1 /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/callout.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 #include <sys/time.h> 44 #include <sys/kernel.h> 45 #include <sys/protosw.h> 46 #include <sys/errno.h> 47 #include <sys/syslog.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/mutex.h> 51 52 #include <sys/thread2.h> 53 #include <sys/mutex2.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_types.h> 58 #include <net/route.h> 59 #include <net/netisr2.h> 60 #include <net/netmsg2.h> 61 62 #include <netinet/in.h> 63 #include <netinet/if_ether.h> 64 #include <netinet6/in6_var.h> 65 #include <netinet/ip6.h> 66 #include <netinet6/ip6_var.h> 67 #include <netinet6/nd6.h> 68 #include <netinet/icmp6.h> 69 70 #include <net/net_osdep.h> 71 72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 74 75 #define SIN6(s) ((struct sockaddr_in6 *)s) 76 #define SDL(s) ((struct sockaddr_dl *)s) 77 78 /* timer values */ 79 int nd6_prune = 1; /* walk list every 1 seconds */ 80 int nd6_delay = 5; /* delay first probe time 5 second */ 81 int nd6_umaxtries = 3; /* maximum unicast query */ 82 int nd6_mmaxtries = 3; /* maximum multicast query */ 83 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 84 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 85 86 /* preventing too many loops in ND option parsing */ 87 int nd6_maxndopt = 10; /* max # of ND options allowed */ 88 89 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 90 91 #ifdef ND6_DEBUG 92 int nd6_debug = 1; 93 #else 94 int nd6_debug = 0; 95 #endif 96 97 /* for debugging? */ 98 static int nd6_inuse, nd6_allocated; 99 100 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 101 struct nd_drhead nd_defrouter; 102 struct nd_prhead nd_prefix = { 0 }; 103 struct mtx nd6_mtx = MTX_INITIALIZER("nd6"); 104 105 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 106 static struct sockaddr_in6 all1_sa; 107 108 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *); 109 static int regen_tmpaddr (struct in6_ifaddr *); 110 static void nd6_slowtimo(void *); 111 static void nd6_slowtimo_dispatch(netmsg_t); 112 static void nd6_timer(void *); 113 static void nd6_timer_dispatch(netmsg_t); 114 115 static struct callout nd6_slowtimo_ch; 116 static struct netmsg_base nd6_slowtimo_netmsg; 117 118 static struct callout nd6_timer_ch; 119 static struct netmsg_base nd6_timer_netmsg; 120 121 void 122 nd6_init(void) 123 { 124 static int nd6_init_done = 0; 125 int i; 126 127 if (nd6_init_done) { 128 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 129 return; 130 } 131 132 all1_sa.sin6_family = AF_INET6; 133 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 134 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 135 all1_sa.sin6_addr.s6_addr[i] = 0xff; 136 137 /* initialization of the default router list */ 138 TAILQ_INIT(&nd_defrouter); 139 140 nd6_init_done = 1; 141 142 /* start timer */ 143 callout_init_mp(&nd6_slowtimo_ch); 144 netmsg_init(&nd6_slowtimo_netmsg, NULL, &netisr_adone_rport, 145 MSGF_PRIORITY, nd6_slowtimo_dispatch); 146 callout_reset_bycpu(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 147 nd6_slowtimo, NULL, 0); 148 } 149 150 struct nd_ifinfo * 151 nd6_ifattach(struct ifnet *ifp) 152 { 153 struct nd_ifinfo *nd; 154 155 nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP, 156 M_WAITOK | M_ZERO); 157 158 nd->initialized = 1; 159 160 nd->chlim = IPV6_DEFHLIM; 161 nd->basereachable = REACHABLE_TIME; 162 