xref: /dragonfly/sys/netinet6/ip6_output.c (revision c03f08f3)
1 /*	$FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/ip6_output.c,v 1.32 2006/12/22 23:57:53 swildner Exp $	*/
3 /*	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
67  */
68 
69 #include "opt_ip6fw.h"
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 
74 #include <sys/param.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/errno.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <net/pfil.h>
88 
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet/ip6.h>
93 #include <netinet/icmp6.h>
94 #include <netinet6/ip6_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet6/nd6.h>
97 
98 #ifdef IPSEC
99 #include <netinet6/ipsec.h>
100 #ifdef INET6
101 #include <netinet6/ipsec6.h>
102 #endif
103 #include <netproto/key/key.h>
104 #endif /* IPSEC */
105 
106 #ifdef FAST_IPSEC
107 #include <netproto/ipsec/ipsec.h>
108 #include <netproto/ipsec/ipsec6.h>
109 #include <netproto/ipsec/key.h>
110 #endif
111 
112 #include <net/ip6fw/ip6_fw.h>
113 
114 #include <net/net_osdep.h>
115 
116 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
117 
118 struct ip6_exthdrs {
119 	struct mbuf *ip6e_ip6;
120 	struct mbuf *ip6e_hbh;
121 	struct mbuf *ip6e_dest1;
122 	struct mbuf *ip6e_rthdr;
123 	struct mbuf *ip6e_dest2;
124 };
125 
126 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *,
127 			    struct socket *, struct sockopt *sopt);
128 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
129 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
130 static int copyexthdr (void *, struct mbuf **);
131 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int,
132 				  struct ip6_frag **);
133 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
134 static struct mbuf *ip6_splithdr (struct mbuf *);
135 
136 /*
137  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
138  * header (with pri, len, nxt, hlim, src, dst).
139  * This function may modify ver and hlim only.
140  * The mbuf chain containing the packet will be freed.
141  * The mbuf opt, if present, will not be freed.
142  *
143  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
144  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
145  * which is rt_rmx.rmx_mtu.
146  */
147 int
148 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
149 	   int flags, struct ip6_moptions *im6o,
150 	   struct ifnet **ifpp,		/* XXX: just for statistics */
151 	   struct inpcb *inp)
152 {
153 	struct ip6_hdr *ip6, *mhip6;
154 	struct ifnet *ifp, *origifp;
155 	struct mbuf *m = m0;
156 	struct mbuf *mprev;
157 	u_char *nexthdrp;
158 	int hlen, tlen, len, off;
159 	struct route_in6 ip6route;
160 	struct sockaddr_in6 *dst;
161 	int error = 0;
162 	struct in6_ifaddr *ia = NULL;
163 	u_long mtu;
164 	u_int32_t optlen, plen = 0, unfragpartlen;
165 	struct ip6_exthdrs exthdrs;
166 	struct in6_addr finaldst;
167 	struct route_in6 *ro_pmtu = NULL;
168 	boolean_t hdrsplit = FALSE;
169 	boolean_t needipsec = FALSE;
170 #ifdef IPSEC
171 	boolean_t needipsectun = FALSE;
172 	struct secpolicy *sp = NULL;
173 	struct socket *so = inp ? inp->inp_socket : NULL;
174 
175 	ip6 = mtod(m, struct ip6_hdr *);
176 #endif
177 #ifdef FAST_IPSEC
178 	boolean_t needipsectun = FALSE;
179 	struct secpolicy *sp = NULL;
180 
181 	ip6 = mtod(m, struct ip6_hdr *);
182 #endif
183 
184 	bzero(&exthdrs, sizeof exthdrs);
185 
186 	if (opt) {
187 		if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
188 			goto freehdrs;
189 		if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
190 			goto freehdrs;
191 		if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
192 			goto freehdrs;
193 		if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
194 			goto freehdrs;
195 	}
196 
197 #ifdef IPSEC
198 	/* get a security policy for this packet */
199 	if (so == NULL)
200 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
201 	else
202 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
203 
204 	if (sp == NULL) {
205 		ipsec6stat.out_inval++;
206 		goto freehdrs;
207 	}
208 
209 	error = 0;
210 
211 	/* check policy */
212 	switch (sp->policy) {
213 	case IPSEC_POLICY_DISCARD:
214 		/*
215 		 * This packet is just discarded.
216 		 */
217 		ipsec6stat.out_polvio++;
218 		goto freehdrs;
219 
220 	case IPSEC_POLICY_BYPASS:
221 	case IPSEC_POLICY_NONE:
222 		/* no need to do IPsec. */
223 		needipsec = FALSE;
224 		break;
225 
226 	case IPSEC_POLICY_IPSEC:
227 		if (sp->req == NULL) {
228 			error = key_spdacquire(sp);	/* acquire a policy */
229 			goto freehdrs;
230 		}
231 		needipsec = TRUE;
232 		break;
233 
234 	case IPSEC_POLICY_ENTRUST:
235 	default:
236 		kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
237 	}
238 #endif /* IPSEC */
239 #ifdef FAST_IPSEC
240 	/* get a security policy for this packet */
241 	if (inp == NULL)
242 		sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
243 	else
244 		sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error);
245 
246 	if (sp == NULL) {
247 		newipsecstat.ips_out_inval++;
248 		goto freehdrs;
249 	}
250 
251 	error = 0;
252 
253 	/* check policy */
254 	switch (sp->policy) {
255 	case IPSEC_POLICY_DISCARD:
256 		/*
257 		 * This packet is just discarded.
258 		 */
259 		newipsecstat.ips_out_polvio++;
260 		goto freehdrs;
261 
262 	case IPSEC_POLICY_BYPASS:
263 	case IPSEC_POLICY_NONE:
264 		/* no need to do IPsec. */
265 		needipsec = FALSE;
266 		break;
267 
268 	case IPSEC_POLICY_IPSEC:
269 		if (sp->req == NULL) {
270 			error = key_spdacquire(sp);	/* acquire a policy */
271 			goto freehdrs;
272 		}
273 		needipsec = TRUE;
274 		break;
275 
276 	case IPSEC_POLICY_ENTRUST:
277 	default:
278 		kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
279 	}
280 #endif /* FAST_IPSEC */
281 
282 	/*
283 	 * Calculate the total length of the extension header chain.
284 	 * Keep the length of the unfragmentable part for fragmentation.
285 	 */
286 	optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
287 	    m_lengthm(exthdrs.ip6e_dest1, NULL) +
288 	    m_lengthm(exthdrs.ip6e_rthdr, NULL);
289 
290 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
291 
292 	/* NOTE: we don't add AH/ESP length here. do that later. */
293 	optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
294 
295 	/*
296 	 * If we need IPsec, or there is at least one extension header,
297 	 * separate IP6 header from the payload.
298 	 */
299 	if ((needipsec || optlen) && !hdrsplit) {
300 		exthdrs.ip6e_ip6 = ip6_splithdr(m);
301 		if (exthdrs.ip6e_ip6 == NULL) {
302 			error = ENOBUFS;
303 			goto freehdrs;
304 		}
305 		m = exthdrs.ip6e_ip6;
306 		hdrsplit = TRUE;
307 	}
308 
309 	/* adjust pointer */
310 	ip6 = mtod(m, struct ip6_hdr *);
311 
312 	/* adjust mbuf packet header length */
313 	m->m_pkthdr.len += optlen;
314 	plen = m->m_pkthdr.len - sizeof(*ip6);
315 
316 	/* If this is a jumbo payload, insert a jumbo payload option. */
317 	if (plen > IPV6_MAXPACKET) {
318 		if (!hdrsplit) {
319 			exthdrs.ip6e_ip6 = ip6_splithdr(m);
320 			if (exthdrs.ip6e_ip6 == NULL) {
321 				error = ENOBUFS;
322 				goto freehdrs;
323 			}
324 			m = exthdrs.ip6e_ip6;
325 			hdrsplit = TRUE;
326 		}
327 		/* adjust pointer */
328 		ip6 = mtod(m, struct ip6_hdr *);
329 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
330 			goto freehdrs;
331 		ip6->ip6_plen = 0;
332 	} else
333 		ip6->ip6_plen = htons(plen);
334 
335 	/*
336 	 * Concatenate headers and fill in next header fields.
337 	 * Here we have, on "m"
338 	 *	IPv6 payload
339 	 * and we insert headers accordingly.  Finally, we should be getting:
340 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
341 	 *
342 	 * during the header composing process, "m" points to IPv6 header.
343 	 * "mprev" points to an extension header prior to esp.
344 	 */
345 
346 	nexthdrp = &ip6->ip6_nxt;
347 	mprev = m;
348 
349 	/*
350 	 * we treat dest2 specially.  this makes IPsec processing
351 	 * much easier.  the goal here is to make mprev point the
352 	 * mbuf prior to dest2.
353 	 *
354 	 * result: IPv6 dest2 payload
355 	 * m and mprev will point to IPv6 header.
356 	 */
357 	if (exthdrs.ip6e_dest2) {
358 		if (!hdrsplit)
359 			panic("assumption failed: hdr not split");
360 		exthdrs.ip6e_dest2->m_next = m->m_next;
361 		m->m_next = exthdrs.ip6e_dest2;
362 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
363 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
364 	}
365 
366 /*
367  * Place m1 after mprev.
368  */
369 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
370     do {\
371 	if (m1) {\
372 		if (!hdrsplit)\
373 			panic("assumption failed: hdr not split");\
374 		*mtod(m1, u_char *) = *nexthdrp;\
375 		*nexthdrp = (i);\
376 		nexthdrp = mtod(m1, u_char *);\
377 		m1->m_next = mprev->m_next;\
378 		mprev->m_next = m1;\
379 		mprev = m1;\
380 	}\
381     } while (0)
382 
383 	/*
384 	 * result: IPv6 hbh dest1 rthdr dest2 payload
385 	 * m will point to IPv6 header.  mprev will point to the
386 	 * extension header prior to dest2 (rthdr in the above case).
