1 /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * XXX 35 * KAME 970409 note: 36 * BSD/OS version heavily modifies this code, related to llinfo. 37 * Since we don't have BSD/OS version of net/route.c in our hand, 38 * I left the code mostly as it was in 970310. -- itojun 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/sysctl.h> 58 #include <sys/mutex.h> 59 60 #include <sys/thread2.h> 61 #include <sys/mutex2.h> 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_types.h> 66 #include <net/if_atm.h> 67 #include <net/route.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_prefix.h> 76 #include <netinet/icmp6.h> 77 78 #include <net/net_osdep.h> 79 80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 82 83 #define SIN6(s) ((struct sockaddr_in6 *)s) 84 #define SDL(s) ((struct sockaddr_dl *)s) 85 86 /* timer values */ 87 int nd6_prune = 1; /* walk list every 1 seconds */ 88 int nd6_delay = 5; /* delay first probe time 5 second */ 89 int nd6_umaxtries = 3; /* maximum unicast query */ 90 int nd6_mmaxtries = 3; /* maximum multicast query */ 91 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 92 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 93 94 /* preventing too many loops in ND option parsing */ 95 int nd6_maxndopt = 10; /* max # of ND options allowed */ 96 97 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 98 99 #ifdef ND6_DEBUG 100 int nd6_debug = 1; 101 #else 102 int nd6_debug = 0; 103 #endif 104 105 /* for debugging? */ 106 static int nd6_inuse, nd6_allocated; 107 108 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 109 struct nd_drhead nd_defrouter; 110 struct nd_prhead nd_prefix = { 0 }; 111 struct mtx nd6_mtx = MTX_INITIALIZER; 112 113 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 114 static struct sockaddr_in6 all1_sa; 115 116 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *); 117 static void nd6_slowtimo (void *); 118 static int regen_tmpaddr (struct in6_ifaddr *); 119 120 struct callout nd6_slowtimo_ch; 121 struct callout nd6_timer_ch; 122 extern struct callout in6_tmpaddrtimer_ch; 123 124 void 125 nd6_init(void) 126 { 127 static int nd6_init_done = 0; 128 int i; 129 130 if (nd6_init_done) { 131 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 132 return; 133 } 134 135 all1_sa.sin6_family = AF_INET6; 136 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 137 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 138 all1_sa.sin6_addr.s6_addr[i] = 0xff; 139 140 /* initialization of the default router list */ 141 TAILQ_INIT(&nd_defrouter); 142 143 nd6_init_done = 1; 144 145 /* start timer */ 146 callout_init(&nd6_slowtimo_ch); 147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 148 nd6_slowtimo, NULL); 149 } 150 151 struct nd_ifinfo * 152 nd6_ifattach(struct ifnet *ifp) 153 { 154 struct nd_ifinfo *nd; 155 156 nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP, 157 M_WAITOK | M_ZERO); 158 159 nd->initialized = 1; 160 161 nd->linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu; 162 nd->chlim = IPV6_DEFHLIM; 163 nd->basereachable = REACHABLE_TIME; 164 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 165 nd->retrans = RETRANS_TIMER; 166 nd->receivedra = 0; 167 168 /* 169 * Note that the default value of ip6_accept_rtadv is 0, which means 170 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 171 * here. 172 */ 173 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 174 175 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 176 nd6_setmtu0(ifp, nd); 177 return nd; 178 } 179 180 void 181 nd6_ifdetach(struct nd_ifinfo *nd) 182 { 183 kfree(nd, M_IP6NDP); 184 } 185 186 /* 187 * Reset ND level link MTU. This function is called when the physical MTU 188 * changes, which means we might have to adjust the ND level MTU. 189 */ 190 void 191 nd6_setmtu(struct ifnet *ifp) 192 { 193 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 194 } 195 196 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 197 void 198 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 199 { 200 u_long oldmaxmtu; 201 u_long oldlinkmtu; 202 203 oldmaxmtu = ndi->maxmtu; 204 oldlinkmtu = ndi->linkmtu; 205 206 switch (ifp->if_type) { 207 case IFT_ETHER: 208 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 209 break; 210 case IFT_ATM: 211 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); 212 break; 213 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ 214 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 215 break; 216 #ifdef IFT_IEEE80211 217 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ 218 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 219 break; 220 #endif 221 default: 222 ndi->maxmtu = ifp->if_mtu; 223 break; 224 } 225 226 if (oldmaxmtu != ndi->maxmtu) { 227 /* 228 * If the ND level MTU is not set yet, or if the maxmtu 229 * is reset to a smaller value than the ND level MTU, 230 * also reset the ND level MTU. 231 */ 232 if (ndi->linkmtu == 0 || 233 ndi->maxmtu < ndi->linkmtu) { 234 ndi->linkmtu = ndi->maxmtu; 235 /* also adjust in6_maxmtu if necessary. */ 236 if (oldlinkmtu == 0) { 237 /* 238 * XXX: the case analysis is grotty, but 239 * it is not efficient to call in6_setmaxmtu() 240 * here when we are during the initialization 241 * procedure. 242 */ 243 if (in6_maxmtu < ndi->linkmtu) 244 in6_maxmtu = ndi->linkmtu; 245 } else 246 in6_setmaxmtu(); 247 } 248 } 249 #undef MIN 250 } 251 252 void 253 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 254 { 255 bzero(ndopts, sizeof(*ndopts)); 256 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 257 ndopts->nd_opts_last 258 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 259 260 if (icmp6len == 0) { 261 ndopts->nd_opts_done = 1; 262 ndopts->nd_opts_search = NULL; 263 } 264 } 265 266 /* 267 * Take one ND option. 268 */ 269 struct nd_opt_hdr * 270 nd6_option(union nd_opts *ndopts) 271 { 272 struct nd_opt_hdr *nd_opt; 273 int olen; 274 275 if (!ndopts) 276 panic("ndopts == NULL in nd6_option"); 277 if (!ndopts->nd_opts_last) 278 panic("uninitialized ndopts in nd6_option"); 279 if (!ndopts->nd_opts_search) 280 return NULL; 281 if (ndopts->nd_opts_done) 282 return NULL; 283 284 nd_opt = ndopts->nd_opts_search; 285 286 /* make sure nd_opt_len is inside the buffer */ 287 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 288 bzero(ndopts, sizeof(*ndopts)); 289 return NULL; 290 } 291 292 olen = nd_opt->nd_opt_len << 3; 293 if (olen == 0) { 294 /* 295 * Message validation requires that all included 296 * options have a length that is greater than zero. 297 */ 298 bzero(ndopts, sizeof(*ndopts)); 299 return NULL; 300 } 301 302 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 303 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 304 /* option overruns the end of buffer, invalid */ 305 bzero(ndopts, sizeof(*ndopts)); 306 return NULL; 307 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 308 /* reached the end of options chain */ 309 ndopts->nd_opts_done = 1; 310 ndopts->nd_opts_search = NULL; 311 } 312 return nd_opt; 313 } 314 315 /* 316 * Parse multiple ND options. 