1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */ 2 /* $DragonFly: src/sys/netinet6/ip6_output.c,v 1.34 2008/06/05 18:06:32 swildner Exp $ */ 3 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. All advertising materials mentioning features or use of this software 47 * must display the following acknowledgement: 48 * This product includes software developed by the University of 49 * California, Berkeley and its contributors. 50 * 4. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 67 */ 68 69 #include "opt_ip6fw.h" 70 #include "opt_inet.h" 71 #include "opt_inet6.h" 72 #include "opt_ipsec.h" 73 74 #include <sys/param.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/protosw.h> 79 #include <sys/socket.h> 80 #include <sys/socketvar.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/proc.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #include <net/pfil.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/ip6_var.h> 95 #include <netinet/in_pcb.h> 96 #include <netinet6/nd6.h> 97 98 #ifdef IPSEC 99 #include <netinet6/ipsec.h> 100 #ifdef INET6 101 #include <netinet6/ipsec6.h> 102 #endif 103 #include <netproto/key/key.h> 104 #endif /* IPSEC */ 105 106 #ifdef FAST_IPSEC 107 #include <netproto/ipsec/ipsec.h> 108 #include <netproto/ipsec/ipsec6.h> 109 #include <netproto/ipsec/key.h> 110 #endif 111 112 #include <net/ip6fw/ip6_fw.h> 113 114 #include <net/net_osdep.h> 115 116 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 117 118 struct ip6_exthdrs { 119 struct mbuf *ip6e_ip6; 120 struct mbuf *ip6e_hbh; 121 struct mbuf *ip6e_dest1; 122 struct mbuf *ip6e_rthdr; 123 struct mbuf *ip6e_dest2; 124 }; 125 126 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *, 127 struct socket *, struct sockopt *sopt); 128 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *); 129 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **); 130 static int copyexthdr (void *, struct mbuf **); 131 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t); 134 static struct mbuf *ip6_splithdr (struct mbuf *); 135 136 /* 137 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 138 * header (with pri, len, nxt, hlim, src, dst). 139 * This function may modify ver and hlim only. 140 * The mbuf chain containing the packet will be freed. 141 * The mbuf opt, if present, will not be freed. 142 * 143 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 144 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 145 * which is rt_rmx.rmx_mtu. 146 */ 147 int 148 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 149 int flags, struct ip6_moptions *im6o, 150 struct ifnet **ifpp, /* XXX: just for statistics */ 151 struct inpcb *inp) 152 { 153 struct ip6_hdr *ip6, *mhip6; 154 struct ifnet *ifp, *origifp; 155 struct mbuf *m = m0; 156 struct mbuf *mprev; 157 u_char *nexthdrp; 158 int hlen, tlen, len, off; 159 struct route_in6 ip6route; 160 struct sockaddr_in6 *dst; 161 int error = 0; 162 struct in6_ifaddr *ia = NULL; 163 u_long mtu; 164 u_int32_t optlen, plen = 0, unfragpartlen; 165 struct ip6_exthdrs exthdrs; 166 struct in6_addr finaldst; 167 struct route_in6 *ro_pmtu = NULL; 168 boolean_t hdrsplit = FALSE; 169 boolean_t needipsec = FALSE; 170 #ifdef IPSEC 171 boolean_t needipsectun = FALSE; 172 struct secpolicy *sp = NULL; 173 struct socket *so = inp ? inp->inp_socket : NULL; 174 175 ip6 = mtod(m, struct ip6_hdr *); 176 #endif 177 #ifdef FAST_IPSEC 178 boolean_t needipsectun = FALSE; 179 struct secpolicy *sp = NULL; 180 181 ip6 = mtod(m, struct ip6_hdr *); 182 #endif 183 184 bzero(&exthdrs, sizeof exthdrs); 185 186 if (opt) { 187 if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh))) 188 goto freehdrs; 189 if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1))) 190 goto freehdrs; 191 if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr))) 192 goto freehdrs; 193 if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2))) 194 goto freehdrs; 195 } 196 197 #ifdef IPSEC 198 /* get a security policy for this packet */ 199 if (so == NULL) 200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 201 else 202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 203 204 if (sp == NULL) { 205 ipsec6stat.out_inval++; 206 goto freehdrs; 207 } 208 209 error = 0; 210 211 /* check policy */ 212 switch (sp->policy) { 213 case IPSEC_POLICY_DISCARD: 214 /* 215 * This packet is just discarded. 216 */ 217 ipsec6stat.out_polvio++; 218 goto freehdrs; 219 220 case IPSEC_POLICY_BYPASS: 221 case IPSEC_POLICY_NONE: 222 /* no need to do IPsec. */ 223 needipsec = FALSE; 224 break; 225 226 case IPSEC_POLICY_IPSEC: 227 if (sp->req == NULL) { 228 error = key_spdacquire(sp); /* acquire a policy */ 229 goto freehdrs; 230 } 231 needipsec = TRUE; 232 break; 233 234 case IPSEC_POLICY_ENTRUST: 235 default: 236 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy); 237 } 238 #endif /* IPSEC */ 239 #ifdef FAST_IPSEC 240 /* get a security policy for this packet */ 241 if (inp == NULL) 242 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 243 else 244 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 245 246 if (sp == NULL) { 247 newipsecstat.ips_out_inval++; 248 goto freehdrs; 249 } 250 251 error = 0; 252 253 /* check policy */ 254 switch (sp->policy) { 255 case IPSEC_POLICY_DISCARD: 256 /* 257 * This packet is just discarded. 258 */ 259 newipsecstat.ips_out_polvio++; 260 goto freehdrs; 261 262 case IPSEC_POLICY_BYPASS: 263 case IPSEC_POLICY_NONE: 264 /* no need to do IPsec. */ 265 needipsec = FALSE; 266 break; 267 268 case IPSEC_POLICY_IPSEC: 269 if (sp->req == NULL) { 270 error = key_spdacquire(sp); /* acquire a policy */ 271 goto freehdrs; 272 } 273 needipsec = TRUE; 274 break; 275 276 case IPSEC_POLICY_ENTRUST: 277 default: 278 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy); 279 } 280 #endif /* FAST_IPSEC */ 281 282 /* 283 * Calculate the total length of the extension header chain. 284 * Keep the length of the unfragmentable part for fragmentation. 285 */ 286 optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) + 287 m_lengthm(exthdrs.ip6e_dest1, NULL) + 288 m_lengthm(exthdrs.ip6e_rthdr, NULL); 289 290 unfragpartlen = optlen + sizeof(struct ip6_hdr); 291 292 /* NOTE: we don't add AH/ESP length here. do that later. */ 293 optlen += m_lengthm(exthdrs.ip6e_dest2, NULL); 294 295 /* 296 * If we need IPsec, or there is at least one extension header, 297 * separate IP6 header from the payload. 298 */ 299 if ((needipsec || optlen) && !hdrsplit) { 300 exthdrs.ip6e_ip6 = ip6_splithdr(m); 301 if (exthdrs.ip6e_ip6 == NULL) { 302 error = ENOBUFS; 303 goto freehdrs; 304 } 305 m = exthdrs.ip6e_ip6; 306 hdrsplit = TRUE; 307 } 308 309 /* adjust pointer */ 310 ip6 = mtod(m, struct ip6_hdr *); 311 312 /* adjust mbuf packet header length */ 313 m->m_pkthdr.len += optlen; 314 plen = m->m_pkthdr.len - sizeof(*ip6); 315 316 /* If this is a jumbo payload, insert a jumbo payload option. */ 317 if (plen > IPV6_MAXPACKET) { 318 if (!hdrsplit) { 319 exthdrs.ip6e_ip6 = ip6_splithdr(m); 320 if (exthdrs.ip6e_ip6 == NULL) { 321 error = ENOBUFS; 322 goto freehdrs; 323 } 324 m = exthdrs.ip6e_ip6; 325 hdrsplit = TRUE; 326 } 327 /* adjust pointer */ 328 ip6 = mtod(m, struct ip6_hdr *); 329 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 330 goto freehdrs; 331 ip6->ip6_plen = 0; 332 } else 333 ip6->ip6_plen = htons(plen); 334 335 /* 336 * Concatenate headers and fill in next header fields. 337 * Here we have, on "m" 338 * IPv6 payload 339 * and we insert headers accordingly. Finally, we should be getting: 340 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 341 * 342 * during the header composing process, "m" points to IPv6 header. 343 * "mprev" points to an extension header prior to esp. 344 */ 345 346 nexthdrp = &ip6->ip6_nxt; 347 mprev = m; 348 349 /* 350 * we treat dest2 specially. this makes IPsec processing 351 * much easier. the goal here is to make mprev point the 352 * mbuf prior to dest2. 353 * 354 * result: IPv6 dest2 payload 355 * m and mprev will point to IPv6 header. 356 */ 357 if (exthdrs.ip6e_dest2) { 358 if (!hdrsplit) 359 panic("assumption failed: hdr not split"); 360 exthdrs.ip6e_dest2->m_next = m->m_next; 361 m->m_next = exthdrs.ip6e_dest2; 362 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 363 ip6->ip6_nxt = IPPROTO_DSTOPTS; 364 } 365 366 /* 367 * Place m1 after mprev. 