xref: /dragonfly/sys/netinet6/nd6.c (revision 333227be)
1 /*	$FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/nd6.c,v 1.10 2004/09/17 00:07:27 dillon Exp $	*/
3 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * XXX
36  * KAME 970409 note:
37  * BSD/OS version heavily modifies this code, related to llinfo.
38  * Since we don't have BSD/OS version of net/route.c in our hand,
39  * I left the code mostly as it was in 970310.  -- itojun
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/protosw.h>
55 #include <sys/errno.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/if_atm.h>
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/if_ether.h>
68 #include <netinet/if_fddi.h>
69 #include <netinet6/in6_var.h>
70 #include <netinet/ip6.h>
71 #include <netinet6/ip6_var.h>
72 #include <netinet6/nd6.h>
73 #include <netinet6/in6_prefix.h>
74 #include <netinet/icmp6.h>
75 
76 #include "use_loop.h"
77 
78 #include <net/net_osdep.h>
79 
80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
82 
83 #define SIN6(s) ((struct sockaddr_in6 *)s)
84 #define SDL(s) ((struct sockaddr_dl *)s)
85 
86 /* timer values */
87 int	nd6_prune	= 1;	/* walk list every 1 seconds */
88 int	nd6_delay	= 5;	/* delay first probe time 5 second */
89 int	nd6_umaxtries	= 3;	/* maximum unicast query */
90 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
91 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
92 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
93 
94 /* preventing too many loops in ND option parsing */
95 int nd6_maxndopt = 10;	/* max # of ND options allowed */
96 
97 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
98 
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104 
105 /* for debugging? */
106 static int nd6_inuse, nd6_allocated;
107 
108 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
109 static size_t nd_ifinfo_indexlim = 8;
110 struct nd_ifinfo *nd_ifinfo = NULL;
111 struct nd_drhead nd_defrouter;
112 struct nd_prhead nd_prefix = { 0 };
113 
114 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
115 static struct sockaddr_in6 all1_sa;
116 
117 static void nd6_slowtimo (void *);
118 static int regen_tmpaddr (struct in6_ifaddr *);
119 
120 struct callout nd6_slowtimo_ch;
121 struct callout nd6_timer_ch;
122 extern struct callout in6_tmpaddrtimer_ch;
123 
124 void
125 nd6_init(void)
126 {
127 	static int nd6_init_done = 0;
128 	int i;
129 
130 	if (nd6_init_done) {
131 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
132 		return;
133 	}
134 
135 	all1_sa.sin6_family = AF_INET6;
136 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
137 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
138 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
139 
140 	/* initialization of the default router list */
141 	TAILQ_INIT(&nd_defrouter);
142 
143 	nd6_init_done = 1;
144 
145 	/* start timer */
146 	callout_init(&nd6_slowtimo_ch);
147 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148 	    nd6_slowtimo, NULL);
149 }
150 
151 void
152 nd6_ifattach(struct ifnet *ifp)
153 {
154 
155 	/*
156 	 * We have some arrays that should be indexed by if_index.
157 	 * since if_index will grow dynamically, they should grow too.
158 	 */
159 	if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) {
160 		size_t n;
161 		caddr_t q;
162 
163 		while (if_index >= nd_ifinfo_indexlim)
164 			nd_ifinfo_indexlim <<= 1;
165 
166 		/* grow nd_ifinfo */
167 		n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo);
168 		q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK);
169 		bzero(q, n);
170 		if (nd_ifinfo) {
171 			bcopy((caddr_t)nd_ifinfo, q, n/2);
172 			free((caddr_t)nd_ifinfo, M_IP6NDP);
173 		}
174 		nd_ifinfo = (struct nd_ifinfo *)q;
175 	}
176 
177 #define ND nd_ifinfo[ifp->if_index]
178 
179 	/*
180 	 * Don't initialize if called twice.
181 	 * XXX: to detect this, we should choose a member that is never set
182 	 * before initialization of the ND structure itself.  We formaly used
183 	 * the linkmtu member, which was not suitable because it could be
184 	 * initialized via "ifconfig mtu".
185 	 */
186 	if (ND.basereachable)
187 		return;
188 
189 	ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
190 	ND.chlim = IPV6_DEFHLIM;
191 	ND.basereachable = REACHABLE_TIME;
192 	ND.reachable = ND_COMPUTE_RTIME(ND.basereachable);
193 	ND.retrans = RETRANS_TIMER;
194 	ND.receivedra = 0;
195 	ND.flags = ND6_IFF_PERFORMNUD;
196 	nd6_setmtu(ifp);
197 #undef ND
198 }
199 
200 /*
201  * Reset ND level link MTU. This function is called when the physical MTU
202  * changes, which means we might have to adjust the ND level MTU.
203  */
204 void
205 nd6_setmtu(struct ifnet *ifp)
206 {
207 	struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index];
208 	u_long oldmaxmtu = ndi->maxmtu;
209 	u_long oldlinkmtu = ndi->linkmtu;
210 
211 	switch (ifp->if_type) {
212 	case IFT_ARCNET:	/* XXX MTU handling needs more work */
213 		ndi->maxmtu = MIN(60480, ifp->if_mtu);
214 		break;
215 	case IFT_ETHER:
216 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
217 		break;
218 	case IFT_FDDI:
219 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
220 		break;
221 	case IFT_ATM:
222 		ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
223 		break;
224 	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
225 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
226 		break;
227 #ifdef IFT_IEEE80211
228 	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
229 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
230 		break;
231 #endif
232 	default:
233 		ndi->maxmtu = ifp->if_mtu;
234 		break;
235 	}
236 
237 	if (oldmaxmtu != ndi->maxmtu) {
238 		/*
239 		 * If the ND level MTU is not set yet, or if the maxmtu
240 		 * is reset to a smaller value than the ND level MTU,
241 		 * also reset the ND level MTU.
242 		 */
243 		if (ndi->linkmtu == 0 ||
244 		    ndi->maxmtu < ndi->linkmtu) {
245 			ndi->linkmtu = ndi->maxmtu;
246 			/* also adjust in6_maxmtu if necessary. */
247 			if (oldlinkmtu == 0) {
248 				/*
249 				 * XXX: the case analysis is grotty, but
250 				 * it is not efficient to call in6_setmaxmtu()
251 				 * here when we are during the initialization
252 				 * procedure.
253 				 */
254 				if (in6_maxmtu < ndi->linkmtu)
255 					in6_maxmtu = ndi->linkmtu;
256 			} else
257 				in6_setmaxmtu();
258 		}
259 	}
260 #undef MIN
261 }
262 
263 void
264 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
265 {
266 	bzero(ndopts, sizeof(*ndopts));
267 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
268 	ndopts->nd_opts_last
269 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
270 
271 	if (icmp6len == 0) {
272 		ndopts->nd_opts_done = 1;
273 		ndopts->nd_opts_search = NULL;
274 	}
275 }
276 
277 /*
278  * Take one ND option.
279  */
280 struct nd_opt_hdr *
281 nd6_option(union nd_opts *ndopts)
282 {
283 	struct nd_opt_hdr *nd_opt;
284 	int olen;
285 
286 	if (!ndopts)
287 		panic("ndopts == NULL in nd6_option");
288 	if (!ndopts->nd_opts_last)
289 		panic("uninitialized ndopts in nd6_option");
290 	if (!ndopts->nd_opts_search)
291 		return NULL;
292 	if (ndopts->nd_opts_done)
293 		return NULL;
294 
295 	nd_opt = ndopts->nd_opts_search;
296 
297 	/* make sure nd_opt_len is inside the buffer */
298 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
299 		bzero(ndopts, sizeof(*ndopts));
300 		return NULL;
301 	}
302 
303 	olen = nd_opt->nd_opt_len << 3;
304 	if (olen == 0) {
305 		/*
306 		 * Message validation requires that all included
307 		 * options have a length that is greater than zero.
308 		 */
309 		bzero(ndopts, sizeof(*ndopts));
310 		return NULL;
311 	}
312 
313 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
314 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
315 		/* option overruns the end of buffer, invalid */
316 		bzero(ndopts, sizeof(*ndopts));
317 		return NULL;
318 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
319 		/* reached the end of options chain */
320 		ndopts->nd_opts_done = 1;
321 		ndopts->nd_opts_search = NULL;
322 	}
323 	return nd_opt;
324 }
325 
326 /*
327  * Parse multiple ND options.
328  * This function is much easier to use, for ND routines that do not need
329  * multiple options of the same type.
330  */
331 int
332 nd6_options(union nd_opts *ndopts)
333 {
334 	struct nd_opt_hdr *nd_opt;
335 	int i = 0;
336 
337 	if (!ndopts)
338 		panic("ndopts == NULL in nd6_options");
339 	if (!ndopts->nd_opts_last)
340 		panic("uninitialized ndopts in nd6_options");
341 	if (!ndopts->nd_opts_search)
342 		return 0;
343 
344 	while (1) {
345 		nd_opt = nd6_option(ndopts);
346 		if (!nd_opt && !ndopts->nd_opts_last) {
347 			/*
348 			 * Message validation requires that all included
349 			 * options have a length that is greater than zero.