317 * This function is much easier to use, for ND routines that do not need 318 * multiple options of the same type. 319 */ 320 int 321 nd6_options(union nd_opts *ndopts) 322 { 323 struct nd_opt_hdr *nd_opt; 324 int i = 0; 325 326 if (!ndopts) 327 panic("ndopts == NULL in nd6_options"); 328 if (!ndopts->nd_opts_last) 329 panic("uninitialized ndopts in nd6_options"); 330 if (!ndopts->nd_opts_search) 331 return 0; 332 333 while (1) { 334 nd_opt = nd6_option(ndopts); 335 if (!nd_opt && !ndopts->nd_opts_last) { 336 /* 337 * Message validation requires that all included 338 * options have a length that is greater than zero. 339 */ 340 icmp6stat.icp6s_nd_badopt++; 341 bzero(ndopts, sizeof(*ndopts)); 342 return -1; 343 } 344 345 if (!nd_opt) 346 goto skip1; 347 348 switch (nd_opt->nd_opt_type) { 349 case ND_OPT_SOURCE_LINKADDR: 350 case ND_OPT_TARGET_LINKADDR: 351 case ND_OPT_MTU: 352 case ND_OPT_REDIRECTED_HEADER: 353 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 354 nd6log((LOG_INFO, 355 "duplicated ND6 option found (type=%d)\n", 356 nd_opt->nd_opt_type)); 357 /* XXX bark? */ 358 } else { 359 ndopts->nd_opt_array[nd_opt->nd_opt_type] 360 = nd_opt; 361 } 362 break; 363 case ND_OPT_PREFIX_INFORMATION: 364 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 365 ndopts->nd_opt_array[nd_opt->nd_opt_type] 366 = nd_opt; 367 } 368 ndopts->nd_opts_pi_end = 369 (struct nd_opt_prefix_info *)nd_opt; 370 break; 371 default: 372 /* 373 * Unknown options must be silently ignored, 374 * to accomodate future extension to the protocol. 375 */ 376 nd6log((LOG_DEBUG, 377 "nd6_options: unsupported option %d - " 378 "option ignored\n", nd_opt->nd_opt_type)); 379 } 380 381 skip1: 382 i++; 383 if (i > nd6_maxndopt) { 384 icmp6stat.icp6s_nd_toomanyopt++; 385 nd6log((LOG_INFO, "too many loop in nd opt\n")); 386 break; 387 } 388 389 if (ndopts->nd_opts_done) 390 break; 391 } 392 393 return 0; 394 } 395 396 /* 397 * ND6 timer routine to expire default route list and prefix list 398 */ 399 void 400 nd6_timer(void *ignored_arg) 401 { 402 struct llinfo_nd6 *ln; 403 struct nd_defrouter *dr; 404 struct nd_prefix *pr; 405 struct ifnet *ifp; 406 struct in6_ifaddr *ia6, *nia6; 407 408 mtx_lock(&nd6_mtx); 409 callout_reset(&nd6_timer_ch, nd6_prune * hz, 410 nd6_timer, NULL); 411 412 ln = llinfo_nd6.ln_next; 413 while (ln && ln != &llinfo_nd6) { 414 struct rtentry *rt; 415 struct sockaddr_in6 *dst; 416 struct llinfo_nd6 *next = ln->ln_next; 417 /* XXX: used for the DELAY case only: */ 418 struct nd_ifinfo *ndi = NULL; 419 420 if ((rt = ln->ln_rt) == NULL) { 421 ln = next; 422 continue; 423 } 424 if ((ifp = rt->rt_ifp) == NULL) { 425 ln = next; 426 continue; 427 } 428 ndi = ND_IFINFO(ifp); 429 dst = (struct sockaddr_in6 *)rt_key(rt); 430 431 if (ln->ln_expire > time_second) { 432 ln = next; 433 continue; 434 } 435 436 /* sanity check */ 437 if (!rt) 438 panic("rt=0 in nd6_timer(ln=%p)", ln); 439 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 440 panic("rt_llinfo(%p) is not equal to ln(%p)", 441 rt->rt_llinfo, ln); 442 if (!dst) 443 panic("dst=0 in nd6_timer(ln=%p)", ln); 444 445 switch (ln->ln_state) { 446 case ND6_LLINFO_INCOMPLETE: 447 if (ln->ln_asked < nd6_mmaxtries) { 448 ln->ln_asked++; 449 ln->ln_expire = time_second + 450 ND_IFINFO(ifp)->retrans / 1000; 451 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 452 ln, 0); 453 } else { 454 struct mbuf *m = ln->ln_hold; 455 if (m) { 456 if (rt->rt_ifp) { 457 /* 458 * Fake rcvif to make ICMP error 459 * more helpful in diagnosing 460 * for the receiver. 461 * XXX: should we consider 462 * older rcvif? 463 */ 464 m->m_pkthdr.rcvif = rt->rt_ifp; 465 } 466 icmp6_error(m, ICMP6_DST_UNREACH, 467 ICMP6_DST_UNREACH_ADDR, 0); 468 ln->ln_hold = NULL; 469 } 470 next = nd6_free(rt); 471 } 472 break; 473 case ND6_LLINFO_REACHABLE: 474 if (ln->ln_expire) { 475 ln->ln_state = ND6_LLINFO_STALE; 476 ln->ln_expire = time_second + nd6_gctimer; 477 } 478 break; 479 480 case ND6_LLINFO_STALE: 481 /* Garbage Collection(RFC 2461 5.3) */ 482 if (ln->ln_expire) 483 next = nd6_free(rt); 484 break; 485 486 case ND6_LLINFO_DELAY: 487 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) { 488 /* We need NUD */ 489 ln->ln_asked = 1; 490 ln->ln_state = ND6_LLINFO_PROBE; 491 ln->ln_expire = time_second + 492 ndi->retrans / 1000; 493 nd6_ns_output(ifp, &dst->sin6_addr, 494 &dst->sin6_addr, 495 ln, 0); 496 } else { 497 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 498 ln->ln_expire = time_second + nd6_gctimer; 499 } 500 break; 501 case ND6_LLINFO_PROBE: 502 if (ln->ln_asked < nd6_umaxtries) { 503 ln->ln_asked++; 504 ln->ln_expire = time_second + 505 ND_IFINFO(ifp)->retrans / 1000; 506 nd6_ns_output(ifp, &dst->sin6_addr, 507 &dst->sin6_addr, ln, 0); 508 } else { 509 next = nd6_free(rt); 510 } 511 break; 512 } 513 ln = next; 514 } 515 516 /* expire default router list */ 517 dr = TAILQ_FIRST(&nd_defrouter); 518 while (dr) { 519 if (dr->expire && dr->expire < time_second) { 520 struct nd_defrouter *t; 521 t = TAILQ_NEXT(dr, dr_entry); 522 defrtrlist_del(dr); 523 dr = t; 524 } else { 525 dr = TAILQ_NEXT(dr, dr_entry); 526 } 527 } 528 529 /* 530 * expire interface addresses. 531 * in the past the loop was inside prefix expiry processing. 532 * However, from a stricter speci-confrmance standpoint, we should 533 * rather separate address lifetimes and prefix lifetimes. 534 */ 535 addrloop: 536 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 537 nia6 = ia6->ia_next; 538 /* check address lifetime */ 539 if (IFA6_IS_INVALID(ia6)) { 540 int regen = 0; 541 542 /* 543 * If the expiring address is temporary, try 544 * regenerating a new one. This would be useful when 545 * we suspended a laptop PC, then turned it on after a 546 * period that could invalidate all temporary 547 * addresses. Although we may have to restart the 548 * loop (see below), it must be after purging the 549 * address. Otherwise, we'd see an infinite loop of 550 * regeneration. 551 */ 552 if (ip6_use_tempaddr && 553 (ia6->ia6_flags & IN6_IFF_TEMPORARY)) { 554 if (regen_tmpaddr(ia6) == 0) 555 regen = 1; 556 } 557 558 in6_purgeaddr(&ia6->ia_ifa); 559 560 if (regen) 561 goto addrloop; /* XXX: see below */ 562 } 563 if (IFA6_IS_DEPRECATED(ia6)) { 564 int oldflags = ia6->ia6_flags; 565 566 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 567 568 /* 569 * If a temporary address has just become deprecated, 570 * regenerate a new one if possible. 571 */ 572 if (ip6_use_tempaddr && 573 (ia6->ia6_flags & IN6_IFF_TEMPORARY) && 574 !(oldflags & IN6_IFF_DEPRECATED)) { 575 576 if (regen_tmpaddr(ia6) == 0) { 577 /* 578 * A new temporary address is 579 * generated. 580 * XXX: this means the address chain 581 * has changed while we are still in 582 * the loop. Although the change 583 * would not cause disaster (because 584 * it's not a deletion, but an 585 * addition,) we'd rather restart the 586 * loop just for safety. Or does this 587 * significantly reduce performance?? 588 */ 589 goto addrloop; 590 } 591 } 592 } else { 593 /* 594 * A new RA might have made a deprecated address 595 * preferred. 596 */ 597 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 598 } 599 } 600 601 /* expire prefix list */ 602 pr = nd_prefix.lh_first; 603 while (pr) { 604 /* 605 * check prefix lifetime. 606 * since pltime is just for autoconf, pltime processing for 607 * prefix is not necessary. 608 */ 609 if (pr->ndpr_expire && pr->ndpr_expire < time_second) { 610 struct nd_prefix *t; 611 t = pr->ndpr_next; 612 613 /* 614 * address expiration and prefix expiration are 615 * separate. NEVER perform in6_purgeaddr here. 616 */ 617 618 prelist_remove(pr); 619 pr = t; 620 } else 621 pr = pr->ndpr_next; 622 } 623 mtx_unlock(&nd6_mtx); 624 } 625 626 static int 627 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary 628 address */ 629 { 630 struct ifaddr_container *ifac; 631 struct ifnet *ifp; 632 struct in6_ifaddr *public_ifa6 = NULL; 633 634 ifp = ia6->ia_ifa.ifa_ifp; 635 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 636 struct ifaddr *ifa = ifac->ifa; 637 struct in6_ifaddr *it6; 638 639 if (ifa->ifa_addr->sa_family != AF_INET6) 640 continue; 641 642 it6 = (struct in6_ifaddr *)ifa; 643 644 /* ignore no autoconf addresses. */ 645 if (!