368 */ 369 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\ 370 do {\ 371 if (m1) {\ 372 if (!hdrsplit)\ 373 panic("assumption failed: hdr not split");\ 374 *mtod(m1, u_char *) = *nexthdrp;\ 375 *nexthdrp = (i);\ 376 nexthdrp = mtod(m1, u_char *);\ 377 m1->m_next = mprev->m_next;\ 378 mprev->m_next = m1;\ 379 mprev = m1;\ 380 }\ 381 } while (0) 382 383 /* 384 * result: IPv6 hbh dest1 rthdr dest2 payload 385 * m will point to IPv6 header. mprev will point to the 386 * extension header prior to dest2 (rthdr in the above case). 387 */ 388 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 389 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); 390 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); 391 392 #if defined(IPSEC) || defined(FAST_IPSEC) 393 if (needipsec) { 394 struct ipsec_output_state state; 395 int segleft_org = 0; 396 struct ip6_rthdr *rh = NULL; 397 398 /* 399 * pointers after IPsec headers are not valid any more. 400 * other pointers need a great care too. 401 * (IPsec routines should not mangle mbufs prior to AH/ESP) 402 */ 403 exthdrs.ip6e_dest2 = NULL; 404 405 if (exthdrs.ip6e_rthdr) { 406 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 407 segleft_org = rh->ip6r_segleft; 408 rh->ip6r_segleft = 0; 409 } 410 411 bzero(&state, sizeof state); 412 state.m = m; 413 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 414 &needipsectun); 415 m = state.m; 416 if (error) { 417 /* mbuf is already reclaimed in ipsec6_output_trans. */ 418 m = NULL; 419 switch (error) { 420 case EHOSTUNREACH: 421 case ENETUNREACH: 422 case EMSGSIZE: 423 case ENOBUFS: 424 case ENOMEM: 425 break; 426 default: 427 kprintf("ip6_output (ipsec): error code %d\n", 428 error); 429 /* fall through */ 430 case ENOENT: 431 /* don't show these error codes to the user */ 432 error = 0; 433 break; 434 } 435 goto bad; 436 } 437 if (exthdrs.ip6e_rthdr) { 438 /* ah6_output doesn't modify mbuf chain */ 439 rh->ip6r_segleft = segleft_org; 440 } 441 } 442 #endif 443 444 /* 445 * If there is a routing header, replace destination address field 446 * with the first hop of the routing header. 447 */ 448 if (exthdrs.ip6e_rthdr) { 449 struct ip6_rthdr *rh; 450 struct ip6_rthdr0 *rh0; 451 452 finaldst = ip6->ip6_dst; 453 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 454 switch (rh->ip6r_type) { 455 case IPV6_RTHDR_TYPE_0: 456 rh0 = (struct ip6_rthdr0 *)rh; 457 ip6->ip6_dst = rh0->ip6r0_addr[0]; 458 bcopy(&rh0->ip6r0_addr[1], &rh0->ip6r0_addr[0], 459 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)); 460 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 461 break; 462 default: /* is it possible? */ 463 error = EINVAL; 464 goto bad; 465 } 466 } 467 468 /* Source address validation */ 469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 470 !(flags & IPV6_DADOUTPUT)) { 471 error = EOPNOTSUPP; 472 ip6stat.ip6s_badscope++; 473 goto bad; 474 } 475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 476 error = EOPNOTSUPP; 477 ip6stat.ip6s_badscope++; 478 goto bad; 479 } 480 481 ip6stat.ip6s_localout++; 482 483 /* 484 * Route packet. 485 */ 486 if (ro == NULL) { 487 ro = &ip6route; 488 bzero(ro, sizeof(*ro)); 489 } 490 ro_pmtu = ro; 491 if (opt && opt->ip6po_rthdr) 492 ro = &opt->ip6po_route; 493 dst = (struct sockaddr_in6 *)&ro->ro_dst; 494 /* 495 * If there is a cached route, 496 * check that it is to the same destination 497 * and is still up. If not, free it and try again. 498 */ 499 if (ro->ro_rt != NULL && 500 (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 || 501 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 502 RTFREE(ro->ro_rt); 503 ro->ro_rt = NULL; 504 } 505 if (ro->ro_rt == NULL) { 506 bzero(dst, sizeof(*dst)); 507 dst->sin6_family = AF_INET6; 508 dst->sin6_len = sizeof(struct sockaddr_in6); 509 dst->sin6_addr = ip6->ip6_dst; 510 } 511 #if defined(IPSEC) || defined(FAST_IPSEC) 512 if (needipsec && needipsectun) { 513 struct ipsec_output_state state; 514 515 /* 516 * All the extension headers will become inaccessible 517 * (since they can be encrypted). 518 * Don't panic, we need no more updates to extension headers 519 * on inner IPv6 packet (since they are now encapsulated). 520 * 521 * IPv6 [ESP|AH] IPv6 [extension headers] payload 522 */ 523 bzero(&exthdrs, sizeof(exthdrs)); 524 exthdrs.ip6e_ip6 = m; 525 526 bzero(&state, sizeof(state)); 527 state.m = m; 528 state.ro = (struct route *)ro; 529 state.dst = (struct sockaddr *)dst; 530 531 error = ipsec6_output_tunnel(&state, sp, flags); 532 533 m = state.m; 534 ro = (struct route_in6 *)state.ro; 535 dst = (struct sockaddr_in6 *)state.dst; 536 if (error) { 537 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 538 m0 = m = NULL; 539 m = NULL; 540 switch (error) { 541 case EHOSTUNREACH: 542 case ENETUNREACH: 543 case EMSGSIZE: 544 case ENOBUFS: 545 case ENOMEM: 546 break; 547 default: 548 kprintf("ip6_output (ipsec): error code %d\n", error); 549 /* fall through */ 550 case ENOENT: 551 /* don't show these error codes to the user */ 552 error = 0; 553 break; 554 } 555 goto bad; 556 } 557 558 exthdrs.ip6e_ip6 = m; 559 } 560 #endif 561 562 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 563 /* Unicast */ 564 565 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 566 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 567 /* xxx 568 * interface selection comes here 569 * if an interface is specified from an upper layer, 570 * ifp must point it. 571 */ 572 if (ro->ro_rt == NULL) { 573 /* 574 * non-bsdi always clone routes, if parent is 575 * PRF_CLONING. 576 */ 577 rtalloc((struct route *)ro); 578 } 579 if (ro->ro_rt == NULL) { 580 ip6stat.ip6s_noroute++; 581 error = EHOSTUNREACH; 582 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 583 goto bad; 584 } 585 ia = ifatoia6(ro->ro_rt->rt_ifa); 586 ifp = ro->ro_rt->rt_ifp; 587 ro->ro_rt->rt_use++; 588 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 589 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 590 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 591 592 in6_ifstat_inc(ifp, ifs6_out_request); 593 594 /* 595 * Check if the outgoing interface conflicts with 596 * the interface specified by ifi6_ifindex (if specified). 597 * Note that loopback interface is always okay. 598 * (this may happen when we are sending a packet to one of 599 * our own addresses.) 600 */ 601 if (opt && opt->ip6po_pktinfo 602 && opt->ip6po_pktinfo->ipi6_ifindex) { 603 if (!(ifp->if_flags & IFF_LOOPBACK) 604 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 605 ip6stat.ip6s_noroute++; 606 in6_ifstat_inc(ifp, ifs6_out_discard); 607 error = EHOSTUNREACH; 608 goto bad; 609 } 610 } 611 612 if (opt && opt->ip6po_hlim != -1) 613 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 614 } else { 615 /* Multicast */ 616 struct in6_multi *in6m; 617 618 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 619 620 /* 621 * See if the caller provided any multicast options 622 */ 623 ifp = NULL; 624 if (im6o != NULL) { 625 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 626 if (im6o->im6o_multicast_ifp != NULL) 627 ifp = im6o->im6o_multicast_ifp; 628 } else 629 ip6->ip6_hlim = ip6_defmcasthlim; 630 631 /* 632 * See if the caller provided the outgoing interface 633 * as an ancillary data. 634 * Boundary check for ifindex is assumed to be already done. 635 */ 636 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 637 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 638 639 /* 640 * If the destination is a node-local scope multicast, 641 * the packet should be loop-backed only. 642 */ 643 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 644 /* 645 * If the outgoing interface is already specified, 646 * it should be a loopback interface. 647 */ 648 if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) { 649 ip6stat.ip6s_badscope++; 650 error = ENETUNREACH; /* XXX: better error? */ 651 /* XXX correct ifp? */ 652 in6_ifstat_inc(ifp, ifs6_out_discard); 653 goto bad; 654 } else { 655 ifp = &loif[0]; 656 } 657 } 658 659 if (opt && opt->ip6po_hlim != -1) 660 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 661 662 /* 663 * If caller did not provide an interface lookup a 664 * default in the routing table. This is either a 665 * default for the speicfied group (i.e. a host 666 * route), or a multicast default (a route for the 667 * ``net'' ff00::/8). 