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 163 nd->retrans = RETRANS_TIMER; 164 165 /* 166 * Note that the default value of ip6_accept_rtadv is 0, which means 167 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 168 * here. 169 */ 170 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 171 172 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 173 nd6_setmtu0(ifp, nd); 174 return nd; 175 } 176 177 void 178 nd6_ifdetach(struct nd_ifinfo *nd) 179 { 180 kfree(nd, M_IP6NDP); 181 } 182 183 /* 184 * Reset ND level link MTU. This function is called when the physical MTU 185 * changes, which means we might have to adjust the ND level MTU. 186 */ 187 void 188 nd6_setmtu(struct ifnet *ifp) 189 { 190 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 191 } 192 193 struct netmsg_nd6setmtu { 194 struct netmsg_base nmsg; 195 struct ifnet *ifp; 196 struct nd_ifinfo *ndi; 197 }; 198 199 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 200 static void 201 nd6_setmtu0_dispatch(netmsg_t msg) 202 { 203 struct netmsg_nd6setmtu *nmsg = (struct netmsg_nd6setmtu *)msg; 204 struct ifnet *ifp = nmsg->ifp; 205 struct nd_ifinfo *ndi = nmsg->ndi; 206 uint32_t omaxmtu; 207 208 omaxmtu = ndi->maxmtu; 209 210 switch (ifp->if_type) { 211 case IFT_ETHER: 212 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 213 break; 214 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ 215 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 216 break; 217 #ifdef IFT_IEEE80211 218 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ 219 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 220 break; 221 #endif 222 default: 223 ndi->maxmtu = ifp->if_mtu; 224 break; 225 } 226 227 /* 228 * Decreasing the interface MTU under IPV6 minimum MTU may cause 229 * undesirable situation. We thus notify the operator of the change 230 * explicitly. The check for omaxmtu is necessary to restrict the 231 * log to the case of changing the MTU, not initializing it. 232 */ 233 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 234 log(LOG_NOTICE, "nd6_setmtu0: " 235 "new link MTU on %s (%lu) is too small for IPv6\n", 236 if_name(ifp), (unsigned long)ndi->maxmtu); 237 } 238 239 if (ndi->maxmtu > in6_maxmtu) 240 in6_setmaxmtu(); /* check all interfaces just in case */ 241 242 lwkt_replymsg(&nmsg->nmsg.lmsg, 0); 243 } 244 245 void 246 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 247 { 248 struct netmsg_nd6setmtu nmsg; 249 250 netmsg_init(&nmsg.nmsg, NULL, &curthread->td_msgport, 0, 251 nd6_setmtu0_dispatch); 252 nmsg.ifp = ifp; 253 nmsg.ndi = ndi; 254 lwkt_domsg(netisr_cpuport(0), &nmsg.nmsg.lmsg, 0); 255 } 256 257 void 258 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 259 { 260 bzero(ndopts, sizeof(*ndopts)); 261 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 262 ndopts->nd_opts_last 263 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 264 265 if (icmp6len == 0) { 266 ndopts->nd_opts_done = 1; 267 ndopts->nd_opts_search = NULL; 268 } 269 } 270 271 /* 272 * Take one ND option. 