(it6->ia6_flags & IN6_IFF_AUTOCONF)) 646 continue; 647 648 /* ignore autoconf addresses with different prefixes. */ 649 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 650 continue; 651 652 /* 653 * Now we are looking at an autoconf address with the same 654 * prefix as ours. If the address is temporary and is still 655 * preferred, do not create another one. It would be rare, but 656 * could happen, for example, when we resume a laptop PC after 657 * a long period. 658 */ 659 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) && 660 !IFA6_IS_DEPRECATED(it6)) { 661 public_ifa6 = NULL; 662 break; 663 } 664 665 /* 666 * This is a public autoconf address that has the same prefix 667 * as ours. If it is preferred, keep it. We can't break the 668 * loop here, because there may be a still-preferred temporary 669 * address with the prefix. 670 */ 671 if (!IFA6_IS_DEPRECATED(it6)) 672 public_ifa6 = it6; 673 } 674 675 if (public_ifa6 != NULL) { 676 int e; 677 678 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { 679 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 680 " tmp addr,errno=%d\n", e); 681 return (-1); 682 } 683 return (0); 684 } 685 686 return (-1); 687 } 688 689 /* 690 * Nuke neighbor cache/prefix/default router management table, right before 691 * ifp goes away. 692 */ 693 void 694 nd6_purge(struct ifnet *ifp) 695 { 696 struct llinfo_nd6 *ln, *nln; 697 struct nd_defrouter *dr, *ndr, drany; 698 struct nd_prefix *pr, *npr; 699 700 /* Nuke default router list entries toward ifp */ 701 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 702 /* 703 * The first entry of the list may be stored in 704 * the routing table, so we'll delete it later. 705 */ 706 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 707 ndr = TAILQ_NEXT(dr, dr_entry); 708 if (dr->ifp == ifp) 709 defrtrlist_del(dr); 710 } 711 dr = TAILQ_FIRST(&nd_defrouter); 712 if (dr->ifp == ifp) 713 defrtrlist_del(dr); 714 } 715 716 /* Nuke prefix list entries toward ifp */ 717 for (pr = nd_prefix.lh_first; pr; pr = npr) { 718 npr = pr->ndpr_next; 719 if (pr->ndpr_ifp == ifp) { 720 /* 721 * Previously, pr->ndpr_addr is removed as well, 722 * but I strongly believe we don't have to do it. 723 * nd6_purge() is only called from in6_ifdetach(), 724 * which removes all the associated interface addresses 725 * by itself. 726 * (jinmei@kame.net 20010129) 727 */ 728 prelist_remove(pr); 729 } 730 } 731 732 /* cancel default outgoing interface setting */ 733 if (nd6_defifindex == ifp->if_index) 734 nd6_setdefaultiface(0); 735 736 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 737 /* refresh default router list */ 738 bzero(&drany, sizeof(drany)); 739 defrouter_delreq(&drany, 0); 740 defrouter_select(); 741 } 742 743 /* 744 * Nuke neighbor cache entries for the ifp. 745 * Note that rt->rt_ifp may not be the same as ifp, 746 * due to KAME goto ours hack. See RTM_RESOLVE case in 747 * nd6_rtrequest(), and ip6_input(). 748 */ 749 ln = llinfo_nd6.ln_next; 750 while (ln && ln != &llinfo_nd6) { 751 struct rtentry *rt; 752 struct sockaddr_dl *sdl; 753 754 nln = ln->ln_next; 755 rt = ln->ln_rt; 756 if (rt && rt->rt_gateway && 757 rt->rt_gateway->sa_family == AF_LINK) { 758 sdl = (struct sockaddr_dl *)rt->rt_gateway; 759 if (sdl->sdl_index == ifp->if_index) 760 nln = nd6_free(rt); 761 } 762 ln = nln; 763 } 764 } 765 766 struct rtentry * 767 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) 768 { 769 struct rtentry *rt; 770 struct sockaddr_in6 sin6; 771 772 bzero(&sin6, sizeof(sin6)); 773 sin6.sin6_len = sizeof(struct sockaddr_in6); 774 sin6.sin6_family = AF_INET6; 775 sin6.sin6_addr = *addr6; 776 777 if (create) 778 rt = rtlookup((struct sockaddr *)&sin6); 779 else 780 rt = rtpurelookup((struct sockaddr *)&sin6); 781 if (rt && !(rt->rt_flags & RTF_LLINFO)) { 782 /* 783 * This is the case for the default route. 784 * If we want to create a neighbor cache for the address, we 785 * should free the route for the destination and allocate an 786 * interface route. 787 */ 788 if (create) { 789 --rt->rt_refcnt; 790 rt = NULL; 791 } 792 } 793 if (!rt) { 794 if (create && ifp) { 795 int e; 796 797 /* 798 * If no route is available and create is set, 799 * we allocate a host route for the destination 800 * and treat it like an interface route. 801 * This hack is necessary for a neighbor which can't 802 * be covered by our own prefix. 803 */ 804 struct ifaddr *ifa = 805 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 806 if (ifa == NULL) 807 return (NULL); 808 809 /* 810 * Create a new route. RTF_LLINFO is necessary 811 * to create a Neighbor Cache entry for the 812 * destination in nd6_rtrequest which will be 813 * called in rtrequest via ifa->ifa_rtrequest. 814 */ 815 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 816 ifa->ifa_addr, 817 (struct sockaddr *)&all1_sa, 818 (ifa->ifa_flags | 819 RTF_HOST | RTF_LLINFO) & 820 ~RTF_CLONING, 821 &rt)) != 0) 822 log(LOG_ERR, 823 "nd6_lookup: failed to add route for a " 824 "neighbor(%s), errno=%d\n", 825 ip6_sprintf(addr6), e); 826 if (rt == NULL) 827 return (NULL); 828 if (rt->rt_llinfo) { 829 struct llinfo_nd6 *ln = 830 (struct llinfo_nd6 *)rt->rt_llinfo; 831 ln->ln_state = ND6_LLINFO_NOSTATE; 832 } 833 } else 834 return (NULL); 835 } 836 rt->rt_refcnt--; 837 /* 838 * Validation for the entry. 839 * Note that the check for rt_llinfo is necessary because a cloned 840 * route from a parent route that has the L flag (e.g. the default 841 * route to a p2p interface) may have the flag, too, while the 842 * destination is not actually a neighbor. 843 * XXX: we can't use rt->rt_ifp to check for the interface, since 844 * it might be the loopback interface if the entry is for our 845 * own address on a non-loopback interface. Instead, we should 846 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 847 * interface. 848 */ 849 if ((rt->rt_flags & RTF_GATEWAY) || !(rt->rt_flags & RTF_LLINFO) || 850 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 851 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 852 if (create) { 853 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", 854 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 855 /* xxx more logs... kazu */ 856 } 857 return (NULL); 858 } 859 return (rt); 860 } 861 862 /* 863 * Detect if a given IPv6 address identifies a neighbor on a given link. 864 * XXX: should take care of the destination of a p2p link? 865 */ 866 int 867 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 868 { 869 struct ifaddr_container *ifac; 870 int i; 871 872 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 873 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 874 875 /* 876 * A link-local address is always a neighbor. 877 * XXX: we should use the sin6_scope_id field rather than the embedded 878 * interface index. 879 */ 880 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 881 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 882 return (1); 883 884 /* 885 * If the address matches one of our addresses, 886 * it should be a neighbor. 