1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_ip6fw.h" 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 #include "opt_ipsec.h" 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet/in_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #ifdef INET6 99 #include <netinet6/ipsec6.h> 100 #endif 101 #include <netkey/key.h> 102 #endif /* IPSEC */ 103 104 #ifdef FAST_IPSEC 105 #include <netipsec/ipsec.h> 106 #include <netipsec/ipsec6.h> 107 #include <netipsec/key.h> 108 #endif /* FAST_IPSEC */ 109 110 #include <netinet6/ip6_fw.h> 111 112 #include <net/net_osdep.h> 113 114 extern int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)); 115 116 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 117 118 struct ip6_exthdrs { 119 struct mbuf *ip6e_ip6; 120 struct mbuf *ip6e_hbh; 121 struct mbuf *ip6e_dest1; 122 struct mbuf *ip6e_rthdr; 123 struct mbuf *ip6e_dest2; 124 }; 125 126 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 127 struct socket *, struct sockopt *sopt)); 128 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 129 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 130 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 131 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **)); 133 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 134 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 135 136 /* 137 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 138 * header (with pri, len, nxt, hlim, src, dst). 139 * This function may modify ver and hlim only. 140 * The mbuf chain containing the packet will be freed. 141 * The mbuf opt, if present, will not be freed. 142 * 143 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 144 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 145 * which is rt_rmx.rmx_mtu. 146 */ 147 int 148 ip6_output(m0, opt, ro, flags, im6o, ifpp, inp) 149 struct mbuf *m0; 150 struct ip6_pktopts *opt; 151 struct route_in6 *ro; 152 int flags; 153 struct ip6_moptions *im6o; 154 struct ifnet **ifpp; /* XXX: just for statistics */ 155 struct inpcb *inp; 156 { 157 struct ip6_hdr *ip6, *mhip6; 158 struct ifnet *ifp, *origifp; 159 struct mbuf *m = m0; 160 int hlen, tlen, len, off; 161 struct route_in6 ip6route; 162 struct sockaddr_in6 *dst; 163 int error = 0; 164 struct in6_ifaddr *ia = NULL; 165 u_long mtu; 166 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 167 struct ip6_exthdrs exthdrs; 168 struct in6_addr finaldst; 169 struct route_in6 *ro_pmtu = NULL; 170 int hdrsplit = 0; 171 int needipsec = 0; 172 #ifdef IPSEC 173 int needipsectun = 0; 174 struct secpolicy *sp = NULL; 175 struct socket *so = inp ? inp->inp_socket : NULL; 176 177 ip6 = mtod(m, struct ip6_hdr *); 178 #endif /* IPSEC */ 179 #ifdef FAST_IPSEC 180 int needipsectun = 0; 181 struct secpolicy *sp = NULL; 182 183 ip6 = mtod(m, struct ip6_hdr *); 184 #endif /* FAST_IPSEC */ 185 186 #define MAKE_EXTHDR(hp, mp) \ 187 do { \ 188 if (hp) { \ 189 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 190 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 191 ((eh)->ip6e_len + 1) << 3); \ 192 if (error) \ 193 goto freehdrs; \ 194 } \ 195 } while (0) 196 197 bzero(&exthdrs, sizeof(exthdrs)); 198 199 if (opt) { 200 /* Hop-by-Hop options header */ 201 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 202 /* Destination options header(1st part) */ 203 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 204 /* Routing header */ 205 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 206 /* Destination options header(2nd part) */ 207 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 208 } 209 210 #ifdef IPSEC 211 /* get a security policy for this packet */ 212 if (so == NULL) 213 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 214 else 215 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 216 217 if (sp == NULL) { 218 ipsec6stat.out_inval++; 219 goto freehdrs; 220 } 221 222 error = 0; 223 224 /* check policy */ 225 switch (sp->policy) { 226 case IPSEC_POLICY_DISCARD: 227 /* 228 * This packet is just discarded. 229 */ 230 ipsec6stat.out_polvio++; 231 goto freehdrs; 232 233 case IPSEC_POLICY_BYPASS: 234 case IPSEC_POLICY_NONE: 235 /* no need to do IPsec. */ 236 needipsec = 0; 237 break; 238 239 case IPSEC_POLICY_IPSEC: 240 if (sp->req == NULL) { 241 /* acquire a policy */ 242 error = key_spdacquire(sp); 243 goto freehdrs; 244 } 245 needipsec = 1; 246 break; 247 248 case IPSEC_POLICY_ENTRUST: 249 default: 250 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 251 } 252 #endif /* IPSEC */ 253 #ifdef FAST_IPSEC 254 /* get a security policy for this packet */ 255 if (inp == NULL) 256 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 257 else 258 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 259 260 if (sp == NULL) { 261 newipsecstat.ips_out_inval++; 262 goto freehdrs; 263 } 264 265 error = 0; 266 267 /* check policy */ 268 switch (sp->policy) { 269 case IPSEC_POLICY_DISCARD: 270 /* 271 * This packet is just discarded. 272 */ 273 newipsecstat.ips_out_polvio++; 274 goto freehdrs; 275 276 case IPSEC_POLICY_BYPASS: 277 case IPSEC_POLICY_NONE: 278 /* no need to do IPsec. */ 279 needipsec = 0; 280 break; 281 282 case IPSEC_POLICY_IPSEC: 283 if (sp->req == NULL) { 284 /* acquire a policy */ 285 error = key_spdacquire(sp); 286 goto freehdrs; 287 } 288 needipsec = 1; 289 break; 290 291 case IPSEC_POLICY_ENTRUST: 292 default: 293 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 294 } 295 #endif /* FAST_IPSEC */ 296 297 /* 298 * Calculate the total length of the extension header chain. 299 * Keep the length of the unfragmentable part for fragmentation. 300 */ 301 optlen = 0; 302 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 303 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 304 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 305 unfragpartlen = optlen + sizeof(struct ip6_hdr); 306 /* NOTE: we don't add AH/ESP length here. do that later. */ 307 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 308 309 /* 310 * If we need IPsec, or there is at least one extension header, 311 * separate IP6 header from the payload. 312 */ 313 if ((needipsec || optlen) && !hdrsplit) { 314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 315 m = NULL; 316 goto freehdrs; 317 } 318 m = exthdrs.ip6e_ip6; 319 hdrsplit++; 320 } 321 322 /* adjust pointer */ 323 ip6 = mtod(m, struct ip6_hdr *); 324 325 /* adjust mbuf packet header length */ 326 m->m_pkthdr.len += optlen; 327 plen = m->m_pkthdr.len - sizeof(*ip6); 328 329 /* If this is a jumbo payload, insert a jumbo payload option. */ 330 if (plen > IPV6_MAXPACKET) { 331 if (!hdrsplit) { 332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 333 m = NULL; 334 goto freehdrs; 335 } 336 m = exthdrs.ip6e_ip6; 337 hdrsplit++; 338 } 339 /* adjust pointer */ 340 ip6 = mtod(m, struct ip6_hdr *); 341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 342 goto freehdrs; 343 ip6->ip6_plen = 0; 344 } else 345 ip6->ip6_plen = htons(plen); 346 347 /* 348 * Concatenate headers and fill in next header fields. 349 * Here we have, on "m" 350 * IPv6 payload 351 * and we insert headers accordingly. Finally, we should be getting: 352 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 353 * 354 * during the header composing process, "m" points to IPv6 header. 355 * "mprev" points to an extension header prior to esp. 356 */ 357 { 358 u_char *nexthdrp = &ip6->ip6_nxt; 359 struct mbuf *mprev = m; 360 361 /* 362 * we treat dest2 specially. this makes IPsec processing 363 * much easier. the goal here is to make mprev point the 364 * mbuf prior to dest2. 365 * 366 * result: IPv6 dest2 payload 367 * m and mprev will point to IPv6 header. 368 */ 369 if (exthdrs.ip6e_dest2) { 370 if (!hdrsplit) 371 panic("assumption failed: hdr not split"); 372 exthdrs.ip6e_dest2->m_next = m->m_next; 373 m->m_next = exthdrs.ip6e_dest2; 374 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 375 ip6->ip6_nxt = IPPROTO_DSTOPTS; 376 } 377 378 #define MAKE_CHAIN(m, mp, p, i)\ 379 do {\ 380 if (m) {\ 381 if (!hdrsplit) \ 382 panic("assumption failed: hdr not split"); \ 383 *mtod((m), u_char *) = *(p);\ 384 *(p) = (i);\ 385 p = mtod((m), u_char *);\ 386 (m)->m_next = (mp)->m_next;\ 387 (mp)->m_next = (m);\ 388 (mp) = (m);\ 389 }\ 390 } while (0) 391 /* 392 * result: IPv6 hbh dest1 rthdr dest2 payload 393 * m will point to IPv6 header. mprev will point to the 394 * extension header prior to dest2 (rthdr in the above case). 