387 	 */
388 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
389 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
390 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
391 
392 #if defined(IPSEC) || defined(FAST_IPSEC)
393 	if (needipsec) {
394 		struct ipsec_output_state state;
395 		int segleft_org = 0;
396 		struct ip6_rthdr *rh = NULL;
397 
398 		/*
399 		 * pointers after IPsec headers are not valid any more.
400 		 * other pointers need a great care too.
401 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
402 		 */
403 		exthdrs.ip6e_dest2 = NULL;
404 
405 		if (exthdrs.ip6e_rthdr) {
406 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
407 			segleft_org = rh->ip6r_segleft;
408 			rh->ip6r_segleft = 0;
409 		}
410 
411 		bzero(&state, sizeof state);
412 		state.m = m;
413 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
414 					    &needipsectun);
415 		m = state.m;
416 		if (error) {
417 			/* mbuf is already reclaimed in ipsec6_output_trans. */
418 			m = NULL;
419 			switch (error) {
420 			case EHOSTUNREACH:
421 			case ENETUNREACH:
422 			case EMSGSIZE:
423 			case ENOBUFS:
424 			case ENOMEM:
425 				break;
426 			default:
427 				kprintf("ip6_output (ipsec): error code %d\n",
428 				       error);
429 				/* fall through */
430 			case ENOENT:
431 				/* don't show these error codes to the user */
432 				error = 0;
433 				break;
434 			}
435 			goto bad;
436 		}
437 		if (exthdrs.ip6e_rthdr) {
438 			/* ah6_output doesn't modify mbuf chain */
439 			rh->ip6r_segleft = segleft_org;
440 		}
441 	}
442 #endif
443 
444 	/*
445 	 * If there is a routing header, replace destination address field
446 	 * with the first hop of the routing header.
447 	 */
448 	if (exthdrs.ip6e_rthdr) {
449 		struct ip6_rthdr *rh;
450 		struct ip6_rthdr0 *rh0;
451 
452 		finaldst = ip6->ip6_dst;
453 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
454 		switch (rh->ip6r_type) {
455 		case IPV6_RTHDR_TYPE_0:
456 			 rh0 = (struct ip6_rthdr0 *)rh;
457 			 ip6->ip6_dst = rh0->ip6r0_addr[0];
458 			 bcopy(&rh0->ip6r0_addr[1], &rh0->ip6r0_addr[0],
459 			     sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1));
460 			 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
461 			 break;
462 		default:	/* is it possible? */
463 			 error = EINVAL;
464 			 goto bad;
465 		}
466 	}
467 
468 	/* Source address validation */
469 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470 	    !(flags & IPV6_DADOUTPUT)) {
471 		error = EOPNOTSUPP;
472 		ip6stat.ip6s_badscope++;
473 		goto bad;
474 	}
475 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476 		error = EOPNOTSUPP;
477 		ip6stat.ip6s_badscope++;
478 		goto bad;
479 	}
480 
481 	ip6stat.ip6s_localout++;
482 
483 	/*
484 	 * Route packet.
485 	 */
486 	if (ro == NULL) {
487 		ro = &ip6route;
488 		bzero(ro, sizeof(*ro));
489 	}
490 	ro_pmtu = ro;
491 	if (opt && opt->ip6po_rthdr)
492 		ro = &opt->ip6po_route;
493 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
494 	/*
495 	 * If there is a cached route,
496 	 * check that it is to the same destination
497 	 * and is still up. If not, free it and try again.
498 	 */
499 	if (ro->ro_rt != NULL &&
500 	    (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
501 	     !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
502 		RTFREE(ro->ro_rt);
503 		ro->ro_rt = NULL;
504 	}
505 	if (ro->ro_rt == NULL) {
506 		bzero(dst, sizeof(*dst));
507 		dst->sin6_family = AF_INET6;
508 		dst->sin6_len = sizeof(struct sockaddr_in6);
509 		dst->sin6_addr = ip6->ip6_dst;
510 	}
511 #if defined(IPSEC) || defined(FAST_IPSEC)
512 	if (needipsec && needipsectun) {
513 		struct ipsec_output_state state;
514 
515 		/*
516 		 * All the extension headers will become inaccessible
517 		 * (since they can be encrypted).
518 		 * Don't panic, we need no more updates to extension headers
519 		 * on inner IPv6 packet (since they are now encapsulated).
520 		 *
521 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
522 		 */
523 		bzero(&exthdrs, sizeof(exthdrs));
524 		exthdrs.ip6e_ip6 = m;
525 
526 		bzero(&state, sizeof(state));
527 		state.m = m;
528 		state.ro = (struct route *)ro;
529 		state.dst = (struct sockaddr *)dst;
530 
531 		error = ipsec6_output_tunnel(&state, sp, flags);
532 
533 		m = state.m;
534 		ro = (struct route_in6 *)state.ro;
535 		dst = (struct sockaddr_in6 *)state.dst;
536 		if (error) {
537 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
538 			m0 = m = NULL;
539 			m = NULL;
540 			switch (error) {
541 			case EHOSTUNREACH:
542 			case ENETUNREACH:
543 			case EMSGSIZE:
544 			case ENOBUFS:
545 			case ENOMEM:
546 				break;
547 			default:
548 				kprintf("ip6_output (ipsec): error code %d\n", error);
549 				/* fall through */
550 			case ENOENT:
551 				/* don't show these error codes to the user */
552 				error = 0;
553 				break;
554 			}
555 			goto bad;
556 		}
557 
558 		exthdrs.ip6e_ip6 = m;
559 	}
560 #endif
561 
562 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
563 		/* Unicast */
564 
565 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
566 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
567 		/* xxx
568 		 * interface selection comes here
569 		 * if an interface is specified from an upper layer,
570 		 * ifp must point it.
571 		 */
572 		if (ro->ro_rt == NULL) {
573 			/*
574 			 * non-bsdi always clone routes, if parent is
575 			 * PRF_CLONING.
576 			 */
577 			rtalloc((struct route *)ro);
578 		}
579 		if (ro->ro_rt == NULL) {
580 			ip6stat.ip6s_noroute++;
581 			error = EHOSTUNREACH;
582 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
583 			goto bad;
584 		}
585 		ia = ifatoia6(ro->ro_rt->rt_ifa);
586 		ifp = ro->ro_rt->rt_ifp;
587 		ro->ro_rt->rt_use++;
588 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
589 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
590 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
591 
592 		in6_ifstat_inc(ifp, ifs6_out_request);
593 
594 		/*
595 		 * Check if the outgoing interface conflicts with
596 		 * the interface specified by ifi6_ifindex (if specified).
597 		 * Note that loopback interface is always okay.
598 		 * (this may happen when we are sending a packet to one of
599 		 *  our own addresses.)
600 		 */
601 		if (opt && opt->ip6po_pktinfo
602 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
603 			if (!(ifp->if_flags & IFF_LOOPBACK)
604 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
605 				ip6stat.ip6s_noroute++;
606 				in6_ifstat_inc(ifp, ifs6_out_discard);
607 				error = EHOSTUNREACH;
608 				goto bad;
609 			}
610 		}
611 
612 		if (opt && opt->ip6po_hlim != -1)
613 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
614 	} else {
615 		/* Multicast */
616 		struct	in6_multi *in6m;
617 
618 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
619 
620 		/*
621 		 * See if the caller provided any multicast options
622 		 */
623 		ifp = NULL;
624 		if (im6o != NULL) {
625 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
626 			if (im6o->im6o_multicast_ifp != NULL)
627 				ifp = im6o->im6o_multicast_ifp;
628 		} else
629 			ip6->ip6_hlim = ip6_defmcasthlim;
630 
631 		/*
632 		 * See if the caller provided the outgoing interface
633 		 * as an ancillary data.
634 		 * Boundary check for ifindex is assumed to be already done.
635 		 */
636 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
637 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
638 
639 		/*
640 		 * If the destination is a node-local scope multicast,
641 		 * the packet should be loop-backed only.
642 		 */
643 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
644 			/*
645 			 * If the outgoing interface is already specified,
646 			 * it should be a loopback interface.
647 			 */
648 			if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
649 				ip6stat.ip6s_badscope++;
650 				error = ENETUNREACH; /* XXX: better error? */
651 				/* XXX correct ifp? */
652 				in6_ifstat_inc(ifp, ifs6_out_discard);
653 				goto bad;
654 			} else {
655 				ifp = &loif[0];
656 			}
657 		}
658 
659 		if (opt && opt->ip6po_hlim != -1)
660 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
661 
662 		/*
663 		 * If caller did not provide an interface lookup a
664 		 * default in the routing table.  This is either a
665 		 * default for the speicfied group (i.e. a host
666 		 * route), or a multicast default (a route for the
667 		 * ``net'' ff00::/8).
668 		 */
669 		if (ifp == NULL) {
670 			if (ro->ro_rt == NULL) {
671 				ro->ro_rt =
672 				  rtpurelookup((struct sockaddr *)&ro->ro_dst);
673 			}
674 			if (ro->ro_rt == NULL) {
675 				ip6stat.ip6s_noroute++;
676 				error = EHOSTUNREACH;
677 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
678 				goto bad;
679 			}
680 			ia = ifatoia6(ro->ro_rt->rt_ifa);
681 			ifp = ro->ro_rt->rt_ifp;
682 			ro->ro_rt->rt_use++;
683 		}
684 
685 		if (!(flags & IPV6_FORWARDING))
686 			in6_ifstat_inc(ifp, ifs6_out_request);
687 		in6_ifstat_inc(ifp, ifs6_out_mcast);
688 
689 		/*
690 		 * Confirm that the outgoing interface supports multicast.
691 		 */
692 		if (!(ifp->if_flags & IFF_MULTICAST)) {
693 			ip6stat.ip6s_noroute++;
694 			in6_ifstat_inc(ifp, ifs6_out_discard);
695 			error = ENETUNREACH;
696 			goto bad;
697 		}
698 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
699 		if (in6m != NULL &&
700 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
701 			/*
702 			 * If we belong to the destination multicast group
703 			 * on the outgoing interface, and the caller did not
704 			 * forbid loopback, loop back a copy.