887 */ 888 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 889 struct ifaddr *ifa = ifac->ifa; 890 891 if (ifa->ifa_addr->sa_family != AF_INET6) 892 next: continue; 893 894 for (i = 0; i < 4; i++) { 895 if ((IFADDR6(ifa).s6_addr32[i] ^ 896 addr->sin6_addr.s6_addr32[i]) & 897 IFMASK6(ifa).s6_addr32[i]) 898 goto next; 899 } 900 return (1); 901 } 902 903 /* 904 * Even if the address matches none of our addresses, it might be 905 * in the neighbor cache. 906 */ 907 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 908 return (1); 909 910 return (0); 911 #undef IFADDR6 912 #undef IFMASK6 913 } 914 915 /* 916 * Free an nd6 llinfo entry. 917 */ 918 struct llinfo_nd6 * 919 nd6_free(struct rtentry *rt) 920 { 921 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 922 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 923 struct nd_defrouter *dr; 924 925 /* 926 * we used to have kpfctlinput(PRC_HOSTDEAD) here. 927 * even though it is not harmful, it was not really necessary. 928 */ 929 930 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 931 mtx_lock(&nd6_mtx); 932 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 933 rt->rt_ifp); 934 935 if (ln->ln_router || dr) { 936 /* 937 * rt6_flush must be called whether or not the neighbor 938 * is in the Default Router List. 939 * See a corresponding comment in nd6_na_input(). 940 */ 941 rt6_flush(&in6, rt->rt_ifp); 942 } 943 944 if (dr) { 945 /* 946 * Unreachablity of a router might affect the default 947 * router selection and on-link detection of advertised 948 * prefixes. 949 */ 950 951 /* 952 * Temporarily fake the state to choose a new default 953 * router and to perform on-link determination of 954 * prefixes correctly. 955 * Below the state will be set correctly, 956 * or the entry itself will be deleted. 957 */ 958 ln->ln_state = ND6_LLINFO_INCOMPLETE; 959 960 /* 961 * Since defrouter_select() does not affect the 962 * on-link determination and MIP6 needs the check 963 * before the default router selection, we perform 964 * the check now. 965 */ 966 pfxlist_onlink_check(); 967 968 if (dr == TAILQ_FIRST(&nd_defrouter)) { 969 /* 970 * It is used as the current default router, 971 * so we have to move it to the end of the 972 * list and choose a new one. 973 * XXX: it is not very efficient if this is 974 * the only router. 975 */ 976 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 977 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 978 979 defrouter_select(); 980 } 981 } 982 mtx_unlock(&nd6_mtx); 983 } 984 985 /* 986 * Before deleting the entry, remember the next entry as the 987 * return value. We need this because pfxlist_onlink_check() above 988 * might have freed other entries (particularly the old next entry) as 989 * a side effect (XXX). 990 */ 991 next = ln->ln_next; 992 993 /* 994 * Detach the route from the routing tree and the list of neighbor 995 * caches, and disable the route entry not to be used in already 996 * cached routes. 997 */ 998 rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL); 999 1000 return (next); 1001 } 1002 1003 /* 1004 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1005 * 1006 * XXX cost-effective metods? 1007 */ 1008 void 1009 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1010 { 1011 struct llinfo_nd6 *ln; 1012 1013 /* 1014 * If the caller specified "rt", use that. Otherwise, resolve the 1015 * routing table by supplied "dst6". 1016 */ 1017 if (!rt) { 1018 if (!dst6) 1019 return; 1020 if (!(rt = nd6_lookup(dst6, 0, NULL))) 1021 return; 1022 } 1023 1024 if ((rt->rt_flags & RTF_GATEWAY) || 1025 !(rt->rt_flags & RTF_LLINFO) || 1026 rt->rt_llinfo == NULL || rt->rt_gateway == NULL || 1027 rt->rt_gateway->sa_family != AF_LINK) { 1028 /* This is not a host route. */ 1029 return; 1030 } 1031 1032 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1033 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1034 return; 1035 1036 /* 1037 * if we get upper-layer reachability confirmation many times, 1038 * it is possible we have false information. 1039 */ 1040 if (!force) { 1041 ln->ln_byhint++; 1042 if (ln->ln_byhint > nd6_maxnudhint) 1043 return; 1044 } 1045 1046 ln->ln_state = ND6_LLINFO_REACHABLE; 1047 if (ln->ln_expire) 1048 ln->ln_expire = time_second + 1049 ND_IFINFO(rt->rt_ifp)->reachable; 1050 } 1051 1052 void 1053 nd6_rtrequest(int req, struct rtentry *rt, 1054 struct rt_addrinfo *info) /* xxx unused */ 1055 { 1056 struct sockaddr *gate = rt->rt_gateway; 1057 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1058 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1059 struct ifnet *ifp = rt->rt_ifp; 1060 struct ifaddr *ifa; 1061 1062 if ((rt->rt_flags & RTF_GATEWAY)) 1063 return; 1064 1065 if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) { 1066 /* 1067 * This is probably an interface direct route for a link 1068 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1069 * We do not need special treatment below for such a route. 1070 * Moreover, the RTF_LLINFO flag which would be set below 1071 * would annoy the ndp(8) command. 1072 */ 1073 return; 1074 } 1075 1076 if (req == RTM_RESOLVE && 1077 (nd6_need_cache(ifp) == 0 || /* stf case */ 1078 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1079 /* 1080 * FreeBSD and BSD/OS often make a cloned host route based 1081 * on a less-specific route (e.g. the default route). 1082 * If the less specific route does not have a "gateway" 1083 * (this is the case when the route just goes to a p2p or an 1084 * stf interface), we'll mistakenly make a neighbor cache for 1085 * the host route, and will see strange neighbor solicitation 1086 * for the corresponding destination. In order to avoid the 1087 * confusion, we check if the destination of the route is 1088 * a neighbor in terms of neighbor discovery, and stop the 1089 * process if not. Additionally, we remove the LLINFO flag 1090 * so that ndp(8) will not try to get the neighbor information 1091 * of the destination. 1092 */ 1093 rt->rt_flags &= ~RTF_LLINFO; 1094 return; 1095 } 1096 1097 switch (req) { 1098 case RTM_ADD: 1099 /* 1100 * There is no backward compatibility :) 1101 * 1102 * if (!(rt->rt_flags & RTF_HOST) && 1103 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1104 * rt->rt_flags |= RTF_CLONING; 1105 */ 1106 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1107 /* 1108 * Case 1: This route should come from 1109 * a route to interface. RTF_LLINFO flag is set 1110 * for a host route whose destination should be 1111 * treated as on-link. 1112 */ 1113 rt_setgate(rt, rt_key(rt), 1114 (struct sockaddr *)&null_sdl, 1115 RTL_DONTREPORT); 1116 gate = rt->rt_gateway; 1117 SDL(gate)->sdl_type = ifp->if_type; 1118 SDL(gate)->sdl_index = ifp->if_index; 1119 if (ln) 1120 ln->ln_expire = time_second; 1121 #if 1 1122 if (ln && ln->ln_expire == 0) { 1123 /* kludge for desktops */ 1124 #if 0 1125 kprintf("nd6_rtequest: time.tv_sec is zero; " 1126 "treat it as 1\n"); 1127 #endif 1128 ln->ln_expire = 1; 1129 } 1130 #endif 1131 if ((rt->rt_flags & RTF_CLONING)) 1132 break; 1133 } 1134 /* 1135 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1136 * We don't do that here since llinfo is not ready yet. 1137 * 1138 * There are also couple of other things to be discussed: 1139 * - unsolicited NA code needs improvement beforehand 1140 * - RFC2461 says we MAY send multicast unsolicited NA 1141 * (7.2.6 paragraph 4), however, it also says that we 1142 * SHOULD provide a mechanism to prevent multicast NA storm. 1143 * we don't have anything like it right now. 1144 * note that the mechanism needs a mutual agreement 1145 * between proxies, which means that we need to implement 1146 * a new protocol, or a new kludge. 