395 */ 396 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 397 nexthdrp, IPPROTO_HOPOPTS); 398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 399 nexthdrp, IPPROTO_DSTOPTS); 400 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 401 nexthdrp, IPPROTO_ROUTING); 402 403 #if defined(IPSEC) || defined(FAST_IPSEC) 404 if (!needipsec) 405 goto skip_ipsec2; 406 407 /* 408 * pointers after IPsec headers are not valid any more. 409 * other pointers need a great care too. 410 * (IPsec routines should not mangle mbufs prior to AH/ESP) 411 */ 412 exthdrs.ip6e_dest2 = NULL; 413 414 { 415 struct ip6_rthdr *rh = NULL; 416 int segleft_org = 0; 417 struct ipsec_output_state state; 418 419 if (exthdrs.ip6e_rthdr) { 420 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 421 segleft_org = rh->ip6r_segleft; 422 rh->ip6r_segleft = 0; 423 } 424 425 bzero(&state, sizeof(state)); 426 state.m = m; 427 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 428 &needipsectun); 429 m = state.m; 430 if (error) { 431 /* mbuf is already reclaimed in ipsec6_output_trans. */ 432 m = NULL; 433 switch (error) { 434 case EHOSTUNREACH: 435 case ENETUNREACH: 436 case EMSGSIZE: 437 case ENOBUFS: 438 case ENOMEM: 439 break; 440 default: 441 printf("ip6_output (ipsec): error code %d\n", error); 442 /* fall through */ 443 case ENOENT: 444 /* don't show these error codes to the user */ 445 error = 0; 446 break; 447 } 448 goto bad; 449 } 450 if (exthdrs.ip6e_rthdr) { 451 /* ah6_output doesn't modify mbuf chain */ 452 rh->ip6r_segleft = segleft_org; 453 } 454 } 455 skip_ipsec2:; 456 #endif 457 } 458 459 /* 460 * If there is a routing header, replace destination address field 461 * with the first hop of the routing header. 462 */ 463 if (exthdrs.ip6e_rthdr) { 464 struct ip6_rthdr *rh = 465 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 466 struct ip6_rthdr *)); 467 struct ip6_rthdr0 *rh0; 468 469 finaldst = ip6->ip6_dst; 470 switch (rh->ip6r_type) { 471 case IPV6_RTHDR_TYPE_0: 472 rh0 = (struct ip6_rthdr0 *)rh; 473 ip6->ip6_dst = rh0->ip6r0_addr[0]; 474 bcopy((caddr_t)&rh0->ip6r0_addr[1], 475 (caddr_t)&rh0->ip6r0_addr[0], 476 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 477 ); 478 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 479 break; 480 default: /* is it possible? */ 481 error = EINVAL; 482 goto bad; 483 } 484 } 485 486 /* Source address validation */ 487 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 488 (flags & IPV6_DADOUTPUT) == 0) { 489 error = EOPNOTSUPP; 490 ip6stat.ip6s_badscope++; 491 goto bad; 492 } 493 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 494 error = EOPNOTSUPP; 495 ip6stat.ip6s_badscope++; 496 goto bad; 497 } 498 499 ip6stat.ip6s_localout++; 500 501 /* 502 * Route packet. 503 */ 504 if (ro == 0) { 505 ro = &ip6route; 506 bzero((caddr_t)ro, sizeof(*ro)); 507 } 508 ro_pmtu = ro; 509 if (opt && opt->ip6po_rthdr) 510 ro = &opt->ip6po_route; 511 dst = (struct sockaddr_in6 *)&ro->ro_dst; 512 /* 513 * If there is a cached route, 514 * check that it is to the same destination 515 * and is still up. If not, free it and try again. 516 */ 517 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 518 dst->sin6_family != AF_INET6 || 519 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 520 RTFREE(ro->ro_rt); 521 ro->ro_rt = (struct rtentry *)0; 522 } 523 if (ro->ro_rt == 0) { 524 bzero(dst, sizeof(*dst)); 525 dst->sin6_family = AF_INET6; 526 dst->sin6_len = sizeof(struct sockaddr_in6); 527 dst->sin6_addr = ip6->ip6_dst; 528 #ifdef SCOPEDROUTING 529 /* XXX: sin6_scope_id should already be fixed at this point */ 530 if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr)) 531 dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]); 532 #endif 533 } 534 #if defined(IPSEC) || defined(FAST_IPSEC) 535 if (needipsec && needipsectun) { 536 struct ipsec_output_state state; 537 538 /* 539 * All the extension headers will become inaccessible 540 * (since they can be encrypted). 541 * Don't panic, we need no more updates to extension headers 542 * on inner IPv6 packet (since they are now encapsulated). 543 * 544 * IPv6 [ESP|AH] IPv6 [extension headers] payload 545 */ 546 bzero(&exthdrs, sizeof(exthdrs)); 547 exthdrs.ip6e_ip6 = m; 548 549 bzero(&state, sizeof(state)); 550 state.m = m; 551 state.ro = (struct route *)ro; 552 state.dst = (struct sockaddr *)dst; 553 554 error = ipsec6_output_tunnel(&state, sp, flags); 555 556 m = state.m; 557 ro = (struct route_in6 *)state.ro; 558 dst = (struct sockaddr_in6 *)state.dst; 559 if (error) { 560 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 561 m0 = m = NULL; 562 m = NULL; 563 switch (error) { 564 case EHOSTUNREACH: 565 case ENETUNREACH: 566 case EMSGSIZE: 567 case ENOBUFS: 568 case ENOMEM: 569 break; 570 default: 571 printf("ip6_output (ipsec): error code %d\n", error); 572 /* fall through */ 573 case ENOENT: 574 /* don't show these error codes to the user */ 575 error = 0; 576 break; 577 } 578 goto bad; 579 } 580 581 exthdrs.ip6e_ip6 = m; 582 } 583 #endif /* IPSEC */ 584 585 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 586 /* Unicast */ 587 588 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 589 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 590 /* xxx 591 * interface selection comes here 592 * if an interface is specified from an upper layer, 593 * ifp must point it. 594 */ 595 if (ro->ro_rt == 0) { 596 /* 597 * non-bsdi always clone routes, if parent is 598 * PRF_CLONING. 599 */ 600 rtalloc((struct route *)ro); 601 } 602 if (ro->ro_rt == 0) { 603 ip6stat.ip6s_noroute++; 604 error = EHOSTUNREACH; 605 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 606 goto bad; 607 } 608 ia = ifatoia6(ro->ro_rt->rt_ifa); 609 ifp = ro->ro_rt->rt_ifp; 610 ro->ro_rt->rt_use++; 611 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 612 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 613 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 614 615 in6_ifstat_inc(ifp, ifs6_out_request); 616 617 /* 618 * Check if the outgoing interface conflicts with 619 * the interface specified by ifi6_ifindex (if specified). 620 * Note that loopback interface is always okay. 621 * (this may happen when we are sending a packet to one of 622 * our own addresses.) 623 */ 624 if (opt && opt->ip6po_pktinfo 625 && opt->ip6po_pktinfo->ipi6_ifindex) { 626 if (!(ifp->if_flags & IFF_LOOPBACK) 627 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 628 ip6stat.ip6s_noroute++; 629 in6_ifstat_inc(ifp, ifs6_out_discard); 630 error = EHOSTUNREACH; 631 goto bad; 632 } 633 } 634 635 if (opt && opt->ip6po_hlim != -1) 636 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 637 } else { 638 /* Multicast */ 639 struct in6_multi *in6m; 640 641 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 642 643 /* 644 * See if the caller provided any multicast options 645 */ 646 ifp = NULL; 647 if (im6o != NULL) { 648 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 649 if (im6o->im6o_multicast_ifp != NULL) 650 ifp = im6o->im6o_multicast_ifp; 651 } else 652 ip6->ip6_hlim = ip6_defmcasthlim; 653 654 /* 655 * See if the caller provided the outgoing interface 656 * as an ancillary data. 657 * Boundary check for ifindex is assumed to be already done. 658 */ 659 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 660 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 661 662 /* 663 * If the destination is a node-local scope multicast, 664 * the packet should be loop-backed only. 665 */ 666 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 667 /* 668 * If the outgoing interface is already specified, 669 * it should be a loopback interface. 670 */ 671 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 672 ip6stat.ip6s_badscope++; 673 error = ENETUNREACH; /* XXX: better error? */ 674 /* XXX correct ifp? */ 675 in6_ifstat_inc(ifp, ifs6_out_discard); 676 goto bad; 677 } else { 678 ifp = &loif[0]; 679 } 680 } 681 682 if (opt && opt->ip6po_hlim != -1) 683 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 684 685 /* 686 * If caller did not provide an interface lookup a 687 * default in the routing table. This is either a 688 * default for the speicfied group (i.e. a host 689 * route), or a multicast default (a route for the 690 * ``net'' ff00::/8). 