705 			 */
706 			ip6_mloopback(ifp, m, dst);
707 		} else {
708 			/*
709 			 * If we are acting as a multicast router, perform
710 			 * multicast forwarding as if the packet had just
711 			 * arrived on the interface to which we are about
712 			 * to send.  The multicast forwarding function
713 			 * recursively calls this function, using the
714 			 * IPV6_FORWARDING flag to prevent infinite recursion.
715 			 *
716 			 * Multicasts that are looped back by ip6_mloopback(),
717 			 * above, will be forwarded by the ip6_input() routine,
718 			 * if necessary.
719 			 */
720 			if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
721 				if (ip6_mforward(ip6, ifp, m) != 0) {
722 					m_freem(m);
723 					goto done;
724 				}
725 			}
726 		}
727 		/*
728 		 * Multicasts with a hoplimit of zero may be looped back,
729 		 * above, but must not be transmitted on a network.
730 		 * Also, multicasts addressed to the loopback interface
731 		 * are not sent -- the above call to ip6_mloopback() will
732 		 * loop back a copy if this host actually belongs to the
733 		 * destination group on the loopback interface.
734 		 */
735 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
736 			m_freem(m);
737 			goto done;
738 		}
739 	}
740 
741 	/*
742 	 * Fill the outgoing inteface to tell the upper layer
743 	 * to increment per-interface statistics.
744 	 */
745 	if (ifpp)
746 		*ifpp = ifp;
747 
748 	/*
749 	 * Determine path MTU.
750 	 */
751 	if (ro_pmtu != ro) {
752 		/* The first hop and the final destination may differ. */
753 		struct sockaddr_in6 *sin6_fin =
754 			(struct sockaddr_in6 *)&ro_pmtu->ro_dst;
755 
756 		if (ro_pmtu->ro_rt != NULL &&
757 		    (!(ro->ro_rt->rt_flags & RTF_UP) ||
758 		     !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, &finaldst))) {
759 			RTFREE(ro_pmtu->ro_rt);
760 			ro_pmtu->ro_rt = NULL;
761 		}
762 		if (ro_pmtu->ro_rt == NULL) {
763 			bzero(sin6_fin, sizeof(*sin6_fin));
764 			sin6_fin->sin6_family = AF_INET6;
765 			sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
766 			sin6_fin->sin6_addr = finaldst;
767 
768 			rtalloc((struct route *)ro_pmtu);
769 		}
770 	}
771 	if (ro_pmtu->ro_rt != NULL) {
772 		u_int32_t ifmtu = ND_IFINFO(ifp)->linkmtu;
773 
774 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
775 		if (mtu > ifmtu || mtu == 0) {
776 			/*
777 			 * The MTU on the route is larger than the MTU on
778 			 * the interface!  This shouldn't happen, unless the
779 			 * MTU of the interface has been changed after the
780 			 * interface was brought up.  Change the MTU in the
781 			 * route to match the interface MTU (as long as the
782 			 * field isn't locked).
783 			 *
784 			 * if MTU on the route is 0, we need to fix the MTU.
785 			 * this case happens with path MTU discovery timeouts.
786 			 */
787 			 mtu = ifmtu;
788 			 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
789 				 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
790 		}
791 	} else {
792 		mtu = ND_IFINFO(ifp)->linkmtu;
793 	}
794 
795 	/*
796 	 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting
797 	 */
798 	if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU)
799 		mtu = IPV6_MMTU;
800 
801 	/* Fake scoped addresses */
802 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
803 		/*
804 		 * If source or destination address is a scoped address, and
805 		 * the packet is going to be sent to a loopback interface,
806 		 * we should keep the original interface.
807 		 */
808 
809 		/*
810 		 * XXX: this is a very experimental and temporary solution.
811 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
812 		 * field of the structure here.
813 		 * We rely on the consistency between two scope zone ids
814 		 * of source and destination, which should already be assured.
815 		 * Larger scopes than link will be supported in the future.
816 		 */
817 		origifp = NULL;
818 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
819 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
820 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
821 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
822 		/*
823 		 * XXX: origifp can be NULL even in those two cases above.
824 		 * For example, if we remove the (only) link-local address
825 		 * from the loopback interface, and try to send a link-local
826 		 * address without link-id information.  Then the source
827 		 * address is ::1, and the destination address is the
828 		 * link-local address with its s6_addr16[1] being zero.
829 		 * What is worse, if the packet goes to the loopback interface
830 		 * by a default rejected route, the null pointer would be
831 		 * passed to looutput, and the kernel would hang.
832 		 * The following last resort would prevent such disaster.
833 		 */
834 		if (origifp == NULL)
835 			origifp = ifp;
836 	}
837 	else
838 		origifp = ifp;
839 	/*
840 	 * clear embedded scope identifiers if necessary.
841 	 * in6_clearscope will touch the addresses only when necessary.
842 	 */
843 	in6_clearscope(&ip6->ip6_src);
844 	in6_clearscope(&ip6->ip6_dst);
845 
846 	/*
847 	 * Check with the firewall...
848 	 */
849 	if (ip6_fw_enable && ip6_fw_chk_ptr) {
850 		u_short port = 0;
851 
852 		m->m_pkthdr.rcvif = NULL;	/* XXX */
853 		/* If ipfw says divert, we have to just drop packet */
854 		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
855 			m_freem(m);
856 			goto done;
857 		}
858 		if (!m) {
859 			error = EACCES;
860 			goto done;
861 		}
862 	}
863 
864 	/*
865 	 * If the outgoing packet contains a hop-by-hop options header,
866 	 * it must be examined and processed even by the source node.
867 	 * (RFC 2460, section 4.)
868 	 */
869 	if (exthdrs.ip6e_hbh) {
870 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
871 		u_int32_t dummy1; /* XXX unused */
872 		u_int32_t dummy2; /* XXX unused */
873 
874 #ifdef DIAGNOSTIC
875 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
876 			panic("ip6e_hbh is not continuous");
877 #endif
878 		/*
879 		 *  XXX: if we have to send an ICMPv6 error to the sender,
880 		 *       we need the M_LOOP flag since icmp6_error() expects
881 		 *       the IPv6 and the hop-by-hop options header are
882 		 *       continuous unless the flag is set.
883 		 */
884 		m->m_flags |= M_LOOP;
885 		m->m_pkthdr.rcvif = ifp;
886 		if (ip6_process_hopopts(m,
887 					(u_int8_t *)(hbh + 1),
888 					((hbh->ip6h_len + 1) << 3) -
889 					sizeof(struct ip6_hbh),
890 					&dummy1, &dummy2) < 0) {
891 			/* m was already freed at this point */
892 			error = EINVAL;/* better error? */
893 			goto done;
894 		}
895 		m->m_flags &= ~M_LOOP; /* XXX */
896 		m->m_pkthdr.rcvif = NULL;
897 	}
898 
899 	/*
900 	 * Run through list of hooks for output packets.
901 	 */
902 	if (pfil_has_hooks(&inet6_pfil_hook)) {
903 		error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
904 		if (error != 0 || m == NULL)
905 			goto done;
906 		ip6 = mtod(m, struct ip6_hdr *);
907 	}
908 
909 	/*
910 	 * Send the packet to the outgoing interface.
911 	 * If necessary, do IPv6 fragmentation before sending.
912 	 */
913 	tlen = m->m_pkthdr.len;
914 	if (tlen <= mtu
915 #ifdef notyet
916 	    /*
917 	     * On any link that cannot convey a 1280-octet packet in one piece,
918 	     * link-specific fragmentation and reassembly must be provided at
919 	     * a layer below IPv6. [RFC 2460, sec.5]
920 	     * Thus if the interface has ability of link-level fragmentation,
921 	     * we can just send the packet even if the packet size is
922 	     * larger than the link's MTU.
923 	     * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
924 	     */
925 
926 	    || ifp->if_flags & IFF_FRAGMENTABLE
927 #endif
928 	    )
929 	{
930  		/* Record statistics for this interface address. */
931  		if (ia && !(flags & IPV6_FORWARDING)) {
932  			ia->ia_ifa.if_opackets++;
933  			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
934  		}
935 #ifdef IPSEC
936 		/* clean ipsec history once it goes out of the node */
937 		ipsec_delaux(m);
938 #endif
939 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
940 		goto done;
941 	} else if (mtu < IPV6_MMTU) {
942 		/*
943 		 * note that path MTU is never less than IPV6_MMTU
944 		 * (see icmp6_input).
945 		 */
946 		error = EMSGSIZE;
947 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
948 		goto bad;
949 	} else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
950 		error = EMSGSIZE;
951 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
952 		goto bad;
953 	} else {
954 		struct mbuf **mnext, *m_frgpart;
955 		struct ip6_frag *ip6f;
956 		u_int32_t id = htonl(ip6_id++);
957 		u_char nextproto;
958 
959 		/*
960 		 * Too large for the destination or interface;
961 		 * fragment if possible.
962 		 * Must be able to put at least 8 bytes per fragment.
963 		 */
964 		hlen = unfragpartlen;
965 		if (mtu > IPV6_MAXPACKET)
966 			mtu = IPV6_MAXPACKET;
967 
968 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
969 		if (len < 8) {
970 			error = EMSGSIZE;
971 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
972 			goto bad;
973 		}
974 
975 		mnext = &m->m_nextpkt;
976 
977 		/*
978 		 * Change the next header field of the last header in the
979 		 * unfragmentable part.
980 		 */
981 		if (exthdrs.ip6e_rthdr) {
982 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
983 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
984 		} else if (exthdrs.ip6e_dest1) {
985 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
986 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
987 		} else if (exthdrs.ip6e_hbh) {
988 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
989 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
990 		} else {
991 			nextproto = ip6->ip6_nxt;
992 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
993 		}
994 
995 		/*
996 		 * Loop through length of segment after first fragment,
997 		 * make new header and copy data of each part and link onto
998 		 * chain.