668 */ 669 if (ifp == NULL) { 670 if (ro->ro_rt == NULL) { 671 ro->ro_rt = 672 rtpurelookup((struct sockaddr *)&ro->ro_dst); 673 } 674 if (ro->ro_rt == NULL) { 675 ip6stat.ip6s_noroute++; 676 error = EHOSTUNREACH; 677 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 678 goto bad; 679 } 680 ia = ifatoia6(ro->ro_rt->rt_ifa); 681 ifp = ro->ro_rt->rt_ifp; 682 ro->ro_rt->rt_use++; 683 } 684 685 if (!(flags & IPV6_FORWARDING)) 686 in6_ifstat_inc(ifp, ifs6_out_request); 687 in6_ifstat_inc(ifp, ifs6_out_mcast); 688 689 /* 690 * Confirm that the outgoing interface supports multicast. 691 */ 692 if (!(ifp->if_flags & IFF_MULTICAST)) { 693 ip6stat.ip6s_noroute++; 694 in6_ifstat_inc(ifp, ifs6_out_discard); 695 error = ENETUNREACH; 696 goto bad; 697 } 698 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 699 if (in6m != NULL && 700 (im6o == NULL || im6o->im6o_multicast_loop)) { 701 /* 702 * If we belong to the destination multicast group 703 * on the outgoing interface, and the caller did not 704 * forbid loopback, loop back a copy. 705 */ 706 ip6_mloopback(ifp, m, dst); 707 } else { 708 /* 709 * If we are acting as a multicast router, perform 710 * multicast forwarding as if the packet had just 711 * arrived on the interface to which we are about 712 * to send. The multicast forwarding function 713 * recursively calls this function, using the 714 * IPV6_FORWARDING flag to prevent infinite recursion. 715 * 716 * Multicasts that are looped back by ip6_mloopback(), 717 * above, will be forwarded by the ip6_input() routine, 718 * if necessary. 719 */ 720 if (ip6_mrouter && !(flags & IPV6_FORWARDING)) { 721 if (ip6_mforward(ip6, ifp, m) != 0) { 722 m_freem(m); 723 goto done; 724 } 725 } 726 } 727 /* 728 * Multicasts with a hoplimit of zero may be looped back, 729 * above, but must not be transmitted on a network. 730 * Also, multicasts addressed to the loopback interface 731 * are not sent -- the above call to ip6_mloopback() will 732 * loop back a copy if this host actually belongs to the 733 * destination group on the loopback interface. 734 */ 735 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 736 m_freem(m); 737 goto done; 738 } 739 } 740 741 /* 742 * Fill the outgoing inteface to tell the upper layer 743 * to increment per-interface statistics. 744 */ 745 if (ifpp) 746 *ifpp = ifp; 747 748 /* 749 * Determine path MTU. 750 */ 751 if (ro_pmtu != ro) { 752 /* The first hop and the final destination may differ. */ 753 struct sockaddr_in6 *sin6_fin = 754 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 755 756 if (ro_pmtu->ro_rt != NULL && 757 (!(ro->ro_rt->rt_flags & RTF_UP) || 758 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, &finaldst))) { 759 RTFREE(ro_pmtu->ro_rt); 760 ro_pmtu->ro_rt = NULL; 761 } 762 if (ro_pmtu->ro_rt == NULL) { 763 bzero(sin6_fin, sizeof(*sin6_fin)); 764 sin6_fin->sin6_family = AF_INET6; 765 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 766 sin6_fin->sin6_addr = finaldst; 767 768 rtalloc((struct route *)ro_pmtu); 769 } 770 } 771 if (ro_pmtu->ro_rt != NULL) { 772 u_int32_t ifmtu = ND_IFINFO(ifp)->linkmtu; 773 774 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 775 if (mtu > ifmtu || mtu == 0) { 776 /* 777 * The MTU on the route is larger than the MTU on 778 * the interface! This shouldn't happen, unless the 779 * MTU of the interface has been changed after the 780 * interface was brought up. Change the MTU in the 781 * route to match the interface MTU (as long as the 782 * field isn't locked). 783 * 784 * if MTU on the route is 0, we need to fix the MTU. 785 * this case happens with path MTU discovery timeouts. 786 */ 787 mtu = ifmtu; 788 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) 789 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 790 } 791 } else { 792 mtu = ND_IFINFO(ifp)->linkmtu; 793 } 794 795 /* 796 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting 797 */ 798 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU) 799 mtu = IPV6_MMTU; 800 801 /* Fake scoped addresses */ 802 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 803 /* 804 * If source or destination address is a scoped address, and 805 * the packet is going to be sent to a loopback interface, 806 * we should keep the original interface. 807 */ 808 809 /* 810 * XXX: this is a very experimental and temporary solution. 811 * We eventually have sockaddr_in6 and use the sin6_scope_id 812 * field of the structure here. 813 * We rely on the consistency between two scope zone ids 814 * of source and destination, which should already be assured. 815 * Larger scopes than link will be supported in the future. 816 */ 817 origifp = NULL; 818 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 819 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 820 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 821 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 822 /* 823 * XXX: origifp can be NULL even in those two cases above. 824 * For example, if we remove the (only) link-local address 825 * from the loopback interface, and try to send a link-local 826 * address without link-id information. Then the source 827 * address is ::1, and the destination address is the 828 * link-local address with its s6_addr16[1] being zero. 829 * What is worse, if the packet goes to the loopback interface 830 * by a default rejected route, the null pointer would be 831 * passed to looutput, and the kernel would hang. 832 * The following last resort would prevent such disaster. 833 */ 834 if (origifp == NULL) 835 origifp = ifp; 836 } 837 else 838 origifp = ifp; 839 /* 840 * clear embedded scope identifiers if necessary. 841 * in6_clearscope will touch the addresses only when necessary. 842 */ 843 in6_clearscope(&ip6->ip6_src); 844 in6_clearscope(&ip6->ip6_dst); 845 846 /* 847 * Check with the firewall... 848 */ 849 if (ip6_fw_enable && ip6_fw_chk_ptr) { 850 u_short port = 0; 851 852 m->m_pkthdr.rcvif = NULL; /* XXX */ 853 /* If ipfw says divert, we have to just drop packet */ 854 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 855 m_freem(m); 856 goto done; 857 } 858 if (!m) { 859 error = EACCES; 860 goto done; 861 } 862 } 863 864 /* 865 * If the outgoing packet contains a hop-by-hop options header, 866 * it must be examined and processed even by the source node. 867 * (RFC 2460, section 4.) 868 */ 869 if (exthdrs.ip6e_hbh) { 870 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 871 u_int32_t dummy1; /* XXX unused */ 872 u_int32_t dummy2; /* XXX unused */ 873 874 #ifdef DIAGNOSTIC 875 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 876 panic("ip6e_hbh is not continuous"); 877 #endif 878 /* 879 * XXX: if we have to send an ICMPv6 error to the sender, 880 * we need the M_LOOP flag since icmp6_error() expects 881 * the IPv6 and the hop-by-hop options header are 882 * continuous unless the flag is set. 883 */ 884 m->m_flags |= M_LOOP; 885 m->m_pkthdr.rcvif = ifp; 886 if (ip6_process_hopopts(m, 887 (u_int8_t *)(hbh + 1), 888 ((hbh->ip6h_len + 1) << 3) - 889 sizeof(struct ip6_hbh), 890 &dummy1, &dummy2) < 0) { 891 /* m was already freed at this point */ 892 error = EINVAL;/* better error? */ 893 goto done; 894 } 895 m->m_flags &= ~M_LOOP; /* XXX */ 896 m->m_pkthdr.rcvif = NULL; 897 } 898 899 /* 900 * Run through list of hooks for output packets. 901 */ 902 if (pfil_has_hooks(&inet6_pfil_hook)) { 903 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT); 904 if (error != 0 || m == NULL) 905 goto done; 906 ip6 = mtod(m, struct ip6_hdr *); 907 } 908 909 /* 910 * Send the packet to the outgoing interface. 911 * If necessary, do IPv6 fragmentation before sending. 912 */ 913 tlen = m->m_pkthdr.len; 914 if (tlen <= mtu 915 #ifdef notyet 916 /* 917 * On any link that cannot convey a 1280-octet packet in one piece, 918 * link-specific fragmentation and reassembly must be provided at 919 * a layer below IPv6. [RFC 2460, sec.5] 920 * Thus if the interface has ability of link-level fragmentation, 921 * we can just send the packet even if the packet size is 922 * larger than the link's MTU. 923 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 924 */ 925 926 || ifp->if_flags & IFF_FRAGMENTABLE 927 #endif 928 ) 929 { 930 /* Record statistics for this interface address. */ 931 if (ia && !