273 */ 274 struct nd_opt_hdr * 275 nd6_option(union nd_opts *ndopts) 276 { 277 struct nd_opt_hdr *nd_opt; 278 int olen; 279 280 if (!ndopts) 281 panic("ndopts == NULL in nd6_option"); 282 if (!ndopts->nd_opts_last) 283 panic("uninitialized ndopts in nd6_option"); 284 if (!ndopts->nd_opts_search) 285 return NULL; 286 if (ndopts->nd_opts_done) 287 return NULL; 288 289 nd_opt = ndopts->nd_opts_search; 290 291 /* make sure nd_opt_len is inside the buffer */ 292 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 293 bzero(ndopts, sizeof(*ndopts)); 294 return NULL; 295 } 296 297 olen = nd_opt->nd_opt_len << 3; 298 if (olen == 0) { 299 /* 300 * Message validation requires that all included 301 * options have a length that is greater than zero. 302 */ 303 bzero(ndopts, sizeof(*ndopts)); 304 return NULL; 305 } 306 307 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 308 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 309 /* option overruns the end of buffer, invalid */ 310 bzero(ndopts, sizeof(*ndopts)); 311 return NULL; 312 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 313 /* reached the end of options chain */ 314 ndopts->nd_opts_done = 1; 315 ndopts->nd_opts_search = NULL; 316 } 317 return nd_opt; 318 } 319 320 /* 321 * Parse multiple ND options. 322 * This function is much easier to use, for ND routines that do not need 323 * multiple options of the same type. 324 */ 325 int 326 nd6_options(union nd_opts *ndopts) 327 { 328 struct nd_opt_hdr *nd_opt; 329 int i = 0; 330 331 if (!ndopts) 332 panic("ndopts == NULL in nd6_options"); 333 if (!ndopts->nd_opts_last) 334 panic("uninitialized ndopts in nd6_options"); 335 if (!ndopts->nd_opts_search) 336 return 0; 337 338 while (1) { 339 nd_opt = nd6_option(ndopts); 340 if (!nd_opt && !ndopts->nd_opts_last) { 341 /* 342 * Message validation requires that all included 343 * options have a length that is greater than zero. 344 */ 345 icmp6stat.icp6s_nd_badopt++; 346 bzero(ndopts, sizeof(*ndopts)); 347 return -1; 348 } 349 350 if (!nd_opt) 351 goto skip1; 352 353 switch (nd_opt->nd_opt_type) { 354 case ND_OPT_SOURCE_LINKADDR: 355 case ND_OPT_TARGET_LINKADDR: 356 case ND_OPT_MTU: 357 case ND_OPT_REDIRECTED_HEADER: 358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 359 nd6log((LOG_INFO, 360 "duplicated ND6 option found (type=%d)\n", 361 nd_opt->nd_opt_type)); 362 /* XXX bark? */ 363 } else { 364 ndopts->nd_opt_array[nd_opt->nd_opt_type] 365 = nd_opt; 366 } 367 break; 368 case ND_OPT_PREFIX_INFORMATION: 369 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 370 ndopts->nd_opt_array[nd_opt->nd_opt_type] 371 = nd_opt; 372 } 373 ndopts->nd_opts_pi_end = 374 (struct nd_opt_prefix_info *)nd_opt; 375 break; 376 default: 377 /* 378 * Unknown options must be silently ignored, 379 * to accomodate future extension to the protocol. 380 */ 381 nd6log((LOG_DEBUG, 382 "nd6_options: unsupported option %d - " 383 "option ignored\n", nd_opt->nd_opt_type)); 384 } 385 386 skip1: 387 i++; 388 if (i > nd6_maxndopt) { 389 icmp6stat.icp6s_nd_toomanyopt++; 390 nd6log((LOG_INFO, "too many loop in nd opt\n")); 391 break; 392 } 393 394 if (ndopts->nd_opts_done) 395 break; 396 } 397 398 return 0; 399 } 400 401 /* 402 * ND6 timer routine to expire default route list and prefix list 403 */ 404 static void 405 nd6_timer_dispatch(netmsg_t nmsg) 406 { 407 struct llinfo_nd6 *ln; 408 struct nd_defrouter *dr; 409 struct nd_prefix *pr; 410 struct ifnet *ifp; 411 struct in6_ifaddr *ia6, *nia6; 412 413 ASSERT_NETISR0; 414 415 crit_enter(); 416 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */ 417 crit_exit(); 418 419 mtx_lock(&nd6_mtx); 420 421 ln = llinfo_nd6.ln_next; 422 while (ln && ln != &llinfo_nd6) { 423 struct rtentry *rt; 424 struct sockaddr_in6 *dst; 425 struct llinfo_nd6 *next = ln->ln_next; 426 /* XXX: used for the DELAY case only: */ 427 struct nd_ifinfo *ndi = NULL; 428 429 if ((rt = ln->ln_rt) == NULL) { 430 ln = next; 431 continue; 432 } 433 if ((ifp = rt->rt_ifp) == NULL) { 434 ln = next; 435 continue; 436 } 437 ndi = ND_IFINFO(ifp); 438 dst = (struct sockaddr_in6 *)rt_key(rt); 439 440 if (ln->ln_expire > time_uptime) { 441 ln = next; 442 continue; 443 } 444 445 /* sanity check */ 446 if (!rt) 447 panic("rt=0 in nd6_timer(ln=%p)", ln); 448 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 449 panic("rt_llinfo(%p) is not equal to ln(%p)", 450 rt->rt_llinfo, ln); 451 if (!dst) 452 panic("dst=0 in nd6_timer(ln=%p)", ln); 453 454 switch (ln->ln_state) { 455 case ND6_LLINFO_INCOMPLETE: 456 if (ln->ln_asked < nd6_mmaxtries) { 457 ln->ln_asked++; 458 ln->ln_expire = time_uptime + 459 ND_IFINFO(ifp)->retrans / 1000; 460 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 461 ln, 0); 462 } else { 463 struct mbuf *m = ln->ln_hold; 464 if (m) { 465 if (rt->rt_ifp) { 466 /* 467 * Fake rcvif to make ICMP error 468 * more helpful in diagnosing 469 * for the receiver. 470 * XXX: should we consider 471 * older rcvif? 472 */ 473 m->m_pkthdr.rcvif = rt->rt_ifp; 474 } 475 icmp6_error(m, ICMP6_DST_UNREACH, 476 ICMP6_DST_UNREACH_ADDR, 0); 477 ln->ln_hold = NULL; 478 } 479 next = nd6_free(rt); 480 } 481 break; 482 case ND6_LLINFO_REACHABLE: 483 if (ln->ln_expire) { 484 ln->ln_state = ND6_LLINFO_STALE; 485 ln->ln_expire = time_uptime + nd6_gctimer; 486 } 487 break; 488 489 case ND6_LLINFO_STALE: 490 /* Garbage Collection(RFC 2461 5.3) */ 491 if (ln->ln_expire) 492 next = nd6_free(rt); 493 break; 494 495 case ND6_LLINFO_DELAY: 496 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) { 497 /* We need NUD */ 498 ln->ln_asked = 1; 499 ln->ln_state = ND6_LLINFO_PROBE; 500 ln->ln_expire = time_uptime + 501 ndi->retrans / 1000; 502 nd6_ns_output(ifp, &dst->sin6_addr, 503 &dst->sin6_addr, 504 ln, 0); 505 } else { 506 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 507 ln->ln_expire = time_uptime + nd6_gctimer; 508 } 509 break; 510 case ND6_LLINFO_PROBE: 511 if (ln->ln_asked < nd6_umaxtries) { 512 ln->ln_asked++; 513 ln->ln_expire = time_uptime + 514 ND_IFINFO(ifp)->retrans / 1000; 515 nd6_ns_output(ifp, &dst->sin6_addr, 516 &dst->sin6_addr, ln, 0); 517 } else { 518 next = nd6_free(rt); 519 } 520 break; 521 } 522 ln = next; 523 } 524 525 /* expire default router list */ 526 dr = TAILQ_FIRST(&nd_defrouter); 527 while (dr) { 528 if (dr->expire && dr->expire < time_uptime) { 529 struct nd_defrouter *t; 530 t = TAILQ_NEXT(dr, dr_entry); 531 defrtrlist_del(dr); 532 dr = t; 533 } else { 534 dr = TAILQ_NEXT(dr, dr_entry); 535 } 536 } 537 538 /* 539 * expire interface addresses. 540 * in the past the loop was inside prefix expiry processing. 541 * However, from a stricter speci-confrmance standpoint, we should 542 * rather separate address lifetimes and prefix lifetimes. 543 */ 544 addrloop: 545 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 546 nia6 = ia6->ia_next; 547 /* check address lifetime */ 548 if (IFA6_IS_INVALID(ia6)) { 549 int regen = 0; 550 551 /* 552 * If the expiring address is temporary, try 553 * regenerating a new one. This would be useful when 554 * we suspended a laptop PC, then turned it on after a 555 * period that could invalidate all temporary 556 * addresses. Although we may have to restart the 557 * loop (see below), it must be after purging the 558 * address. Otherwise, we'd see an infinite loop of 559 * regeneration. 