350 			 */
351 			icmp6stat.icp6s_nd_badopt++;
352 			bzero(ndopts, sizeof(*ndopts));
353 			return -1;
354 		}
355 
356 		if (!nd_opt)
357 			goto skip1;
358 
359 		switch (nd_opt->nd_opt_type) {
360 		case ND_OPT_SOURCE_LINKADDR:
361 		case ND_OPT_TARGET_LINKADDR:
362 		case ND_OPT_MTU:
363 		case ND_OPT_REDIRECTED_HEADER:
364 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
365 				nd6log((LOG_INFO,
366 				    "duplicated ND6 option found (type=%d)\n",
367 				    nd_opt->nd_opt_type));
368 				/* XXX bark? */
369 			} else {
370 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
371 					= nd_opt;
372 			}
373 			break;
374 		case ND_OPT_PREFIX_INFORMATION:
375 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
376 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
377 					= nd_opt;
378 			}
379 			ndopts->nd_opts_pi_end =
380 				(struct nd_opt_prefix_info *)nd_opt;
381 			break;
382 		default:
383 			/*
384 			 * Unknown options must be silently ignored,
385 			 * to accomodate future extension to the protocol.
386 			 */
387 			nd6log((LOG_DEBUG,
388 			    "nd6_options: unsupported option %d - "
389 			    "option ignored\n", nd_opt->nd_opt_type));
390 		}
391 
392 skip1:
393 		i++;
394 		if (i > nd6_maxndopt) {
395 			icmp6stat.icp6s_nd_toomanyopt++;
396 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
397 			break;
398 		}
399 
400 		if (ndopts->nd_opts_done)
401 			break;
402 	}
403 
404 	return 0;
405 }
406 
407 /*
408  * ND6 timer routine to expire default route list and prefix list
409  */
410 void
411 nd6_timer(void *ignored_arg)
412 {
413 	int s;
414 	struct llinfo_nd6 *ln;
415 	struct nd_defrouter *dr;
416 	struct nd_prefix *pr;
417 	struct ifnet *ifp;
418 	struct in6_ifaddr *ia6, *nia6;
419 	struct in6_addrlifetime *lt6;
420 
421 	s = splnet();
422 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
423 		      nd6_timer, NULL);
424 
425 	ln = llinfo_nd6.ln_next;
426 	while (ln && ln != &llinfo_nd6) {
427 		struct rtentry *rt;
428 		struct sockaddr_in6 *dst;
429 		struct llinfo_nd6 *next = ln->ln_next;
430 		/* XXX: used for the DELAY case only: */
431 		struct nd_ifinfo *ndi = NULL;
432 
433 		if ((rt = ln->ln_rt) == NULL) {
434 			ln = next;
435 			continue;
436 		}
437 		if ((ifp = rt->rt_ifp) == NULL) {
438 			ln = next;
439 			continue;
440 		}
441 		ndi = &nd_ifinfo[ifp->if_index];
442 		dst = (struct sockaddr_in6 *)rt_key(rt);
443 
444 		if (ln->ln_expire > time_second) {
445 			ln = next;
446 			continue;
447 		}
448 
449 		/* sanity check */
450 		if (!rt)
451 			panic("rt=0 in nd6_timer(ln=%p)", ln);
452 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
453 			panic("rt_llinfo(%p) is not equal to ln(%p)",
454 			      rt->rt_llinfo, ln);
455 		if (!dst)
456 			panic("dst=0 in nd6_timer(ln=%p)", ln);
457 
458 		switch (ln->ln_state) {
459 		case ND6_LLINFO_INCOMPLETE:
460 			if (ln->ln_asked < nd6_mmaxtries) {
461 				ln->ln_asked++;
462 				ln->ln_expire = time_second +
463 					nd_ifinfo[ifp->if_index].retrans / 1000;
464 				nd6_ns_output(ifp, NULL, &dst->sin6_addr,
465 					ln, 0);
466 			} else {
467 				struct mbuf *m = ln->ln_hold;
468 				if (m) {
469 					if (rt->rt_ifp) {
470 						/*
471 						 * Fake rcvif to make ICMP error
472 						 * more helpful in diagnosing
473 						 * for the receiver.
474 						 * XXX: should we consider
475 						 * older rcvif?
476 						 */
477 						m->m_pkthdr.rcvif = rt->rt_ifp;
478 					}
479 					icmp6_error(m, ICMP6_DST_UNREACH,
480 						    ICMP6_DST_UNREACH_ADDR, 0);
481 					ln->ln_hold = NULL;
482 				}
483 				next = nd6_free(rt);
484 			}
485 			break;
486 		case ND6_LLINFO_REACHABLE:
487 			if (ln->ln_expire) {
488 				ln->ln_state = ND6_LLINFO_STALE;
489 				ln->ln_expire = time_second + nd6_gctimer;
490 			}
491 			break;
492 
493 		case ND6_LLINFO_STALE:
494 			/* Garbage Collection(RFC 2461 5.3) */
495 			if (ln->ln_expire)
496 				next = nd6_free(rt);
497 			break;
498 
499 		case ND6_LLINFO_DELAY:
500 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
501 				/* We need NUD */
502 				ln->ln_asked = 1;
503 				ln->ln_state = ND6_LLINFO_PROBE;
504 				ln->ln_expire = time_second +
505 					ndi->retrans / 1000;
506 				nd6_ns_output(ifp, &dst->sin6_addr,
507 					      &dst->sin6_addr,
508 					      ln, 0);
509 			} else {
510 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
511 				ln->ln_expire = time_second + nd6_gctimer;
512 			}
513 			break;
514 		case ND6_LLINFO_PROBE:
515 			if (ln->ln_asked < nd6_umaxtries) {
516 				ln->ln_asked++;
517 				ln->ln_expire = time_second +
518 					nd_ifinfo[ifp->if_index].retrans / 1000;
519 				nd6_ns_output(ifp, &dst->sin6_addr,
520 					       &dst->sin6_addr, ln, 0);
521 			} else {
522 				next = nd6_free(rt);
523 			}
524 			break;
525 		}
526 		ln = next;
527 	}
528 
529 	/* expire default router list */
530 	dr = TAILQ_FIRST(&nd_defrouter);
531 	while (dr) {
532 		if (dr->expire && dr->expire < time_second) {
533 			struct nd_defrouter *t;
534 			t = TAILQ_NEXT(dr, dr_entry);
535 			defrtrlist_del(dr);
536 			dr = t;
537 		} else {
538 			dr = TAILQ_NEXT(dr, dr_entry);
539 		}
540 	}
541 
542 	/*
543 	 * expire interface addresses.
544 	 * in the past the loop was inside prefix expiry processing.
545 	 * However, from a stricter speci-confrmance standpoint, we should
546 	 * rather separate address lifetimes and prefix lifetimes.
547 	 */
548   addrloop:
549 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
550 		nia6 = ia6->ia_next;
551 		/* check address lifetime */
552 		lt6 = &ia6->ia6_lifetime;
553 		if (IFA6_IS_INVALID(ia6)) {
554 			int regen = 0;
555 
556 			/*
557 			 * If the expiring address is temporary, try
558 			 * regenerating a new one.  This would be useful when
559 			 * we suspended a laptop PC, then turned it on after a
560 			 * period that could invalidate all temporary
561 			 * addresses.  Although we may have to restart the
562 			 * loop (see below), it must be after purging the
563 			 * address.  Otherwise, we'd see an infinite loop of
564 			 * regeneration.
565 			 */
566 			if (ip6_use_tempaddr &&
567 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
568 				if (regen_tmpaddr(ia6) == 0)
569 					regen = 1;
570 			}
571 
572 			in6_purgeaddr(&ia6->ia_ifa);
573 
574 			if (regen)
575 				goto addrloop; /* XXX: see below */
576 		}
577 		if (IFA6_IS_DEPRECATED(ia6)) {
578 			int oldflags = ia6->ia6_flags;
579 
580 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
581 
582 			/*
583 			 * If a temporary address has just become deprecated,
584 			 * regenerate a new one if possible.
585 			 */
586 			if (ip6_use_tempaddr &&
587 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
588 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
589 
590 				if (regen_tmpaddr(ia6) == 0) {
591 					/*
592 					 * A new temporary address is
593 					 * generated.
594 					 * XXX: this means the address chain
595 					 * has changed while we are still in
596 					 * the loop.  Although the change
597 					 * would not cause disaster (because
598 					 * it's not a deletion, but an
599 					 * addition,) we'd rather restart the
600 					 * loop just for safety.  Or does this
601 					 * significantly reduce performance??
602 					 */
603 					goto addrloop;
604 				}
605 			}
606 		} else {
607 			/*
608 			 * A new RA might have made a deprecated address
609 			 * preferred.