691 */ 692 if (ifp == NULL) { 693 if (ro->ro_rt == 0) { 694 ro->ro_rt = rtalloc1((struct sockaddr *) 695 &ro->ro_dst, 0, 0UL); 696 } 697 if (ro->ro_rt == 0) { 698 ip6stat.ip6s_noroute++; 699 error = EHOSTUNREACH; 700 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 701 goto bad; 702 } 703 ia = ifatoia6(ro->ro_rt->rt_ifa); 704 ifp = ro->ro_rt->rt_ifp; 705 ro->ro_rt->rt_use++; 706 } 707 708 if ((flags & IPV6_FORWARDING) == 0) 709 in6_ifstat_inc(ifp, ifs6_out_request); 710 in6_ifstat_inc(ifp, ifs6_out_mcast); 711 712 /* 713 * Confirm that the outgoing interface supports multicast. 714 */ 715 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 716 ip6stat.ip6s_noroute++; 717 in6_ifstat_inc(ifp, ifs6_out_discard); 718 error = ENETUNREACH; 719 goto bad; 720 } 721 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 722 if (in6m != NULL && 723 (im6o == NULL || im6o->im6o_multicast_loop)) { 724 /* 725 * If we belong to the destination multicast group 726 * on the outgoing interface, and the caller did not 727 * forbid loopback, loop back a copy. 728 */ 729 ip6_mloopback(ifp, m, dst); 730 } else { 731 /* 732 * If we are acting as a multicast router, perform 733 * multicast forwarding as if the packet had just 734 * arrived on the interface to which we are about 735 * to send. The multicast forwarding function 736 * recursively calls this function, using the 737 * IPV6_FORWARDING flag to prevent infinite recursion. 738 * 739 * Multicasts that are looped back by ip6_mloopback(), 740 * above, will be forwarded by the ip6_input() routine, 741 * if necessary. 742 */ 743 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 744 if (ip6_mforward(ip6, ifp, m) != 0) { 745 m_freem(m); 746 goto done; 747 } 748 } 749 } 750 /* 751 * Multicasts with a hoplimit of zero may be looped back, 752 * above, but must not be transmitted on a network. 753 * Also, multicasts addressed to the loopback interface 754 * are not sent -- the above call to ip6_mloopback() will 755 * loop back a copy if this host actually belongs to the 756 * destination group on the loopback interface. 757 */ 758 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 759 m_freem(m); 760 goto done; 761 } 762 } 763 764 /* 765 * Fill the outgoing inteface to tell the upper layer 766 * to increment per-interface statistics. 767 */ 768 if (ifpp) 769 *ifpp = ifp; 770 771 /* 772 * Determine path MTU. 773 */ 774 if (ro_pmtu != ro) { 775 /* The first hop and the final destination may differ. */ 776 struct sockaddr_in6 *sin6_fin = 777 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 778 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 779 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 780 &finaldst))) { 781 RTFREE(ro_pmtu->ro_rt); 782 ro_pmtu->ro_rt = (struct rtentry *)0; 783 } 784 if (ro_pmtu->ro_rt == 0) { 785 bzero(sin6_fin, sizeof(*sin6_fin)); 786 sin6_fin->sin6_family = AF_INET6; 787 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 788 sin6_fin->sin6_addr = finaldst; 789 790 rtalloc((struct route *)ro_pmtu); 791 } 792 } 793 if (ro_pmtu->ro_rt != NULL) { 794 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 795 796 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 797 if (mtu > ifmtu || mtu == 0) { 798 /* 799 * The MTU on the route is larger than the MTU on 800 * the interface! This shouldn't happen, unless the 801 * MTU of the interface has been changed after the 802 * interface was brought up. Change the MTU in the 803 * route to match the interface MTU (as long as the 804 * field isn't locked). 805 * 806 * if MTU on the route is 0, we need to fix the MTU. 807 * this case happens with path MTU discovery timeouts. 808 */ 809 mtu = ifmtu; 810 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 811 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 812 } 813 } else { 814 mtu = nd_ifinfo[ifp->if_index].linkmtu; 815 } 816 817 /* 818 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting 819 */ 820 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU) 821 mtu = IPV6_MMTU; 822 823 /* Fake scoped addresses */ 824 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 825 /* 826 * If source or destination address is a scoped address, and 827 * the packet is going to be sent to a loopback interface, 828 * we should keep the original interface. 829 */ 830 831 /* 832 * XXX: this is a very experimental and temporary solution. 833 * We eventually have sockaddr_in6 and use the sin6_scope_id 834 * field of the structure here. 835 * We rely on the consistency between two scope zone ids 836 * of source and destination, which should already be assured. 837 * Larger scopes than link will be supported in the future. 838 */ 839 origifp = NULL; 840 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 841 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 842 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 843 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 844 /* 845 * XXX: origifp can be NULL even in those two cases above. 846 * For example, if we remove the (only) link-local address 847 * from the loopback interface, and try to send a link-local 848 * address without link-id information. Then the source 849 * address is ::1, and the destination address is the 850 * link-local address with its s6_addr16[1] being zero. 851 * What is worse, if the packet goes to the loopback interface 852 * by a default rejected route, the null pointer would be 853 * passed to looutput, and the kernel would hang. 854 * The following last resort would prevent such disaster. 855 */ 856 if (origifp == NULL) 857 origifp = ifp; 858 } 859 else 860 origifp = ifp; 861 #ifndef SCOPEDROUTING 862 /* 863 * clear embedded scope identifiers if necessary. 864 * in6_clearscope will touch the addresses only when necessary. 865 */ 866 in6_clearscope(&ip6->ip6_src); 867 in6_clearscope(&ip6->ip6_dst); 868 #endif 869 870 /* 871 * Check with the firewall... 872 */ 873 if (ip6_fw_enable && ip6_fw_chk_ptr) { 874 u_short port = 0; 875 m->m_pkthdr.rcvif = NULL; /* XXX */ 876 /* If ipfw says divert, we have to just drop packet */ 877 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 878 m_freem(m); 879 goto done; 880 } 881 if (!m) { 882 error = EACCES; 883 goto done; 884 } 885 } 886 887 /* 888 * If the outgoing packet contains a hop-by-hop options header, 889 * it must be examined and processed even by the source node. 890 * (RFC 2460, section 4.) 891 */ 892 if (exthdrs.ip6e_hbh) { 893 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 894 u_int32_t dummy1; /* XXX unused */ 895 u_int32_t dummy2; /* XXX unused */ 896 897 #ifdef DIAGNOSTIC 898 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 899 panic("ip6e_hbh is not continuous"); 900 #endif 901 /* 902 * XXX: if we have to send an ICMPv6 error to the sender, 903 * we need the M_LOOP flag since icmp6_error() expects 904 * the IPv6 and the hop-by-hop options header are 905 * continuous unless the flag is set. 906 */ 907 m->m_flags |= M_LOOP; 908 m->m_pkthdr.rcvif = ifp; 909 if (ip6_process_hopopts(m, 910 (u_int8_t *)(hbh + 1), 911 ((hbh->ip6h_len + 1) << 3) - 912 sizeof(struct ip6_hbh), 913 &dummy1, &dummy2) < 0) { 914 /* m was already freed at this point */ 915 error = EINVAL;/* better error? */ 916 goto done; 917 } 918 m->m_flags &= ~M_LOOP; /* XXX */ 919 m->m_pkthdr.rcvif = NULL; 920 } 921 922 /* 923 * Check if we want to allow this packet to be processed. 924 * Consider it to be bad if not. 925 */ 926 if (fr_checkp) { 927 struct mbuf *m1 = m; 928 929 if ((*fr_checkp)((struct ip *)ip6, sizeof(*ip6), ifp, 1, &m1)) 930 goto done; 931 m = m1; 932 if (m == NULL) 933 goto done; 934 ip6 = mtod(m, struct ip6_hdr *); 935 } 936 937 /* 938 * Send the packet to the outgoing interface. 939 * If necessary, do IPv6 fragmentation before sending. 940 */ 941 tlen = m->m_pkthdr.len; 942 if (tlen <= mtu 943 #ifdef notyet 944 /* 945 * On any link that cannot convey a 1280-octet packet in one piece, 946 * link-specific fragmentation and reassembly must be provided at 947 * a layer below IPv6. [RFC 2460, sec.5] 948 * Thus if the interface has ability of link-level fragmentation, 949 * we can just send the packet even if the packet size is 950 * larger than the link's MTU. 951 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 952 */ 953 954 || ifp->if_flags & IFF_FRAGMENTABLE 955 #endif 956 ) 957 { 958 /* Record statistics for this interface address. */ 959 if (ia && !