6_delmulti(imm->i6mm_maddr); 2244 free(imm, M_IPMADDR); 2245 } 2246 free(im6o, M_IPMOPTS); 2247 } 2248 2249 /* 2250 * Set IPv6 outgoing packet options based on advanced API. 2251 */ 2252 int 2253 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt, int priv, 2254 int needcopy) 2255 { 2256 struct cmsghdr *cm = 0; 2257 2258 if (control == 0 || opt == 0) 2259 return(EINVAL); 2260 2261 init_ip6pktopts(opt); 2262 2263 /* 2264 * XXX: Currently, we assume all the optional information is stored 2265 * in a single mbuf. 2266 */ 2267 if (control->m_next) 2268 return(EINVAL); 2269 2270 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2271 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2272 cm = mtod(control, struct cmsghdr *); 2273 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2274 return(EINVAL); 2275 if (cm->cmsg_level != IPPROTO_IPV6) 2276 continue; 2277 2278 /* 2279 * XXX should check if RFC2292 API is mixed with 2292bis API 2280 */ 2281 switch (cm->cmsg_type) { 2282 case IPV6_PKTINFO: 2283 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2284 return(EINVAL); 2285 if (needcopy) { 2286 /* XXX: Is it really WAITOK? */ 2287 opt->ip6po_pktinfo = 2288 malloc(sizeof(struct in6_pktinfo), 2289 M_IP6OPT, M_WAITOK); 2290 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo, 2291 sizeof(struct in6_pktinfo)); 2292 } else 2293 opt->ip6po_pktinfo = 2294 (struct in6_pktinfo *)CMSG_DATA(cm); 2295 if (opt->ip6po_pktinfo->ipi6_ifindex && 2296 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2297 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2298 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2299 2300 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2301 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2302 return(ENXIO); 2303 } 2304 2305 /* 2306 * Check if the requested source address is indeed a 2307 * unicast address assigned to the node, and can be 2308 * used as the packet's source address. 2309 */ 2310 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2311 struct in6_ifaddr *ia6; 2312 struct sockaddr_in6 sin6; 2313 2314 bzero(&sin6, sizeof(sin6)); 2315 sin6.sin6_len = sizeof(sin6); 2316 sin6.sin6_family = AF_INET6; 2317 sin6.sin6_addr = 2318 opt->ip6po_pktinfo->ipi6_addr; 2319 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2320 if (ia6 == NULL || 2321 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2322 IN6_IFF_NOTREADY)) != 0) 2323 return(EADDRNOTAVAIL); 2324 } 2325 break; 2326 2327 case IPV6_HOPLIMIT: 2328 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2329 return(EINVAL); 2330 2331 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2332 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2333 return(EINVAL); 2334 break; 2335 2336 case IPV6_NEXTHOP: 2337 if (!priv) 2338 return(EPERM); 2339 2340 if (cm->cmsg_len < sizeof(u_char) || 2341 /* check if cmsg_len is large enough for sa_len */ 2342 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2343 return(EINVAL); 2344 2345 if (needcopy) { 2346 opt->ip6po_nexthop = 2347 malloc(*CMSG_DATA(cm), 2348 M_IP6OPT, M_WAITOK); 2349 bcopy(CMSG_DATA(cm), 2350 opt->ip6po_nexthop, 2351 *CMSG_DATA(cm)); 2352 } else 2353 opt->ip6po_nexthop = 2354 (struct sockaddr *)CMSG_DATA(cm); 2355 break; 2356 2357 case IPV6_HOPOPTS: 2358 { 2359 struct ip6_hbh *hbh; 2360 int hbhlen; 2361 2362 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2363 return(EINVAL); 2364 hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2365 hbhlen = (hbh->ip6h_len + 1) << 3; 2366 if (cm->cmsg_len != CMSG_LEN(hbhlen)) 2367 return(EINVAL); 2368 2369 if (needcopy) { 2370 opt->ip6po_hbh = 2371 malloc(hbhlen, M_IP6OPT, M_WAITOK); 2372 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2373 } else 2374 opt->ip6po_hbh = hbh; 2375 break; 2376 } 2377 2378 case IPV6_DSTOPTS: 2379 { 2380 struct ip6_dest *dest, **newdest; 2381 int destlen; 2382 2383 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2384 return(EINVAL); 2385 dest = (struct ip6_dest *)CMSG_DATA(cm); 2386 destlen = (dest->ip6d_len + 1) << 3; 2387 if (cm->cmsg_len != CMSG_LEN(destlen)) 2388 return(EINVAL); 2389 2390 /* 2391 * The old advacned API is ambiguous on this 2392 * point. Our approach is to determine the 2393 * position based according to the existence 2394 * of a routing header. Note, however, that 2395 * this depends on the order of the extension 2396 * headers in the ancillary data; the 1st part 2397 * of the destination options header must 2398 * appear before the routing header in the 2399 * ancillary data, too. 2400 * RFC2292bis solved the ambiguity by 2401 * introducing separate cmsg types. 