999 		 */
1000 		m0 = m;
1001 		for (off = hlen; off < tlen; off += len) {
1002 			MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1003 			if (!m) {
1004 				error = ENOBUFS;
1005 				ip6stat.ip6s_odropped++;
1006 				goto sendorfree;
1007 			}
1008 			m->m_pkthdr.rcvif = NULL;
1009 			m->m_flags = m0->m_flags & M_COPYFLAGS;
1010 			*mnext = m;
1011 			mnext = &m->m_nextpkt;
1012 			m->m_data += max_linkhdr;
1013 			mhip6 = mtod(m, struct ip6_hdr *);
1014 			*mhip6 = *ip6;
1015 			m->m_len = sizeof(*mhip6);
1016  			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1017  			if (error) {
1018 				ip6stat.ip6s_odropped++;
1019 				goto sendorfree;
1020 			}
1021 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1022 			if (off + len >= tlen)
1023 				len = tlen - off;
1024 			else
1025 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1026 			mhip6->ip6_plen = htons((u_short)(len + hlen +
1027 							  sizeof(*ip6f) -
1028 							  sizeof(struct ip6_hdr)));
1029 			if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
1030 				error = ENOBUFS;
1031 				ip6stat.ip6s_odropped++;
1032 				goto sendorfree;
1033 			}
1034 			m_cat(m, m_frgpart);
1035 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1036 			m->m_pkthdr.rcvif = (struct ifnet *)0;
1037 			ip6f->ip6f_reserved = 0;
1038 			ip6f->ip6f_ident = id;
1039 			ip6f->ip6f_nxt = nextproto;
1040 			ip6stat.ip6s_ofragments++;
1041 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1042 		}
1043 
1044 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1045 	}
1046 
1047 	/*
1048 	 * Remove leading garbages.
1049 	 */
1050 sendorfree:
1051 	m = m0->m_nextpkt;
1052 	m0->m_nextpkt = NULL;
1053 	m_freem(m0);
1054 	for (m0 = m; m; m = m0) {
1055 		m0 = m->m_nextpkt;
1056 		m->m_nextpkt = NULL;
1057 		if (error == 0) {
1058  			/* Record statistics for this interface address. */
1059  			if (ia) {
1060  				ia->ia_ifa.if_opackets++;
1061  				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1062  			}
1063 #ifdef IPSEC
1064 			/* clean ipsec history once it goes out of the node */
1065 			ipsec_delaux(m);
1066 #endif
1067 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1068 		} else
1069 			m_freem(m);
1070 	}
1071 
1072 	if (error == 0)
1073 		ip6stat.ip6s_fragmented++;
1074 
1075 done:
1076 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1077 		RTFREE(ro->ro_rt);
1078 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1079 		RTFREE(ro_pmtu->ro_rt);
1080 	}
1081 
1082 #ifdef IPSEC
1083 	if (sp != NULL)
1084 		key_freesp(sp);
1085 #endif
1086 #ifdef FAST_IPSEC
1087 	if (sp != NULL)
1088 		KEY_FREESP(&sp);
1089 #endif
1090 
1091 	return (error);
1092 
1093 freehdrs:
1094 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1095 	m_freem(exthdrs.ip6e_dest1);
1096 	m_freem(exthdrs.ip6e_rthdr);
1097 	m_freem(exthdrs.ip6e_dest2);
1098 	/* fall through */
1099 bad:
1100 	m_freem(m);
1101 	goto done;
1102 }
1103 
1104 static int
1105 copyexthdr(void *h, struct mbuf **mp)
1106 {
1107 	struct ip6_ext *hdr = h;
1108 	int hlen;
1109 	struct mbuf *m;
1110 
1111 	if (hdr == NULL)
1112 		return 0;
1113 
1114 	hlen = (hdr->ip6e_len + 1) * 8;
1115 	if (hlen > MCLBYTES)
1116 		return ENOBUFS;	/* XXX */
1117 
1118 	m = m_getb(hlen, MB_DONTWAIT, MT_DATA, 0);
1119 	if (!m)
1120 		return ENOBUFS;
1121 	m->m_len = hlen;
1122 
1123 	bcopy(hdr, mtod(m, caddr_t), hlen);
1124 
1125 	*mp = m;
1126 	return 0;
1127 }
1128 
1129 /*
1130  * Insert jumbo payload option.
1131  */
1132 static int
1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1134 {
1135 	struct mbuf *mopt;
1136 	u_char *optbuf;
1137 	u_int32_t v;
1138 
1139 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1140 
1141 	/*
1142 	 * If there is no hop-by-hop options header, allocate new one.
1143 	 * If there is one but it doesn't have enough space to store the
1144 	 * jumbo payload option, allocate a cluster to store the whole options.
1145 	 * Otherwise, use it to store the options.
1146 	 */
1147 	if (exthdrs->ip6e_hbh == NULL) {
1148 		MGET(mopt, MB_DONTWAIT, MT_DATA);
1149 		if (mopt == NULL)
1150 			return (ENOBUFS);
1151 		mopt->m_len = JUMBOOPTLEN;
1152 		optbuf = mtod(mopt, u_char *);
1153 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1154 		exthdrs->ip6e_hbh = mopt;
1155 	} else {
1156 		struct ip6_hbh *hbh;
1157 
1158 		mopt = exthdrs->ip6e_hbh;
1159 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1160 			/*
1161 			 * XXX assumption:
1162 			 * - exthdrs->ip6e_hbh is not referenced from places
1163 			 *   other than exthdrs.
1164 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1165 			 */
1166 			int oldoptlen = mopt->m_len;
1167 			struct mbuf *n;
1168 
1169 			/*
1170 			 * XXX: give up if the whole (new) hbh header does
1171 			 * not fit even in an mbuf cluster.
1172 			 */
1173 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1174 				return (ENOBUFS);
1175 
1176 			/*
1177 			 * As a consequence, we must always prepare a cluster
1178 			 * at this point.
1179 			 */
1180 			n = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1181 			if (!n)
1182 				return (ENOBUFS);
1183 			n->m_len = oldoptlen + JUMBOOPTLEN;
1184 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
1185 			optbuf = mtod(n, caddr_t) + oldoptlen;
1186 			m_freem(mopt);
1187 			mopt = exthdrs->ip6e_hbh = n;
1188 		} else {
1189 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1190 			mopt->m_len += JUMBOOPTLEN;
1191 		}
1192 		optbuf[0] = IP6OPT_PADN;
1193 		optbuf[1] = 1;
1194 
1195 		/*
1196 		 * Adjust the header length according to the pad and
1197 		 * the jumbo payload option.
1198 		 */
1199 		hbh = mtod(mopt, struct ip6_hbh *);
1200 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1201 	}
1202 
1203 	/* fill in the option. */
1204 	optbuf[2] = IP6OPT_JUMBO;
1205 	optbuf[3] = 4;
1206 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1207 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1208 
1209 	/* finally, adjust the packet header length */
1210 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1211 
1212 	return (0);
1213 #undef JUMBOOPTLEN
1214 }
1215 
1216 /*
1217  * Insert fragment header and copy unfragmentable header portions.
1218  */
1219 static int
1220 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1221 		  struct ip6_frag **frghdrp)
1222 {
1223 	struct mbuf *n, *mlast;
1224 
1225 	if (hlen > sizeof(struct ip6_hdr)) {
1226 		n = m_copym(m0, sizeof(struct ip6_hdr),
1227 			    hlen - sizeof(struct ip6_hdr), MB_DONTWAIT);
1228 		if (n == NULL)
1229 			return (ENOBUFS);
1230 		m->m_next = n;
1231 	} else
1232 		n = m;
1233 
1234 	/* Search for the last mbuf of unfragmentable part. */
1235 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1236 		;
1237 
1238 	if (!(mlast->m_flags & M_EXT) &&
1239 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1240 		/* use the trailing space of the last mbuf for the fragment hdr */
1241 		*frghdrp =
1242 			(struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1243 		mlast->m_len += sizeof(struct ip6_frag);
1244 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1245 	} else {
1246 		/* allocate a new mbuf for the fragment header */
1247 		struct mbuf *mfrg;
1248 
1249 		MGET(mfrg, MB_DONTWAIT, MT_DATA);
1250 		if (mfrg == NULL)
1251 			return (ENOBUFS);
1252 		mfrg->m_len = sizeof(struct ip6_frag);
1253 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1254 		mlast->m_next = mfrg;
1255 	}
1256 
1257 	return (0);
1258 }
1259 
1260 /*
1261  * IP6 socket option processing.
1262  */
1263 int
1264 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1265 {
1266 	int privileged;
1267 	struct inpcb *in6p = so->so_pcb;
1268 	int error, optval;
1269 	int level, op, optname;
1270 	int optlen;
1271 	struct thread *td;
1272 
1273 	if (sopt) {
1274 		level = sopt->sopt_level;
1275 		op = sopt->sopt_dir;
1276 		optname = sopt->sopt_name;
1277 		optlen = sopt->sopt_valsize;
1278 		td = sopt->sopt_td;
1279 	} else {
1280 		panic("ip6_ctloutput: arg soopt is NULL");
1281 		/* NOT REACHED */
1282 		td = NULL;
1283 	}
1284 	error = optval = 0;
1285 
1286 	privileged = (td == NULL || suser(td)) ? 0 : 1;
1287 
1288 	if (level == IPPROTO_IPV6) {
1289 		switch (op) {
1290 
1291 		case SOPT_SET:
1292 			switch (optname) {
1293 			case IPV6_PKTOPTIONS:
1294 			{
1295 				struct mbuf *m;
1296 
1297 				error = soopt_getm(sopt, &m); /* XXX */
1298 				if (error != NULL)
1299 					break;
1300 				error = soopt_mcopyin(sopt, m); /* XXX */
1301 				if (error != NULL)
1302 					break;
1303 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1304 						    m, so, sopt);
1305 				m_freem(m); /* XXX */
1306 				break;
1307 			}
1308 
1309 			/*
1310 			 * Use of some Hop-by-Hop options or some
1311 			 * Destination options, might require special
1312 			 * privilege.  That is, normal applications
1313 			 * (without special privilege) might be forbidden
1314 			 * from setting certain options in outgoing packets,
1315 			 * and might never see certain options in received
1316 			 * packets. [RFC 2292 Section 6]
1317 			 * KAME specific note:
1318 			 *  KAME prevents non-privileged users from sending or
1319 			 *  receiving ANY hbh/dst options in order to avoid
1320 			 *  overhead of parsing options in the kernel.