(flags & IPV6_FORWARDING)) { 960 ia->ia_ifa.if_opackets++; 961 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 962 } 963 #ifdef IPSEC 964 /* clean ipsec history once it goes out of the node */ 965 ipsec_delaux(m); 966 #endif 967 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 968 goto done; 969 } else if (mtu < IPV6_MMTU) { 970 /* 971 * note that path MTU is never less than IPV6_MMTU 972 * (see icmp6_input). 973 */ 974 error = EMSGSIZE; 975 in6_ifstat_inc(ifp, ifs6_out_fragfail); 976 goto bad; 977 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 978 error = EMSGSIZE; 979 in6_ifstat_inc(ifp, ifs6_out_fragfail); 980 goto bad; 981 } else { 982 struct mbuf **mnext, *m_frgpart; 983 struct ip6_frag *ip6f; 984 u_int32_t id = htonl(ip6_id++); 985 u_char nextproto; 986 987 /* 988 * Too large for the destination or interface; 989 * fragment if possible. 990 * Must be able to put at least 8 bytes per fragment. 991 */ 992 hlen = unfragpartlen; 993 if (mtu > IPV6_MAXPACKET) 994 mtu = IPV6_MAXPACKET; 995 996 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 997 if (len < 8) { 998 error = EMSGSIZE; 999 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1000 goto bad; 1001 } 1002 1003 mnext = &m->m_nextpkt; 1004 1005 /* 1006 * Change the next header field of the last header in the 1007 * unfragmentable part. 1008 */ 1009 if (exthdrs.ip6e_rthdr) { 1010 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1011 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1012 } else if (exthdrs.ip6e_dest1) { 1013 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1014 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1015 } else if (exthdrs.ip6e_hbh) { 1016 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1017 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1018 } else { 1019 nextproto = ip6->ip6_nxt; 1020 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1021 } 1022 1023 /* 1024 * Loop through length of segment after first fragment, 1025 * make new header and copy data of each part and link onto 1026 * chain. 1027 */ 1028 m0 = m; 1029 for (off = hlen; off < tlen; off += len) { 1030 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1031 if (!m) { 1032 error = ENOBUFS; 1033 ip6stat.ip6s_odropped++; 1034 goto sendorfree; 1035 } 1036 m->m_pkthdr.rcvif = NULL; 1037 m->m_flags = m0->m_flags & M_COPYFLAGS; 1038 *mnext = m; 1039 mnext = &m->m_nextpkt; 1040 m->m_data += max_linkhdr; 1041 mhip6 = mtod(m, struct ip6_hdr *); 1042 *mhip6 = *ip6; 1043 m->m_len = sizeof(*mhip6); 1044 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1045 if (error) { 1046 ip6stat.ip6s_odropped++; 1047 goto sendorfree; 1048 } 1049 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1050 if (off + len >= tlen) 1051 len = tlen - off; 1052 else 1053 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1054 mhip6->ip6_plen = htons((u_short)(len + hlen + 1055 sizeof(*ip6f) - 1056 sizeof(struct ip6_hdr))); 1057 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1058 error = ENOBUFS; 1059 ip6stat.ip6s_odropped++; 1060 goto sendorfree; 1061 } 1062 m_cat(m, m_frgpart); 1063 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1064 m->m_pkthdr.rcvif = (struct ifnet *)0; 1065 ip6f->ip6f_reserved = 0; 1066 ip6f->ip6f_ident = id; 1067 ip6f->ip6f_nxt = nextproto; 1068 ip6stat.ip6s_ofragments++; 1069 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1070 } 1071 1072 in6_ifstat_inc(ifp, ifs6_out_fragok); 1073 } 1074 1075 /* 1076 * Remove leading garbages. 1077 */ 1078 sendorfree: 1079 m = m0->m_nextpkt; 1080 m0->m_nextpkt = 0; 1081 m_freem(m0); 1082 for (m0 = m; m; m = m0) { 1083 m0 = m->m_nextpkt; 1084 m->m_nextpkt = 0; 1085 if (error == 0) { 1086 /* Record statistics for this interface address. */ 1087 if (ia) { 1088 ia->ia_ifa.if_opackets++; 1089 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1090 } 1091 #ifdef IPSEC 1092 /* clean ipsec history once it goes out of the node */ 1093 ipsec_delaux(m); 1094 #endif 1095 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1096 } else 1097 m_freem(m); 1098 } 1099 1100 if (error == 0) 1101 ip6stat.ip6s_fragmented++; 1102 1103 done: 1104 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1105 RTFREE(ro->ro_rt); 1106 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1107 RTFREE(ro_pmtu->ro_rt); 1108 } 1109 1110 #ifdef IPSEC 1111 if (sp != NULL) 1112 key_freesp(sp); 1113 #endif /* IPSEC */ 1114 #ifdef FAST_IPSEC 1115 if (sp != NULL) 1116 KEY_FREESP(&sp); 1117 #endif /* FAST_IPSEC */ 1118 1119 return(error); 1120 1121 freehdrs: 1122 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1123 m_freem(exthdrs.ip6e_dest1); 1124 m_freem(exthdrs.ip6e_rthdr); 1125 m_freem(exthdrs.ip6e_dest2); 1126 /* fall through */ 1127 bad: 1128 m_freem(m); 1129 goto done; 1130 } 1131 1132 static int 1133 ip6_copyexthdr(mp, hdr, hlen) 1134 struct mbuf **mp; 1135 caddr_t hdr; 1136 int hlen; 1137 { 1138 struct mbuf *m; 1139 1140 if (hlen > MCLBYTES) 1141 return(ENOBUFS); /* XXX */ 1142 1143 MGET(m, M_DONTWAIT, MT_DATA); 1144 if (!m) 1145 return(ENOBUFS); 1146 1147 if (hlen > MLEN) { 1148 MCLGET(m, M_DONTWAIT); 1149 if ((m->m_flags & M_EXT) == 0) { 1150 m_free(m); 1151 return(ENOBUFS); 1152 } 1153 } 1154 m->m_len = hlen; 1155 if (hdr) 1156 bcopy(hdr, mtod(m, caddr_t), hlen); 1157 1158 *mp = m; 1159 return(0); 1160 } 1161 1162 /* 1163 * Insert jumbo payload option. 1164 */ 1165 static int 1166 ip6_insert_jumboopt(exthdrs, plen) 1167 struct ip6_exthdrs *exthdrs; 1168 u_int32_t plen; 1169 { 1170 struct mbuf *mopt; 1171 u_char *optbuf; 1172 u_int32_t v; 1173 1174 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1175 1176 /* 1177 * If there is no hop-by-hop options header, allocate new one. 1178 * If there is one but it doesn't have enough space to store the 1179 * jumbo payload option, allocate a cluster to store the whole options. 1180 * Otherwise, use it to store the options. 1181 */ 1182 if (exthdrs->ip6e_hbh == 0) { 1183 MGET(mopt, M_DONTWAIT, MT_DATA); 1184 if (mopt == 0) 1185 return(ENOBUFS); 1186 mopt->m_len = JUMBOOPTLEN; 1187 optbuf = mtod(mopt, u_char *); 1188 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1189 exthdrs->ip6e_hbh = mopt; 1190 } else { 1191 struct ip6_hbh *hbh; 1192 1193 mopt = exthdrs->ip6e_hbh; 1194 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1195 /* 1196 * XXX assumption: 1197 * - exthdrs->ip6e_hbh is not referenced from places 1198 * other than exthdrs. 1199 * - exthdrs->ip6e_hbh is not an mbuf chain. 1200 */ 1201 int oldoptlen = mopt->m_len; 1202 struct mbuf *n; 1203 1204 /* 1205 * XXX: give up if the whole (new) hbh header does 1206 * not fit even in an mbuf cluster. 1207 */ 1208 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1209 return(ENOBUFS); 1210 1211 /* 1212 * As a consequence, we must always prepare a cluster 1213 * at this point. 1214 */ 1215 MGET(n, M_DONTWAIT, MT_DATA); 1216 if (n) { 1217 MCLGET(n, M_DONTWAIT); 1218 if ((n->m_flags & M_EXT) == 0) { 1219 m_freem(n); 1220 n = NULL; 1221 } 1222 } 1223 if (!n) 1224 return(ENOBUFS); 1225 n->m_len = oldoptlen + JUMBOOPTLEN; 1226 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1227 oldoptlen); 1228 optbuf = mtod(n, caddr_t) + oldoptlen; 1229 m_freem(mopt); 1230 mopt = exthdrs->ip6e_hbh = n; 1231 } else { 1232 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1233 mopt->m_len += JUMBOOPTLEN; 1234 } 1235 optbuf[0] = IP6OPT_PADN; 1236 optbuf[1] = 1; 1237 1238 /* 1239 * Adjust the header length according to the pad and 1240 * the jumbo payload option. 1241 */ 1242 hbh = mtod(mopt, struct ip6_hbh *); 1243 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1244 } 1245 1246 /* fill in the option. */ 1247 optbuf[2] = IP6OPT_JUMBO; 1248 optbuf[3] = 4; 1249 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1250 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1251 1252 /* finally, adjust the packet header length */ 1253 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1254 1255 return(0); 1256 #undef JUMBOOPTLEN 1257 } 1258 1259 /* 1260 * Insert fragment header and copy unfragmentable header portions. 