610 			 */
611 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
612 		}
613 	}
614 
615 	/* expire prefix list */
616 	pr = nd_prefix.lh_first;
617 	while (pr) {
618 		/*
619 		 * check prefix lifetime.
620 		 * since pltime is just for autoconf, pltime processing for
621 		 * prefix is not necessary.
622 		 */
623 		if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
624 			struct nd_prefix *t;
625 			t = pr->ndpr_next;
626 
627 			/*
628 			 * address expiration and prefix expiration are
629 			 * separate.  NEVER perform in6_purgeaddr here.
630 			 */
631 
632 			prelist_remove(pr);
633 			pr = t;
634 		} else
635 			pr = pr->ndpr_next;
636 	}
637 	splx(s);
638 }
639 
640 static int
641 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
642 					 address */
643 {
644 	struct ifaddr *ifa;
645 	struct ifnet *ifp;
646 	struct in6_ifaddr *public_ifa6 = NULL;
647 
648 	ifp = ia6->ia_ifa.ifa_ifp;
649 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_list) {
650 		struct in6_ifaddr *it6;
651 
652 		if (ifa->ifa_addr->sa_family != AF_INET6)
653 			continue;
654 
655 		it6 = (struct in6_ifaddr *)ifa;
656 
657 		/* ignore no autoconf addresses. */
658 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
659 			continue;
660 
661 		/* ignore autoconf addresses with different prefixes. */
662 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
663 			continue;
664 
665 		/*
666 		 * Now we are looking at an autoconf address with the same
667 		 * prefix as ours.  If the address is temporary and is still
668 		 * preferred, do not create another one.  It would be rare, but
669 		 * could happen, for example, when we resume a laptop PC after
670 		 * a long period.
671 		 */
672 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
673 		    !IFA6_IS_DEPRECATED(it6)) {
674 			public_ifa6 = NULL;
675 			break;
676 		}
677 
678 		/*
679 		 * This is a public autoconf address that has the same prefix
680 		 * as ours.  If it is preferred, keep it.  We can't break the
681 		 * loop here, because there may be a still-preferred temporary
682 		 * address with the prefix.
683 		 */
684 		if (!IFA6_IS_DEPRECATED(it6))
685 		    public_ifa6 = it6;
686 	}
687 
688 	if (public_ifa6 != NULL) {
689 		int e;
690 
691 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
692 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
693 			    " tmp addr,errno=%d\n", e);
694 			return(-1);
695 		}
696 		return(0);
697 	}
698 
699 	return(-1);
700 }
701 
702 /*
703  * Nuke neighbor cache/prefix/default router management table, right before
704  * ifp goes away.
705  */
706 void
707 nd6_purge(struct ifnet *ifp)
708 {
709 	struct llinfo_nd6 *ln, *nln;
710 	struct nd_defrouter *dr, *ndr, drany;
711 	struct nd_prefix *pr, *npr;
712 
713 	/* Nuke default router list entries toward ifp */
714 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
715 		/*
716 		 * The first entry of the list may be stored in
717 		 * the routing table, so we'll delete it later.
718 		 */
719 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
720 			ndr = TAILQ_NEXT(dr, dr_entry);
721 			if (dr->ifp == ifp)
722 				defrtrlist_del(dr);
723 		}
724 		dr = TAILQ_FIRST(&nd_defrouter);
725 		if (dr->ifp == ifp)
726 			defrtrlist_del(dr);
727 	}
728 
729 	/* Nuke prefix list entries toward ifp */
730 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
731 		npr = pr->ndpr_next;
732 		if (pr->ndpr_ifp == ifp) {
733 			/*
734 			 * Previously, pr->ndpr_addr is removed as well,
735 			 * but I strongly believe we don't have to do it.
736 			 * nd6_purge() is only called from in6_ifdetach(),
737 			 * which removes all the associated interface addresses
738 			 * by itself.
739 			 * (jinmei@kame.net 20010129)
740 			 */
741 			prelist_remove(pr);
742 		}
743 	}
744 
745 	/* cancel default outgoing interface setting */
746 	if (nd6_defifindex == ifp->if_index)
747 		nd6_setdefaultiface(0);
748 
749 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
750 		/* refresh default router list */
751 		bzero(&drany, sizeof(drany));
752 		defrouter_delreq(&drany, 0);
753 		defrouter_select();
754 	}
755 
756 	/*
757 	 * Nuke neighbor cache entries for the ifp.
758 	 * Note that rt->rt_ifp may not be the same as ifp,
759 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
760 	 * nd6_rtrequest(), and ip6_input().
761 	 */
762 	ln = llinfo_nd6.ln_next;
763 	while (ln && ln != &llinfo_nd6) {
764 		struct rtentry *rt;
765 		struct sockaddr_dl *sdl;
766 
767 		nln = ln->ln_next;
768 		rt = ln->ln_rt;
769 		if (rt && rt->rt_gateway &&
770 		    rt->rt_gateway->sa_family == AF_LINK) {
771 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
772 			if (sdl->sdl_index == ifp->if_index)
773 				nln = nd6_free(rt);
774 		}
775 		ln = nln;
776 	}
777 }
778 
779 struct rtentry *
780 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
781 {
782 	struct rtentry *rt;
783 	struct sockaddr_in6 sin6;
784 
785 	bzero(&sin6, sizeof(sin6));
786 	sin6.sin6_len = sizeof(struct sockaddr_in6);
787 	sin6.sin6_family = AF_INET6;
788 	sin6.sin6_addr = *addr6;
789 #ifdef SCOPEDROUTING
790 	sin6.sin6_scope_id = in6_addr2scopeid(ifp, addr6);
791 #endif
792 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
793 	if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
794 		/*
795 		 * This is the case for the default route.
796 		 * If we want to create a neighbor cache for the address, we
797 		 * should free the route for the destination and allocate an
798 		 * interface route.
799 		 */
800 		if (create) {
801 			RTFREE(rt);
802 			rt = 0;
803 		}
804 	}
805 	if (!rt) {
806 		if (create && ifp) {
807 			int e;
808 
809 			/*
810 			 * If no route is available and create is set,
811 			 * we allocate a host route for the destination
812 			 * and treat it like an interface route.
813 			 * This hack is necessary for a neighbor which can't
814 			 * be covered by our own prefix.
815 			 */
816 			struct ifaddr *ifa =
817 				ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
818 			if (ifa == NULL)
819 				return(NULL);
820 
821 			/*
822 			 * Create a new route.  RTF_LLINFO is necessary
823 			 * to create a Neighbor Cache entry for the
824 			 * destination in nd6_rtrequest which will be
825 			 * called in rtrequest via ifa->ifa_rtrequest.
826 			 */
827 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
828 					   ifa->ifa_addr,
829 					   (struct sockaddr *)&all1_sa,
830 					   (ifa->ifa_flags |
831 					    RTF_HOST | RTF_LLINFO) &
832 					   ~RTF_CLONING,
833 					   &rt)) != 0)
834 				log(LOG_ERR,
835 				    "nd6_lookup: failed to add route for a "
836 				    "neighbor(%s), errno=%d\n",
837 				    ip6_sprintf(addr6), e);
838 			if (rt == NULL)
839 				return(NULL);
840 			if (rt->rt_llinfo) {
841 				struct llinfo_nd6 *ln =
842 					(struct llinfo_nd6 *)rt->rt_llinfo;
843 				ln->ln_state = ND6_LLINFO_NOSTATE;
844 			}
845 		} else
846 			return(NULL);
847 	}
848 	rt->rt_refcnt--;
849 	/*
850 	 * Validation for the entry.
851 	 * Note that the check for rt_llinfo is necessary because a cloned
852 	 * route from a parent route that has the L flag (e.g. the default
853 	 * route to a p2p interface) may have the flag, too, while the
854 	 * destination is not actually a neighbor.
855 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
856 	 *      it might be the loopback interface if the entry is for our
857 	 *      own address on a non-loopback interface. Instead, we should
858 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
859 	 *      interface.
860 	 */
861 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
862 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
863 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
864 		if (create) {
865 			log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
866 			    ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
867 			/* xxx more logs... kazu */
868 		}
869 		return(NULL);
870 	}
871 	return(rt);
872 }
873 
874 /*
875  * Detect if a given IPv6 address identifies a neighbor on a given link.
876  * XXX: should take care of the destination of a p2p link?
877  */
878 int
879 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
880 {
881 	struct ifaddr *ifa;
882 	int i;
883 
884 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
885 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
886 
887 	/*
888 	 * A link-local address is always a neighbor.
889 	 * XXX: we should use the sin6_scope_id field rather than the embedded
890 	 * interface index.
891 	 */
892 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
893 	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
894 		return(1);
895 
896 	/*
897 	 * If the address matches one of our addresses,
898 	 * it should be a neighbor.