1321 			 */
1322 			case IPV6_UNICAST_HOPS:
1323 			case IPV6_CHECKSUM:
1324 			case IPV6_FAITH:
1325 
1326 			case IPV6_V6ONLY:
1327 				if (optlen != sizeof(int)) {
1328 					error = EINVAL;
1329 					break;
1330 				}
1331 				error = sooptcopyin(sopt, &optval,
1332 					sizeof optval, sizeof optval);
1333 				if (error)
1334 					break;
1335 				switch (optname) {
1336 
1337 				case IPV6_UNICAST_HOPS:
1338 					if (optval < -1 || optval >= 256)
1339 						error = EINVAL;
1340 					else {
1341 						/* -1 = kernel default */
1342 						in6p->in6p_hops = optval;
1343 
1344 						if ((in6p->in6p_vflag &
1345 						     INP_IPV4) != 0)
1346 							in6p->inp_ip_ttl = optval;
1347 					}
1348 					break;
1349 #define OPTSET(bit) \
1350 do { \
1351 	if (optval) \
1352 		in6p->in6p_flags |= (bit); \
1353 	else \
1354 		in6p->in6p_flags &= ~(bit); \
1355 } while (0)
1356 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1357 
1358 				case IPV6_CHECKSUM:
1359 					in6p->in6p_cksum = optval;
1360 					break;
1361 
1362 				case IPV6_FAITH:
1363 					OPTSET(IN6P_FAITH);
1364 					break;
1365 
1366 				case IPV6_V6ONLY:
1367 					/*
1368 					 * make setsockopt(IPV6_V6ONLY)
1369 					 * available only prior to bind(2).
1370 					 * see ipng mailing list, Jun 22 2001.
1371 					 */
1372 					if (in6p->in6p_lport ||
1373 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1374 					{
1375 						error = EINVAL;
1376 						break;
1377 					}
1378 					OPTSET(IN6P_IPV6_V6ONLY);
1379 					if (optval)
1380 						in6p->in6p_vflag &= ~INP_IPV4;
1381 					else
1382 						in6p->in6p_vflag |= INP_IPV4;
1383 					break;
1384 				}
1385 				break;
1386 
1387 			case IPV6_PKTINFO:
1388 			case IPV6_HOPLIMIT:
1389 			case IPV6_HOPOPTS:
1390 			case IPV6_DSTOPTS:
1391 			case IPV6_RTHDR:
1392 				/* RFC 2292 */
1393 				if (optlen != sizeof(int)) {
1394 					error = EINVAL;
1395 					break;
1396 				}
1397 				error = sooptcopyin(sopt, &optval,
1398 					sizeof optval, sizeof optval);
1399 				if (error)
1400 					break;
1401 				switch (optname) {
1402 				case IPV6_PKTINFO:
1403 					OPTSET(IN6P_PKTINFO);
1404 					break;
1405 				case IPV6_HOPLIMIT:
1406 					OPTSET(IN6P_HOPLIMIT);
1407 					break;
1408 				case IPV6_HOPOPTS:
1409 					/*
1410 					 * Check super-user privilege.
1411 					 * See comments for IPV6_RECVHOPOPTS.
1412 					 */
1413 					if (!privileged)
1414 						return (EPERM);
1415 					OPTSET(IN6P_HOPOPTS);
1416 					break;
1417 				case IPV6_DSTOPTS:
1418 					if (!privileged)
1419 						return (EPERM);
1420 					OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1421 					break;
1422 				case IPV6_RTHDR:
1423 					OPTSET(IN6P_RTHDR);
1424 					break;
1425 				}
1426 				break;
1427 #undef OPTSET
1428 
1429 			case IPV6_MULTICAST_IF:
1430 			case IPV6_MULTICAST_HOPS:
1431 			case IPV6_MULTICAST_LOOP:
1432 			case IPV6_JOIN_GROUP:
1433 			case IPV6_LEAVE_GROUP:
1434 			    {
1435 				struct mbuf *m;
1436 				if (sopt->sopt_valsize > MLEN) {
1437 					error = EMSGSIZE;
1438 					break;
1439 				}
1440 				/* XXX */
1441 				MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1442 				if (m == NULL) {
1443 					error = ENOBUFS;
1444 					break;
1445 				}
1446 				m->m_len = sopt->sopt_valsize;
1447 				error = sooptcopyin(sopt, mtod(m, char *),
1448 						    m->m_len, m->m_len);
1449 				error =	ip6_setmoptions(sopt->sopt_name,
1450 							&in6p->in6p_moptions,
1451 							m);
1452 				m_free(m);
1453 			    }
1454 				break;
1455 
1456 			case IPV6_PORTRANGE:
1457 				error = sooptcopyin(sopt, &optval,
1458 				    sizeof optval, sizeof optval);
1459 				if (error)
1460 					break;
1461 
1462 				switch (optval) {
1463 				case IPV6_PORTRANGE_DEFAULT:
1464 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1465 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1466 					break;
1467 
1468 				case IPV6_PORTRANGE_HIGH:
1469 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1470 					in6p->in6p_flags |= IN6P_HIGHPORT;
1471 					break;
1472 
1473 				case IPV6_PORTRANGE_LOW:
1474 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1475 					in6p->in6p_flags |= IN6P_LOWPORT;
1476 					break;
1477 
1478 				default:
1479 					error = EINVAL;
1480 					break;
1481 				}
1482 				break;
1483 
1484 #if defined(IPSEC) || defined(FAST_IPSEC)
1485 			case IPV6_IPSEC_POLICY:
1486 			    {
1487 				caddr_t req = NULL;
1488 				size_t len = 0;
1489 				struct mbuf *m;
1490 
1491 				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1492 					break;
1493 				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1494 					break;
1495 				if (m) {
1496 					req = mtod(m, caddr_t);
1497 					len = m->m_len;
1498 				}
1499 				error = ipsec6_set_policy(in6p, optname, req,
1500 							  len, privileged);
1501 				m_freem(m);
1502 			    }
1503 				break;
1504 #endif /* KAME IPSEC */
1505 
1506 			case IPV6_FW_ADD:
1507 			case IPV6_FW_DEL:
1508 			case IPV6_FW_FLUSH:
1509 			case IPV6_FW_ZERO:
1510 			    {
1511 				struct mbuf *m;
1512 				struct mbuf **mp = &m;
1513 
1514 				if (ip6_fw_ctl_ptr == NULL)
1515 					return EINVAL;
1516 				/* XXX */
1517 				if ((error = soopt_getm(sopt, &m)) != 0)
1518 					break;
1519 				/* XXX */
1520 				if ((error = soopt_mcopyin(sopt, m)) != 0)
1521 					break;
1522 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1523 				m = *mp;
1524 			    }
1525 				break;
1526 
1527 			default:
1528 				error = ENOPROTOOPT;
1529 				break;
1530 			}
1531 			break;
1532 
1533 		case SOPT_GET:
1534 			switch (optname) {
1535 
1536 			case IPV6_PKTOPTIONS:
1537 				if (in6p->in6p_options) {
1538 					struct mbuf *m;
1539 					m = m_copym(in6p->in6p_options,
1540 					    0, M_COPYALL, MB_WAIT);
1541 					error = soopt_mcopyout(sopt, m);
1542 					if (error == 0)
1543 						m_freem(m);
1544 				} else
1545 					sopt->sopt_valsize = 0;
1546 				break;
1547 
1548 			case IPV6_UNICAST_HOPS:
1549 			case IPV6_CHECKSUM:
1550 
1551 			case IPV6_FAITH:
1552 			case IPV6_V6ONLY:
1553 			case IPV6_PORTRANGE:
1554 				switch (optname) {
1555 
1556 				case IPV6_UNICAST_HOPS:
1557 					optval = in6p->in6p_hops;
1558 					break;
1559 
1560 				case IPV6_CHECKSUM:
1561 					optval = in6p->in6p_cksum;
1562 					break;
1563 
1564 				case IPV6_FAITH:
1565 					optval = OPTBIT(IN6P_FAITH);
1566 					break;
1567 
1568 				case IPV6_V6ONLY:
1569 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1570 					break;
1571 
1572 				case IPV6_PORTRANGE:
1573 				    {
1574 					int flags;
1575 					flags = in6p->in6p_flags;
1576 					if (flags & IN6P_HIGHPORT)
1577 						optval = IPV6_PORTRANGE_HIGH;
1578 					else if (flags & IN6P_LOWPORT)
1579 						optval = IPV6_PORTRANGE_LOW;
1580 					else
1581 						optval = 0;
1582 					break;
1583 				    }
1584 				}
1585 				error = sooptcopyout(sopt, &optval,
1586 					sizeof optval);
1587 				break;
1588 
1589 			case IPV6_PKTINFO:
1590 			case IPV6_HOPLIMIT:
1591 			case IPV6_HOPOPTS:
1592 			case IPV6_RTHDR:
1593 			case IPV6_DSTOPTS:
1594 				if (optname == IPV6_HOPOPTS ||
1595 				    optname == IPV6_DSTOPTS ||
1596 				    !privileged)
1597 					return (EPERM);
1598 				switch (optname) {
1599 				case IPV6_PKTINFO:
1600 					optval = OPTBIT(IN6P_PKTINFO);
1601 					break;
1602 				case IPV6_HOPLIMIT:
1603 					optval = OPTBIT(IN6P_HOPLIMIT);
1604 					break;
1605 				case IPV6_HOPOPTS:
1606 					if (!privileged)
1607 						return (EPERM);
1608 					optval = OPTBIT(IN6P_HOPOPTS);
1609 					break;
1610 				case IPV6_RTHDR:
1611 					optval = OPTBIT(IN6P_RTHDR);
1612 					break;
1613 				case IPV6_DSTOPTS:
1614 					if (!privileged)
1615 						return (EPERM);
1616 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1617 					break;
1618 				}
1619 				error = sooptcopyout(sopt, &optval,
1620 					sizeof optval);
1621 				break;
1622 
1623 			case IPV6_MULTICAST_IF:
1624 			case IPV6_MULTICAST_HOPS:
1625 			case IPV6_MULTICAST_LOOP:
1626 			case IPV6_JOIN_GROUP:
1627 			case IPV6_LEAVE_GROUP:
1628 			    {