1261 */ 1262 static int 1263 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1264 struct mbuf *m0, *m; 1265 int hlen; 1266 struct ip6_frag **frghdrp; 1267 { 1268 struct mbuf *n, *mlast; 1269 1270 if (hlen > sizeof(struct ip6_hdr)) { 1271 n = m_copym(m0, sizeof(struct ip6_hdr), 1272 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1273 if (n == 0) 1274 return(ENOBUFS); 1275 m->m_next = n; 1276 } else 1277 n = m; 1278 1279 /* Search for the last mbuf of unfragmentable part. */ 1280 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1281 ; 1282 1283 if ((mlast->m_flags & M_EXT) == 0 && 1284 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1285 /* use the trailing space of the last mbuf for the fragment hdr */ 1286 *frghdrp = 1287 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1288 mlast->m_len += sizeof(struct ip6_frag); 1289 m->m_pkthdr.len += sizeof(struct ip6_frag); 1290 } else { 1291 /* allocate a new mbuf for the fragment header */ 1292 struct mbuf *mfrg; 1293 1294 MGET(mfrg, M_DONTWAIT, MT_DATA); 1295 if (mfrg == 0) 1296 return(ENOBUFS); 1297 mfrg->m_len = sizeof(struct ip6_frag); 1298 *frghdrp = mtod(mfrg, struct ip6_frag *); 1299 mlast->m_next = mfrg; 1300 } 1301 1302 return(0); 1303 } 1304 1305 /* 1306 * IP6 socket option processing. 1307 */ 1308 int 1309 ip6_ctloutput(so, sopt) 1310 struct socket *so; 1311 struct sockopt *sopt; 1312 { 1313 int privileged; 1314 struct inpcb *in6p = sotoinpcb(so); 1315 int error, optval; 1316 int level, op, optname; 1317 int optlen; 1318 struct proc *p; 1319 1320 if (sopt) { 1321 level = sopt->sopt_level; 1322 op = sopt->sopt_dir; 1323 optname = sopt->sopt_name; 1324 optlen = sopt->sopt_valsize; 1325 p = sopt->sopt_p; 1326 } else { 1327 panic("ip6_ctloutput: arg soopt is NULL"); 1328 } 1329 error = optval = 0; 1330 1331 privileged = (p == 0 || suser(p)) ? 0 : 1; 1332 1333 if (level == IPPROTO_IPV6) { 1334 switch (op) { 1335 1336 case SOPT_SET: 1337 switch (optname) { 1338 case IPV6_PKTOPTIONS: 1339 { 1340 struct mbuf *m; 1341 1342 error = soopt_getm(sopt, &m); /* XXX */ 1343 if (error != NULL) 1344 break; 1345 error = soopt_mcopyin(sopt, m); /* XXX */ 1346 if (error != NULL) 1347 break; 1348 error = ip6_pcbopts(&in6p->in6p_outputopts, 1349 m, so, sopt); 1350 m_freem(m); /* XXX */ 1351 break; 1352 } 1353 1354 /* 1355 * Use of some Hop-by-Hop options or some 1356 * Destination options, might require special 1357 * privilege. That is, normal applications 1358 * (without special privilege) might be forbidden 1359 * from setting certain options in outgoing packets, 1360 * and might never see certain options in received 1361 * packets. [RFC 2292 Section 6] 1362 * KAME specific note: 1363 * KAME prevents non-privileged users from sending or 1364 * receiving ANY hbh/dst options in order to avoid 1365 * overhead of parsing options in the kernel. 1366 */ 1367 case IPV6_UNICAST_HOPS: 1368 case IPV6_CHECKSUM: 1369 case IPV6_FAITH: 1370 1371 case IPV6_V6ONLY: 1372 if (optlen != sizeof(int)) { 1373 error = EINVAL; 1374 break; 1375 } 1376 error = sooptcopyin(sopt, &optval, 1377 sizeof optval, sizeof optval); 1378 if (error) 1379 break; 1380 switch (optname) { 1381 1382 case IPV6_UNICAST_HOPS: 1383 if (optval < -1 || optval >= 256) 1384 error = EINVAL; 1385 else { 1386 /* -1 = kernel default */ 1387 in6p->in6p_hops = optval; 1388 1389 if ((in6p->in6p_vflag & 1390 INP_IPV4) != 0) 1391 in6p->inp_ip_ttl = optval; 1392 } 1393 break; 1394 #define OPTSET(bit) \ 1395 do { \ 1396 if (optval) \ 1397 in6p->in6p_flags |= (bit); \ 1398 else \ 1399 in6p->in6p_flags &= ~(bit); \ 1400 } while (0) 1401 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1402 1403 case IPV6_CHECKSUM: 1404 in6p->in6p_cksum = optval; 1405 break; 1406 1407 case IPV6_FAITH: 1408 OPTSET(IN6P_FAITH); 1409 break; 1410 1411 case IPV6_V6ONLY: 1412 /* 1413 * make setsockopt(IPV6_V6ONLY) 1414 * available only prior to bind(2). 1415 * see ipng mailing list, Jun 22 2001. 1416 */ 1417 if (in6p->in6p_lport || 1418 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1419 { 1420 error = EINVAL; 1421 break; 1422 } 1423 OPTSET(IN6P_IPV6_V6ONLY); 1424 if (optval) 1425 in6p->in6p_vflag &= ~INP_IPV4; 1426 else 1427 in6p->in6p_vflag |= INP_IPV4; 1428 break; 1429 } 1430 break; 1431 1432 case IPV6_PKTINFO: 1433 case IPV6_HOPLIMIT: 1434 case IPV6_HOPOPTS: 1435 case IPV6_DSTOPTS: 1436 case IPV6_RTHDR: 1437 /* RFC 2292 */ 1438 if (optlen != sizeof(int)) { 1439 error = EINVAL; 1440 break; 1441 } 1442 error = sooptcopyin(sopt, &optval, 1443 sizeof optval, sizeof optval); 1444 if (error) 1445 break; 1446 switch (optname) { 1447 case IPV6_PKTINFO: 1448 OPTSET(IN6P_PKTINFO); 1449 break; 1450 case IPV6_HOPLIMIT: 1451 OPTSET(IN6P_HOPLIMIT); 1452 break; 1453 case IPV6_HOPOPTS: 1454 /* 1455 * Check super-user privilege. 1456 * See comments for IPV6_RECVHOPOPTS. 1457 */ 1458 if (!privileged) 1459 return(EPERM); 1460 OPTSET(IN6P_HOPOPTS); 1461 break; 1462 case IPV6_DSTOPTS: 1463 if (!privileged) 1464 return(EPERM); 1465 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1466 break; 1467 case IPV6_RTHDR: 1468 OPTSET(IN6P_RTHDR); 1469 break; 1470 } 1471 break; 1472 #undef OPTSET 1473 1474 case IPV6_MULTICAST_IF: 1475 case IPV6_MULTICAST_HOPS: 1476 case IPV6_MULTICAST_LOOP: 1477 case IPV6_JOIN_GROUP: 1478 case IPV6_LEAVE_GROUP: 1479 { 1480 struct mbuf *m; 1481 if (sopt->sopt_valsize > MLEN) { 1482 error = EMSGSIZE; 1483 break; 1484 } 1485 /* XXX */ 1486 MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_HEADER); 1487 if (m == 0) { 1488 error = ENOBUFS; 1489 break; 1490 } 1491 m->m_len = sopt->sopt_valsize; 1492 error = sooptcopyin(sopt, mtod(m, char *), 1493 m->m_len, m->m_len); 1494 error = ip6_setmoptions(sopt->sopt_name, 1495 &in6p->in6p_moptions, 1496 m); 1497 (void)m_free(m); 1498 } 1499 break; 1500 1501 case IPV6_PORTRANGE: 1502 error = sooptcopyin(sopt, &optval, 1503 sizeof optval, sizeof optval); 1504 if (error) 1505 break; 1506 1507 switch (optval) { 1508 case IPV6_PORTRANGE_DEFAULT: 1509 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1510 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1511 break; 1512 1513 case IPV6_PORTRANGE_HIGH: 1514 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1515 in6p->in6p_flags |= IN6P_HIGHPORT; 1516 break; 1517 1518 case IPV6_PORTRANGE_LOW: 1519 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1520 in6p->in6p_flags |= IN6P_LOWPORT; 1521 break; 1522 1523 default: 1524 error = EINVAL; 1525 break; 1526 } 1527 break; 1528 1529 #if defined(IPSEC) || defined(FAST_IPSEC) 1530 case IPV6_IPSEC_POLICY: 1531 { 1532 caddr_t req = NULL; 1533 size_t len = 0; 1534 struct mbuf *m; 1535 1536 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1537 break; 1538 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1539 break; 1540 if (m) { 1541 req = mtod(m, caddr_t); 1542 len = m->m_len; 1543 } 1544 error = ipsec6_set_policy(in6p, optname, req, 1545 len, privileged); 1546 m_freem(m); 1547 } 1548 break; 1549 #endif /* KAME IPSEC */ 1550 1551 case IPV6_FW_ADD: 1552 case IPV6_FW_DEL: 1553 case IPV6_FW_FLUSH: 1554 case IPV6_FW_ZERO: 1555 { 1556 struct mbuf *m; 1557 struct mbuf **mp = &m; 1558 1559 if (ip6_fw_ctl_ptr == NULL) 1560 return EINVAL; 1561 /* XXX */ 1562 if ((error = soopt_getm(sopt, &m)) != 0) 1563 break; 1564 /* XXX */ 1565 if ((error = soopt_mcopyin(sopt, m)) != 0) 1566 break; 1567 error = (*ip6_fw_ctl_ptr)(optname, mp); 1568 m = *mp; 1569 } 1570 break; 1571 1572 default: 1573 error = ENOPROTOOPT; 1574 break; 1575 } 1576 break; 1577 1578 case SOPT_GET: 1579 switch (optname) { 1580 1581 case IPV6_PKTOPTIONS: 1582 if (in6p->in6p_options) { 1583 struct mbuf *m; 1584 m = m_copym(in6p->in6p_options, 1585 0, M_COPYALL, M_WAIT); 1586 error = soopt_mcopyout(sopt, m); 1587 if (error == 0) 1588 m_freem(m); 1589 } else 1590 sopt->sopt_valsize = 0; 1591 break; 1592 1593 case IPV6_UNICAST_HOPS: 1594 case IPV6_CHECKSUM: 1595 1596 case IPV6_FAITH: 1597 case IPV6_V6ONLY: 1598 case IPV6_PORTRANGE: 1599 switch (optname) { 1600 1601 case IPV6_UNICAST_HOPS: 1602 optval = in6p->in6p_hops; 1603 break; 1604 1605 case IPV6_CHECKSUM: 1606 optval = in6p->in6p_cksum; 1607 break; 1608 1609 case IPV6_FAITH: 1610 optval = OPTBIT(IN6P_FAITH); 1611 break; 1612 1613 case IPV6_V6ONLY: 1614 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1615 break; 1616 1617 case IPV6_PORTRANGE: 1618 { 1619 int flags; 1620 flags = in6p->in6p_flags; 1621 if (flags & IN6P_HIGHPORT) 1622 optval = IPV6_PORTRANGE_HIGH; 1623 else if (flags & IN6P_LOWPORT) 1624 optval = IPV6_PORTRANGE_LOW; 1625 else 1626 optval = 0; 1627 break; 1628 } 1629 } 1630 error = sooptcopyout(sopt, &optval, 1631 sizeof optval); 1632 break; 1633 1634 case IPV6_PKTINFO: 1635 case IPV6_HOPLIMIT: 1636 case IPV6_HOPOPTS: 1637 case IPV6_RTHDR: 1638 case IPV6_DSTOPTS: 1639 if (optname == IPV6_HOPOPTS || 1640 optname == IPV6_DSTOPTS || 1641 !privileged) 1642 return(EPERM); 1643 switch (optname) { 1644 case IPV6_PKTINFO: 1645 optval = OPTBIT(IN6P_PKTINFO); 