(flags & IPV6_FORWARDING)) { 932 ia->ia_ifa.if_opackets++; 933 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 934 } 935 #ifdef IPSEC 936 /* clean ipsec history once it goes out of the node */ 937 ipsec_delaux(m); 938 #endif 939 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 940 goto done; 941 } else if (mtu < IPV6_MMTU) { 942 /* 943 * note that path MTU is never less than IPV6_MMTU 944 * (see icmp6_input). 945 */ 946 error = EMSGSIZE; 947 in6_ifstat_inc(ifp, ifs6_out_fragfail); 948 goto bad; 949 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 950 error = EMSGSIZE; 951 in6_ifstat_inc(ifp, ifs6_out_fragfail); 952 goto bad; 953 } else { 954 struct mbuf **mnext, *m_frgpart; 955 struct ip6_frag *ip6f; 956 u_int32_t id = htonl(ip6_id++); 957 u_char nextproto; 958 959 /* 960 * Too large for the destination or interface; 961 * fragment if possible. 962 * Must be able to put at least 8 bytes per fragment. 963 */ 964 hlen = unfragpartlen; 965 if (mtu > IPV6_MAXPACKET) 966 mtu = IPV6_MAXPACKET; 967 968 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 969 if (len < 8) { 970 error = EMSGSIZE; 971 in6_ifstat_inc(ifp, ifs6_out_fragfail); 972 goto bad; 973 } 974 975 mnext = &m->m_nextpkt; 976 977 /* 978 * Change the next header field of the last header in the 979 * unfragmentable part. 980 */ 981 if (exthdrs.ip6e_rthdr) { 982 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 983 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 984 } else if (exthdrs.ip6e_dest1) { 985 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 986 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 987 } else if (exthdrs.ip6e_hbh) { 988 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 989 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 990 } else { 991 nextproto = ip6->ip6_nxt; 992 ip6->ip6_nxt = IPPROTO_FRAGMENT; 993 } 994 995 /* 996 * Loop through length of segment after first fragment, 997 * make new header and copy data of each part and link onto 998 * chain. 999 */ 1000 m0 = m; 1001 for (off = hlen; off < tlen; off += len) { 1002 MGETHDR(m, MB_DONTWAIT, MT_HEADER); 1003 if (!m) { 1004 error = ENOBUFS; 1005 ip6stat.ip6s_odropped++; 1006 goto sendorfree; 1007 } 1008 m->m_pkthdr.rcvif = NULL; 1009 m->m_flags = m0->m_flags & M_COPYFLAGS; 1010 *mnext = m; 1011 mnext = &m->m_nextpkt; 1012 m->m_data += max_linkhdr; 1013 mhip6 = mtod(m, struct ip6_hdr *); 1014 *mhip6 = *ip6; 1015 m->m_len = sizeof(*mhip6); 1016 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1017 if (error) { 1018 ip6stat.ip6s_odropped++; 1019 goto sendorfree; 1020 } 1021 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1022 if (off + len >= tlen) 1023 len = tlen - off; 1024 else 1025 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1026 mhip6->ip6_plen = htons((u_short)(len + hlen + 1027 sizeof(*ip6f) - 1028 sizeof(struct ip6_hdr))); 1029 if ((m_frgpart = m_copy(m0, off, len)) == NULL) { 1030 error = ENOBUFS; 1031 ip6stat.ip6s_odropped++; 1032 goto sendorfree; 1033 } 1034 m_cat(m, m_frgpart); 1035 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1036 m->m_pkthdr.rcvif = (struct ifnet *)0; 1037 ip6f->ip6f_reserved = 0; 1038 ip6f->ip6f_ident = id; 1039 ip6f->ip6f_nxt = nextproto; 1040 ip6stat.ip6s_ofragments++; 1041 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1042 } 1043 1044 in6_ifstat_inc(ifp, ifs6_out_fragok); 1045 } 1046 1047 /* 1048 * Remove leading garbages. 1049 */ 1050 sendorfree: 1051 m = m0->m_nextpkt; 1052 m0->m_nextpkt = NULL; 1053 m_freem(m0); 1054 for (m0 = m; m; m = m0) { 1055 m0 = m->m_nextpkt; 1056 m->m_nextpkt = NULL; 1057 if (error == 0) { 1058 /* Record statistics for this interface address. */ 1059 if (ia) { 1060 ia->ia_ifa.if_opackets++; 1061 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1062 } 1063 #ifdef IPSEC 1064 /* clean ipsec history once it goes out of the node */ 1065 ipsec_delaux(m); 1066 #endif 1067 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1068 } else 1069 m_freem(m); 1070 } 1071 1072 if (error == 0) 1073 ip6stat.ip6s_fragmented++; 1074 1075 done: 1076 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1077 RTFREE(ro->ro_rt); 1078 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1079 RTFREE(ro_pmtu->ro_rt); 1080 } 1081 1082 #ifdef IPSEC 1083 if (sp != NULL) 1084 key_freesp(sp); 1085 #endif 1086 #ifdef FAST_IPSEC 1087 if (sp != NULL) 1088 KEY_FREESP(&sp); 1089 #endif 1090 1091 return (error); 1092 1093 freehdrs: 1094 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1095 m_freem(exthdrs.ip6e_dest1); 1096 m_freem(exthdrs.ip6e_rthdr); 1097 m_freem(exthdrs.ip6e_dest2); 1098 /* fall through */ 1099 bad: 1100 m_freem(m); 1101 goto done; 1102 } 1103 1104 static int 1105 copyexthdr(void *h, struct mbuf **mp) 1106 { 1107 struct ip6_ext *hdr = h; 1108 int hlen; 1109 struct mbuf *m; 1110 1111 if (hdr == NULL) 1112 return 0; 1113 1114 hlen = (hdr->ip6e_len + 1) * 8; 1115 if (hlen > MCLBYTES) 1116 return ENOBUFS; /* XXX */ 1117 1118 m = m_getb(hlen, MB_DONTWAIT, MT_DATA, 0); 1119 if (!m) 1120 return ENOBUFS; 1121 m->m_len = hlen; 1122 1123 bcopy(hdr, mtod(m, caddr_t), hlen); 1124 1125 *mp = m; 1126 return 0; 1127 } 1128 1129 /* 1130 * Insert jumbo payload option. 1131 */ 1132 static int 1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1134 { 1135 struct mbuf *mopt; 1136 u_char *optbuf; 1137 u_int32_t v; 1138 1139 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1140 1141 /* 1142 * If there is no hop-by-hop options header, allocate new one. 1143 * If there is one but it doesn't have enough space to store the 1144 * jumbo payload option, allocate a cluster to store the whole options. 1145 * Otherwise, use it to store the options. 1146 */ 1147 if (exthdrs->ip6e_hbh == NULL) { 1148 MGET(mopt, MB_DONTWAIT, MT_DATA); 1149 if (mopt == NULL) 1150 return (ENOBUFS); 1151 mopt->m_len = JUMBOOPTLEN; 1152 optbuf = mtod(mopt, u_char *); 1153 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1154 exthdrs->ip6e_hbh = mopt; 1155 } else { 1156 struct ip6_hbh *hbh; 1157 1158 mopt = exthdrs->ip6e_hbh; 1159 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1160 /* 1161 * XXX assumption: 1162 * - exthdrs->ip6e_hbh is not referenced from places 1163 * other than exthdrs. 1164 * - exthdrs->ip6e_hbh is not an mbuf chain. 1165 */ 1166 int oldoptlen = mopt->m_len; 1167 struct mbuf *n; 1168 1169 /* 1170 * XXX: give up if the whole (new) hbh header does 1171 * not fit even in an mbuf cluster. 1172 */ 1173 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1174 return (ENOBUFS); 1175 1176 /* 1177 * As a consequence, we must always prepare a cluster 1178 * at this point. 1179 */ 1180 n = m_getcl(MB_DONTWAIT, MT_DATA, 0); 1181 if (!n) 1182 return (ENOBUFS); 1183 n->m_len = oldoptlen + JUMBOOPTLEN; 1184 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); 1185 optbuf = mtod(n, caddr_t) + oldoptlen; 1186 m_freem(mopt); 1187 mopt = exthdrs->ip6e_hbh = n; 1188 } else { 1189 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1190 mopt->m_len += JUMBOOPTLEN; 1191 } 1192 optbuf[0] = IP6OPT_PADN; 1193 optbuf[1] = 1; 1194 1195 /* 1196 * Adjust the header length according to the pad and 1197 * the jumbo payload option. 1198 */ 1199 hbh = mtod(mopt, struct ip6_hbh *); 1200 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1201 } 1202 1203 /* fill in the option. */ 1204 optbuf[2] = IP6OPT_JUMBO; 1205 optbuf[3] = 4; 1206 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1207 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1208 1209 /* finally, adjust the packet header length */ 1210 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1211 1212 return (0); 1213 #undef JUMBOOPTLEN 1214 } 1215 1216 /* 1217 * Insert fragment header and copy unfragmentable header portions. 1218 */ 1219 static int 1220 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1221 struct ip6_frag **frghdrp) 1222 { 1223 struct mbuf *n, *mlast; 1224 1225 if (hlen > sizeof(struct ip6_hdr)) { 1226 n = m_copym(m0, sizeof(struct ip6_hdr), 1227 hlen - sizeof(struct ip6_hdr), MB_DONTWAIT); 1228 if (n == NULL) 1229 return (ENOBUFS); 1230 m->m_next = n; 1231 } else 1232 n = m; 1233 1234 /* Search for the last mbuf of unfragmentable part. */ 1235 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1236 ; 1237 1238 if (!