899 	 */
900 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
901 		if (ifa->ifa_addr->sa_family != AF_INET6)
902 			next: continue;
903 
904 		for (i = 0; i < 4; i++) {
905 			if ((IFADDR6(ifa).s6_addr32[i] ^
906 			     addr->sin6_addr.s6_addr32[i]) &
907 			    IFMASK6(ifa).s6_addr32[i])
908 				goto next;
909 		}
910 		return(1);
911 	}
912 
913 	/*
914 	 * Even if the address matches none of our addresses, it might be
915 	 * in the neighbor cache.
916 	 */
917 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
918 		return(1);
919 
920 	return(0);
921 #undef IFADDR6
922 #undef IFMASK6
923 }
924 
925 /*
926  * Free an nd6 llinfo entry.
927  */
928 struct llinfo_nd6 *
929 nd6_free(struct rtentry *rt)
930 {
931 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
932 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
933 	struct nd_defrouter *dr;
934 
935 	/*
936 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
937 	 * even though it is not harmful, it was not really necessary.
938 	 */
939 
940 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
941 		int s;
942 		s = splnet();
943 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
944 				      rt->rt_ifp);
945 
946 		if (ln->ln_router || dr) {
947 			/*
948 			 * rt6_flush must be called whether or not the neighbor
949 			 * is in the Default Router List.
950 			 * See a corresponding comment in nd6_na_input().
951 			 */
952 			rt6_flush(&in6, rt->rt_ifp);
953 		}
954 
955 		if (dr) {
956 			/*
957 			 * Unreachablity of a router might affect the default
958 			 * router selection and on-link detection of advertised
959 			 * prefixes.
960 			 */
961 
962 			/*
963 			 * Temporarily fake the state to choose a new default
964 			 * router and to perform on-link determination of
965 			 * prefixes correctly.
966 			 * Below the state will be set correctly,
967 			 * or the entry itself will be deleted.
968 			 */
969 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
970 
971 			/*
972 			 * Since defrouter_select() does not affect the
973 			 * on-link determination and MIP6 needs the check
974 			 * before the default router selection, we perform
975 			 * the check now.
976 			 */
977 			pfxlist_onlink_check();
978 
979 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
980 				/*
981 				 * It is used as the current default router,
982 				 * so we have to move it to the end of the
983 				 * list and choose a new one.
984 				 * XXX: it is not very efficient if this is
985 				 *      the only router.
986 				 */
987 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
988 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
989 
990 				defrouter_select();
991 			}
992 		}
993 		splx(s);
994 	}
995 
996 	/*
997 	 * Before deleting the entry, remember the next entry as the
998 	 * return value.  We need this because pfxlist_onlink_check() above
999 	 * might have freed other entries (particularly the old next entry) as
1000 	 * a side effect (XXX).
1001 	 */
1002 	next = ln->ln_next;
1003 
1004 	/*
1005 	 * Detach the route from the routing tree and the list of neighbor
1006 	 * caches, and disable the route entry not to be used in already
1007 	 * cached routes.
1008 	 */
1009 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1010 		  rt_mask(rt), 0, (struct rtentry **)0);
1011 
1012 	return(next);
1013 }
1014 
1015 /*
1016  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1017  *
1018  * XXX cost-effective metods?
1019  */
1020 void
1021 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1022 {
1023 	struct llinfo_nd6 *ln;
1024 
1025 	/*
1026 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1027 	 * routing table by supplied "dst6".
1028 	 */
1029 	if (!rt) {
1030 		if (!dst6)
1031 			return;
1032 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1033 			return;
1034 	}
1035 
1036 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1037 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1038 	    !rt->rt_llinfo || !rt->rt_gateway ||
1039 	    rt->rt_gateway->sa_family != AF_LINK) {
1040 		/* This is not a host route. */
1041 		return;
1042 	}
1043 
1044 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1045 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1046 		return;
1047 
1048 	/*
1049 	 * if we get upper-layer reachability confirmation many times,
1050 	 * it is possible we have false information.
1051 	 */
1052 	if (!force) {
1053 		ln->ln_byhint++;
1054 		if (ln->ln_byhint > nd6_maxnudhint)
1055 			return;
1056 	}
1057 
1058 	ln->ln_state = ND6_LLINFO_REACHABLE;
1059 	if (ln->ln_expire)
1060 		ln->ln_expire = time_second +
1061 			nd_ifinfo[rt->rt_ifp->if_index].reachable;
1062 }
1063 
1064 void
1065 nd6_rtrequest(int req, struct rtentry *rt,
1066 	      struct rt_addrinfo *info) /* xxx unused */
1067 {
1068 	struct sockaddr *gate = rt->rt_gateway;
1069 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1070 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1071 	struct ifnet *ifp = rt->rt_ifp;
1072 	struct ifaddr *ifa;
1073 
1074 	if ((rt->rt_flags & RTF_GATEWAY))
1075 		return;
1076 
1077 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1078 		/*
1079 		 * This is probably an interface direct route for a link
1080 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1081 		 * We do not need special treatment below for such a route.
1082 		 * Moreover, the RTF_LLINFO flag which would be set below
1083 		 * would annoy the ndp(8) command.
1084 		 */
1085 		return;
1086 	}
1087 
1088 	if (req == RTM_RESOLVE &&
1089 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1090 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1091 		/*
1092 		 * FreeBSD and BSD/OS often make a cloned host route based
1093 		 * on a less-specific route (e.g. the default route).
1094 		 * If the less specific route does not have a "gateway"
1095 		 * (this is the case when the route just goes to a p2p or an
1096 		 * stf interface), we'll mistakenly make a neighbor cache for
1097 		 * the host route, and will see strange neighbor solicitation
1098 		 * for the corresponding destination.  In order to avoid the
1099 		 * confusion, we check if the destination of the route is
1100 		 * a neighbor in terms of neighbor discovery, and stop the
1101 		 * process if not.  Additionally, we remove the LLINFO flag
1102 		 * so that ndp(8) will not try to get the neighbor information
1103 		 * of the destination.
1104 		 */
1105 		rt->rt_flags &= ~RTF_LLINFO;
1106 		return;
1107 	}
1108 
1109 	switch (req) {
1110 	case RTM_ADD:
1111 		/*
1112 		 * There is no backward compatibility :)
1113 		 *
1114 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1115 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1116 		 *	   rt->rt_flags |= RTF_CLONING;
1117 		 */
1118 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1119 			/*
1120 			 * Case 1: This route should come from
1121 			 * a route to interface.  RTF_LLINFO flag is set
1122 			 * for a host route whose destination should be
1123 			 * treated as on-link.
1124 			 */
1125 			rt_setgate(rt, rt_key(rt),
1126 				   (struct sockaddr *)&null_sdl);
1127 			gate = rt->rt_gateway;
1128 			SDL(gate)->sdl_type = ifp->if_type;
1129 			SDL(gate)->sdl_index = ifp->if_index;
1130 			if (ln)
1131 				ln->ln_expire = time_second;
1132 #if 1
1133 			if (ln && ln->ln_expire == 0) {
1134 				/* kludge for desktops */
1135 #if 0
1136 				printf("nd6_rtequest: time.tv_sec is zero; "
1137 				       "treat it as 1\n");
1138 #endif
1139 				ln->ln_expire = 1;
1140 			}
1141 #endif
1142 			if ((rt->rt_flags & RTF_CLONING))
1143 				break;
1144 		}
1145 		/*
1146 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1147 		 * We don't do that here since llinfo is not ready yet.
1148 		 *
1149 		 * There are also couple of other things to be discussed:
1150 		 * - unsolicited NA code needs improvement beforehand
1151 		 * - RFC2461 says we MAY send multicast unsolicited NA
1152 		 *   (7.2.6 paragraph 4), however, it also says that we
1153 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1154 		 *   we don't have anything like it right now.
1155 		 *   note that the mechanism needs a mutual agreement
1156 		 *   between proxies, which means that we need to implement
1157 		 *   a new protocol, or a new kludge.
1158 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1159 		 *   we need to check ip6forwarding before sending it.
1160 		 *   (or should we allow proxy ND configuration only for
1161 		 *   routers?  there's no mention about proxy ND from hosts)
1162 		 */
1163 #if 0
1164 		/* XXX it does not work */
1165 		if (rt->rt_flags & RTF_ANNOUNCE)
1166 			nd6_na_output(ifp,
1167 			      &SIN6(rt_key(rt))->sin6_addr,
1168 			      &SIN6(rt_key(rt))->sin6_addr,
1169 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1170 			      1, NULL);
1171 #endif
1172 		/* FALLTHROUGH */
1173 	case RTM_RESOLVE:
1174 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1175 			/*
1176 			 * Address resolution isn't necessary for a point to
1177 			 * point link, so we can skip this test for a p2p link.