1646 break; 1647 case IPV6_HOPLIMIT: 1648 optval = OPTBIT(IN6P_HOPLIMIT); 1649 break; 1650 case IPV6_HOPOPTS: 1651 if (!privileged) 1652 return(EPERM); 1653 optval = OPTBIT(IN6P_HOPOPTS); 1654 break; 1655 case IPV6_RTHDR: 1656 optval = OPTBIT(IN6P_RTHDR); 1657 break; 1658 case IPV6_DSTOPTS: 1659 if (!privileged) 1660 return(EPERM); 1661 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1662 break; 1663 } 1664 error = sooptcopyout(sopt, &optval, 1665 sizeof optval); 1666 break; 1667 1668 case IPV6_MULTICAST_IF: 1669 case IPV6_MULTICAST_HOPS: 1670 case IPV6_MULTICAST_LOOP: 1671 case IPV6_JOIN_GROUP: 1672 case IPV6_LEAVE_GROUP: 1673 { 1674 struct mbuf *m; 1675 error = ip6_getmoptions(sopt->sopt_name, 1676 in6p->in6p_moptions, &m); 1677 if (error == 0) 1678 error = sooptcopyout(sopt, 1679 mtod(m, char *), m->m_len); 1680 m_freem(m); 1681 } 1682 break; 1683 1684 #if defined(IPSEC) || defined(FAST_IPSEC) 1685 case IPV6_IPSEC_POLICY: 1686 { 1687 caddr_t req = NULL; 1688 size_t len = 0; 1689 struct mbuf *m = NULL; 1690 struct mbuf **mp = &m; 1691 1692 error = soopt_getm(sopt, &m); /* XXX */ 1693 if (error != NULL) 1694 break; 1695 error = soopt_mcopyin(sopt, m); /* XXX */ 1696 if (error != NULL) 1697 break; 1698 if (m) { 1699 req = mtod(m, caddr_t); 1700 len = m->m_len; 1701 } 1702 error = ipsec6_get_policy(in6p, req, len, mp); 1703 if (error == 0) 1704 error = soopt_mcopyout(sopt, m); /*XXX*/ 1705 if (error == 0 && m) 1706 m_freem(m); 1707 break; 1708 } 1709 #endif /* KAME IPSEC */ 1710 1711 case IPV6_FW_GET: 1712 { 1713 struct mbuf *m; 1714 struct mbuf **mp = &m; 1715 1716 if (ip6_fw_ctl_ptr == NULL) 1717 { 1718 return EINVAL; 1719 } 1720 error = (*ip6_fw_ctl_ptr)(optname, mp); 1721 if (error == 0) 1722 error = soopt_mcopyout(sopt, m); /* XXX */ 1723 if (error == 0 && m) 1724 m_freem(m); 1725 } 1726 break; 1727 1728 default: 1729 error = ENOPROTOOPT; 1730 break; 1731 } 1732 break; 1733 } 1734 } else { 1735 error = EINVAL; 1736 } 1737 return(error); 1738 } 1739 1740 /* 1741 * Set up IP6 options in pcb for insertion in output packets or 1742 * specifying behavior of outgoing packets. 1743 */ 1744 static int 1745 ip6_pcbopts(pktopt, m, so, sopt) 1746 struct ip6_pktopts **pktopt; 1747 struct mbuf *m; 1748 struct socket *so; 1749 struct sockopt *sopt; 1750 { 1751 struct ip6_pktopts *opt = *pktopt; 1752 int error = 0; 1753 struct proc *p = sopt->sopt_p; 1754 int priv = 0; 1755 1756 /* turn off any old options. */ 1757 if (opt) { 1758 #ifdef DIAGNOSTIC 1759 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1760 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1761 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1762 printf("ip6_pcbopts: all specified options are cleared.\n"); 1763 #endif 1764 ip6_clearpktopts(opt, 1, -1); 1765 } else 1766 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1767 *pktopt = NULL; 1768 1769 if (!m || m->m_len == 0) { 1770 /* 1771 * Only turning off any previous options, regardless of 1772 * whether the opt is just created or given. 1773 */ 1774 free(opt, M_IP6OPT); 1775 return(0); 1776 } 1777 1778 /* set options specified by user. */ 1779 if (p && !suser(p)) 1780 priv = 1; 1781 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) { 1782 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */ 1783 free(opt, M_IP6OPT); 1784 return(error); 1785 } 1786 *pktopt = opt; 1787 return(0); 1788 } 1789 1790 /* 1791 * initialize ip6_pktopts. beware that there are non-zero default values in 1792 * the struct. 1793 */ 1794 void 1795 init_ip6pktopts(opt) 1796 struct ip6_pktopts *opt; 1797 { 1798 1799 bzero(opt, sizeof(*opt)); 1800 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1801 } 1802 1803 void 1804 ip6_clearpktopts(pktopt, needfree, optname) 1805 struct ip6_pktopts *pktopt; 1806 int needfree, optname; 1807 { 1808 if (pktopt == NULL) 1809 return; 1810 1811 if (optname == -1) { 1812 if (needfree && pktopt->ip6po_pktinfo) 1813 free(pktopt->ip6po_pktinfo, M_IP6OPT); 1814 pktopt->ip6po_pktinfo = NULL; 1815 } 1816 if (optname == -1) 1817 pktopt->ip6po_hlim = -1; 1818 if (optname == -1) { 1819 if (needfree && pktopt->ip6po_nexthop) 1820 free(pktopt->ip6po_nexthop, M_IP6OPT); 1821 pktopt->ip6po_nexthop = NULL; 1822 } 1823 if (optname == -1) { 1824 if (needfree && pktopt->ip6po_hbh) 1825 free(pktopt->ip6po_hbh, M_IP6OPT); 1826 pktopt->ip6po_hbh = NULL; 1827 } 1828 if (optname == -1) { 1829 if (needfree && pktopt->ip6po_dest1) 1830 free(pktopt->ip6po_dest1, M_IP6OPT); 1831 pktopt->ip6po_dest1 = NULL; 1832 } 1833 if (optname == -1) { 1834 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1835 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 1836 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1837 if (pktopt->ip6po_route.ro_rt) { 1838 RTFREE(pktopt->ip6po_route.ro_rt); 1839 pktopt->ip6po_route.ro_rt = NULL; 1840 } 1841 } 1842 if (optname == -1) { 1843 if (needfree && pktopt->ip6po_dest2) 1844 free(pktopt->ip6po_dest2, M_IP6OPT); 1845 pktopt->ip6po_dest2 = NULL; 1846 } 1847 } 1848 1849 #define PKTOPT_EXTHDRCPY(type) \ 1850 do {\ 1851 if (src->type) {\ 1852 int hlen =\ 1853 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1854 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 1855 if (dst->type == NULL && canwait == M_NOWAIT)\ 1856 goto bad;\ 1857 bcopy(src->type, dst->type, hlen);\ 1858 }\ 1859 } while (0) 1860 1861 struct ip6_pktopts * 1862 ip6_copypktopts(src, canwait) 1863 struct ip6_pktopts *src; 1864 int canwait; 1865 { 1866 struct ip6_pktopts *dst; 1867 1868 if (src == NULL) { 1869 printf("ip6_clearpktopts: invalid argument\n"); 1870 return(NULL); 1871 } 1872 1873 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 1874 if (dst == NULL && canwait == M_NOWAIT) 1875 return (NULL); 1876 bzero(dst, sizeof(*dst)); 1877 1878 dst->ip6po_hlim = src->ip6po_hlim; 1879 if (src->ip6po_pktinfo) { 1880 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1881 M_IP6OPT, canwait); 1882 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 1883 goto bad; 1884 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1885 } 1886 if (src->ip6po_nexthop) { 1887 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 1888 M_IP6OPT, canwait); 1889 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 1890 goto bad; 1891 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 1892 src->ip6po_nexthop->sa_len); 1893 } 1894 PKTOPT_EXTHDRCPY(ip6po_hbh); 1895 PKTOPT_EXTHDRCPY(ip6po_dest1); 1896 PKTOPT_EXTHDRCPY(ip6po_dest2); 1897 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1898 return(dst); 1899 1900 bad: 1901 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 1902 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 1903 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 1904 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 1905 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 1906 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 1907 free(dst, M_IP6OPT); 1908 return(NULL); 1909 } 1910 #undef PKTOPT_EXTHDRCPY 1911 1912 void 1913 ip6_freepcbopts(pktopt) 1914 struct ip6_pktopts *pktopt; 1915 { 1916 if (pktopt == NULL) 1917 return; 1918 1919 ip6_clearpktopts(pktopt, 1, -1); 1920 1921 free(pktopt, M_IP6OPT); 1922 } 1923 1924 /* 1925 * Set the IP6 multicast options in response to user setsockopt(). 1926 */ 1927 static int 1928 ip6_setmoptions(optname, im6op, m) 1929 int optname; 1930 struct ip6_moptions **im6op; 1931 struct mbuf *m; 1932 { 1933 int error = 0; 1934 u_int loop, ifindex; 1935 struct ipv6_mreq *mreq; 1936 struct ifnet *ifp; 1937 struct ip6_moptions *im6o = *im6op; 1938 struct route_in6 ro; 1939 struct sockaddr_in6 *dst; 1940 struct in6_multi_mship *imm; 1941 struct proc *p = curproc; /* XXX */ 1942 1943 if (im6o == NULL) { 1944 /* 1945 * No multicast option buffer attached to the pcb; 1946 * allocate one and initialize to default values. 1947 */ 1948 im6o = (struct ip6_moptions *) 1949 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1950 1951 if (im6o == NULL) 1952 return(ENOBUFS); 1953 *im6op = im6o; 1954 im6o->im6o_multicast_ifp = NULL; 1955 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1956 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1957 LIST_INIT(&im6o->im6o_memberships); 1958 } 1959 1960 switch (optname) { 1961 1962 case IPV6_MULTICAST_IF: 1963 /* 1964 * Select the interface for outgoing multicast packets. 