(mlast->m_flags & M_EXT) && 1239 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1240 /* use the trailing space of the last mbuf for the fragment hdr */ 1241 *frghdrp = 1242 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1243 mlast->m_len += sizeof(struct ip6_frag); 1244 m->m_pkthdr.len += sizeof(struct ip6_frag); 1245 } else { 1246 /* allocate a new mbuf for the fragment header */ 1247 struct mbuf *mfrg; 1248 1249 MGET(mfrg, MB_DONTWAIT, MT_DATA); 1250 if (mfrg == NULL) 1251 return (ENOBUFS); 1252 mfrg->m_len = sizeof(struct ip6_frag); 1253 *frghdrp = mtod(mfrg, struct ip6_frag *); 1254 mlast->m_next = mfrg; 1255 } 1256 1257 return (0); 1258 } 1259 1260 /* 1261 * IP6 socket option processing. 1262 */ 1263 int 1264 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1265 { 1266 int privileged; 1267 struct inpcb *in6p = so->so_pcb; 1268 int error, optval; 1269 int level, op, optname; 1270 int optlen; 1271 struct thread *td; 1272 1273 if (sopt) { 1274 level = sopt->sopt_level; 1275 op = sopt->sopt_dir; 1276 optname = sopt->sopt_name; 1277 optlen = sopt->sopt_valsize; 1278 td = sopt->sopt_td; 1279 } else { 1280 panic("ip6_ctloutput: arg soopt is NULL"); 1281 /* NOT REACHED */ 1282 td = NULL; 1283 } 1284 error = optval = 0; 1285 1286 privileged = (td == NULL || suser(td)) ? 0 : 1; 1287 1288 if (level == IPPROTO_IPV6) { 1289 switch (op) { 1290 1291 case SOPT_SET: 1292 switch (optname) { 1293 case IPV6_PKTOPTIONS: 1294 { 1295 struct mbuf *m; 1296 1297 error = soopt_getm(sopt, &m); /* XXX */ 1298 if (error != 0) 1299 break; 1300 error = soopt_mcopyin(sopt, m); /* XXX */ 1301 if (error != 0) 1302 break; 1303 error = ip6_pcbopts(&in6p->in6p_outputopts, 1304 m, so, sopt); 1305 m_freem(m); /* XXX */ 1306 break; 1307 } 1308 1309 /* 1310 * Use of some Hop-by-Hop options or some 1311 * Destination options, might require special 1312 * privilege. That is, normal applications 1313 * (without special privilege) might be forbidden 1314 * from setting certain options in outgoing packets, 1315 * and might never see certain options in received 1316 * packets. [RFC 2292 Section 6] 1317 * KAME specific note: 1318 * KAME prevents non-privileged users from sending or 1319 * receiving ANY hbh/dst options in order to avoid 1320 * overhead of parsing options in the kernel. 1321 */ 1322 case IPV6_UNICAST_HOPS: 1323 case IPV6_CHECKSUM: 1324 case IPV6_FAITH: 1325 1326 case IPV6_V6ONLY: 1327 if (optlen != sizeof(int)) { 1328 error = EINVAL; 1329 break; 1330 } 1331 error = sooptcopyin(sopt, &optval, 1332 sizeof optval, sizeof optval); 1333 if (error) 1334 break; 1335 switch (optname) { 1336 1337 case IPV6_UNICAST_HOPS: 1338 if (optval < -1 || optval >= 256) 1339 error = EINVAL; 1340 else { 1341 /* -1 = kernel default */ 1342 in6p->in6p_hops = optval; 1343 1344 if ((in6p->in6p_vflag & 1345 INP_IPV4) != 0) 1346 in6p->inp_ip_ttl = optval; 1347 } 1348 break; 1349 #define OPTSET(bit) \ 1350 do { \ 1351 if (optval) \ 1352 in6p->in6p_flags |= (bit); \ 1353 else \ 1354 in6p->in6p_flags &= ~(bit); \ 1355 } while (0) 1356 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1357 1358 case IPV6_CHECKSUM: 1359 in6p->in6p_cksum = optval; 1360 break; 1361 1362 case IPV6_FAITH: 1363 OPTSET(IN6P_FAITH); 1364 break; 1365 1366 case IPV6_V6ONLY: 1367 /* 1368 * make setsockopt(IPV6_V6ONLY) 1369 * available only prior to bind(2). 1370 * see ipng mailing list, Jun 22 2001. 1371 */ 1372 if (in6p->in6p_lport || 1373 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1374 { 1375 error = EINVAL; 1376 break; 1377 } 1378 OPTSET(IN6P_IPV6_V6ONLY); 1379 if (optval) 1380 in6p->in6p_vflag &= ~INP_IPV4; 1381 else 1382 in6p->in6p_vflag |= INP_IPV4; 1383 break; 1384 } 1385 break; 1386 1387 case IPV6_PKTINFO: 1388 case IPV6_HOPLIMIT: 1389 case IPV6_HOPOPTS: 1390 case IPV6_DSTOPTS: 1391 case IPV6_RTHDR: 1392 /* RFC 2292 */ 1393 if (optlen != sizeof(int)) { 1394 error = EINVAL; 1395 break; 1396 } 1397 error = sooptcopyin(sopt, &optval, 1398 sizeof optval, sizeof optval); 1399 if (error) 1400 break; 1401 switch (optname) { 1402 case IPV6_PKTINFO: 1403 OPTSET(IN6P_PKTINFO); 1404 break; 1405 case IPV6_HOPLIMIT: 1406 OPTSET(IN6P_HOPLIMIT); 1407 break; 1408 case IPV6_HOPOPTS: 1409 /* 1410 * Check super-user privilege. 1411 * See comments for IPV6_RECVHOPOPTS. 1412 */ 1413 if (!privileged) 1414 return (EPERM); 1415 OPTSET(IN6P_HOPOPTS); 1416 break; 1417 case IPV6_DSTOPTS: 1418 if (!privileged) 1419 return (EPERM); 1420 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1421 break; 1422 case IPV6_RTHDR: 1423 OPTSET(IN6P_RTHDR); 1424 break; 1425 } 1426 break; 1427 #undef OPTSET 1428 1429 case IPV6_MULTICAST_IF: 1430 case IPV6_MULTICAST_HOPS: 1431 case IPV6_MULTICAST_LOOP: 1432 case IPV6_JOIN_GROUP: 1433 case IPV6_LEAVE_GROUP: 1434 { 1435 struct mbuf *m; 1436 if (sopt->sopt_valsize > MLEN) { 1437 error = EMSGSIZE; 1438 break; 1439 } 1440 /* XXX */ 1441 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER); 1442 if (m == NULL) { 1443 error = ENOBUFS; 1444 break; 1445 } 1446 m->m_len = sopt->sopt_valsize; 1447 error = sooptcopyin(sopt, mtod(m, char *), 1448 m->m_len, m->m_len); 1449 error = ip6_setmoptions(sopt->sopt_name, 1450 &in6p->in6p_moptions, 1451 m); 1452 m_free(m); 1453 } 1454 break; 1455 1456 case IPV6_PORTRANGE: 1457 error = sooptcopyin(sopt, &optval, 1458 sizeof optval, sizeof optval); 1459 if (error) 1460 break; 1461 1462 switch (optval) { 1463 case IPV6_PORTRANGE_DEFAULT: 1464 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1465 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1466 break; 1467 1468 case IPV6_PORTRANGE_HIGH: 1469 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1470 in6p->in6p_flags |= IN6P_HIGHPORT; 1471 break; 1472 1473 case IPV6_PORTRANGE_LOW: 1474 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1475 in6p->in6p_flags |= IN6P_LOWPORT; 1476 break; 1477 1478 default: 1479 error = EINVAL; 1480 break; 1481 } 1482 break; 1483 1484 #if defined(IPSEC) || defined(FAST_IPSEC) 1485 case IPV6_IPSEC_POLICY: 1486 { 1487 caddr_t req = NULL; 1488 size_t len = 0; 1489 struct mbuf *m; 1490 1491 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1492 break; 1493 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1494 break; 1495 if (m) { 1496 req = mtod(m, caddr_t); 1497 len = m->m_len; 1498 } 1499 error = ipsec6_set_policy(in6p, optname, req, 1500 len, privileged); 1501 m_freem(m); 1502 } 1503 break; 1504 #endif /* KAME IPSEC */ 1505 1506 case IPV6_FW_ADD: 1507 case IPV6_FW_DEL: 1508 case IPV6_FW_FLUSH: 1509 case IPV6_FW_ZERO: 1510 { 1511 struct mbuf *m; 1512 struct mbuf **mp = &m; 1513 1514 if (ip6_fw_ctl_ptr == NULL) 1515 return EINVAL; 1516 /* XXX */ 1517 if ((error = soopt_getm(sopt, &m)) != 0) 1518 break; 1519 /* XXX */ 1520 if ((error = soopt_mcopyin(sopt, m)) != 0) 1521 break; 1522 error = (*ip6_fw_ctl_ptr)(optname, mp); 1523 m = *mp; 1524 } 1525 break; 1526 1527 default: 1528 error = ENOPROTOOPT; 1529 break; 1530 } 1531 break; 1532 1533 case SOPT_GET: 1534 switch (optname) { 1535 1536 case IPV6_PKTOPTIONS: 1537 if (in6p->in6p_options) { 1538 struct mbuf *m; 1539 m = m_copym(in6p->in6p_options, 1540 0, M_COPYALL, MB_WAIT); 1541 error = soopt_mcopyout(sopt, m); 1542 if (error == 0) 1543 m_freem(m); 1544 } else 1545 sopt->sopt_valsize = 0; 1546 break; 1547 1548 case IPV6_UNICAST_HOPS: 1549 case IPV6_CHECKSUM: 1550 1551 case IPV6_FAITH: 1552 case IPV6_V6ONLY: 1553 case IPV6_PORTRANGE: 1554 switch (optname) { 1555 1556 case IPV6_UNICAST_HOPS: 1557 optval = in6p->in6p_hops; 1558 break; 1559 1560 case IPV6_CHECKSUM: 1561 optval = in6p->in6p_cksum; 1562 break; 1563 1564 case IPV6_FAITH: 1565 optval = OPTBIT(IN6P_FAITH); 1566 break; 1567 1568 case IPV6_V6ONLY: 1569 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1570 break; 1571 1572 case IPV6_PORTRANGE: 1573 { 1574 int flags; 1575 flags = in6p->in6p_flags; 1576 if (flags & IN6P_HIGHPORT) 1577 optval = IPV6_PORTRANGE_HIGH; 1578 else if (flags & IN6P_LOWPORT) 1579 optval = IPV6_PORTRANGE_LOW; 1580 else 1581 optval = 0; 1582 break; 1583 } 1584 } 1585 error = sooptcopyout(sopt, &optval, 1586 sizeof optval); 1587 break; 1588 1589 case IPV6_PKTINFO: 1590 case IPV6_HOPLIMIT: 1591 case IPV6_HOPOPTS: 1592 case IPV6_RTHDR: 1593 case IPV6_DSTOPTS: 1594 if (optname == IPV6_HOPOPTS || 1595 optname == IPV6_DSTOPTS || 1596 !privileged) 1597 return (EPERM); 1598 switch (optname) { 