1147 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1148 * we need to check ip6forwarding before sending it. 1149 * (or should we allow proxy ND configuration only for 1150 * routers? there's no mention about proxy ND from hosts) 1151 */ 1152 #if 0 1153 /* XXX it does not work */ 1154 if (rt->rt_flags & RTF_ANNOUNCE) 1155 nd6_na_output(ifp, 1156 &SIN6(rt_key(rt))->sin6_addr, 1157 &SIN6(rt_key(rt))->sin6_addr, 1158 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1159 1, NULL); 1160 #endif 1161 /* FALLTHROUGH */ 1162 case RTM_RESOLVE: 1163 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1164 /* 1165 * Address resolution isn't necessary for a point to 1166 * point link, so we can skip this test for a p2p link. 1167 */ 1168 if (gate->sa_family != AF_LINK || 1169 gate->sa_len < sizeof(null_sdl)) { 1170 log(LOG_DEBUG, 1171 "nd6_rtrequest: bad gateway value: %s\n", 1172 if_name(ifp)); 1173 break; 1174 } 1175 SDL(gate)->sdl_type = ifp->if_type; 1176 SDL(gate)->sdl_index = ifp->if_index; 1177 } 1178 if (ln != NULL) 1179 break; /* This happens on a route change */ 1180 /* 1181 * Case 2: This route may come from cloning, or a manual route 1182 * add with a LL address. 1183 */ 1184 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1185 rt->rt_llinfo = (caddr_t)ln; 1186 if (!ln) { 1187 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1188 break; 1189 } 1190 nd6_inuse++; 1191 nd6_allocated++; 1192 bzero(ln, sizeof(*ln)); 1193 ln->ln_rt = rt; 1194 /* this is required for "ndp" command. - shin */ 1195 if (req == RTM_ADD) { 1196 /* 1197 * gate should have some valid AF_LINK entry, 1198 * and ln->ln_expire should have some lifetime 1199 * which is specified by ndp command. 1200 */ 1201 ln->ln_state = ND6_LLINFO_REACHABLE; 1202 ln->ln_byhint = 0; 1203 } else { 1204 /* 1205 * When req == RTM_RESOLVE, rt is created and 1206 * initialized in rtrequest(), so rt_expire is 0. 1207 */ 1208 ln->ln_state = ND6_LLINFO_NOSTATE; 1209 ln->ln_expire = time_second; 1210 } 1211 rt->rt_flags |= RTF_LLINFO; 1212 ln->ln_next = llinfo_nd6.ln_next; 1213 llinfo_nd6.ln_next = ln; 1214 ln->ln_prev = &llinfo_nd6; 1215 ln->ln_next->ln_prev = ln; 1216 1217 /* 1218 * check if rt_key(rt) is one of my address assigned 1219 * to the interface. 1220 */ 1221 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1222 &SIN6(rt_key(rt))->sin6_addr); 1223 if (ifa) { 1224 caddr_t macp = nd6_ifptomac(ifp); 1225 ln->ln_expire = 0; 1226 ln->ln_state = ND6_LLINFO_REACHABLE; 1227 ln->ln_byhint = 0; 1228 if (macp) { 1229 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1230 SDL(gate)->sdl_alen = ifp->if_addrlen; 1231 } 1232 if (nd6_useloopback) { 1233 rt->rt_ifp = &loif[0]; /* XXX */ 1234 /* 1235 * Make sure rt_ifa be equal to the ifaddr 1236 * corresponding to the address. 1237 * We need this because when we refer 1238 * rt_ifa->ia6_flags in ip6_input, we assume 1239 * that the rt_ifa points to the address instead 1240 * of the loopback address. 1241 */ 1242 if (ifa != rt->rt_ifa) { 1243 IFAFREE(rt->rt_ifa); 1244 IFAREF(ifa); 1245 rt->rt_ifa = ifa; 1246 } 1247 } 1248 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1249 ln->ln_expire = 0; 1250 ln->ln_state = ND6_LLINFO_REACHABLE; 1251 ln->ln_byhint = 0; 1252 1253 /* join solicited node multicast for proxy ND */ 1254 if (ifp->if_flags & IFF_MULTICAST) { 1255 struct in6_addr llsol; 1256 int error; 1257 1258 llsol = SIN6(rt_key(rt))->sin6_addr; 1259 llsol.s6_addr16[0] = htons(0xff02); 1260 llsol.s6_addr16[1] = htons(ifp->if_index); 1261 llsol.s6_addr32[1] = 0; 1262 llsol.s6_addr32[2] = htonl(1); 1263 llsol.s6_addr8[12] = 0xff; 1264 1265 if (!in6_addmulti(&llsol, ifp, &error)) { 1266 nd6log((LOG_ERR, "%s: failed to join " 1267 "%s (errno=%d)\n", if_name(ifp), 1268 ip6_sprintf(&llsol), error)); 1269 } 1270 } 1271 } 1272 break; 1273 1274 case RTM_DELETE: 1275 if (!ln) 1276 break; 1277 /* leave from solicited node multicast for proxy ND */ 1278 if ((rt->rt_flags & RTF_ANNOUNCE) && 1279 (ifp->if_flags & IFF_MULTICAST)) { 1280 struct in6_addr llsol; 1281 struct in6_multi *in6m; 1282 1283 llsol = SIN6(rt_key(rt))->sin6_addr; 1284 llsol.s6_addr16[0] = htons(0xff02); 1285 llsol.s6_addr16[1] = htons(ifp->if_index); 1286 llsol.s6_addr32[1] = 0; 1287 llsol.s6_addr32[2] = htonl(1); 1288 llsol.s6_addr8[12] = 0xff; 1289 1290 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1291 if (in6m) 1292 in6_delmulti(in6m); 1293 } 1294 nd6_inuse--; 1295 ln->ln_next->ln_prev = ln->ln_prev; 1296 ln->ln_prev->ln_next = ln->ln_next; 1297 ln->ln_prev = NULL; 1298 rt->rt_llinfo = 0; 1299 rt->rt_flags &= ~RTF_LLINFO; 1300 if (ln->ln_hold) 1301 m_freem(ln->ln_hold); 1302 Free((caddr_t)ln); 1303 } 1304 } 1305 1306 int 1307 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1308 { 1309 struct in6_drlist *drl = (struct in6_drlist *)data; 1310 struct in6_prlist *prl = (struct in6_prlist *)data; 1311 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1312 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1313 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1314 struct nd_defrouter *dr, any; 1315 struct nd_prefix *pr; 1316 struct rtentry *rt; 1317 int i = 0, error = 0; 1318 1319 switch (cmd) { 1320 case SIOCGDRLST_IN6: 1321 /* 1322 * obsolete API, use sysctl under net.inet6.icmp6 1323 */ 1324 bzero(drl, sizeof(*drl)); 1325 mtx_lock(&nd6_mtx); 1326 dr = TAILQ_FIRST(&nd_defrouter); 1327 while (dr && i < DRLSTSIZ) { 1328 drl->defrouter[i].rtaddr = dr->rtaddr; 1329 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1330 /* XXX: need to this hack for KAME stack */ 1331 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1332 } else 1333 log(LOG_ERR, 1334 "default router list contains a " 1335 "non-linklocal address(%s)\n", 1336 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1337 1338 drl->defrouter[i].flags = dr->flags; 1339 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1340 drl->defrouter[i].expire = dr->expire; 1341 drl->defrouter[i].if_index = dr->ifp->if_index; 1342 i++; 1343 dr = TAILQ_NEXT(dr, dr_entry); 1344 } 1345 mtx_unlock(&nd6_mtx); 1346 break; 1347 case SIOCGPRLST_IN6: 1348 /* 1349 * obsolete API, use sysctl under net.inet6.icmp6 1350 */ 1351 /* 1352 * XXX meaning of fields, especialy "raflags", is very 1353 * differnet between RA prefix list and RR/static prefix list. 1354 * how about separating ioctls into two? 1355 */ 1356 bzero(prl, sizeof(*prl)); 1357 mtx_lock(&nd6_mtx); 1358 pr = nd_prefix.lh_first; 1359 while (pr && i < PRLSTSIZ) { 1360 struct nd_pfxrouter *pfr; 1361 int j; 1362 1363 in6_embedscope(&prl->prefix[i].prefix, 1364 &pr->ndpr_prefix, NULL, NULL); 1365 prl->prefix[i].raflags = pr->ndpr_raf; 1366 prl->prefix[i].prefixlen = pr->ndpr_plen; 1367 prl->prefix[i].vltime = pr->ndpr_vltime; 1368 prl->prefix[i].pltime = pr->ndpr_pltime; 1369 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1370 prl->prefix[i].expire = pr->ndpr_expire; 1371 1372 pfr = pr->ndpr_advrtrs.lh_first; 1373 j = 0; 1374 while (pfr) { 1375 if (j < DRLSTSIZ) { 1376 #define RTRADDR prl->prefix[i].advrtr[j] 1377 RTRADDR = pfr->router->rtaddr; 1378 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1379 /* XXX: hack for KAME */ 1380 RTRADDR.s6_addr16[1] = 0; 1381 } else 1382 log(LOG_ERR, 1383 "a router(%s) advertises " 1384 "a prefix with " 1385 "non-link local address\n", 1386 ip6_sprintf(&RTRADDR)); 1387 #undef RTRADDR 1388 } 1389 j++; 1390 pfr = pfr->pfr_next; 