1629 				struct mbuf *m;
1630 				error = ip6_getmoptions(sopt->sopt_name,
1631 						in6p->in6p_moptions, &m);
1632 				if (error == 0)
1633 					error = sooptcopyout(sopt,
1634 						mtod(m, char *), m->m_len);
1635 				m_freem(m);
1636 			    }
1637 				break;
1638 
1639 #if defined(IPSEC) || defined(FAST_IPSEC)
1640 			case IPV6_IPSEC_POLICY:
1641 			  {
1642 				caddr_t req = NULL;
1643 				size_t len = 0;
1644 				struct mbuf *m = NULL;
1645 				struct mbuf **mp = &m;
1646 
1647 				error = soopt_getm(sopt, &m); /* XXX */
1648 				if (error != NULL)
1649 					break;
1650 				error = soopt_mcopyin(sopt, m); /* XXX */
1651 				if (error != NULL)
1652 					break;
1653 				if (m) {
1654 					req = mtod(m, caddr_t);
1655 					len = m->m_len;
1656 				}
1657 				error = ipsec6_get_policy(in6p, req, len, mp);
1658 				if (error == 0)
1659 					error = soopt_mcopyout(sopt, m); /*XXX*/
1660 				if (error == 0 && m != NULL)
1661 					m_freem(m);
1662 				break;
1663 			  }
1664 #endif /* KAME IPSEC */
1665 
1666 			case IPV6_FW_GET:
1667 			  {
1668 				struct mbuf *m;
1669 				struct mbuf **mp = &m;
1670 
1671 				if (ip6_fw_ctl_ptr == NULL)
1672 				{
1673 					return EINVAL;
1674 				}
1675 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1676 				if (error == 0)
1677 					error = soopt_mcopyout(sopt, m); /* XXX */
1678 				if (error == 0 && m != NULL)
1679 					m_freem(m);
1680 			  }
1681 				break;
1682 
1683 			default:
1684 				error = ENOPROTOOPT;
1685 				break;
1686 			}
1687 			break;
1688 		}
1689 	} else {
1690 		error = EINVAL;
1691 	}
1692 	return (error);
1693 }
1694 
1695 /*
1696  * Set up IP6 options in pcb for insertion in output packets or
1697  * specifying behavior of outgoing packets.
1698  */
1699 static int
1700 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so,
1701 	    struct sockopt *sopt)
1702 {
1703 	struct ip6_pktopts *opt = *pktopt;
1704 	int error = 0;
1705 	struct thread *td = sopt->sopt_td;
1706 	int priv = 0;
1707 
1708 	/* turn off any old options. */
1709 	if (opt) {
1710 #ifdef DIAGNOSTIC
1711 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1712 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1713 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1714 			kprintf("ip6_pcbopts: all specified options are cleared.\n");
1715 #endif
1716 		ip6_clearpktopts(opt, 1, -1);
1717 	} else
1718 		opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1719 	*pktopt = NULL;
1720 
1721 	if (m == NULL || m->m_len == 0) {
1722 		/*
1723 		 * Only turning off any previous options, regardless of
1724 		 * whether the opt is just created or given.
1725 		 */
1726 		kfree(opt, M_IP6OPT);
1727 		return (0);
1728 	}
1729 
1730 	/*  set options specified by user. */
1731 	if (suser(td) == 0)
1732 		priv = 1;
1733 	if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) {
1734 		ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */
1735 		kfree(opt, M_IP6OPT);
1736 		return (error);
1737 	}
1738 	*pktopt = opt;
1739 	return (0);
1740 }
1741 
1742 /*
1743  * initialize ip6_pktopts.  beware that there are non-zero default values in
1744  * the struct.
1745  */
1746 void
1747 init_ip6pktopts(struct ip6_pktopts *opt)
1748 {
1749 
1750 	bzero(opt, sizeof(*opt));
1751 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
1752 }
1753 
1754 void
1755 ip6_clearpktopts(struct ip6_pktopts *pktopt, int needfree, int optname)
1756 {
1757 	if (pktopt == NULL)
1758 		return;
1759 
1760 	if (optname == -1) {
1761 		if (needfree && pktopt->ip6po_pktinfo)
1762 			kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
1763 		pktopt->ip6po_pktinfo = NULL;
1764 	}
1765 	if (optname == -1)
1766 		pktopt->ip6po_hlim = -1;
1767 	if (optname == -1) {
1768 		if (needfree && pktopt->ip6po_nexthop)
1769 			kfree(pktopt->ip6po_nexthop, M_IP6OPT);
1770 		pktopt->ip6po_nexthop = NULL;
1771 	}
1772 	if (optname == -1) {
1773 		if (needfree && pktopt->ip6po_hbh)
1774 			kfree(pktopt->ip6po_hbh, M_IP6OPT);
1775 		pktopt->ip6po_hbh = NULL;
1776 	}
1777 	if (optname == -1) {
1778 		if (needfree && pktopt->ip6po_dest1)
1779 			kfree(pktopt->ip6po_dest1, M_IP6OPT);
1780 		pktopt->ip6po_dest1 = NULL;
1781 	}
1782 	if (optname == -1) {
1783 		if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
1784 			kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
1785 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
1786 		if (pktopt->ip6po_route.ro_rt) {
1787 			RTFREE(pktopt->ip6po_route.ro_rt);
1788 			pktopt->ip6po_route.ro_rt = NULL;
1789 		}
1790 	}
1791 	if (optname == -1) {
1792 		if (needfree && pktopt->ip6po_dest2)
1793 			kfree(pktopt->ip6po_dest2, M_IP6OPT);
1794 		pktopt->ip6po_dest2 = NULL;
1795 	}
1796 }
1797 
1798 #define PKTOPT_EXTHDRCPY(type) \
1799 do {\
1800 	if (src->type) {\
1801 		int hlen =\
1802 			(((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
1803 		dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
1804 		if (dst->type == NULL)\
1805 			goto bad;\
1806 		bcopy(src->type, dst->type, hlen);\
1807 	}\
1808 } while (0)
1809 
1810 struct ip6_pktopts *
1811 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
1812 {
1813 	struct ip6_pktopts *dst;
1814 
1815 	if (src == NULL) {
1816 		kprintf("ip6_clearpktopts: invalid argument\n");
1817 		return (NULL);
1818 	}
1819 
1820 	dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
1821 	if (dst == NULL)
1822 		return (NULL);
1823 
1824 	dst->ip6po_hlim = src->ip6po_hlim;
1825 	if (src->ip6po_pktinfo) {
1826 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
1827 					    M_IP6OPT, canwait);
1828 		if (dst->ip6po_pktinfo == NULL)
1829 			goto bad;
1830 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
1831 	}
1832 	if (src->ip6po_nexthop) {
1833 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
1834 					    M_IP6OPT, canwait);
1835 		if (dst->ip6po_nexthop == NULL)
1836 			goto bad;
1837 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
1838 		      src->ip6po_nexthop->sa_len);
1839 	}
1840 	PKTOPT_EXTHDRCPY(ip6po_hbh);
1841 	PKTOPT_EXTHDRCPY(ip6po_dest1);
1842 	PKTOPT_EXTHDRCPY(ip6po_dest2);
1843 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
1844 	return (dst);
1845 
1846 bad:
1847 	if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
1848 	if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
1849 	if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
1850 	if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
1851 	if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
1852 	if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
1853 	kfree(dst, M_IP6OPT);
1854 	return (NULL);
1855 }
1856 #undef PKTOPT_EXTHDRCPY
1857 
1858 void
1859 ip6_freepcbopts(struct ip6_pktopts *pktopt)
1860 {
1861 	if (pktopt == NULL)
1862 		return;
1863 
1864 	ip6_clearpktopts(pktopt, 1, -1);
1865 
1866 	kfree(pktopt, M_IP6OPT);
1867 }
1868 
1869 /*
1870  * Set the IP6 multicast options in response to user setsockopt().
1871  */
1872 static int
1873 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
1874 {
1875 	int error = 0;
1876 	u_int loop, ifindex;
1877 	struct ipv6_mreq *mreq;
1878 	struct ifnet *ifp;
1879 	struct ip6_moptions *im6o = *im6op;
1880 	struct route_in6 ro;
1881 	struct sockaddr_in6 *dst;
1882 	struct in6_multi_mship *imm;
1883 	struct thread *td = curthread;	/* XXX */
1884 
1885 	if (im6o == NULL) {
1886 		/*
1887 		 * No multicast option buffer attached to the pcb;
1888 		 * allocate one and initialize to default values.
1889 		 */
1890 		im6o = (struct ip6_moptions *)
1891 			kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1892 
1893 		if (im6o == NULL)
1894 			return (ENOBUFS);
1895 		*im6op = im6o;
1896 		im6o->im6o_multicast_ifp = NULL;
1897 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1898 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1899 		LIST_INIT(&im6o->im6o_memberships);
1900 	}
1901 
1902 	switch (optname) {
1903 
1904 	case IPV6_MULTICAST_IF:
1905 		/*
1906 		 * Select the interface for outgoing multicast packets.