1599 case IPV6_PKTINFO: 1600 optval = OPTBIT(IN6P_PKTINFO); 1601 break; 1602 case IPV6_HOPLIMIT: 1603 optval = OPTBIT(IN6P_HOPLIMIT); 1604 break; 1605 case IPV6_HOPOPTS: 1606 if (!privileged) 1607 return (EPERM); 1608 optval = OPTBIT(IN6P_HOPOPTS); 1609 break; 1610 case IPV6_RTHDR: 1611 optval = OPTBIT(IN6P_RTHDR); 1612 break; 1613 case IPV6_DSTOPTS: 1614 if (!privileged) 1615 return (EPERM); 1616 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1617 break; 1618 } 1619 error = sooptcopyout(sopt, &optval, 1620 sizeof optval); 1621 break; 1622 1623 case IPV6_MULTICAST_IF: 1624 case IPV6_MULTICAST_HOPS: 1625 case IPV6_MULTICAST_LOOP: 1626 case IPV6_JOIN_GROUP: 1627 case IPV6_LEAVE_GROUP: 1628 { 1629 struct mbuf *m; 1630 error = ip6_getmoptions(sopt->sopt_name, 1631 in6p->in6p_moptions, &m); 1632 if (error == 0) 1633 error = sooptcopyout(sopt, 1634 mtod(m, char *), m->m_len); 1635 m_freem(m); 1636 } 1637 break; 1638 1639 #if defined(IPSEC) || defined(FAST_IPSEC) 1640 case IPV6_IPSEC_POLICY: 1641 { 1642 caddr_t req = NULL; 1643 size_t len = 0; 1644 struct mbuf *m = NULL; 1645 struct mbuf **mp = &m; 1646 1647 error = soopt_getm(sopt, &m); /* XXX */ 1648 if (error != 0) 1649 break; 1650 error = soopt_mcopyin(sopt, m); /* XXX */ 1651 if (error != 0) 1652 break; 1653 if (m) { 1654 req = mtod(m, caddr_t); 1655 len = m->m_len; 1656 } 1657 error = ipsec6_get_policy(in6p, req, len, mp); 1658 if (error == 0) 1659 error = soopt_mcopyout(sopt, m); /*XXX*/ 1660 if (error == 0 && m != NULL) 1661 m_freem(m); 1662 break; 1663 } 1664 #endif /* KAME IPSEC */ 1665 1666 case IPV6_FW_GET: 1667 { 1668 struct mbuf *m; 1669 struct mbuf **mp = &m; 1670 1671 if (ip6_fw_ctl_ptr == NULL) 1672 { 1673 return EINVAL; 1674 } 1675 error = (*ip6_fw_ctl_ptr)(optname, mp); 1676 if (error == 0) 1677 error = soopt_mcopyout(sopt, m); /* XXX */ 1678 if (error == 0 && m != NULL) 1679 m_freem(m); 1680 } 1681 break; 1682 1683 default: 1684 error = ENOPROTOOPT; 1685 break; 1686 } 1687 break; 1688 } 1689 } else { 1690 error = EINVAL; 1691 } 1692 return (error); 1693 } 1694 1695 /* 1696 * Set up IP6 options in pcb for insertion in output packets or 1697 * specifying behavior of outgoing packets. 1698 */ 1699 static int 1700 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so, 1701 struct sockopt *sopt) 1702 { 1703 struct ip6_pktopts *opt = *pktopt; 1704 int error = 0; 1705 struct thread *td = sopt->sopt_td; 1706 int priv = 0; 1707 1708 /* turn off any old options. */ 1709 if (opt) { 1710 #ifdef DIAGNOSTIC 1711 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1712 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1713 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1714 kprintf("ip6_pcbopts: all specified options are cleared.\n"); 1715 #endif 1716 ip6_clearpktopts(opt, 1, -1); 1717 } else 1718 opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1719 *pktopt = NULL; 1720 1721 if (m == NULL || m->m_len == 0) { 1722 /* 1723 * Only turning off any previous options, regardless of 1724 * whether the opt is just created or given. 1725 */ 1726 kfree(opt, M_IP6OPT); 1727 return (0); 1728 } 1729 1730 /* set options specified by user. */ 1731 if (suser(td) == 0) 1732 priv = 1; 1733 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) { 1734 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */ 1735 kfree(opt, M_IP6OPT); 1736 return (error); 1737 } 1738 *pktopt = opt; 1739 return (0); 1740 } 1741 1742 /* 1743 * initialize ip6_pktopts. beware that there are non-zero default values in 1744 * the struct. 1745 */ 1746 void 1747 init_ip6pktopts(struct ip6_pktopts *opt) 1748 { 1749 1750 bzero(opt, sizeof(*opt)); 1751 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1752 } 1753 1754 void 1755 ip6_clearpktopts(struct ip6_pktopts *pktopt, int needfree, int optname) 1756 { 1757 if (pktopt == NULL) 1758 return; 1759 1760 if (optname == -1) { 1761 if (needfree && pktopt->ip6po_pktinfo) 1762 kfree(pktopt->ip6po_pktinfo, M_IP6OPT); 1763 pktopt->ip6po_pktinfo = NULL; 1764 } 1765 if (optname == -1) 1766 pktopt->ip6po_hlim = -1; 1767 if (optname == -1) { 1768 if (needfree && pktopt->ip6po_nexthop) 1769 kfree(pktopt->ip6po_nexthop, M_IP6OPT); 1770 pktopt->ip6po_nexthop = NULL; 1771 } 1772 if (optname == -1) { 1773 if (needfree && pktopt->ip6po_hbh) 1774 kfree(pktopt->ip6po_hbh, M_IP6OPT); 1775 pktopt->ip6po_hbh = NULL; 1776 } 1777 if (optname == -1) { 1778 if (needfree && pktopt->ip6po_dest1) 1779 kfree(pktopt->ip6po_dest1, M_IP6OPT); 1780 pktopt->ip6po_dest1 = NULL; 1781 } 1782 if (optname == -1) { 1783 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1784 kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 1785 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1786 if (pktopt->ip6po_route.ro_rt) { 1787 RTFREE(pktopt->ip6po_route.ro_rt); 1788 pktopt->ip6po_route.ro_rt = NULL; 1789 } 1790 } 1791 if (optname == -1) { 1792 if (needfree && pktopt->ip6po_dest2) 1793 kfree(pktopt->ip6po_dest2, M_IP6OPT); 1794 pktopt->ip6po_dest2 = NULL; 1795 } 1796 } 1797 1798 #define PKTOPT_EXTHDRCPY(type) \ 1799 do {\ 1800 if (src->type) {\ 1801 int hlen =\ 1802 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1803 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\ 1804 if (dst->type == NULL)\ 1805 goto bad;\ 1806 bcopy(src->type, dst->type, hlen);\ 1807 }\ 1808 } while (0) 1809 1810 struct ip6_pktopts * 1811 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 1812 { 1813 struct ip6_pktopts *dst; 1814 1815 if (src == NULL) { 1816 kprintf("ip6_clearpktopts: invalid argument\n"); 1817 return (NULL); 1818 } 1819 1820 dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO); 1821 if (dst == NULL) 1822 return (NULL); 1823 1824 dst->ip6po_hlim = src->ip6po_hlim; 1825 if (src->ip6po_pktinfo) { 1826 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo), 1827 M_IP6OPT, canwait); 1828 if (dst->ip6po_pktinfo == NULL) 1829 goto bad; 1830 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1831 } 1832 if (src->ip6po_nexthop) { 1833 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len, 1834 M_IP6OPT, canwait); 1835 if (dst->ip6po_nexthop == NULL) 1836 goto bad; 1837 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 1838 src->ip6po_nexthop->sa_len); 1839 } 1840 PKTOPT_EXTHDRCPY(ip6po_hbh); 1841 PKTOPT_EXTHDRCPY(ip6po_dest1); 1842 PKTOPT_EXTHDRCPY(ip6po_dest2); 1843 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1844 return (dst); 1845 1846 bad: 1847 if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT); 1848 if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT); 1849 if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT); 1850 if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT); 1851 if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT); 1852 if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT); 1853 kfree(dst, M_IP6OPT); 1854 return (NULL); 1855 } 1856 #undef PKTOPT_EXTHDRCPY 1857 1858 void 1859 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1860 { 1861 if (pktopt == NULL) 1862 return; 1863 1864 ip6_clearpktopts(pktopt, 1, -1); 1865 1866 kfree(pktopt, M_IP6OPT); 1867 } 1868 1869 /* 1870 * Set the IP6 multicast options in response to user setsockopt(). 1871 */ 1872 static int 1873 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 1874 { 1875 int error = 0; 1876 u_int loop, ifindex; 1877 struct ipv6_mreq *mreq; 1878 struct ifnet *ifp; 1879 struct ip6_moptions *im6o = *im6op; 1880 struct route_in6 ro; 1881 struct sockaddr_in6 *dst; 1882 struct in6_multi_mship *imm; 1883 struct thread *td = curthread; /* XXX */ 1884 1885 if (im6o == NULL) { 1886 /* 1887 * No multicast option buffer attached to the pcb; 1888 * allocate one and initialize to default values. 1889 */ 1890 im6o = (struct ip6_moptions *) 1891 kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1892 1893 *im6op = im6o; 1894 im6o->im6o_multicast_ifp = NULL; 1895 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1896 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1897 LIST_INIT(&im6o->im6o_memberships); 1898 } 1899 1900 switch (optname) { 1901 1902 case IPV6_MULTICAST_IF: 1903 /* 1904 * Select the interface for outgoing multicast packets. 