1391 } 1392 prl->prefix[i].advrtrs = j; 1393 prl->prefix[i].origin = PR_ORIG_RA; 1394 1395 i++; 1396 pr = pr->ndpr_next; 1397 } 1398 { 1399 struct rr_prefix *rpp; 1400 1401 for (rpp = LIST_FIRST(&rr_prefix); rpp; 1402 rpp = LIST_NEXT(rpp, rp_entry)) { 1403 if (i >= PRLSTSIZ) 1404 break; 1405 in6_embedscope(&prl->prefix[i].prefix, 1406 &pr->ndpr_prefix, NULL, NULL); 1407 prl->prefix[i].raflags = rpp->rp_raf; 1408 prl->prefix[i].prefixlen = rpp->rp_plen; 1409 prl->prefix[i].vltime = rpp->rp_vltime; 1410 prl->prefix[i].pltime = rpp->rp_pltime; 1411 prl->prefix[i].if_index = rpp->rp_ifp->if_index; 1412 prl->prefix[i].expire = rpp->rp_expire; 1413 prl->prefix[i].advrtrs = 0; 1414 prl->prefix[i].origin = rpp->rp_origin; 1415 i++; 1416 } 1417 } 1418 mtx_unlock(&nd6_mtx); 1419 1420 break; 1421 case OSIOCGIFINFO_IN6: 1422 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1423 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1424 ndi->ndi.linkmtu = ND_IFINFO(ifp)->linkmtu; 1425 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1426 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1427 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1428 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1429 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1430 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1431 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1432 ndi->ndi.receivedra = ND_IFINFO(ifp)->receivedra; 1433 break; 1434 case SIOCGIFINFO_IN6: 1435 ndi->ndi = *ND_IFINFO(ifp); 1436 break; 1437 case SIOCSIFINFO_FLAGS: 1438 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1439 break; 1440 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1441 /* flush default router list */ 1442 /* 1443 * xxx sumikawa: should not delete route if default 1444 * route equals to the top of default router list 1445 */ 1446 bzero(&any, sizeof(any)); 1447 defrouter_delreq(&any, 0); 1448 defrouter_select(); 1449 /* xxx sumikawa: flush prefix list */ 1450 break; 1451 case SIOCSPFXFLUSH_IN6: 1452 { 1453 /* flush all the prefix advertised by routers */ 1454 struct nd_prefix *pr, *next; 1455 1456 mtx_lock(&nd6_mtx); 1457 for (pr = nd_prefix.lh_first; pr; pr = next) { 1458 struct in6_ifaddr *ia, *ia_next; 1459 1460 next = pr->ndpr_next; 1461 1462 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1463 continue; /* XXX */ 1464 1465 /* do we really have to remove addresses as well? */ 1466 for (ia = in6_ifaddr; ia; ia = ia_next) { 1467 /* ia might be removed. keep the next ptr. */ 1468 ia_next = ia->ia_next; 1469 1470 if (!(ia->ia6_flags & IN6_IFF_AUTOCONF)) 1471 continue; 1472 1473 if (ia->ia6_ndpr == pr) 1474 in6_purgeaddr(&ia->ia_ifa); 1475 } 1476 prelist_remove(pr); 1477 } 1478 mtx_unlock(&nd6_mtx); 1479 break; 1480 } 1481 case SIOCSRTRFLUSH_IN6: 1482 { 1483 /* flush all the default routers */ 1484 struct nd_defrouter *dr, *next; 1485 1486 mtx_lock(&nd6_mtx); 1487 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1488 /* 1489 * The first entry of the list may be stored in 1490 * the routing table, so we'll delete it later. 1491 */ 1492 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1493 next = TAILQ_NEXT(dr, dr_entry); 1494 defrtrlist_del(dr); 1495 } 1496 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1497 } 1498 mtx_unlock(&nd6_mtx); 1499 break; 1500 } 1501 case SIOCGNBRINFO_IN6: 1502 { 1503 struct llinfo_nd6 *ln; 1504 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1505 1506 /* 1507 * XXX: KAME specific hack for scoped addresses 1508 * XXXX: for other scopes than link-local? 1509 */ 1510 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1511 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1512 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1513 1514 if (*idp == 0) 1515 *idp = htons(ifp->if_index); 1516 } 1517 1518 mtx_lock(&nd6_mtx); 1519 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1520 error = EINVAL; 1521 mtx_unlock(&nd6_mtx); 1522 break; 1523 } 1524 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1525 nbi->state = ln->ln_state; 1526 nbi->asked = ln->ln_asked; 1527 nbi->isrouter = ln->ln_router; 1528 nbi->expire = ln->ln_expire; 1529 mtx_unlock(&nd6_mtx); 1530 1531 break; 1532 } 1533 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1534 ndif->ifindex = nd6_defifindex; 1535 break; 1536 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1537 return (nd6_setdefaultiface(ndif->ifindex)); 1538 break; 1539 } 1540 return (error); 1541 } 1542 1543 /* 1544 * Create neighbor cache entry and cache link-layer address, 1545 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1546 */ 1547 struct rtentry * 1548 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1549 int lladdrlen, 1550 int type, /* ICMP6 type */ 1551 int code /* type dependent information */) 1552 { 1553 struct rtentry *rt = NULL; 1554 struct llinfo_nd6 *ln = NULL; 1555 int is_newentry; 1556 struct sockaddr_dl *sdl = NULL; 1557 int do_update; 1558 int olladdr; 1559 int llchange; 1560 int newstate = 0; 1561 1562 if (!ifp) 1563 panic("ifp == NULL in nd6_cache_lladdr"); 1564 if (!from) 1565 panic("from == NULL in nd6_cache_lladdr"); 1566 1567 /* nothing must be updated for unspecified address */ 1568 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1569 return NULL; 1570 1571 /* 1572 * Validation about ifp->if_addrlen and lladdrlen must be done in 1573 * the caller. 1574 * 1575 * XXX If the link does not have link-layer adderss, what should 1576 * we do? (ifp->if_addrlen == 0) 1577 * Spec says nothing in sections for RA, RS and NA. There's small 1578 * description on it in NS section (RFC 2461 7.2.3). 1579 */ 1580 1581 rt = nd6_lookup(from, 0, ifp); 1582 if (!rt) { 1583 #if 0 1584 /* nothing must be done if there's no lladdr */ 1585 if (!lladdr || !lladdrlen) 1586 return NULL; 1587 #endif 1588 1589 rt = nd6_lookup(from, 1, ifp); 1590 is_newentry = 1; 1591 } else { 1592 /* do nothing if static ndp is set */ 1593 if (rt->rt_flags & RTF_STATIC) 1594 return NULL; 1595 is_newentry = 0; 1596 } 1597 1598 if (!rt) 1599 return NULL; 1600 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1601 fail: 1602 nd6_free(rt); 1603 return NULL; 1604 } 1605 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1606 if (!ln) 1607 goto fail; 1608 if (!rt->rt_gateway) 1609 goto fail; 1610 if (rt->rt_gateway->sa_family != AF_LINK) 1611 goto fail; 1612 sdl = SDL(rt->rt_gateway); 1613 1614 olladdr = (sdl->sdl_alen) ? 1 : 0; 1615 if (olladdr && lladdr) { 1616 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1617 llchange = 1; 1618 else 1619 llchange = 0; 1620 } else 1621 llchange = 0; 1622 1623 /* 1624 * newentry olladdr lladdr llchange (*=record) 1625 * 0 n n -- (1) 1626 * 0 y n -- (2) 1627 * 0 n y -- (3) * STALE 1628 * 0 y y n (4) * 1629 * 0 y y y (5) * STALE 1630 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1631 * 1 -- y -- (7) * STALE 1632 */ 1633 1634 if (lladdr) { /* (3-5) and (7) */ 1635 /* 1636 * Record source link-layer address 1637 * XXX is it dependent to ifp->if_type? 1638 */ 1639 sdl->sdl_alen = ifp->if_addrlen; 1640 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1641 } 1642 1643 if (!is_newentry) { 1644 if ((!olladdr && lladdr) /* (3) */ 1645 || (olladdr && lladdr && llchange)) { /* (5) */ 1646 do_update = 1; 1647 newstate = ND6_LLINFO_STALE; 1648 } else /* (1-2,4) */ 1649 do_update = 0; 1650 } else { 1651 do_update = 1; 1652 if (!lladdr) /* (6) */ 1653 newstate = ND6_LLINFO_NOSTATE; 1654 else /* (7) */ 1655 newstate = ND6_LLINFO_STALE; 1656 } 1657 1658 if (do_update) { 1659 /* 1660 * Update the state of the neighbor cache. 