1907 		 */
1908 		if (m == NULL || m->m_len != sizeof(u_int)) {
1909 			error = EINVAL;
1910 			break;
1911 		}
1912 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1913 		if (ifindex < 0 || if_index < ifindex) {
1914 			error = ENXIO;	/* XXX EINVAL? */
1915 			break;
1916 		}
1917 		ifp = ifindex2ifnet[ifindex];
1918 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1919 			error = EADDRNOTAVAIL;
1920 			break;
1921 		}
1922 		im6o->im6o_multicast_ifp = ifp;
1923 		break;
1924 
1925 	case IPV6_MULTICAST_HOPS:
1926 	    {
1927 		/*
1928 		 * Set the IP6 hoplimit for outgoing multicast packets.
1929 		 */
1930 		int optval;
1931 		if (m == NULL || m->m_len != sizeof(int)) {
1932 			error = EINVAL;
1933 			break;
1934 		}
1935 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1936 		if (optval < -1 || optval >= 256)
1937 			error = EINVAL;
1938 		else if (optval == -1)
1939 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1940 		else
1941 			im6o->im6o_multicast_hlim = optval;
1942 		break;
1943 	    }
1944 
1945 	case IPV6_MULTICAST_LOOP:
1946 		/*
1947 		 * Set the loopback flag for outgoing multicast packets.
1948 		 * Must be zero or one.
1949 		 */
1950 		if (m == NULL || m->m_len != sizeof(u_int)) {
1951 			error = EINVAL;
1952 			break;
1953 		}
1954 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1955 		if (loop > 1) {
1956 			error = EINVAL;
1957 			break;
1958 		}
1959 		im6o->im6o_multicast_loop = loop;
1960 		break;
1961 
1962 	case IPV6_JOIN_GROUP:
1963 		/*
1964 		 * Add a multicast group membership.
1965 		 * Group must be a valid IP6 multicast address.
1966 		 */
1967 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1968 			error = EINVAL;
1969 			break;
1970 		}
1971 		mreq = mtod(m, struct ipv6_mreq *);
1972 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1973 			/*
1974 			 * We use the unspecified address to specify to accept
1975 			 * all multicast addresses. Only super user is allowed
1976 			 * to do this.
1977 			 */
1978 			if (suser(td))
1979 			{
1980 				error = EACCES;
1981 				break;
1982 			}
1983 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1984 			error = EINVAL;
1985 			break;
1986 		}
1987 
1988 		/*
1989 		 * If the interface is specified, validate it.
1990 		 */
1991 		if (mreq->ipv6mr_interface < 0
1992 		 || if_index < mreq->ipv6mr_interface) {
1993 			error = ENXIO;	/* XXX EINVAL? */
1994 			break;
1995 		}
1996 		/*
1997 		 * If no interface was explicitly specified, choose an
1998 		 * appropriate one according to the given multicast address.
1999 		 */
2000 		if (mreq->ipv6mr_interface == 0) {
2001 			/*
2002 			 * If the multicast address is in node-local scope,
2003 			 * the interface should be a loopback interface.
2004 			 * Otherwise, look up the routing table for the
2005 			 * address, and choose the outgoing interface.
2006 			 *   XXX: is it a good approach?
2007 			 */
2008 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
2009 				ifp = &loif[0];
2010 			} else {
2011 				ro.ro_rt = NULL;
2012 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2013 				bzero(dst, sizeof(*dst));
2014 				dst->sin6_len = sizeof(struct sockaddr_in6);
2015 				dst->sin6_family = AF_INET6;
2016 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2017 				rtalloc((struct route *)&ro);
2018 				if (ro.ro_rt == NULL) {
2019 					error = EADDRNOTAVAIL;
2020 					break;
2021 				}
2022 				ifp = ro.ro_rt->rt_ifp;
2023 				rtfree(ro.ro_rt);
2024 			}
2025 		} else
2026 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2027 
2028 		/*
2029 		 * See if we found an interface, and confirm that it
2030 		 * supports multicast
2031 		 */
2032 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2033 			error = EADDRNOTAVAIL;
2034 			break;
2035 		}
2036 		/*
2037 		 * Put interface index into the multicast address,
2038 		 * if the address has link-local scope.
2039 		 */
2040 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2041 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2042 				= htons(mreq->ipv6mr_interface);
2043 		}
2044 		/*
2045 		 * See if the membership already exists.
2046 		 */
2047 		for (imm = im6o->im6o_memberships.lh_first;
2048 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2049 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2050 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2051 					       &mreq->ipv6mr_multiaddr))
2052 				break;
2053 		if (imm != NULL) {
2054 			error = EADDRINUSE;
2055 			break;
2056 		}
2057 		/*
2058 		 * Everything looks good; add a new record to the multicast
2059 		 * address list for the given interface.
2060 		 */
2061 		imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2062 		if (imm == NULL) {
2063 			error = ENOBUFS;
2064 			break;
2065 		}
2066 		if ((imm->i6mm_maddr =
2067 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2068 			kfree(imm, M_IPMADDR);
2069 			break;
2070 		}
2071 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2072 		break;
2073 
2074 	case IPV6_LEAVE_GROUP:
2075 		/*
2076 		 * Drop a multicast group membership.
2077 		 * Group must be a valid IP6 multicast address.
2078 		 */
2079 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2080 			error = EINVAL;
2081 			break;
2082 		}
2083 		mreq = mtod(m, struct ipv6_mreq *);
2084 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2085 			if (suser(td)) {
2086 				error = EACCES;
2087 				break;
2088 			}
2089 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2090 			error = EINVAL;
2091 			break;
2092 		}
2093 		/*
2094 		 * If an interface address was specified, get a pointer
2095 		 * to its ifnet structure.
2096 		 */
2097 		if (mreq->ipv6mr_interface < 0
2098 		 || if_index < mreq->ipv6mr_interface) {
2099 			error = ENXIO;	/* XXX EINVAL? */
2100 			break;
2101 		}
2102 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2103 		/*
2104 		 * Put interface index into the multicast address,
2105 		 * if the address has link-local scope.
2106 		 */
2107 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2108 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2109 				= htons(mreq->ipv6mr_interface);
2110 		}
2111 		/*
2112 		 * Find the membership in the membership list.
2113 		 */
2114 		for (imm = im6o->im6o_memberships.lh_first;
2115 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2116 			if ((ifp == NULL ||
2117 			     imm->i6mm_maddr->in6m_ifp == ifp) &&
2118 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2119 					       &mreq->ipv6mr_multiaddr))
2120 				break;
2121 		}
2122 		if (imm == NULL) {
2123 			/* Unable to resolve interface */
2124 			error = EADDRNOTAVAIL;
2125 			break;
2126 		}
2127 		/*
2128 		 * Give up the multicast address record to which the
2129 		 * membership points.
2130 		 */
2131 		LIST_REMOVE(imm, i6mm_chain);
2132 		in6_delmulti(imm->i6mm_maddr);
2133 		kfree(imm, M_IPMADDR);
2134 		break;
2135 
2136 	default:
2137 		error = EOPNOTSUPP;
2138 		break;
2139 	}
2140 
2141 	/*
2142 	 * If all options have default values, no need to keep the mbuf.
2143 	 */
2144 	if (im6o->im6o_multicast_ifp == NULL &&
2145 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2146 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2147 	    im6o->im6o_memberships.lh_first == NULL) {
2148 		kfree(*im6op, M_IPMOPTS);
2149 		*im6op = NULL;
2150 	}
2151 
2152 	return (error);
2153 }
2154 
2155 /*
2156  * Return the IP6 multicast options in response to user getsockopt().
2157  */
2158 static int
2159 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2160 {
2161 	u_int *hlim, *loop, *ifindex;
2162 
2163 	*mp = m_get(MB_WAIT, MT_HEADER);		/* XXX */
2164 
2165 	switch (optname) {
2166 
2167 	case IPV6_MULTICAST_IF:
2168 		ifindex = mtod(*mp, u_int *);
2169 		(*mp)->m_len = sizeof(u_int);
2170 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2171 			*ifindex = 0;
2172 		else
2173 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2174 		return (0);
2175 
2176 	case IPV6_MULTICAST_HOPS:
2177 		hlim = mtod(*mp, u_int *);
2178 		(*mp)->m_len = sizeof(u_int);
2179 		if (im6o == NULL)
2180 			*hlim = ip6_defmcasthlim;
2181 		else
2182 			*hlim = im6o->im6o_multicast_hlim;
2183 		return (0);
2184 
2185 	case IPV6_MULTICAST_LOOP:
2186 		loop = mtod(*mp, u_int *);
2187 		(*mp)->m_len = sizeof(u_int);
2188 		if (im6o == NULL)
2189 			*loop = ip6_defmcasthlim;
2190 		else
2191 			*loop = im6o->im6o_multicast_loop;
2192 		return (0);
2193 
2194 	default:
2195 		return (EOPNOTSUPP);
2196 	}
2197 }
2198 
2199 /*
2200  * Discard the IP6 multicast options.
2201  */
2202 void
2203 ip6_freemoptions(struct ip6_moptions *im6o)
2204 {
2205 	struct in6_multi_mship *imm;
2206 
2207 	if (im6o == NULL)
2208 		return;
2209 
2210 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2211 		LIST_REMOVE(imm, i6mm_chain);
2212 		if (imm->i6mm_maddr)
2213 			in6_delmulti(imm->i6mm_maddr);
2214 		kfree(imm, M_IPMADDR);
2215 	}
2216 	kfree(im6o, M_IPMOPTS);
2217 }
2218 
2219 /*
2220  * Set IPv6 outgoing packet options based on advanced API.
2221  */
2222 int
2223 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt, int priv,
2224 		  int needcopy)
2225 {
2226 	struct cmsghdr *cm = NULL;
2227 
2228 	if (control == NULL || opt == NULL)
2229 		return (EINVAL);
2230 
2231 	init_ip6pktopts(opt);
2232 
2233 	/*
2234 	 * XXX: Currently, we assume all the optional information is stored
2235 	 * in a single mbuf.