1178 			 */
1179 			if (gate->sa_family != AF_LINK ||
1180 			    gate->sa_len < sizeof(null_sdl)) {
1181 				log(LOG_DEBUG,
1182 				    "nd6_rtrequest: bad gateway value: %s\n",
1183 				    if_name(ifp));
1184 				break;
1185 			}
1186 			SDL(gate)->sdl_type = ifp->if_type;
1187 			SDL(gate)->sdl_index = ifp->if_index;
1188 		}
1189 		if (ln != NULL)
1190 			break;	/* This happens on a route change */
1191 		/*
1192 		 * Case 2: This route may come from cloning, or a manual route
1193 		 * add with a LL address.
1194 		 */
1195 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1196 		rt->rt_llinfo = (caddr_t)ln;
1197 		if (!ln) {
1198 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1199 			break;
1200 		}
1201 		nd6_inuse++;
1202 		nd6_allocated++;
1203 		Bzero(ln, sizeof(*ln));
1204 		ln->ln_rt = rt;
1205 		/* this is required for "ndp" command. - shin */
1206 		if (req == RTM_ADD) {
1207 		        /*
1208 			 * gate should have some valid AF_LINK entry,
1209 			 * and ln->ln_expire should have some lifetime
1210 			 * which is specified by ndp command.
1211 			 */
1212 			ln->ln_state = ND6_LLINFO_REACHABLE;
1213 			ln->ln_byhint = 0;
1214 		} else {
1215 		        /*
1216 			 * When req == RTM_RESOLVE, rt is created and
1217 			 * initialized in rtrequest(), so rt_expire is 0.
1218 			 */
1219 			ln->ln_state = ND6_LLINFO_NOSTATE;
1220 			ln->ln_expire = time_second;
1221 		}
1222 		rt->rt_flags |= RTF_LLINFO;
1223 		ln->ln_next = llinfo_nd6.ln_next;
1224 		llinfo_nd6.ln_next = ln;
1225 		ln->ln_prev = &llinfo_nd6;
1226 		ln->ln_next->ln_prev = ln;
1227 
1228 		/*
1229 		 * check if rt_key(rt) is one of my address assigned
1230 		 * to the interface.
1231 		 */
1232 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1233 					  &SIN6(rt_key(rt))->sin6_addr);
1234 		if (ifa) {
1235 			caddr_t macp = nd6_ifptomac(ifp);
1236 			ln->ln_expire = 0;
1237 			ln->ln_state = ND6_LLINFO_REACHABLE;
1238 			ln->ln_byhint = 0;
1239 			if (macp) {
1240 				Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1241 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1242 			}
1243 			if (nd6_useloopback) {
1244 				rt->rt_ifp = &loif[0];	/* XXX */
1245 				/*
1246 				 * Make sure rt_ifa be equal to the ifaddr
1247 				 * corresponding to the address.
1248 				 * We need this because when we refer
1249 				 * rt_ifa->ia6_flags in ip6_input, we assume
1250 				 * that the rt_ifa points to the address instead
1251 				 * of the loopback address.
1252 				 */
1253 				if (ifa != rt->rt_ifa) {
1254 					IFAFREE(rt->rt_ifa);
1255 					IFAREF(ifa);
1256 					rt->rt_ifa = ifa;
1257 				}
1258 			}
1259 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1260 			ln->ln_expire = 0;
1261 			ln->ln_state = ND6_LLINFO_REACHABLE;
1262 			ln->ln_byhint = 0;
1263 
1264 			/* join solicited node multicast for proxy ND */
1265 			if (ifp->if_flags & IFF_MULTICAST) {
1266 				struct in6_addr llsol;
1267 				int error;
1268 
1269 				llsol = SIN6(rt_key(rt))->sin6_addr;
1270 				llsol.s6_addr16[0] = htons(0xff02);
1271 				llsol.s6_addr16[1] = htons(ifp->if_index);
1272 				llsol.s6_addr32[1] = 0;
1273 				llsol.s6_addr32[2] = htonl(1);
1274 				llsol.s6_addr8[12] = 0xff;
1275 
1276 				if (!in6_addmulti(&llsol, ifp, &error)) {
1277 					nd6log((LOG_ERR, "%s: failed to join "
1278 					    "%s (errno=%d)\n", if_name(ifp),
1279 					    ip6_sprintf(&llsol), error));
1280 				}
1281 			}
1282 		}
1283 		break;
1284 
1285 	case RTM_DELETE:
1286 		if (!ln)
1287 			break;
1288 		/* leave from solicited node multicast for proxy ND */
1289 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1290 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1291 			struct in6_addr llsol;
1292 			struct in6_multi *in6m;
1293 
1294 			llsol = SIN6(rt_key(rt))->sin6_addr;
1295 			llsol.s6_addr16[0] = htons(0xff02);
1296 			llsol.s6_addr16[1] = htons(ifp->if_index);
1297 			llsol.s6_addr32[1] = 0;
1298 			llsol.s6_addr32[2] = htonl(1);
1299 			llsol.s6_addr8[12] = 0xff;
1300 
1301 			IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1302 			if (in6m)
1303 				in6_delmulti(in6m);
1304 		}
1305 		nd6_inuse--;
1306 		ln->ln_next->ln_prev = ln->ln_prev;
1307 		ln->ln_prev->ln_next = ln->ln_next;
1308 		ln->ln_prev = NULL;
1309 		rt->rt_llinfo = 0;
1310 		rt->rt_flags &= ~RTF_LLINFO;
1311 		if (ln->ln_hold)
1312 			m_freem(ln->ln_hold);
1313 		Free((caddr_t)ln);
1314 	}
1315 }
1316 
1317 int
1318 nd6_ioctl(u_long cmd, caddr_t	data, struct ifnet *ifp)
1319 {
1320 	struct in6_drlist *drl = (struct in6_drlist *)data;
1321 	struct in6_prlist *prl = (struct in6_prlist *)data;
1322 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1323 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1324 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1325 	struct nd_defrouter *dr, any;
1326 	struct nd_prefix *pr;
1327 	struct rtentry *rt;
1328 	int i = 0, error = 0;
1329 	int s;
1330 
1331 	switch (cmd) {
1332 	case SIOCGDRLST_IN6:
1333 		/*
1334 		 * obsolete API, use sysctl under net.inet6.icmp6
1335 		 */
1336 		bzero(drl, sizeof(*drl));
1337 		s = splnet();
1338 		dr = TAILQ_FIRST(&nd_defrouter);
1339 		while (dr && i < DRLSTSIZ) {
1340 			drl->defrouter[i].rtaddr = dr->rtaddr;
1341 			if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1342 				/* XXX: need to this hack for KAME stack */
1343 				drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1344 			} else
1345 				log(LOG_ERR,
1346 				    "default router list contains a "
1347 				    "non-linklocal address(%s)\n",
1348 				    ip6_sprintf(&drl->defrouter[i].rtaddr));
1349 
1350 			drl->defrouter[i].flags = dr->flags;
1351 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1352 			drl->defrouter[i].expire = dr->expire;
1353 			drl->defrouter[i].if_index = dr->ifp->if_index;
1354 			i++;
1355 			dr = TAILQ_NEXT(dr, dr_entry);
1356 		}
1357 		splx(s);
1358 		break;
1359 	case SIOCGPRLST_IN6:
1360 		/*
1361 		 * obsolete API, use sysctl under net.inet6.icmp6
1362 		 */
1363 		/*
1364 		 * XXX meaning of fields, especialy "raflags", is very
1365 		 * differnet between RA prefix list and RR/static prefix list.
1366 		 * how about separating ioctls into two?