1905 */ 1906 if (m == NULL || m->m_len != sizeof(u_int)) { 1907 error = EINVAL; 1908 break; 1909 } 1910 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1911 if (ifindex < 0 || if_index < ifindex) { 1912 error = ENXIO; /* XXX EINVAL? */ 1913 break; 1914 } 1915 ifp = ifindex2ifnet[ifindex]; 1916 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { 1917 error = EADDRNOTAVAIL; 1918 break; 1919 } 1920 im6o->im6o_multicast_ifp = ifp; 1921 break; 1922 1923 case IPV6_MULTICAST_HOPS: 1924 { 1925 /* 1926 * Set the IP6 hoplimit for outgoing multicast packets. 1927 */ 1928 int optval; 1929 if (m == NULL || m->m_len != sizeof(int)) { 1930 error = EINVAL; 1931 break; 1932 } 1933 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1934 if (optval < -1 || optval >= 256) 1935 error = EINVAL; 1936 else if (optval == -1) 1937 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1938 else 1939 im6o->im6o_multicast_hlim = optval; 1940 break; 1941 } 1942 1943 case IPV6_MULTICAST_LOOP: 1944 /* 1945 * Set the loopback flag for outgoing multicast packets. 1946 * Must be zero or one. 1947 */ 1948 if (m == NULL || m->m_len != sizeof(u_int)) { 1949 error = EINVAL; 1950 break; 1951 } 1952 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1953 if (loop > 1) { 1954 error = EINVAL; 1955 break; 1956 } 1957 im6o->im6o_multicast_loop = loop; 1958 break; 1959 1960 case IPV6_JOIN_GROUP: 1961 /* 1962 * Add a multicast group membership. 1963 * Group must be a valid IP6 multicast address. 1964 */ 1965 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1966 error = EINVAL; 1967 break; 1968 } 1969 mreq = mtod(m, struct ipv6_mreq *); 1970 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1971 /* 1972 * We use the unspecified address to specify to accept 1973 * all multicast addresses. Only super user is allowed 1974 * to do this. 1975 */ 1976 if (suser(td)) 1977 { 1978 error = EACCES; 1979 break; 1980 } 1981 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1982 error = EINVAL; 1983 break; 1984 } 1985 1986 /* 1987 * If the interface is specified, validate it. 1988 */ 1989 if (mreq->ipv6mr_interface < 0 1990 || if_index < mreq->ipv6mr_interface) { 1991 error = ENXIO; /* XXX EINVAL? */ 1992 break; 1993 } 1994 /* 1995 * If no interface was explicitly specified, choose an 1996 * appropriate one according to the given multicast address. 1997 */ 1998 if (mreq->ipv6mr_interface == 0) { 1999 /* 2000 * If the multicast address is in node-local scope, 2001 * the interface should be a loopback interface. 2002 * Otherwise, look up the routing table for the 2003 * address, and choose the outgoing interface. 2004 * XXX: is it a good approach? 2005 */ 2006 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2007 ifp = &loif[0]; 2008 } else { 2009 ro.ro_rt = NULL; 2010 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2011 bzero(dst, sizeof(*dst)); 2012 dst->sin6_len = sizeof(struct sockaddr_in6); 2013 dst->sin6_family = AF_INET6; 2014 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2015 rtalloc((struct route *)&ro); 2016 if (ro.ro_rt == NULL) { 2017 error = EADDRNOTAVAIL; 2018 break; 2019 } 2020 ifp = ro.ro_rt->rt_ifp; 2021 rtfree(ro.ro_rt); 2022 } 2023 } else 2024 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2025 2026 /* 2027 * See if we found an interface, and confirm that it 2028 * supports multicast 2029 */ 2030 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { 2031 error = EADDRNOTAVAIL; 2032 break; 2033 } 2034 /* 2035 * Put interface index into the multicast address, 2036 * if the address has link-local scope. 2037 */ 2038 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2039 mreq->ipv6mr_multiaddr.s6_addr16[1] 2040 = htons(mreq->ipv6mr_interface); 2041 } 2042 /* 2043 * See if the membership already exists. 2044 */ 2045 for (imm = im6o->im6o_memberships.lh_first; 2046 imm != NULL; imm = imm->i6mm_chain.le_next) 2047 if (imm->i6mm_maddr->in6m_ifp == ifp && 2048 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2049 &mreq->ipv6mr_multiaddr)) 2050 break; 2051 if (imm != NULL) { 2052 error = EADDRINUSE; 2053 break; 2054 } 2055 /* 2056 * Everything looks good; add a new record to the multicast 2057 * address list for the given interface. 2058 */ 2059 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2060 if ((imm->i6mm_maddr = 2061 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2062 kfree(imm, M_IPMADDR); 2063 break; 2064 } 2065 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2066 break; 2067 2068 case IPV6_LEAVE_GROUP: 2069 /* 2070 * Drop a multicast group membership. 2071 * Group must be a valid IP6 multicast address. 2072 */ 2073 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2074 error = EINVAL; 2075 break; 2076 } 2077 mreq = mtod(m, struct ipv6_mreq *); 2078 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2079 if (suser(td)) { 2080 error = EACCES; 2081 break; 2082 } 2083 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2084 error = EINVAL; 2085 break; 2086 } 2087 /* 2088 * If an interface address was specified, get a pointer 2089 * to its ifnet structure. 2090 */ 2091 if (mreq->ipv6mr_interface < 0 2092 || if_index < mreq->ipv6mr_interface) { 2093 error = ENXIO; /* XXX EINVAL? */ 2094 break; 2095 } 2096 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2097 /* 2098 * Put interface index into the multicast address, 2099 * if the address has link-local scope. 2100 */ 2101 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2102 mreq->ipv6mr_multiaddr.s6_addr16[1] 2103 = htons(mreq->ipv6mr_interface); 2104 } 2105 /* 2106 * Find the membership in the membership list. 2107 */ 2108 for (imm = im6o->im6o_memberships.lh_first; 2109 imm != NULL; imm = imm->i6mm_chain.le_next) { 2110 if ((ifp == NULL || 2111 imm->i6mm_maddr->in6m_ifp == ifp) && 2112 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2113 &mreq->ipv6mr_multiaddr)) 2114 break; 2115 } 2116 if (imm == NULL) { 2117 /* Unable to resolve interface */ 2118 error = EADDRNOTAVAIL; 2119 break; 2120 } 2121 /* 2122 * Give up the multicast address record to which the 2123 * membership points. 2124 */ 2125 LIST_REMOVE(imm, i6mm_chain); 2126 in6_delmulti(imm->i6mm_maddr); 2127 kfree(imm, M_IPMADDR); 2128 break; 2129 2130 default: 2131 error = EOPNOTSUPP; 2132 break; 2133 } 2134 2135 /* 2136 * If all options have default values, no need to keep the mbuf. 2137 */ 2138 if (im6o->im6o_multicast_ifp == NULL && 2139 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2140 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2141 im6o->im6o_memberships.lh_first == NULL) { 2142 kfree(*im6op, M_IPMOPTS); 2143 *im6op = NULL; 2144 } 2145 2146 return (error); 2147 } 2148 2149 /* 2150 * Return the IP6 multicast options in response to user getsockopt(). 2151 */ 2152 static int 2153 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2154 { 2155 u_int *hlim, *loop, *ifindex; 2156 2157 *mp = m_get(MB_WAIT, MT_HEADER); /* XXX */ 2158 2159 switch (optname) { 2160 2161 case IPV6_MULTICAST_IF: 2162 ifindex = mtod(*mp, u_int *); 2163 (*mp)->m_len = sizeof(u_int); 2164 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2165 *ifindex = 0; 2166 else 2167 *ifindex = im6o->im6o_multicast_ifp->if_index; 2168 return (0); 2169 2170 case IPV6_MULTICAST_HOPS: 2171 hlim = mtod(*mp, u_int *); 2172 (*mp)->m_len = sizeof(u_int); 2173 if (im6o == NULL) 2174 *hlim = ip6_defmcasthlim; 2175 else 2176 *hlim = im6o->im6o_multicast_hlim; 2177 return (0); 2178 2179 case IPV6_MULTICAST_LOOP: 2180 loop = mtod(*mp, u_int *); 2181 (*mp)->m_len = sizeof(u_int); 2182 if (im6o == NULL) 2183 *loop = ip6_defmcasthlim; 2184 else 2185 *loop = im6o->im6o_multicast_loop; 2186 return (0); 2187 2188 default: 2189 return (EOPNOTSUPP); 2190 } 2191 } 2192 2193 /* 2194 * Discard the IP6 multicast options. 