560 */ 561 if (ip6_use_tempaddr && 562 (ia6->ia6_flags & IN6_IFF_TEMPORARY)) { 563 if (regen_tmpaddr(ia6) == 0) 564 regen = 1; 565 } 566 567 in6_purgeaddr(&ia6->ia_ifa); 568 569 if (regen) 570 goto addrloop; /* XXX: see below */ 571 } 572 if (IFA6_IS_DEPRECATED(ia6)) { 573 int oldflags = ia6->ia6_flags; 574 575 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 576 577 /* 578 * If a temporary address has just become deprecated, 579 * regenerate a new one if possible. 580 */ 581 if (ip6_use_tempaddr && 582 (ia6->ia6_flags & IN6_IFF_TEMPORARY) && 583 !(oldflags & IN6_IFF_DEPRECATED)) { 584 585 if (regen_tmpaddr(ia6) == 0) { 586 /* 587 * A new temporary address is 588 * generated. 589 * XXX: this means the address chain 590 * has changed while we are still in 591 * the loop. Although the change 592 * would not cause disaster (because 593 * it's not a deletion, but an 594 * addition,) we'd rather restart the 595 * loop just for safety. Or does this 596 * significantly reduce performance?? 597 */ 598 goto addrloop; 599 } 600 } 601 } else { 602 /* 603 * A new RA might have made a deprecated address 604 * preferred. 605 */ 606 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 607 } 608 } 609 610 /* expire prefix list */ 611 pr = nd_prefix.lh_first; 612 while (pr) { 613 /* 614 * check prefix lifetime. 615 * since pltime is just for autoconf, pltime processing for 616 * prefix is not necessary. 617 */ 618 if (pr->ndpr_expire && pr->ndpr_expire < time_uptime) { 619 struct nd_prefix *t; 620 t = pr->ndpr_next; 621 622 /* 623 * address expiration and prefix expiration are 624 * separate. NEVER perform in6_purgeaddr here. 625 */ 626 627 prelist_remove(pr); 628 pr = t; 629 } else 630 pr = pr->ndpr_next; 631 } 632 633 mtx_unlock(&nd6_mtx); 634 635 callout_reset(&nd6_timer_ch, nd6_prune * hz, nd6_timer, NULL); 636 } 637 638 static void 639 nd6_timer(void *arg __unused) 640 { 641 struct lwkt_msg *lmsg = &nd6_timer_netmsg.lmsg; 642 643 KASSERT(mycpuid == 0, ("not on cpu0")); 644 crit_enter(); 645 if (lmsg->ms_flags & MSGF_DONE) 646 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg); 647 crit_exit(); 648 } 649 650 void 651 nd6_timer_init(void) 652 { 653 callout_init_mp(&nd6_timer_ch); 654 netmsg_init(&nd6_timer_netmsg, NULL, &netisr_adone_rport, 655 MSGF_PRIORITY, nd6_timer_dispatch); 656 callout_reset_bycpu(&nd6_timer_ch, hz, nd6_timer, NULL, 0); 657 } 658 659 static int 660 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary 661 address */ 662 { 663 struct ifaddr_container *ifac; 664 struct ifnet *ifp; 665 struct in6_ifaddr *public_ifa6 = NULL; 666 667 ifp = ia6->ia_ifa.ifa_ifp; 668 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 669 struct ifaddr *ifa = ifac->ifa; 670 struct in6_ifaddr *it6; 671 672 if (ifa->ifa_addr->sa_family != AF_INET6) 673 continue; 674 675 it6 = (struct in6_ifaddr *)ifa; 676 677 /* ignore no autoconf addresses. */ 678 if (!(it6->ia6_flags & IN6_IFF_AUTOCONF)) 679 continue; 680 681 /* ignore autoconf addresses with different prefixes. */ 682 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 683 continue; 684 685 /* 686 * Now we are looking at an autoconf address with the same 687 * prefix as ours. If the address is temporary and is still 688 * preferred, do not create another one. It would be rare, but 689 * could happen, for example, when we resume a laptop PC after 690 * a long period. 