1367 		 */
1368 		bzero(prl, sizeof(*prl));
1369 		s = splnet();
1370 		pr = nd_prefix.lh_first;
1371 		while (pr && i < PRLSTSIZ) {
1372 			struct nd_pfxrouter *pfr;
1373 			int j;
1374 
1375 			(void)in6_embedscope(&prl->prefix[i].prefix,
1376 			    &pr->ndpr_prefix, NULL, NULL);
1377 			prl->prefix[i].raflags = pr->ndpr_raf;
1378 			prl->prefix[i].prefixlen = pr->ndpr_plen;
1379 			prl->prefix[i].vltime = pr->ndpr_vltime;
1380 			prl->prefix[i].pltime = pr->ndpr_pltime;
1381 			prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1382 			prl->prefix[i].expire = pr->ndpr_expire;
1383 
1384 			pfr = pr->ndpr_advrtrs.lh_first;
1385 			j = 0;
1386 			while (pfr) {
1387 				if (j < DRLSTSIZ) {
1388 #define RTRADDR prl->prefix[i].advrtr[j]
1389 					RTRADDR = pfr->router->rtaddr;
1390 					if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1391 						/* XXX: hack for KAME */
1392 						RTRADDR.s6_addr16[1] = 0;
1393 					} else
1394 						log(LOG_ERR,
1395 						    "a router(%s) advertises "
1396 						    "a prefix with "
1397 						    "non-link local address\n",
1398 						    ip6_sprintf(&RTRADDR));
1399 #undef RTRADDR
1400 				}
1401 				j++;
1402 				pfr = pfr->pfr_next;
1403 			}
1404 			prl->prefix[i].advrtrs = j;
1405 			prl->prefix[i].origin = PR_ORIG_RA;
1406 
1407 			i++;
1408 			pr = pr->ndpr_next;
1409 		}
1410 	      {
1411 		struct rr_prefix *rpp;
1412 
1413 		for (rpp = LIST_FIRST(&rr_prefix); rpp;
1414 		     rpp = LIST_NEXT(rpp, rp_entry)) {
1415 			if (i >= PRLSTSIZ)
1416 				break;
1417 			(void)in6_embedscope(&prl->prefix[i].prefix,
1418 			    &pr->ndpr_prefix, NULL, NULL);
1419 			prl->prefix[i].raflags = rpp->rp_raf;
1420 			prl->prefix[i].prefixlen = rpp->rp_plen;
1421 			prl->prefix[i].vltime = rpp->rp_vltime;
1422 			prl->prefix[i].pltime = rpp->rp_pltime;
1423 			prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1424 			prl->prefix[i].expire = rpp->rp_expire;
1425 			prl->prefix[i].advrtrs = 0;
1426 			prl->prefix[i].origin = rpp->rp_origin;
1427 			i++;
1428 		}
1429 	      }
1430 		splx(s);
1431 
1432 		break;
1433 	case OSIOCGIFINFO_IN6:
1434 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1435 			error = EINVAL;
1436 			break;
1437 		}
1438 		ndi->ndi.linkmtu = nd_ifinfo[ifp->if_index].linkmtu;
1439 		ndi->ndi.maxmtu = nd_ifinfo[ifp->if_index].maxmtu;
1440 		ndi->ndi.basereachable =
1441 		    nd_ifinfo[ifp->if_index].basereachable;
1442 		ndi->ndi.reachable = nd_ifinfo[ifp->if_index].reachable;
1443 		ndi->ndi.retrans = nd_ifinfo[ifp->if_index].retrans;
1444 		ndi->ndi.flags = nd_ifinfo[ifp->if_index].flags;
1445 		ndi->ndi.recalctm = nd_ifinfo[ifp->if_index].recalctm;
1446 		ndi->ndi.chlim = nd_ifinfo[ifp->if_index].chlim;
1447 		ndi->ndi.receivedra = nd_ifinfo[ifp->if_index].receivedra;
1448 		break;
1449 	case SIOCGIFINFO_IN6:
1450 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1451 			error = EINVAL;
1452 			break;
1453 		}
1454 		ndi->ndi = nd_ifinfo[ifp->if_index];
1455 		break;
1456 	case SIOCSIFINFO_FLAGS:
1457 		/* XXX: almost all other fields of ndi->ndi is unused */
1458 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1459 			error = EINVAL;
1460 			break;
1461 		}
1462 		nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags;
1463 		break;
1464 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1465 		/* flush default router list */
1466 		/*
1467 		 * xxx sumikawa: should not delete route if default
1468 		 * route equals to the top of default router list
1469 		 */
1470 		bzero(&any, sizeof(any));
1471 		defrouter_delreq(&any, 0);
1472 		defrouter_select();
1473 		/* xxx sumikawa: flush prefix list */
1474 		break;
1475 	case SIOCSPFXFLUSH_IN6:
1476 	    {
1477 		/* flush all the prefix advertised by routers */
1478 		struct nd_prefix *pr, *next;
1479 
1480 		s = splnet();
1481 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1482 			struct in6_ifaddr *ia, *ia_next;
1483 
1484 			next = pr->ndpr_next;
1485 
1486 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1487 				continue; /* XXX */
1488 
1489 			/* do we really have to remove addresses as well? */
1490 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1491 				/* ia might be removed.  keep the next ptr. */
1492 				ia_next = ia->ia_next;
1493 
1494 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1495 					continue;
1496 
1497 				if (ia->ia6_ndpr == pr)
1498 					in6_purgeaddr(&ia->ia_ifa);
1499 			}
1500 			prelist_remove(pr);
1501 		}
1502 		splx(s);
1503 		break;
1504 	    }
1505 	case SIOCSRTRFLUSH_IN6:
1506 	    {
1507 		/* flush all the default routers */
1508 		struct nd_defrouter *dr, *next;
1509 
1510 		s = splnet();
1511 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1512 			/*
1513 			 * The first entry of the list may be stored in
1514 			 * the routing table, so we'll delete it later.
1515 			 */
1516 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1517 				next = TAILQ_NEXT(dr, dr_entry);
1518 				defrtrlist_del(dr);
1519 			}
1520 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1521 		}
1522 		splx(s);
1523 		break;
1524 	    }
1525 	case SIOCGNBRINFO_IN6:
1526 	    {
1527 		struct llinfo_nd6 *ln;
1528 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1529 
1530 		/*
1531 		 * XXX: KAME specific hack for scoped addresses
1532 		 *      XXXX: for other scopes than link-local?
1533 		 */
1534 		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1535 		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1536 			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1537 
1538 			if (*idp == 0)
1539 				*idp = htons(ifp->if_index);
1540 		}
1541 
1542 		s = splnet();
1543 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1544 			error = EINVAL;
1545 			splx(s);
1546 			break;
1547 		}
1548 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1549 		nbi->state = ln->ln_state;
1550 		nbi->asked = ln->ln_asked;
1551 		nbi->isrouter = ln->ln_router;
1552 		nbi->expire = ln->ln_expire;
1553 		splx(s);
1554 
1555 		break;
1556 	    }
1557 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1558 		ndif->ifindex = nd6_defifindex;
1559 		break;
1560 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1561 		return(nd6_setdefaultiface(ndif->ifindex));
1562 		break;
1563 	}
1564 	return(error);
1565 }
1566 
1567 /*
1568  * Create neighbor cache entry and cache link-layer address,
1569  * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1570  */
1571 struct rtentry *
1572 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1573 		 int lladdrlen,
1574 		 int type,	/* ICMP6 type */
1575 		 int code	/* type dependent information */)
1576 {
1577 	struct rtentry *rt = NULL;
1578 	struct llinfo_nd6 *ln = NULL;
1579 	int is_newentry;
1580 	struct sockaddr_dl *sdl = NULL;
1581 	int do_update;
1582 	int olladdr;
1583 	int llchange;
1584 	int newstate = 0;
1585 
1586 	if (!ifp)
1587 		panic("ifp == NULL in nd6_cache_lladdr");
1588 	if (!from)
1589 		panic("from == NULL in nd6_cache_lladdr");
1590 
1591 	/* nothing must be updated for unspecified address */
1592 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1593 		return NULL;
1594 
1595 	/*
1596 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1597 	 * the caller.
1598 	 *
1599 	 * XXX If the link does not have link-layer adderss, what should
1600 	 * we do? (ifp->if_addrlen == 0)
1601 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1602 	 * description on it in NS section (RFC 2461 7.2.3).
1603 	 */
1604 
1605 	rt = nd6_lookup(from, 0, ifp);
1606 	if (!rt) {
1607 #if 0
1608 		/* nothing must be done if there's no lladdr */
1609 		if (!lladdr || !lladdrlen)
1610 			return NULL;
1611 #endif
1612 
1613 		rt = nd6_lookup(from, 1, ifp);
1614 		is_newentry = 1;
1615 	} else {
1616 		/* do nothing if static ndp is set */
1617 		if (rt->rt_flags & RTF_STATIC)
1618 			return NULL;
1619 		is_newentry = 0;
1620 	}
1621 
1622 	if (!rt)
1623 		return NULL;
1624 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1625 fail:
1626 		(void)nd6_free(rt);
1627 		return NULL;
1628 	}
1629 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1630 	if (!ln)
1631 		goto fail;
1632 	if (!rt->rt_gateway)
1633 		goto fail;
1634 	if (rt->rt_gateway->sa_family != AF_LINK)
1635 		goto fail;
1636 	sdl = SDL(rt->rt_gateway);
1637 
1638 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1639 	if (olladdr && lladdr) {
1640 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1641 			llchange = 1;
1642 		else
1643 			llchange = 0;
1644 	} else
1645 		llchange = 0;
1646 
1647 	/*
1648 	 * newentry olladdr  lladdr  llchange	(*=record)
1649 	 *	0	n	n	--	(1)
1650 	 *	0	y	n	--	(2)
1651 	 *	0	n	y	--	(3) * STALE
1652 	 *	0	y	y	n	(4) *
1653 	 *	0	y	y	y	(5) * STALE
1654 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1655 	 *	1	--	y	--	(7) * STALE
1656 	 */
1657 
1658 	if (lladdr) {		/* (3-5) and (7) */
1659 		/*
1660 		 * Record source link-layer address
1661 		 * XXX is it dependent to ifp->if_type?