1965 */ 1966 if (m == NULL || m->m_len != sizeof(u_int)) { 1967 error = EINVAL; 1968 break; 1969 } 1970 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1971 if (ifindex < 0 || if_index < ifindex) { 1972 error = ENXIO; /* XXX EINVAL? */ 1973 break; 1974 } 1975 ifp = ifindex2ifnet[ifindex]; 1976 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1977 error = EADDRNOTAVAIL; 1978 break; 1979 } 1980 im6o->im6o_multicast_ifp = ifp; 1981 break; 1982 1983 case IPV6_MULTICAST_HOPS: 1984 { 1985 /* 1986 * Set the IP6 hoplimit for outgoing multicast packets. 1987 */ 1988 int optval; 1989 if (m == NULL || m->m_len != sizeof(int)) { 1990 error = EINVAL; 1991 break; 1992 } 1993 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1994 if (optval < -1 || optval >= 256) 1995 error = EINVAL; 1996 else if (optval == -1) 1997 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1998 else 1999 im6o->im6o_multicast_hlim = optval; 2000 break; 2001 } 2002 2003 case IPV6_MULTICAST_LOOP: 2004 /* 2005 * Set the loopback flag for outgoing multicast packets. 2006 * Must be zero or one. 2007 */ 2008 if (m == NULL || m->m_len != sizeof(u_int)) { 2009 error = EINVAL; 2010 break; 2011 } 2012 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2013 if (loop > 1) { 2014 error = EINVAL; 2015 break; 2016 } 2017 im6o->im6o_multicast_loop = loop; 2018 break; 2019 2020 case IPV6_JOIN_GROUP: 2021 /* 2022 * Add a multicast group membership. 2023 * Group must be a valid IP6 multicast address. 2024 */ 2025 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2026 error = EINVAL; 2027 break; 2028 } 2029 mreq = mtod(m, struct ipv6_mreq *); 2030 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2031 /* 2032 * We use the unspecified address to specify to accept 2033 * all multicast addresses. Only super user is allowed 2034 * to do this. 2035 */ 2036 if (suser(p)) 2037 { 2038 error = EACCES; 2039 break; 2040 } 2041 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2042 error = EINVAL; 2043 break; 2044 } 2045 2046 /* 2047 * If the interface is specified, validate it. 2048 */ 2049 if (mreq->ipv6mr_interface < 0 2050 || if_index < mreq->ipv6mr_interface) { 2051 error = ENXIO; /* XXX EINVAL? */ 2052 break; 2053 } 2054 /* 2055 * If no interface was explicitly specified, choose an 2056 * appropriate one according to the given multicast address. 2057 */ 2058 if (mreq->ipv6mr_interface == 0) { 2059 /* 2060 * If the multicast address is in node-local scope, 2061 * the interface should be a loopback interface. 2062 * Otherwise, look up the routing table for the 2063 * address, and choose the outgoing interface. 2064 * XXX: is it a good approach? 2065 */ 2066 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2067 ifp = &loif[0]; 2068 } else { 2069 ro.ro_rt = NULL; 2070 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2071 bzero(dst, sizeof(*dst)); 2072 dst->sin6_len = sizeof(struct sockaddr_in6); 2073 dst->sin6_family = AF_INET6; 2074 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2075 rtalloc((struct route *)&ro); 2076 if (ro.ro_rt == NULL) { 2077 error = EADDRNOTAVAIL; 2078 break; 2079 } 2080 ifp = ro.ro_rt->rt_ifp; 2081 rtfree(ro.ro_rt); 2082 } 2083 } else 2084 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2085 2086 /* 2087 * See if we found an interface, and confirm that it 2088 * supports multicast 2089 */ 2090 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2091 error = EADDRNOTAVAIL; 2092 break; 2093 } 2094 /* 2095 * Put interface index into the multicast address, 2096 * if the address has link-local scope. 2097 */ 2098 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2099 mreq->ipv6mr_multiaddr.s6_addr16[1] 2100 = htons(mreq->ipv6mr_interface); 2101 } 2102 /* 2103 * See if the membership already exists. 2104 */ 2105 for (imm = im6o->im6o_memberships.lh_first; 2106 imm != NULL; imm = imm->i6mm_chain.le_next) 2107 if (imm->i6mm_maddr->in6m_ifp == ifp && 2108 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2109 &mreq->ipv6mr_multiaddr)) 2110 break; 2111 if (imm != NULL) { 2112 error = EADDRINUSE; 2113 break; 2114 } 2115 /* 2116 * Everything looks good; add a new record to the multicast 2117 * address list for the given interface. 2118 */ 2119 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2120 if (imm == NULL) { 2121 error = ENOBUFS; 2122 break; 2123 } 2124 if ((imm->i6mm_maddr = 2125 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2126 free(imm, M_IPMADDR); 2127 break; 2128 } 2129 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2130 break; 2131 2132 case IPV6_LEAVE_GROUP: 2133 /* 2134 * Drop a multicast group membership. 2135 * Group must be a valid IP6 multicast address. 2136 */ 2137 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2138 error = EINVAL; 2139 break; 2140 } 2141 mreq = mtod(m, struct ipv6_mreq *); 2142 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2143 if (suser(p)) { 2144 error = EACCES; 2145 break; 2146 } 2147 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2148 error = EINVAL; 2149 break; 2150 } 2151 /* 2152 * If an interface address was specified, get a pointer 2153 * to its ifnet structure. 2154 */ 2155 if (mreq->ipv6mr_interface < 0 2156 || if_index < mreq->ipv6mr_interface) { 2157 error = ENXIO; /* XXX EINVAL? */ 2158 break; 2159 } 2160 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2161 /* 2162 * Put interface index into the multicast address, 2163 * if the address has link-local scope. 2164 */ 2165 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2166 mreq->ipv6mr_multiaddr.s6_addr16[1] 2167 = htons(mreq->ipv6mr_interface); 2168 } 2169 /* 2170 * Find the membership in the membership list. 2171 */ 2172 for (imm = im6o->im6o_memberships.lh_first; 2173 imm != NULL; imm = imm->i6mm_chain.le_next) { 2174 if ((ifp == NULL || 2175 imm->i6mm_maddr->in6m_ifp == ifp) && 2176 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2177 &mreq->ipv6mr_multiaddr)) 2178 break; 2179 } 2180 if (imm == NULL) { 2181 /* Unable to resolve interface */ 2182 error = EADDRNOTAVAIL; 2183 break; 2184 } 2185 /* 2186 * Give up the multicast address record to which the 2187 * membership points. 2188 */ 2189 LIST_REMOVE(imm, i6mm_chain); 2190 in6_delmulti(imm->i6mm_maddr); 2191 free(imm, M_IPMADDR); 2192 break; 2193 2194 default: 2195 error = EOPNOTSUPP; 2196 break; 2197 } 2198 2199 /* 2200 * If all options have default values, no need to keep the mbuf. 2201 */ 2202 if (im6o->im6o_multicast_ifp == NULL && 2203 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2204 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2205 im6o->im6o_memberships.lh_first == NULL) { 2206 free(*im6op, M_IPMOPTS); 2207 *im6op = NULL; 2208 } 2209 2210 return(error); 2211 } 2212 2213 /* 2214 * Return the IP6 multicast options in response to user getsockopt(). 2215 */ 2216 static int 2217 ip6_getmoptions(optname, im6o, mp) 2218 int optname; 2219 struct ip6_moptions *im6o; 2220 struct mbuf **mp; 2221 { 2222 u_int *hlim, *loop, *ifindex; 2223 2224 *mp = m_get(M_WAIT, MT_HEADER); /* XXX */ 2225 2226 switch (optname) { 2227 2228 case IPV6_MULTICAST_IF: 2229 ifindex = mtod(*mp, u_int *); 2230 (*mp)->m_len = sizeof(u_int); 2231 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2232 *ifindex = 0; 2233 else 2234 *ifindex = im6o->im6o_multicast_ifp->if_index; 2235 return(0); 2236 2237 case IPV6_MULTICAST_HOPS: 2238 hlim = mtod(*mp, u_int *); 2239 (*mp)->m_len = sizeof(u_int); 2240 if (im6o == NULL) 2241 *hlim = ip6_defmcasthlim; 2242 else 2243 *hlim = im6o->im6o_multicast_hlim; 2244 return(0); 2245 2246 case IPV6_MULTICAST_LOOP: 2247 loop = mtod(*mp, u_int *); 2248 (*mp)->m_len = sizeof(u_int); 2249 if (im6o == NULL) 2250 *loop = ip6_defmcasthlim; 2251 else 2252 *loop = im6o->im6o_multicast_loop; 2253 return(0); 2254 2255 default: 2256 return(EOPNOTSUPP); 2257 } 2258 } 2259 2260 /* 2261 * Discard the IP6 multicast options. 