691 */ 692 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) && 693 !IFA6_IS_DEPRECATED(it6)) { 694 public_ifa6 = NULL; 695 break; 696 } 697 698 /* 699 * This is a public autoconf address that has the same prefix 700 * as ours. If it is preferred, keep it. We can't break the 701 * loop here, because there may be a still-preferred temporary 702 * address with the prefix. 703 */ 704 if (!IFA6_IS_DEPRECATED(it6)) 705 public_ifa6 = it6; 706 } 707 708 if (public_ifa6 != NULL) { 709 int e; 710 711 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { 712 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 713 " tmp addr,errno=%d\n", e); 714 return (-1); 715 } 716 return (0); 717 } 718 719 return (-1); 720 } 721 722 /* 723 * Nuke neighbor cache/prefix/default router management table, right before 724 * ifp goes away. 725 */ 726 void 727 nd6_purge(struct ifnet *ifp) 728 { 729 struct llinfo_nd6 *ln, *nln; 730 struct nd_defrouter *dr, *ndr, drany; 731 struct nd_prefix *pr, *npr; 732 733 /* Nuke default router list entries toward ifp */ 734 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 735 /* 736 * The first entry of the list may be stored in 737 * the routing table, so we'll delete it later. 738 */ 739 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 740 ndr = TAILQ_NEXT(dr, dr_entry); 741 if (dr->ifp == ifp) 742 defrtrlist_del(dr); 743 } 744 dr = TAILQ_FIRST(&nd_defrouter); 745 if (dr->ifp == ifp) 746 defrtrlist_del(dr); 747 } 748 749 /* Nuke prefix list entries toward ifp */ 750 for (pr = nd_prefix.lh_first; pr; pr = npr) { 751 npr = pr->ndpr_next; 752 if (pr->ndpr_ifp == ifp) { 753 /* 754 * Previously, pr->ndpr_addr is removed as well, 755 * but I strongly believe we don't have to do it. 756 * nd6_purge() is only called from in6_ifdetach(), 757 * which removes all the associated interface addresses 758 * by itself. 759 * (jinmei@kame.net 20010129) 760 */ 761 prelist_remove(pr); 762 } 763 } 764 765 /* cancel default outgoing interface setting */ 766 if (nd6_defifindex == ifp->if_index) 767 nd6_setdefaultiface(0); 768 769 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 770 /* refresh default router list */ 771 bzero(&drany, sizeof(drany)); 772 defrouter_delreq(&drany, 0); 773 defrouter_select(); 774 } 775 776 /* 777 * Nuke neighbor cache entries for the ifp. 778 * Note that rt->rt_ifp may not be the same as ifp, 779 * due to KAME goto ours hack. See RTM_RESOLVE case in 780 * nd6_rtrequest(), and ip6_input(). 781 */ 782 ln = llinfo_nd6.ln_next; 783 while (ln && ln != &llinfo_nd6) { 784 struct rtentry *rt; 785 struct sockaddr_dl *sdl; 786 787 nln = ln->ln_next; 788 rt = ln->ln_rt; 789 if (rt && rt->rt_gateway && 790 rt->rt_gateway->sa_family == AF_LINK) { 791 sdl = (struct sockaddr_dl *)rt->rt_gateway; 792 if (sdl->sdl_index == ifp->if_index) 793 nln = nd6_free(rt); 794 } 795 ln = nln; 796 } 797 } 798 799 struct rtentry * 800 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) 801 { 802 struct rtentry *rt; 803 struct sockaddr_in6 sin6; 804 805 bzero(&sin6, sizeof(sin6)); 806 sin6.sin6_len = sizeof(struct sockaddr_in6); 807 sin6.sin6_family = AF_INET6; 808 sin6.sin6_addr = *addr6; 809 810 if (create) 811 rt = rtlookup((struct sockaddr *)&sin6); 812 else 813 rt = rtpurelookup((struct sockaddr *)&sin6); 814 if (rt && !(rt->rt_flags & RTF_LLINFO)) { 815 /* 816 * This is the case for the default route. 817 * If we want to create a neighbor cache for the address, we 818 * should free the route for the destination and allocate an 819 * interface route. 