1662 		 */
1663 		sdl->sdl_alen = ifp->if_addrlen;
1664 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1665 	}
1666 
1667 	if (!is_newentry) {
1668 		if ((!olladdr && lladdr)		/* (3) */
1669 		 || (olladdr && lladdr && llchange)) {	/* (5) */
1670 			do_update = 1;
1671 			newstate = ND6_LLINFO_STALE;
1672 		} else					/* (1-2,4) */
1673 			do_update = 0;
1674 	} else {
1675 		do_update = 1;
1676 		if (!lladdr)				/* (6) */
1677 			newstate = ND6_LLINFO_NOSTATE;
1678 		else					/* (7) */
1679 			newstate = ND6_LLINFO_STALE;
1680 	}
1681 
1682 	if (do_update) {
1683 		/*
1684 		 * Update the state of the neighbor cache.
1685 		 */
1686 		ln->ln_state = newstate;
1687 
1688 		if (ln->ln_state == ND6_LLINFO_STALE) {
1689 			/*
1690 			 * XXX: since nd6_output() below will cause
1691 			 * state tansition to DELAY and reset the timer,
1692 			 * we must set the timer now, although it is actually
1693 			 * meaningless.
1694 			 */
1695 			ln->ln_expire = time_second + nd6_gctimer;
1696 
1697 			if (ln->ln_hold) {
1698 				/*
1699 				 * we assume ifp is not a p2p here, so just
1700 				 * set the 2nd argument as the 1st one.
1701 				 */
1702 				nd6_output(ifp, ifp, ln->ln_hold,
1703 					   (struct sockaddr_in6 *)rt_key(rt),
1704 					   rt);
1705 				ln->ln_hold = NULL;
1706 			}
1707 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1708 			/* probe right away */
1709 			ln->ln_expire = time_second;
1710 		}
1711 	}
1712 
1713 	/*
1714 	 * ICMP6 type dependent behavior.
1715 	 *
1716 	 * NS: clear IsRouter if new entry
1717 	 * RS: clear IsRouter
1718 	 * RA: set IsRouter if there's lladdr
1719 	 * redir: clear IsRouter if new entry
1720 	 *
1721 	 * RA case, (1):
1722 	 * The spec says that we must set IsRouter in the following cases:
1723 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1724 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1725 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1726 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1727 	 * neighbor cache, this is similar to (6).
1728 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1729 	 *
1730 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1731 	 *							D R
1732 	 *	0	n	n	--	(1)	c   ?     s
1733 	 *	0	y	n	--	(2)	c   s     s
1734 	 *	0	n	y	--	(3)	c   s     s
1735 	 *	0	y	y	n	(4)	c   s     s
1736 	 *	0	y	y	y	(5)	c   s     s
1737 	 *	1	--	n	--	(6) c	c 	c s
1738 	 *	1	--	y	--	(7) c	c   s	c s
1739 	 *
1740 	 *					(c=clear s=set)
1741 	 */
1742 	switch (type & 0xff) {
1743 	case ND_NEIGHBOR_SOLICIT:
1744 		/*
1745 		 * New entry must have is_router flag cleared.
1746 		 */
1747 		if (is_newentry)	/* (6-7) */
1748 			ln->ln_router = 0;
1749 		break;
1750 	case ND_REDIRECT:
1751 		/*
1752 		 * If the icmp is a redirect to a better router, always set the
1753 		 * is_router flag. Otherwise, if the entry is newly created,
1754 		 * clear the flag. [RFC 2461, sec 8.3]
1755 		 */
1756 		if (code == ND_REDIRECT_ROUTER)
1757 			ln->ln_router = 1;
1758 		else if (is_newentry) /* (6-7) */
1759 			ln->ln_router = 0;
1760 		break;
1761 	case ND_ROUTER_SOLICIT:
1762 		/*
1763 		 * is_router flag must always be cleared.
1764 		 */
1765 		ln->ln_router = 0;
1766 		break;
1767 	case ND_ROUTER_ADVERT:
1768 		/*
1769 		 * Mark an entry with lladdr as a router.
1770 		 */
1771 		if ((!is_newentry && (olladdr || lladdr))	/* (2-5) */
1772 		 || (is_newentry && lladdr)) {			/* (7) */
1773 			ln->ln_router = 1;
1774 		}
1775 		break;
1776 	}
1777 
1778 	/*
1779 	 * When the link-layer address of a router changes, select the
1780 	 * best router again.  In particular, when the neighbor entry is newly
1781 	 * created, it might affect the selection policy.
1782 	 * Question: can we restrict the first condition to the "is_newentry"
1783 	 * case?
1784 	 * XXX: when we hear an RA from a new router with the link-layer
1785 	 * address option, defrouter_select() is called twice, since
1786 	 * defrtrlist_update called the function as well.  However, I believe
1787 	 * we can compromise the overhead, since it only happens the first
1788 	 * time.
1789 	 * XXX: although defrouter_select() should not have a bad effect
1790 	 * for those are not autoconfigured hosts, we explicitly avoid such
1791 	 * cases for safety.
1792 	 */
1793 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1794 		defrouter_select();
1795 
1796 	return rt;
1797 }
1798 
1799 static void
1800 nd6_slowtimo(void *ignored_arg)
1801 {
1802 	int s = splnet();
1803 	int i;
1804 	struct nd_ifinfo *nd6if;
1805 
1806 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1807 	    nd6_slowtimo, NULL);
1808 	for (i = 1; i < if_index + 1; i++) {
1809 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim)
1810 			continue;
1811 		nd6if = &nd_ifinfo[i];
1812 		if (nd6if->basereachable && /* already initialized */
1813 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1814 			/*
1815 			 * Since reachable time rarely changes by router
1816 			 * advertisements, we SHOULD insure that a new random
1817 			 * value gets recomputed at least once every few hours.
1818 			 * (RFC 2461, 6.3.4)
1819 			 */
1820 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1821 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1822 		}
1823 	}
1824 	splx(s);
1825 }
1826 
1827 #define senderr(e) { error = (e); goto bad;}
1828 int
1829 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1830 	   struct sockaddr_in6 *dst, struct rtentry *rt0)
1831 {
1832 	struct mbuf *m = m0;
1833 	struct rtentry *rt = rt0;
1834 	struct sockaddr_in6 *gw6 = NULL;
1835 	struct llinfo_nd6 *ln = NULL;
1836 	int error = 0;
1837 
1838 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1839 		goto sendpkt;
1840 
1841 	if (nd6_need_cache(ifp) == 0)
1842 		goto sendpkt;
1843 
1844 	/*
1845 	 * next hop determination.  This routine is derived from ether_outpout.
1846 	 */
1847 	if (rt) {
1848 		if ((rt->rt_flags & RTF_UP) == 0) {
1849 			if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL)) !=
1850 				NULL)
1851 			{
1852 				rt->rt_refcnt--;
1853 				if (rt->rt_ifp != ifp) {
1854 					/* XXX: loop care? */
1855 					return nd6_output(ifp, origifp, m0,
1856 							  dst, rt);
1857 				}
1858 			} else
1859 				senderr(EHOSTUNREACH);
1860 		}
1861 
1862 		if (rt->rt_flags & RTF_GATEWAY) {
1863 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1864 
1865 			/*
1866 			 * We skip link-layer address resolution and NUD
1867 			 * if the gateway is not a neighbor from ND point
1868 			 * of view, regardless of the value of nd_ifinfo.flags.
1869 			 * The second condition is a bit tricky; we skip
1870 			 * if the gateway is our own address, which is
1871 			 * sometimes used to install a route to a p2p link.
1872 			 */
1873 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1874 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1875 				/*
1876 				 * We allow this kind of tricky route only
1877 				 * when the outgoing interface is p2p.
1878 				 * XXX: we may need a more generic rule here.
1879 				 */
1880 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1881 					senderr(EHOSTUNREACH);
1882 
1883 				goto sendpkt;
1884 			}
1885 
1886 			if (rt->rt_gwroute == 0)
1887 				goto lookup;
1888 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1889 				rtfree(rt); rt = rt0;
1890 			lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1891 				if ((rt = rt->rt_gwroute) == 0)
1892 					senderr(EHOSTUNREACH);
1893 			}
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * Address resolution or Neighbor Unreachability Detection
1899 	 * for the next hop.
1900 	 * At this point, the destination of the packet must be a unicast
1901 	 * or an anycast address(i.e. not a multicast).
1902 	 */
1903 
1904 	/* Look up the neighbor cache for the nexthop */
1905 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1906 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1907 	else {
1908 		/*
1909 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1910 		 * the condition below is not very efficient.  But we believe
1911 		 * it is tolerable, because this should be a rare case.
1912 		 */
1913 		if (nd6_is_addr_neighbor(dst, ifp) &&
1914 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1915 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1916 	}
1917 	if (!ln || !rt) {
1918 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1919 		    !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) {
1920 			log(LOG_DEBUG,
1921 			    "nd6_output: can't allocate llinfo for %s "
1922 			    "(ln=%p, rt=%p)\n",
1923 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1924 			senderr(EIO);	/* XXX: good error? */
1925 		}
1926 
1927 		goto sendpkt;	/* send anyway */
1928 	}
1929 
1930 	/* We don't have to do link-layer address resolution on a p2p link. */
1931 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1932 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1933 		ln->ln_state = ND6_LLINFO_STALE;
1934 		ln->ln_expire = time_second + nd6_gctimer;
1935 	}
1936 
1937 	/*
1938 	 * The first time we send a packet to a neighbor whose entry is
1939 	 * STALE, we have to change the state to DELAY and a sets a timer to
1940 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1941 	 * neighbor unreachability detection on expiration.