1661 */ 1662 ln->ln_state = newstate; 1663 1664 if (ln->ln_state == ND6_LLINFO_STALE) { 1665 /* 1666 * XXX: since nd6_output() below will cause 1667 * state tansition to DELAY and reset the timer, 1668 * we must set the timer now, although it is actually 1669 * meaningless. 1670 */ 1671 ln->ln_expire = time_second + nd6_gctimer; 1672 1673 if (ln->ln_hold) { 1674 /* 1675 * we assume ifp is not a p2p here, so just 1676 * set the 2nd argument as the 1st one. 1677 */ 1678 nd6_output(ifp, ifp, ln->ln_hold, 1679 (struct sockaddr_in6 *)rt_key(rt), 1680 rt); 1681 ln->ln_hold = NULL; 1682 } 1683 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1684 /* probe right away */ 1685 ln->ln_expire = time_second; 1686 } 1687 } 1688 1689 /* 1690 * ICMP6 type dependent behavior. 1691 * 1692 * NS: clear IsRouter if new entry 1693 * RS: clear IsRouter 1694 * RA: set IsRouter if there's lladdr 1695 * redir: clear IsRouter if new entry 1696 * 1697 * RA case, (1): 1698 * The spec says that we must set IsRouter in the following cases: 1699 * - If lladdr exist, set IsRouter. This means (1-5). 1700 * - If it is old entry (!newentry), set IsRouter. This means (7). 1701 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1702 * A quetion arises for (1) case. (1) case has no lladdr in the 1703 * neighbor cache, this is similar to (6). 1704 * This case is rare but we figured that we MUST NOT set IsRouter. 1705 * 1706 * newentry olladdr lladdr llchange NS RS RA redir 1707 * D R 1708 * 0 n n -- (1) c ? s 1709 * 0 y n -- (2) c s s 1710 * 0 n y -- (3) c s s 1711 * 0 y y n (4) c s s 1712 * 0 y y y (5) c s s 1713 * 1 -- n -- (6) c c c s 1714 * 1 -- y -- (7) c c s c s 1715 * 1716 * (c=clear s=set) 1717 */ 1718 switch (type & 0xff) { 1719 case ND_NEIGHBOR_SOLICIT: 1720 /* 1721 * New entry must have is_router flag cleared. 1722 */ 1723 if (is_newentry) /* (6-7) */ 1724 ln->ln_router = 0; 1725 break; 1726 case ND_REDIRECT: 1727 /* 1728 * If the icmp is a redirect to a better router, always set the 1729 * is_router flag. Otherwise, if the entry is newly created, 1730 * clear the flag. [RFC 2461, sec 8.3] 1731 */ 1732 if (code == ND_REDIRECT_ROUTER) 1733 ln->ln_router = 1; 1734 else if (is_newentry) /* (6-7) */ 1735 ln->ln_router = 0; 1736 break; 1737 case ND_ROUTER_SOLICIT: 1738 /* 1739 * is_router flag must always be cleared. 1740 */ 1741 ln->ln_router = 0; 1742 break; 1743 case ND_ROUTER_ADVERT: 1744 /* 1745 * Mark an entry with lladdr as a router. 1746 */ 1747 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ 1748 || (is_newentry && lladdr)) { /* (7) */ 1749 ln->ln_router = 1; 1750 } 1751 break; 1752 } 1753 1754 /* 1755 * When the link-layer address of a router changes, select the 1756 * best router again. In particular, when the neighbor entry is newly 1757 * created, it might affect the selection policy. 1758 * Question: can we restrict the first condition to the "is_newentry" 1759 * case? 1760 * XXX: when we hear an RA from a new router with the link-layer 1761 * address option, defrouter_select() is called twice, since 1762 * defrtrlist_update called the function as well. However, I believe 1763 * we can compromise the overhead, since it only happens the first 1764 * time. 1765 * XXX: although defrouter_select() should not have a bad effect 1766 * for those are not autoconfigured hosts, we explicitly avoid such 1767 * cases for safety. 1768 */ 1769 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1770 defrouter_select(); 1771 1772 return rt; 1773 } 1774 1775 static void 1776 nd6_slowtimo(void *ignored_arg) 1777 { 1778 struct nd_ifinfo *nd6if; 1779 struct ifnet *ifp; 1780 1781 mtx_lock(&nd6_mtx); 1782 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1783 nd6_slowtimo, NULL); 1784 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 1785 nd6if = ND_IFINFO(ifp); 1786 if (nd6if->basereachable && /* already initialized */ 1787 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1788 /* 1789 * Since reachable time rarely changes by router 1790 * advertisements, we SHOULD insure that a new random 1791 * value gets recomputed at least once every few hours. 1792 * (RFC 2461, 6.3.4) 1793 */ 1794 nd6if->recalctm = nd6_recalc_reachtm_interval; 1795 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1796 } 1797 } 1798 mtx_unlock(&nd6_mtx); 1799 } 1800 1801 #define gotoerr(e) { error = (e); goto bad;} 1802 1803 int 1804 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1805 struct sockaddr_in6 *dst, struct rtentry *rt) 1806 { 1807 struct llinfo_nd6 *ln = NULL; 1808 int error = 0; 1809 1810 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1811 goto sendpkt; 1812 1813 if (nd6_need_cache(ifp) == 0) 1814 goto sendpkt; 1815 1816 /* 1817 * next hop determination. This routine is derived from ether_outpout. 1818 */ 1819 if (rt != NULL) { 1820 if (!(rt->rt_flags & RTF_UP)) { 1821 rt = rtlookup((struct sockaddr *)dst); 1822 if (rt == NULL) 1823 gotoerr(EHOSTUNREACH); 1824 rt->rt_refcnt--; 1825 if (rt->rt_ifp != ifp) { 1826 /* XXX: loop care? */ 1827 return nd6_output(ifp, origifp, m, dst, rt); 1828 } 1829 } 1830 if (rt->rt_flags & RTF_GATEWAY) { 1831 struct sockaddr_in6 *gw6; 1832 1833 /* 1834 * We skip link-layer address resolution and NUD 1835 * if the gateway is not a neighbor from ND point 1836 * of view, regardless of the value of nd_ifinfo.flags. 1837 * The second condition is a bit tricky; we skip 1838 * if the gateway is our own address, which is 1839 * sometimes used to install a route to a p2p link. 1840 */ 1841 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1842 if (!nd6_is_addr_neighbor(gw6, ifp) || 1843 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1844 /* 1845 * We allow this kind of tricky route only 1846 * when the outgoing interface is p2p. 1847 * XXX: we may need a more generic rule here. 1848 */ 1849 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1850 gotoerr(EHOSTUNREACH); 1851 1852 goto sendpkt; 1853 } 1854 1855 if (rt->rt_gwroute == NULL) { 1856 rt->rt_gwroute = rtlookup(rt->rt_gateway); 1857 if (rt->rt_gwroute == NULL) 1858 gotoerr(EHOSTUNREACH); 1859 } else if (!(rt->rt_gwroute->rt_flags & RTF_UP)) { 1860 rtfree(rt->rt_gwroute); 1861 rt->rt_gwroute = rtlookup(rt->rt_gateway); 1862 if (rt->rt_gwroute == NULL) 1863 gotoerr(EHOSTUNREACH); 1864 } 1865 } 1866 } 1867 1868 /* 1869 * Address resolution or Neighbor Unreachability Detection 1870 * for the next hop. 1871 * At this point, the destination of the packet must be a unicast 1872 * or an anycast address(i.e. not a multicast). 1873 */ 1874 1875 /* Look up the neighbor cache for the nexthop */ 1876 if (rt && (rt->rt_flags & RTF_LLINFO)) 1877 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1878 else { 1879 /* 1880 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1881 * the condition below is not very efficient. But we believe 1882 * it is tolerable, because this should be a rare case. 1883 */ 1884 if (nd6_is_addr_neighbor(dst, ifp) && 1885 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1886 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1887 } 1888 if (!ln || !rt) { 1889 if (!