820 */ 821 if (create) { 822 --rt->rt_refcnt; 823 rt = NULL; 824 } 825 } 826 if (!rt) { 827 if (create && ifp) { 828 int e; 829 830 /* 831 * If no route is available and create is set, 832 * we allocate a host route for the destination 833 * and treat it like an interface route. 834 * This hack is necessary for a neighbor which can't 835 * be covered by our own prefix. 836 */ 837 struct ifaddr *ifa; 838 839 ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 840 if (ifa == NULL) 841 return (NULL); 842 843 /* 844 * Create a new route. RTF_LLINFO is necessary 845 * to create a Neighbor Cache entry for the 846 * destination in nd6_rtrequest which will be 847 * called in rtrequest via ifa->ifa_rtrequest. 848 */ 849 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 850 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 851 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 852 ~RTF_CLONING, &rt)) != 0) { 853 log(LOG_ERR, 854 "nd6_lookup: failed to add route for a " 855 "neighbor(%s), errno=%d\n", 856 ip6_sprintf(addr6), e); 857 } 858 if (rt == NULL) 859 return (NULL); 860 if (rt->rt_llinfo) { 861 struct llinfo_nd6 *ln = 862 (struct llinfo_nd6 *)rt->rt_llinfo; 863 864 ln->ln_state = ND6_LLINFO_NOSTATE; 865 } 866 } else 867 return (NULL); 868 } 869 rt->rt_refcnt--; 870 /* 871 * Validation for the entry. 872 * Note that the check for rt_llinfo is necessary because a cloned 873 * route from a parent route that has the L flag (e.g. the default 874 * route to a p2p interface) may have the flag, too, while the 875 * destination is not actually a neighbor. 876 * XXX: we can't use rt->rt_ifp to check for the interface, since 877 * it might be the loopback interface if the entry is for our 878 * own address on a non-loopback interface. Instead, we should 879 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 880 * interface. 881 */ 882 if ((rt->rt_flags & RTF_GATEWAY) || !(rt->rt_flags & RTF_LLINFO) || 883 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 884 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 885 if (create) { 886 log(LOG_DEBUG, 887 "nd6_lookup: failed to lookup %s (if = %s)\n", 888 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 889 /* xxx more logs... kazu */ 890 } 891 return (NULL); 892 } 893 return (rt); 894 } 895 896 /* 897 * Detect if a given IPv6 address identifies a neighbor on a given link. 898 * XXX: should take care of the destination of a p2p link? 899 */ 900 int 901 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 902 { 903 struct ifaddr_container *ifac; 904 int i; 905 906 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 907 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 908 909 /* 910 * A link-local address is always a neighbor. 911 * XXX: we should use the sin6_scope_id field rather than the embedded 912 * interface index. 913 */ 914 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 915 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 916 return (1); 917 918 /* 919 * If the address matches one of our addresses, 920 * it should be a neighbor. 921 */ 922 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 923 struct ifaddr *ifa = ifac->ifa; 924 925 if (ifa->ifa_addr->sa_family != AF_INET6) 926 next: continue; 927 928 for (i = 0; i < 4; i++) { 929 if ((IFADDR6(ifa).s6_addr32[i] ^ 930 addr->sin6_addr.s6_addr32[i]) & 931 IFMASK6(ifa).s6_addr32[i]) 932 goto next; 933 } 934 return (1); 935 } 936 937 /* 938 * Even if the address matches none of our addresses, it might be 939 * in the neighbor cache. 