1942 	 * (RFC 2461 7.3.3)
1943 	 */
1944 	if (ln->ln_state == ND6_LLINFO_STALE) {
1945 		ln->ln_asked = 0;
1946 		ln->ln_state = ND6_LLINFO_DELAY;
1947 		ln->ln_expire = time_second + nd6_delay;
1948 	}
1949 
1950 	/*
1951 	 * If the neighbor cache entry has a state other than INCOMPLETE
1952 	 * (i.e. its link-layer address is already resolved), just
1953 	 * send the packet.
1954 	 */
1955 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1956 		goto sendpkt;
1957 
1958 	/*
1959 	 * There is a neighbor cache entry, but no ethernet address
1960 	 * response yet.  Replace the held mbuf (if any) with this
1961 	 * latest one.
1962 	 *
1963 	 * This code conforms to the rate-limiting rule described in Section
1964 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1965 	 * an NS below.
1966 	 */
1967 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1968 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1969 	if (ln->ln_hold)
1970 		m_freem(ln->ln_hold);
1971 	ln->ln_hold = m;
1972 	if (ln->ln_expire) {
1973 		if (ln->ln_asked < nd6_mmaxtries &&
1974 		    ln->ln_expire < time_second) {
1975 			ln->ln_asked++;
1976 			ln->ln_expire = time_second +
1977 				nd_ifinfo[ifp->if_index].retrans / 1000;
1978 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1979 		}
1980 	}
1981 	return(0);
1982 
1983   sendpkt:
1984 
1985 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1986 		return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1987 					 rt));
1988 	}
1989 	return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1990 
1991   bad:
1992 	if (m)
1993 		m_freem(m);
1994 	return (error);
1995 }
1996 #undef senderr
1997 
1998 int
1999 nd6_need_cache(struct ifnet *ifp)
2000 {
2001 	/*
2002 	 * XXX: we currently do not make neighbor cache on any interface
2003 	 * other than ARCnet, Ethernet, FDDI and GIF.
2004 	 *
2005 	 * RFC2893 says:
2006 	 * - unidirectional tunnels needs no ND
2007 	 */
2008 	switch (ifp->if_type) {
2009 	case IFT_ARCNET:
2010 	case IFT_ETHER:
2011 	case IFT_FDDI:
2012 	case IFT_IEEE1394:
2013 #ifdef IFT_L2VLAN
2014 	case IFT_L2VLAN:
2015 #endif
2016 #ifdef IFT_IEEE80211
2017 	case IFT_IEEE80211:
2018 #endif
2019 	case IFT_GIF:		/* XXX need more cases? */
2020 		return(1);
2021 	default:
2022 		return(0);
2023 	}
2024 }
2025 
2026 int
2027 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m,
2028 		struct sockaddr *dst, u_char *desten)
2029 {
2030 	struct sockaddr_dl *sdl;
2031 
2032 	if (m->m_flags & M_MCAST) {
2033 		switch (ifp->if_type) {
2034 		case IFT_ETHER:
2035 		case IFT_FDDI:
2036 #ifdef IFT_L2VLAN
2037 	case IFT_L2VLAN:
2038 #endif
2039 #ifdef IFT_IEEE80211
2040 		case IFT_IEEE80211:
2041 #endif
2042 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2043 						 desten);
2044 			return(1);
2045 		case IFT_IEEE1394:
2046 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
2047 			return(1);
2048 		case IFT_ARCNET:
2049 			*desten = 0;
2050 			return(1);
2051 		default:
2052 			m_freem(m);
2053 			return(0);
2054 		}
2055 	}
2056 
2057 	if (rt == NULL) {
2058 		/* this could happen, if we could not allocate memory */
2059 		m_freem(m);
2060 		return(0);
2061 	}
2062 	if (rt->rt_gateway->sa_family != AF_LINK) {
2063 		printf("nd6_storelladdr: something odd happens\n");
2064 		m_freem(m);
2065 		return(0);
2066 	}
2067 	sdl = SDL(rt->rt_gateway);
2068 	if (sdl->sdl_alen == 0) {
2069 		/* this should be impossible, but we bark here for debugging */
2070 		printf("nd6_storelladdr: sdl_alen == 0\n");
2071 		m_freem(m);
2072 		return(0);
2073 	}
2074 
2075 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2076 	return(1);
2077 }
2078 
2079 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2080 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2081 #ifdef SYSCTL_DECL
2082 SYSCTL_DECL(_net_inet6_icmp6);
2083 #endif
2084 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2085 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2086 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2087 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2088 
2089 static int
2090 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2091 {
2092 	int error;
2093 	char buf[1024];
2094 	struct in6_defrouter *d, *de;
2095 	struct nd_defrouter *dr;
2096 
2097 	if (req->newptr)
2098 		return EPERM;
2099 	error = 0;
2100 
2101 	for (dr = TAILQ_FIRST(&nd_defrouter);
2102 	     dr;
2103 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2104 		d = (struct in6_defrouter *)buf;
2105 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2106 
2107 		if (d + 1 <= de) {
2108 			bzero(d, sizeof(*d));
2109 			d->rtaddr.sin6_family = AF_INET6;
2110 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2111 			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2112 			    dr->ifp) != 0)
2113 				log(LOG_ERR,
2114 				    "scope error in "
2115 				    "default router list (%s)\n",
2116 				    ip6_sprintf(&dr->rtaddr));
2117 			d->flags = dr->flags;
2118 			d->rtlifetime = dr->rtlifetime;
2119 			d->expire = dr->expire;
2120 			d->if_index = dr->ifp->if_index;
2121 		} else
2122 			panic("buffer too short");
2123 
2124 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2125 		if (error)
2126 			break;
2127 	}
2128 	return error;
2129 }
2130 
2131 static int
2132 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2133 {
2134 	int error;
2135 	char buf[1024];
2136 	struct in6_prefix *p, *pe;
2137 	struct nd_prefix *pr;
2138 
2139 	if (req->newptr)
2140 		return EPERM;
2141 	error = 0;
2142 
2143 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2144 		u_short advrtrs;
2145 		size_t advance;
2146 		struct sockaddr_in6 *sin6, *s6;
2147 		struct nd_pfxrouter *pfr;
2148 
2149 		p = (struct in6_prefix *)buf;
2150 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2151 
2152 		if (p + 1 <= pe) {
2153 			bzero(p, sizeof(*p));
2154 			sin6 = (struct sockaddr_in6 *)(p + 1);
2155 
2156 			p->prefix = pr->ndpr_prefix;
2157 			if (in6_recoverscope(&p->prefix,
2158 			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2159 				log(LOG_ERR,
2160 				    "scope error in prefix list (%s)\n",
2161 				    ip6_sprintf(&p->prefix.sin6_addr));
2162 			p->raflags = pr->ndpr_raf;
2163 			p->prefixlen = pr->ndpr_plen;
2164 			p->vltime = pr->ndpr_vltime;
2165 			p->pltime = pr->ndpr_pltime;
2166 			p->if_index = pr->ndpr_ifp->if_index;
2167 			p->expire = pr->ndpr_expire;
2168 			p->refcnt = pr->ndpr_refcnt;
2169 			p->flags = pr->ndpr_stateflags;
2170 			p->origin = PR_ORIG_RA;
2171 			advrtrs = 0;
2172 			for (pfr = pr->ndpr_advrtrs.lh_first;
2173 			     pfr;
2174 			     pfr = pfr->pfr_next) {
2175 				if ((void *)&sin6[advrtrs + 1] >
2176 				    (void *)pe) {
2177 					advrtrs++;
2178 					continue;
2179 				}
2180 				s6 = &sin6[advrtrs];
2181 				bzero(s6, sizeof(*s6));
2182 				s6->sin6_family = AF_INET6;
2183 				s6->sin6_len = sizeof(*sin6);
2184 				if (in6_recoverscope(s6,
2185 				    &pfr->router->rtaddr,
2186 				    pfr->router->ifp) != 0)
2187 					log(LOG_ERR,
2188 					    "scope error in "
2189 					    "prefix list (%s)\n",
2190 					    ip6_sprintf(&pfr->router->rtaddr));
2191 				advrtrs++;
2192 			}
2193 			p->advrtrs = advrtrs;
2194 		} else
2195 			panic("buffer too short");
2196 
2197 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2198 		error = SYSCTL_OUT(req, buf, advance);
2199 		if (error)
2200 			break;
2201 	}
2202 	return error;
2203 }
2204