(ifp->if_flags & IFF_POINTOPOINT) && 1890 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1891 log(LOG_DEBUG, 1892 "nd6_output: can't allocate llinfo for %s " 1893 "(ln=%p, rt=%p)\n", 1894 ip6_sprintf(&dst->sin6_addr), ln, rt); 1895 gotoerr(EIO); /* XXX: good error? */ 1896 } 1897 1898 goto sendpkt; /* send anyway */ 1899 } 1900 1901 /* We don't have to do link-layer address resolution on a p2p link. */ 1902 if ((ifp->if_flags & IFF_POINTOPOINT) && 1903 ln->ln_state < ND6_LLINFO_REACHABLE) { 1904 ln->ln_state = ND6_LLINFO_STALE; 1905 ln->ln_expire = time_second + nd6_gctimer; 1906 } 1907 1908 /* 1909 * The first time we send a packet to a neighbor whose entry is 1910 * STALE, we have to change the state to DELAY and a sets a timer to 1911 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1912 * neighbor unreachability detection on expiration. 1913 * (RFC 2461 7.3.3) 1914 */ 1915 if (ln->ln_state == ND6_LLINFO_STALE) { 1916 ln->ln_asked = 0; 1917 ln->ln_state = ND6_LLINFO_DELAY; 1918 ln->ln_expire = time_second + nd6_delay; 1919 } 1920 1921 /* 1922 * If the neighbor cache entry has a state other than INCOMPLETE 1923 * (i.e. its link-layer address is already resolved), just 1924 * send the packet. 1925 */ 1926 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1927 goto sendpkt; 1928 1929 /* 1930 * There is a neighbor cache entry, but no ethernet address 1931 * response yet. Replace the held mbuf (if any) with this 1932 * latest one. 1933 * 1934 * This code conforms to the rate-limiting rule described in Section 1935 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1936 * an NS below. 1937 */ 1938 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1939 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1940 if (ln->ln_hold) 1941 m_freem(ln->ln_hold); 1942 ln->ln_hold = m; 1943 if (ln->ln_expire) { 1944 if (ln->ln_asked < nd6_mmaxtries && 1945 ln->ln_expire < time_second) { 1946 ln->ln_asked++; 1947 ln->ln_expire = time_second + 1948 ND_IFINFO(ifp)->retrans / 1000; 1949 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1950 } 1951 } 1952 return (0); 1953 1954 sendpkt: 1955 if (ifp->if_flags & IFF_LOOPBACK) 1956 error = ifp->if_output(origifp, m, (struct sockaddr *)dst, rt); 1957 else 1958 error = ifp->if_output(ifp, m, (struct sockaddr *)dst, rt); 1959 return (error); 1960 1961 bad: 1962 m_freem(m); 1963 return (error); 1964 } 1965 #undef gotoerr 1966 1967 int 1968 nd6_need_cache(struct ifnet *ifp) 1969 { 1970 /* 1971 * XXX: we currently do not make neighbor cache on any interface 1972 * other than Ethernet and GIF. 1973 * 1974 * RFC2893 says: 1975 * - unidirectional tunnels needs no ND 1976 */ 1977 switch (ifp->if_type) { 1978 case IFT_ETHER: 1979 case IFT_IEEE1394: 1980 #ifdef IFT_L2VLAN 1981 case IFT_L2VLAN: 1982 #endif 1983 #ifdef IFT_IEEE80211 1984 case IFT_IEEE80211: 1985 #endif 1986 #ifdef IFT_CARP 1987 case IFT_CARP: 1988 #endif 1989 case IFT_GIF: /* XXX need more cases? */ 1990 return (1); 1991 default: 1992 return (0); 1993 } 1994 } 1995 1996 int 1997 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, 1998 struct sockaddr *dst, u_char *desten) 1999 { 2000 struct sockaddr_dl *sdl; 2001 struct rtentry *rt; 2002 2003 2004 if (m->m_flags & M_MCAST) { 2005 switch (ifp->if_type) { 2006 case IFT_ETHER: 2007 #ifdef IFT_L2VLAN 2008 case IFT_L2VLAN: 2009 #endif 2010 #ifdef IFT_IEEE80211 2011 case IFT_IEEE80211: 2012 #endif 2013 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2014 desten); 2015 return (1); 2016 case IFT_IEEE1394: 2017 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 2018 return (1); 2019 default: 2020 m_freem(m); 2021 return (0); 2022 } 2023 } 2024 if (rt0 == NULL) { 2025 /* this could happen, if we could not allocate memory */ 2026 m_freem(m); 2027 return (0); 2028 } 2029 if (rt_llroute(dst, rt0, &rt) != 0) { 2030 m_freem(m); 2031 return (0); 2032 } 2033 if (rt->rt_gateway->sa_family != AF_LINK) { 2034 kprintf("nd6_storelladdr: something odd happens\n"); 2035 m_freem(m); 2036 return (0); 2037 } 2038 sdl = SDL(rt->rt_gateway); 2039 if (sdl->sdl_alen == 0) { 2040 /* this should be impossible, but we bark here for debugging */ 2041 kprintf("nd6_storelladdr: sdl_alen == 0\n"); 2042 m_freem(m); 2043 return (0); 2044 } 2045 2046 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2047 return (1); 2048 } 2049 2050 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2051 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2052 #ifdef SYSCTL_DECL 2053 SYSCTL_DECL(_net_inet6_icmp6); 2054 #endif 2055 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2056 CTLFLAG_RD, nd6_sysctl_drlist, "List default routers"); 2057 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2058 CTLFLAG_RD, nd6_sysctl_prlist, "List prefixes"); 2059 2060 static int 2061 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2062 { 2063 int error; 2064 char buf[1024]; 2065 struct in6_defrouter *d, *de; 2066 struct nd_defrouter *dr; 2067 2068 if (req->newptr) 2069 return EPERM; 2070 error = 0; 2071 2072 for (dr = TAILQ_FIRST(&nd_defrouter); 2073 dr; 2074 dr = TAILQ_NEXT(dr, dr_entry)) { 2075 d = (struct in6_defrouter *)buf; 2076 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2077 2078 if (d + 1 <= de) { 2079 bzero(d, sizeof(*d)); 2080 d->rtaddr.sin6_family = AF_INET6; 2081 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2082 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, 2083 dr->ifp) != 0) 2084 log(LOG_ERR, 2085 "scope error in " 2086 "default router list (%s)\n", 2087 ip6_sprintf(&dr->rtaddr)); 2088 d->flags = dr->flags; 2089 d->rtlifetime = dr->rtlifetime; 2090 d->expire = dr->expire; 2091 d->if_index = dr->ifp->if_index; 2092 } else 2093 panic("buffer too short"); 2094 2095 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2096 if (error) 2097 break; 2098 } 2099 return error; 2100 } 2101 2102 static int 2103 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2104 { 2105 int error; 2106 char buf[1024]; 2107 struct in6_prefix *p, *pe; 2108 struct nd_prefix *pr; 2109 2110 if (req->newptr) 2111 return EPERM; 2112 error = 0; 2113 2114 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2115 u_short advrtrs; 2116 size_t advance; 2117 struct sockaddr_in6 *sin6, *s6; 2118 struct nd_pfxrouter *pfr; 2119 2120 p = (struct in6_prefix *)buf; 2121 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2122 2123 if (p + 1 <= pe) { 2124 bzero(p, sizeof(*p)); 2125 sin6 = (struct sockaddr_in6 *)(p + 1); 2126 2127 p->prefix = pr->ndpr_prefix; 2128 if (in6_recoverscope(&p->prefix, 2129 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2130 log(LOG_ERR, 2131 "scope error in prefix list (%s)\n", 2132 ip6_sprintf(&p->prefix.sin6_addr)); 2133 p->raflags = pr->ndpr_raf; 2134 p->prefixlen = pr->ndpr_plen; 2135 p->vltime = pr->ndpr_vltime; 2136 p->pltime = pr->ndpr_pltime; 2137 p->if_index = pr->ndpr_ifp->if_index; 2138 p->expire = pr->ndpr_expire; 2139 p->refcnt = pr->ndpr_refcnt; 2140 p->flags = pr->ndpr_stateflags; 2141 p->origin = PR_ORIG_RA; 2142 advrtrs = 0; 2143 for (pfr = pr->ndpr_advrtrs.lh_first; 2144 pfr; 2145 pfr = pfr->pfr_next) { 2146 if ((void *)&sin6[advrtrs + 1] > 2147 (void *)pe) { 2148 advrtrs++; 2149 continue; 2150 } 2151 s6 = &sin6[advrtrs]; 2152 bzero(s6, sizeof(*s6)); 2153 s6->sin6_family = AF_INET6; 2154 s6->sin6_len = sizeof(*sin6); 2155 if (in6_recoverscope(s6, &pfr->router->rtaddr, 2156 pfr->router->ifp) != 0) 2157 log(LOG_ERR, 2158 "scope error in " 2159 "prefix list (%s)\n", 2160 ip6_sprintf(&pfr->router->rtaddr)); 2161 advrtrs++; 2162 } 2163 p->advrtrs = advrtrs; 2164 } else 2165 panic("buffer too short"); 2166 2167 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2168 error = SYSCTL_OUT(req, buf, advance); 2169 if (error) 2170 break; 2171 } 2172 return error; 2173 } 2174