2236 	 */
2237 	if (control->m_next)
2238 		return (EINVAL);
2239 
2240 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2241 		     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2242 		cm = mtod(control, struct cmsghdr *);
2243 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2244 			return (EINVAL);
2245 		if (cm->cmsg_level != IPPROTO_IPV6)
2246 			continue;
2247 
2248 		/*
2249 		 * XXX should check if RFC2292 API is mixed with 2292bis API
2250 		 */
2251 		switch (cm->cmsg_type) {
2252 		case IPV6_PKTINFO:
2253 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2254 				return (EINVAL);
2255 			if (needcopy) {
2256 				/* XXX: Is it really WAITOK? */
2257 				opt->ip6po_pktinfo =
2258 					kmalloc(sizeof(struct in6_pktinfo),
2259 					       M_IP6OPT, M_WAITOK);
2260 				bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo,
2261 				    sizeof(struct in6_pktinfo));
2262 			} else
2263 				opt->ip6po_pktinfo =
2264 					(struct in6_pktinfo *)CMSG_DATA(cm);
2265 			if (opt->ip6po_pktinfo->ipi6_ifindex &&
2266 			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2267 				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2268 					htons(opt->ip6po_pktinfo->ipi6_ifindex);
2269 
2270 			if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2271 			 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2272 				return (ENXIO);
2273 			}
2274 
2275 			/*
2276 			 * Check if the requested source address is indeed a
2277 			 * unicast address assigned to the node, and can be
2278 			 * used as the packet's source address.
2279 			 */
2280 			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2281 				struct in6_ifaddr *ia6;
2282 				struct sockaddr_in6 sin6;
2283 
2284 				bzero(&sin6, sizeof(sin6));
2285 				sin6.sin6_len = sizeof(sin6);
2286 				sin6.sin6_family = AF_INET6;
2287 				sin6.sin6_addr =
2288 					opt->ip6po_pktinfo->ipi6_addr;
2289 				ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2290 				if (ia6 == NULL ||
2291 				    (ia6->ia6_flags & (IN6_IFF_ANYCAST |
2292 						       IN6_IFF_NOTREADY)) != 0)
2293 					return (EADDRNOTAVAIL);
2294 			}
2295 			break;
2296 
2297 		case IPV6_HOPLIMIT:
2298 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2299 				return (EINVAL);
2300 
2301 			opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
2302 			if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2303 				return (EINVAL);
2304 			break;
2305 
2306 		case IPV6_NEXTHOP:
2307 			if (!priv)
2308 				return (EPERM);
2309 
2310 			if (cm->cmsg_len < sizeof(u_char) ||
2311 			    /* check if cmsg_len is large enough for sa_len */
2312 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2313 				return (EINVAL);
2314 
2315 			if (needcopy) {
2316 				opt->ip6po_nexthop =
2317 					kmalloc(*CMSG_DATA(cm),
2318 					       M_IP6OPT, M_WAITOK);
2319 				bcopy(CMSG_DATA(cm),
2320 				      opt->ip6po_nexthop,
2321 				      *CMSG_DATA(cm));
2322 			} else
2323 				opt->ip6po_nexthop =
2324 					(struct sockaddr *)CMSG_DATA(cm);
2325 			break;
2326 
2327 		case IPV6_HOPOPTS:
2328 		{
2329 			struct ip6_hbh *hbh;
2330 			int hbhlen;
2331 
2332 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2333 				return (EINVAL);
2334 			hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2335 			hbhlen = (hbh->ip6h_len + 1) << 3;
2336 			if (cm->cmsg_len != CMSG_LEN(hbhlen))
2337 				return (EINVAL);
2338 
2339 			if (needcopy) {
2340 				opt->ip6po_hbh =
2341 					kmalloc(hbhlen, M_IP6OPT, M_WAITOK);
2342 				bcopy(hbh, opt->ip6po_hbh, hbhlen);
2343 			} else
2344 				opt->ip6po_hbh = hbh;
2345 			break;
2346 		}
2347 
2348 		case IPV6_DSTOPTS:
2349 		{
2350 			struct ip6_dest *dest, **newdest;
2351 			int destlen;
2352 
2353 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2354 				return (EINVAL);
2355 			dest = (struct ip6_dest *)CMSG_DATA(cm);
2356 			destlen = (dest->ip6d_len + 1) << 3;
2357 			if (cm->cmsg_len != CMSG_LEN(destlen))
2358 				return (EINVAL);
2359 
2360 			/*
2361 			 * The old advacned API is ambiguous on this
2362 			 * point. Our approach is to determine the
2363 			 * position based according to the existence
2364 			 * of a routing header. Note, however, that
2365 			 * this depends on the order of the extension
2366 			 * headers in the ancillary data; the 1st part
2367 			 * of the destination options header must
2368 			 * appear before the routing header in the
2369 			 * ancillary data, too.
2370 			 * RFC2292bis solved the ambiguity by
2371 			 * introducing separate cmsg types.
2372 			 */
2373 			if (opt->ip6po_rthdr == NULL)
2374 				newdest = &opt->ip6po_dest1;
2375 			else
2376 				newdest = &opt->ip6po_dest2;
2377 
2378 			if (needcopy) {
2379 				*newdest = kmalloc(destlen, M_IP6OPT, M_WAITOK);
2380 				bcopy(dest, *newdest, destlen);
2381 			} else
2382 				*newdest = dest;
2383 
2384 			break;
2385 		}
2386 
2387 		case IPV6_RTHDR:
2388 		{
2389 			struct ip6_rthdr *rth;
2390 			int rthlen;
2391 
2392 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2393 				return (EINVAL);
2394 			rth = (struct ip6_rthdr *)CMSG_DATA(cm);
2395 			rthlen = (rth->ip6r_len + 1) << 3;
2396 			if (cm->cmsg_len != CMSG_LEN(rthlen))
2397 				return (EINVAL);
2398 
2399 			switch (rth->ip6r_type) {
2400 			case IPV6_RTHDR_TYPE_0:
2401 				/* must contain one addr */
2402 				if (rth->ip6r_len == 0)
2403 					return (EINVAL);
2404 				/* length must be even */
2405 				if (rth->ip6r_len % 2)
2406 					return (EINVAL);
2407 				if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2408 					return (EINVAL);
2409 				break;
2410 			default:
2411 				return (EINVAL);	/* not supported */
2412 			}
2413 
2414 			if (needcopy) {
2415 				opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT,
2416 							  M_WAITOK);
2417 				bcopy(rth, opt->ip6po_rthdr, rthlen);
2418 			} else
2419 				opt->ip6po_rthdr = rth;
2420 
2421 			break;
2422 		}
2423 
2424 		default:
2425 			return (ENOPROTOOPT);
2426 		}
2427 	}
2428 
2429 	return (0);
2430 }
2431 
2432 /*
2433  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2434  * packet to the input queue of a specified interface.  Note that this
2435  * calls the output routine of the loopback "driver", but with an interface
2436  * pointer that might NOT be &loif -- easier than replicating that code here.
2437  */
2438 void
2439 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2440 {
2441 	struct mbuf *copym;
2442 	struct ip6_hdr *ip6;
2443 
2444 	copym = m_copy(m, 0, M_COPYALL);
2445 	if (copym == NULL)
2446 		return;
2447 
2448 	/*
2449 	 * Make sure to deep-copy IPv6 header portion in case the data
2450 	 * is in an mbuf cluster, so that we can safely override the IPv6
2451 	 * header portion later.
2452 	 */
2453 	if ((copym->m_flags & M_EXT) != 0 ||
2454 	    copym->m_len < sizeof(struct ip6_hdr)) {
2455 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2456 		if (copym == NULL)
2457 			return;
2458 	}
2459 
2460 #ifdef DIAGNOSTIC
2461 	if (copym->m_len < sizeof(*ip6)) {
2462 		m_freem(copym);
2463 		return;
2464 	}
2465 #endif
2466 
2467 	ip6 = mtod(copym, struct ip6_hdr *);
2468 	/*
2469 	 * clear embedded scope identifiers if necessary.
2470 	 * in6_clearscope will touch the addresses only when necessary.
2471 	 */
2472 	in6_clearscope(&ip6->ip6_src);
2473 	in6_clearscope(&ip6->ip6_dst);
2474 
2475 	if_simloop(ifp, copym, dst->sin6_family, NULL);
2476 }
2477 
2478 /*
2479  * Separate the IPv6 header from the payload into its own mbuf.
2480  *
2481  * Returns the new mbuf chain or the original mbuf if no payload.
2482  * Returns NULL if can't allocate new mbuf for header.
2483  */
2484 static struct mbuf *
2485 ip6_splithdr(struct mbuf *m)
2486 {
2487 	struct mbuf *mh;
2488 
2489 	if (m->m_len <= sizeof(struct ip6_hdr))		/* no payload */
2490 		return (m);
2491 
2492 	MGETHDR(mh, MB_DONTWAIT, MT_HEADER);
2493 	if (mh == NULL)
2494 		return (NULL);
2495 	mh->m_len = sizeof(struct ip6_hdr);
2496 	M_MOVE_PKTHDR(mh, m);
2497 	MH_ALIGN(mh, sizeof(struct ip6_hdr));
2498 	bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
2499 	m->m_data += sizeof(struct ip6_hdr);
2500 	m->m_len -= sizeof(struct ip6_hdr);
2501 	mh->m_next = m;
2502 	return (mh);
2503 }
2504 
2505 /*
2506  * Compute IPv6 extension header length.
2507  */
2508 int
2509 ip6_optlen(struct in6pcb *in6p)
2510 {
2511 	int len;
2512 
2513 	if (!in6p->in6p_outputopts)
2514 		return 0;
2515 
2516 	len = 0;
2517 #define elen(x) \
2518     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2519 
2520 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2521 	if (in6p->in6p_outputopts->ip6po_rthdr)
2522 		/* dest1 is valid with rthdr only */
2523 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2524 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2525 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2526 	return len;
2527 #undef elen
2528 }
2529