2402 */ 2403 if (opt->ip6po_rthdr == NULL) 2404 newdest = &opt->ip6po_dest1; 2405 else 2406 newdest = &opt->ip6po_dest2; 2407 2408 if (needcopy) { 2409 *newdest = malloc(destlen, M_IP6OPT, M_WAITOK); 2410 bcopy(dest, *newdest, destlen); 2411 } else 2412 *newdest = dest; 2413 2414 break; 2415 } 2416 2417 case IPV6_RTHDR: 2418 { 2419 struct ip6_rthdr *rth; 2420 int rthlen; 2421 2422 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2423 return(EINVAL); 2424 rth = (struct ip6_rthdr *)CMSG_DATA(cm); 2425 rthlen = (rth->ip6r_len + 1) << 3; 2426 if (cm->cmsg_len != CMSG_LEN(rthlen)) 2427 return(EINVAL); 2428 2429 switch (rth->ip6r_type) { 2430 case IPV6_RTHDR_TYPE_0: 2431 /* must contain one addr */ 2432 if (rth->ip6r_len == 0) 2433 return(EINVAL); 2434 /* length must be even */ 2435 if (rth->ip6r_len % 2) 2436 return(EINVAL); 2437 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2438 return(EINVAL); 2439 break; 2440 default: 2441 return(EINVAL); /* not supported */ 2442 } 2443 2444 if (needcopy) { 2445 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, 2446 M_WAITOK); 2447 bcopy(rth, opt->ip6po_rthdr, rthlen); 2448 } else 2449 opt->ip6po_rthdr = rth; 2450 2451 break; 2452 } 2453 2454 default: 2455 return(ENOPROTOOPT); 2456 } 2457 } 2458 2459 return(0); 2460 } 2461 2462 /* 2463 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2464 * packet to the input queue of a specified interface. Note that this 2465 * calls the output routine of the loopback "driver", but with an interface 2466 * pointer that might NOT be &loif -- easier than replicating that code here. 2467 */ 2468 void 2469 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2470 { 2471 struct mbuf *copym; 2472 struct ip6_hdr *ip6; 2473 2474 copym = m_copy(m, 0, M_COPYALL); 2475 if (copym == NULL) 2476 return; 2477 2478 /* 2479 * Make sure to deep-copy IPv6 header portion in case the data 2480 * is in an mbuf cluster, so that we can safely override the IPv6 2481 * header portion later. 2482 */ 2483 if ((copym->m_flags & M_EXT) != 0 || 2484 copym->m_len < sizeof(struct ip6_hdr)) { 2485 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2486 if (copym == NULL) 2487 return; 2488 } 2489 2490 #ifdef DIAGNOSTIC 2491 if (copym->m_len < sizeof(*ip6)) { 2492 m_freem(copym); 2493 return; 2494 } 2495 #endif 2496 2497 ip6 = mtod(copym, struct ip6_hdr *); 2498 #ifndef SCOPEDROUTING 2499 /* 2500 * clear embedded scope identifiers if necessary. 2501 * in6_clearscope will touch the addresses only when necessary. 2502 */ 2503 in6_clearscope(&ip6->ip6_src); 2504 in6_clearscope(&ip6->ip6_dst); 2505 #endif 2506 2507 (void)if_simloop(ifp, copym, dst->sin6_family, NULL); 2508 } 2509 2510 /* 2511 * Chop IPv6 header off from the payload. 2512 */ 2513 static int 2514 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2515 { 2516 struct mbuf *mh; 2517 struct ip6_hdr *ip6; 2518 2519 ip6 = mtod(m, struct ip6_hdr *); 2520 if (m->m_len > sizeof(*ip6)) { 2521 MGETHDR(mh, MB_DONTWAIT, MT_HEADER); 2522 if (mh == 0) { 2523 m_freem(m); 2524 return ENOBUFS; 2525 } 2526 M_MOVE_PKTHDR(mh, m); 2527 MH_ALIGN(mh, sizeof(*ip6)); 2528 m->m_len -= sizeof(*ip6); 2529 m->m_data += sizeof(*ip6); 2530 mh->m_next = m; 2531 m = mh; 2532 m->m_len = sizeof(*ip6); 2533 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2534 } 2535 exthdrs->ip6e_ip6 = m; 2536 return 0; 2537 } 2538 2539 /* 2540 * Compute IPv6 extension header length. 2541 */ 2542 int 2543 ip6_optlen(struct in6pcb *in6p) 2544 { 2545 int len; 2546 2547 if (!in6p->in6p_outputopts) 2548 return 0; 2549 2550 len = 0; 2551 #define elen(x) \ 2552 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2553 2554 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2555 if (in6p->in6p_outputopts->ip6po_rthdr) 2556 /* dest1 is valid with rthdr only */ 2557 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2558 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2559 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2560 return len; 2561 #undef elen 2562 } 2563