2262 */ 2263 void 2264 ip6_freemoptions(im6o) 2265 struct ip6_moptions *im6o; 2266 { 2267 struct in6_multi_mship *imm; 2268 2269 if (im6o == NULL) 2270 return; 2271 2272 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2273 LIST_REMOVE(imm, i6mm_chain); 2274 if (imm->i6mm_maddr) 2275 in6_delmulti(imm->i6mm_maddr); 2276 free(imm, M_IPMADDR); 2277 } 2278 free(im6o, M_IPMOPTS); 2279 } 2280 2281 /* 2282 * Set IPv6 outgoing packet options based on advanced API. 2283 */ 2284 int 2285 ip6_setpktoptions(control, opt, priv, needcopy) 2286 struct mbuf *control; 2287 struct ip6_pktopts *opt; 2288 int priv, needcopy; 2289 { 2290 struct cmsghdr *cm = 0; 2291 2292 if (control == 0 || opt == 0) 2293 return(EINVAL); 2294 2295 init_ip6pktopts(opt); 2296 2297 /* 2298 * XXX: Currently, we assume all the optional information is stored 2299 * in a single mbuf. 2300 */ 2301 if (control->m_next) 2302 return(EINVAL); 2303 2304 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2305 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2306 cm = mtod(control, struct cmsghdr *); 2307 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2308 return(EINVAL); 2309 if (cm->cmsg_level != IPPROTO_IPV6) 2310 continue; 2311 2312 /* 2313 * XXX should check if RFC2292 API is mixed with 2292bis API 2314 */ 2315 switch (cm->cmsg_type) { 2316 case IPV6_PKTINFO: 2317 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2318 return(EINVAL); 2319 if (needcopy) { 2320 /* XXX: Is it really WAITOK? */ 2321 opt->ip6po_pktinfo = 2322 malloc(sizeof(struct in6_pktinfo), 2323 M_IP6OPT, M_WAITOK); 2324 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo, 2325 sizeof(struct in6_pktinfo)); 2326 } else 2327 opt->ip6po_pktinfo = 2328 (struct in6_pktinfo *)CMSG_DATA(cm); 2329 if (opt->ip6po_pktinfo->ipi6_ifindex && 2330 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2331 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2332 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2333 2334 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2335 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2336 return(ENXIO); 2337 } 2338 2339 /* 2340 * Check if the requested source address is indeed a 2341 * unicast address assigned to the node, and can be 2342 * used as the packet's source address. 2343 */ 2344 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2345 struct in6_ifaddr *ia6; 2346 struct sockaddr_in6 sin6; 2347 2348 bzero(&sin6, sizeof(sin6)); 2349 sin6.sin6_len = sizeof(sin6); 2350 sin6.sin6_family = AF_INET6; 2351 sin6.sin6_addr = 2352 opt->ip6po_pktinfo->ipi6_addr; 2353 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2354 if (ia6 == NULL || 2355 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2356 IN6_IFF_NOTREADY)) != 0) 2357 return(EADDRNOTAVAIL); 2358 } 2359 break; 2360 2361 case IPV6_HOPLIMIT: 2362 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2363 return(EINVAL); 2364 2365 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2366 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2367 return(EINVAL); 2368 break; 2369 2370 case IPV6_NEXTHOP: 2371 if (!priv) 2372 return(EPERM); 2373 2374 if (cm->cmsg_len < sizeof(u_char) || 2375 /* check if cmsg_len is large enough for sa_len */ 2376 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2377 return(EINVAL); 2378 2379 if (needcopy) { 2380 opt->ip6po_nexthop = 2381 malloc(*CMSG_DATA(cm), 2382 M_IP6OPT, M_WAITOK); 2383 bcopy(CMSG_DATA(cm), 2384 opt->ip6po_nexthop, 2385 *CMSG_DATA(cm)); 2386 } else 2387 opt->ip6po_nexthop = 2388 (struct sockaddr *)CMSG_DATA(cm); 2389 break; 2390 2391 case IPV6_HOPOPTS: 2392 { 2393 struct ip6_hbh *hbh; 2394 int hbhlen; 2395 2396 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2397 return(EINVAL); 2398 hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2399 hbhlen = (hbh->ip6h_len + 1) << 3; 2400 if (cm->cmsg_len != CMSG_LEN(hbhlen)) 2401 return(EINVAL); 2402 2403 if (needcopy) { 2404 opt->ip6po_hbh = 2405 malloc(hbhlen, M_IP6OPT, M_WAITOK); 2406 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2407 } else 2408 opt->ip6po_hbh = hbh; 2409 break; 2410 } 2411 2412 case IPV6_DSTOPTS: 2413 { 2414 struct ip6_dest *dest, **newdest; 2415 int destlen; 2416 2417 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2418 return(EINVAL); 2419 dest = (struct ip6_dest *)CMSG_DATA(cm); 2420 destlen = (dest->ip6d_len + 1) << 3; 2421 if (cm->cmsg_len != CMSG_LEN(destlen)) 2422 return(EINVAL); 2423 2424 /* 2425 * The old advacned API is ambiguous on this 2426 * point. Our approach is to determine the 2427 * position based according to the existence 2428 * of a routing header. Note, however, that 2429 * this depends on the order of the extension 2430 * headers in the ancillary data; the 1st part 2431 * of the destination options header must 2432 * appear before the routing header in the 2433 * ancillary data, too. 2434 * RFC2292bis solved the ambiguity by 2435 * introducing separate cmsg types. 2436 */ 2437 if (opt->ip6po_rthdr == NULL) 2438 newdest = &opt->ip6po_dest1; 2439 else 2440 newdest = &opt->ip6po_dest2; 2441 2442 if (needcopy) { 2443 *newdest = malloc(destlen, M_IP6OPT, M_WAITOK); 2444 bcopy(dest, *newdest, destlen); 2445 } else 2446 *newdest = dest; 2447 2448 break; 2449 } 2450 2451 case IPV6_RTHDR: 2452 { 2453 struct ip6_rthdr *rth; 2454 int rthlen; 2455 2456 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2457 return(EINVAL); 2458 rth = (struct ip6_rthdr *)CMSG_DATA(cm); 2459 rthlen = (rth->ip6r_len + 1) << 3; 2460 if (cm->cmsg_len != CMSG_LEN(rthlen)) 2461 return(EINVAL); 2462 2463 switch (rth->ip6r_type) { 2464 case IPV6_RTHDR_TYPE_0: 2465 /* must contain one addr */ 2466 if (rth->ip6r_len == 0) 2467 return(EINVAL); 2468 /* length must be even */ 2469 if (rth->ip6r_len % 2) 2470 return(EINVAL); 2471 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2472 return(EINVAL); 2473 break; 2474 default: 2475 return(EINVAL); /* not supported */ 2476 } 2477 2478 if (needcopy) { 2479 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, 2480 M_WAITOK); 2481 bcopy(rth, opt->ip6po_rthdr, rthlen); 2482 } else 2483 opt->ip6po_rthdr = rth; 2484 2485 break; 2486 } 2487 2488 default: 2489 return(ENOPROTOOPT); 2490 } 2491 } 2492 2493 return(0); 2494 } 2495 2496 /* 2497 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2498 * packet to the input queue of a specified interface. Note that this 2499 * calls the output routine of the loopback "driver", but with an interface 2500 * pointer that might NOT be &loif -- easier than replicating that code here. 2501 */ 2502 void 2503 ip6_mloopback(ifp, m, dst) 2504 struct ifnet *ifp; 2505 struct mbuf *m; 2506 struct sockaddr_in6 *dst; 2507 { 2508 struct mbuf *copym; 2509 struct ip6_hdr *ip6; 2510 2511 copym = m_copy(m, 0, M_COPYALL); 2512 if (copym == NULL) 2513 return; 2514 2515 /* 2516 * Make sure to deep-copy IPv6 header portion in case the data 2517 * is in an mbuf cluster, so that we can safely override the IPv6 2518 * header portion later. 2519 */ 2520 if ((copym->m_flags & M_EXT) != 0 || 2521 copym->m_len < sizeof(struct ip6_hdr)) { 2522 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2523 if (copym == NULL) 2524 return; 2525 } 2526 2527 #ifdef DIAGNOSTIC 2528 if (copym->m_len < sizeof(*ip6)) { 2529 m_freem(copym); 2530 return; 2531 } 2532 #endif 2533 2534 ip6 = mtod(copym, struct ip6_hdr *); 2535 #ifndef SCOPEDROUTING 2536 /* 2537 * clear embedded scope identifiers if necessary. 2538 * in6_clearscope will touch the addresses only when necessary. 2539 */ 2540 in6_clearscope(&ip6->ip6_src); 2541 in6_clearscope(&ip6->ip6_dst); 2542 #endif 2543 2544 (void)if_simloop(ifp, copym, dst->sin6_family, NULL); 2545 } 2546 2547 /* 2548 * Chop IPv6 header off from the payload. 2549 */ 2550 static int 2551 ip6_splithdr(m, exthdrs) 2552 struct mbuf *m; 2553 struct ip6_exthdrs *exthdrs; 2554 { 2555 struct mbuf *mh; 2556 struct ip6_hdr *ip6; 2557 2558 ip6 = mtod(m, struct ip6_hdr *); 2559 if (m->m_len > sizeof(*ip6)) { 2560 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2561 if (mh == 0) { 2562 m_freem(m); 2563 return ENOBUFS; 2564 } 2565 M_MOVE_PKTHDR(mh, m); 2566 MH_ALIGN(mh, sizeof(*ip6)); 2567 m->m_len -= sizeof(*ip6); 2568 m->m_data += sizeof(*ip6); 2569 mh->m_next = m; 2570 m = mh; 2571 m->m_len = sizeof(*ip6); 2572 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2573 } 2574 exthdrs->ip6e_ip6 = m; 2575 return 0; 2576 } 2577 2578 /* 2579 * Compute IPv6 extension header length. 2580 */ 2581 int 2582 ip6_optlen(in6p) 2583 struct in6pcb *in6p; 2584 { 2585 int len; 2586 2587 if (!in6p->in6p_outputopts) 2588 return 0; 2589 2590 len = 0; 2591 #define elen(x) \ 2592 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2593 2594 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2595 if (in6p->in6p_outputopts->ip6po_rthdr) 2596 /* dest1 is valid with rthdr only */ 2597 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2598 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2599 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2600 return len; 2601 #undef elen 2602 } 2603