2195 */ 2196 void 2197 ip6_freemoptions(struct ip6_moptions *im6o) 2198 { 2199 struct in6_multi_mship *imm; 2200 2201 if (im6o == NULL) 2202 return; 2203 2204 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2205 LIST_REMOVE(imm, i6mm_chain); 2206 if (imm->i6mm_maddr) 2207 in6_delmulti(imm->i6mm_maddr); 2208 kfree(imm, M_IPMADDR); 2209 } 2210 kfree(im6o, M_IPMOPTS); 2211 } 2212 2213 /* 2214 * Set IPv6 outgoing packet options based on advanced API. 2215 */ 2216 int 2217 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt, int priv, 2218 int needcopy) 2219 { 2220 struct cmsghdr *cm = NULL; 2221 2222 if (control == NULL || opt == NULL) 2223 return (EINVAL); 2224 2225 init_ip6pktopts(opt); 2226 2227 /* 2228 * XXX: Currently, we assume all the optional information is stored 2229 * in a single mbuf. 2230 */ 2231 if (control->m_next) 2232 return (EINVAL); 2233 2234 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2235 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2236 cm = mtod(control, struct cmsghdr *); 2237 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2238 return (EINVAL); 2239 if (cm->cmsg_level != IPPROTO_IPV6) 2240 continue; 2241 2242 /* 2243 * XXX should check if RFC2292 API is mixed with 2292bis API 2244 */ 2245 switch (cm->cmsg_type) { 2246 case IPV6_PKTINFO: 2247 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2248 return (EINVAL); 2249 if (needcopy) { 2250 /* XXX: Is it really WAITOK? */ 2251 opt->ip6po_pktinfo = 2252 kmalloc(sizeof(struct in6_pktinfo), 2253 M_IP6OPT, M_WAITOK); 2254 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo, 2255 sizeof(struct in6_pktinfo)); 2256 } else 2257 opt->ip6po_pktinfo = 2258 (struct in6_pktinfo *)CMSG_DATA(cm); 2259 if (opt->ip6po_pktinfo->ipi6_ifindex && 2260 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2261 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2262 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2263 2264 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2265 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2266 return (ENXIO); 2267 } 2268 2269 /* 2270 * Check if the requested source address is indeed a 2271 * unicast address assigned to the node, and can be 2272 * used as the packet's source address. 2273 */ 2274 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2275 struct in6_ifaddr *ia6; 2276 struct sockaddr_in6 sin6; 2277 2278 bzero(&sin6, sizeof(sin6)); 2279 sin6.sin6_len = sizeof(sin6); 2280 sin6.sin6_family = AF_INET6; 2281 sin6.sin6_addr = 2282 opt->ip6po_pktinfo->ipi6_addr; 2283 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2284 if (ia6 == NULL || 2285 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2286 IN6_IFF_NOTREADY)) != 0) 2287 return (EADDRNOTAVAIL); 2288 } 2289 break; 2290 2291 case IPV6_HOPLIMIT: 2292 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2293 return (EINVAL); 2294 2295 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2296 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2297 return (EINVAL); 2298 break; 2299 2300 case IPV6_NEXTHOP: 2301 if (!priv) 2302 return (EPERM); 2303 2304 if (cm->cmsg_len < sizeof(u_char) || 2305 /* check if cmsg_len is large enough for sa_len */ 2306 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2307 return (EINVAL); 2308 2309 if (needcopy) { 2310 opt->ip6po_nexthop = 2311 kmalloc(*CMSG_DATA(cm), 2312 M_IP6OPT, M_WAITOK); 2313 bcopy(CMSG_DATA(cm), 2314 opt->ip6po_nexthop, 2315 *CMSG_DATA(cm)); 2316 } else 2317 opt->ip6po_nexthop = 2318 (struct sockaddr *)CMSG_DATA(cm); 2319 break; 2320 2321 case IPV6_HOPOPTS: 2322 { 2323 struct ip6_hbh *hbh; 2324 int hbhlen; 2325 2326 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2327 return (EINVAL); 2328 hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2329 hbhlen = (hbh->ip6h_len + 1) << 3; 2330 if (cm->cmsg_len != CMSG_LEN(hbhlen)) 2331 return (EINVAL); 2332 2333 if (needcopy) { 2334 opt->ip6po_hbh = 2335 kmalloc(hbhlen, M_IP6OPT, M_WAITOK); 2336 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2337 } else 2338 opt->ip6po_hbh = hbh; 2339 break; 2340 } 2341 2342 case IPV6_DSTOPTS: 2343 { 2344 struct ip6_dest *dest, **newdest; 2345 int destlen; 2346 2347 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2348 return (EINVAL); 2349 dest = (struct ip6_dest *)CMSG_DATA(cm); 2350 destlen = (dest->ip6d_len + 1) << 3; 2351 if (cm->cmsg_len != CMSG_LEN(destlen)) 2352 return (EINVAL); 2353 2354 /* 2355 * The old advacned API is ambiguous on this 2356 * point. Our approach is to determine the 2357 * position based according to the existence 2358 * of a routing header. Note, however, that 2359 * this depends on the order of the extension 2360 * headers in the ancillary data; the 1st part 2361 * of the destination options header must 2362 * appear before the routing header in the 2363 * ancillary data, too. 2364 * RFC2292bis solved the ambiguity by 2365 * introducing separate cmsg types. 2366 */ 2367 if (opt->ip6po_rthdr == NULL) 2368 newdest = &opt->ip6po_dest1; 2369 else 2370 newdest = &opt->ip6po_dest2; 2371 2372 if (needcopy) { 2373 *newdest = kmalloc(destlen, M_IP6OPT, M_WAITOK); 2374 bcopy(dest, *newdest, destlen); 2375 } else 2376 *newdest = dest; 2377 2378 break; 2379 } 2380 2381 case IPV6_RTHDR: 2382 { 2383 struct ip6_rthdr *rth; 2384 int rthlen; 2385 2386 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2387 return (EINVAL); 2388 rth = (struct ip6_rthdr *)CMSG_DATA(cm); 2389 rthlen = (rth->ip6r_len + 1) << 3; 2390 if (cm->cmsg_len != CMSG_LEN(rthlen)) 2391 return (EINVAL); 2392 2393 switch (rth->ip6r_type) { 2394 case IPV6_RTHDR_TYPE_0: 2395 /* must contain one addr */ 2396 if (rth->ip6r_len == 0) 2397 return (EINVAL); 2398 /* length must be even */ 2399 if (rth->ip6r_len % 2) 2400 return (EINVAL); 2401 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2402 return (EINVAL); 2403 break; 2404 default: 2405 return (EINVAL); /* not supported */ 2406 } 2407 2408 if (needcopy) { 2409 opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, 2410 M_WAITOK); 2411 bcopy(rth, opt->ip6po_rthdr, rthlen); 2412 } else 2413 opt->ip6po_rthdr = rth; 2414 2415 break; 2416 } 2417 2418 default: 2419 return (ENOPROTOOPT); 2420 } 2421 } 2422 2423 return (0); 2424 } 2425 2426 /* 2427 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2428 * packet to the input queue of a specified interface. Note that this 2429 * calls the output routine of the loopback "driver", but with an interface 2430 * pointer that might NOT be &loif -- easier than replicating that code here. 2431 */ 2432 void 2433 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2434 { 2435 struct mbuf *copym; 2436 struct ip6_hdr *ip6; 2437 2438 copym = m_copy(m, 0, M_COPYALL); 2439 if (copym == NULL) 2440 return; 2441 2442 /* 2443 * Make sure to deep-copy IPv6 header portion in case the data 2444 * is in an mbuf cluster, so that we can safely override the IPv6 2445 * header portion later. 2446 */ 2447 if ((copym->m_flags & M_EXT) != 0 || 2448 copym->m_len < sizeof(struct ip6_hdr)) { 2449 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2450 if (copym == NULL) 2451 return; 2452 } 2453 2454 #ifdef DIAGNOSTIC 2455 if (copym->m_len < sizeof(*ip6)) { 2456 m_freem(copym); 2457 return; 2458 } 2459 #endif 2460 2461 ip6 = mtod(copym, struct ip6_hdr *); 2462 /* 2463 * clear embedded scope identifiers if necessary. 2464 * in6_clearscope will touch the addresses only when necessary. 2465 */ 2466 in6_clearscope(&ip6->ip6_src); 2467 in6_clearscope(&ip6->ip6_dst); 2468 2469 if_simloop(ifp, copym, dst->sin6_family, 0); 2470 } 2471 2472 /* 2473 * Separate the IPv6 header from the payload into its own mbuf. 2474 * 2475 * Returns the new mbuf chain or the original mbuf if no payload. 2476 * Returns NULL if can't allocate new mbuf for header. 2477 */ 2478 static struct mbuf * 2479 ip6_splithdr(struct mbuf *m) 2480 { 2481 struct mbuf *mh; 2482 2483 if (m->m_len <= sizeof(struct ip6_hdr)) /* no payload */ 2484 return (m); 2485 2486 MGETHDR(mh, MB_DONTWAIT, MT_HEADER); 2487 if (mh == NULL) 2488 return (NULL); 2489 mh->m_len = sizeof(struct ip6_hdr); 2490 M_MOVE_PKTHDR(mh, m); 2491 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 2492 bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr)); 2493 m->m_data += sizeof(struct ip6_hdr); 2494 m->m_len -= sizeof(struct ip6_hdr); 2495 mh->m_next = m; 2496 return (mh); 2497 } 2498 2499 /* 2500 * Compute IPv6 extension header length. 2501 */ 2502 int 2503 ip6_optlen(struct in6pcb *in6p) 2504 { 2505 int len; 2506 2507 if (!in6p->in6p_outputopts) 2508 return 0; 2509 2510 len = 0; 2511 #define elen(x) \ 2512 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2513 2514 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2515 if (in6p->in6p_outputopts->ip6po_rthdr) 2516 /* dest1 is valid with rthdr only */ 2517 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2518 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2519 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2520 return len; 2521 #undef elen 2522 } 2523