940 */ 941 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 942 return (1); 943 944 return (0); 945 #undef IFADDR6 946 #undef IFMASK6 947 } 948 949 /* 950 * Free an nd6 llinfo entry. 951 */ 952 struct llinfo_nd6 * 953 nd6_free(struct rtentry *rt) 954 { 955 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 956 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 957 struct nd_defrouter *dr; 958 959 /* 960 * we used to have kpfctlinput(PRC_HOSTDEAD) here. 961 * even though it is not harmful, it was not really necessary. 962 */ 963 964 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 965 mtx_lock(&nd6_mtx); 966 dr = defrouter_lookup( 967 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 968 rt->rt_ifp); 969 970 if (ln->ln_router || dr) { 971 /* 972 * rt6_flush must be called whether or not the neighbor 973 * is in the Default Router List. 974 * See a corresponding comment in nd6_na_input(). 975 */ 976 rt6_flush(&in6, rt->rt_ifp); 977 } 978 979 if (dr) { 980 /* 981 * Unreachablity of a router might affect the default 982 * router selection and on-link detection of advertised 983 * prefixes. 984 */ 985 986 /* 987 * Temporarily fake the state to choose a new default 988 * router and to perform on-link determination of 989 * prefixes correctly. 990 * Below the state will be set correctly, 991 * or the entry itself will be deleted. 992 */ 993 ln->ln_state = ND6_LLINFO_INCOMPLETE; 994 995 /* 996 * Since defrouter_select() does not affect the 997 * on-link determination and MIP6 needs the check 998 * before the default router selection, we perform 999 * the check now. 1000 */ 1001 pfxlist_onlink_check(); 1002 1003 if (dr == TAILQ_FIRST(&nd_defrouter)) { 1004 /* 1005 * It is used as the current default router, 1006 * so we have to move it to the end of the 1007 * list and choose a new one. 1008 * XXX: it is not very efficient if this is 1009 * the only router. 1010 */ 1011 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 1012 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 1013 1014 defrouter_select(); 1015 } 1016 } 1017 mtx_unlock(&nd6_mtx); 1018 } 1019 1020 /* 1021 * Before deleting the entry, remember the next entry as the 1022 * return value. We need this because pfxlist_onlink_check() above 1023 * might have freed other entries (particularly the old next entry) as 1024 * a side effect (XXX). 1025 */ 1026 next = ln->ln_next; 1027 1028 /* 1029 * Detach the route from the routing tree and the list of neighbor 1030 * caches, and disable the route entry not to be used in already 1031 * cached routes. 1032 */ 1033 rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL); 1034 1035 return (next); 1036 } 1037 1038 /* 1039 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1040 * 1041 * XXX cost-effective metods? 1042 */ 1043 void 1044 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1045 { 1046 struct llinfo_nd6 *ln; 1047 1048 /* 1049 * If the caller specified "rt", use that. Otherwise, resolve the 1050 * routing table by supplied "dst6". 1051 */ 1052 if (!rt) { 1053 if (!dst6) 1054 return; 1055 if (!(rt = nd6_lookup(dst6, 0, NULL))) 1056 return; 1057 } 1058 1059 if ((rt->rt_flags & RTF_GATEWAY) || 1060 !(rt->rt_flags & RTF_LLINFO) || 1061 rt->rt_llinfo == NULL || rt->rt_gateway == NULL || 1062 rt->rt_gateway->sa_family != AF_LINK) { 1063 /* This is not a host route. */ 1064 return; 1065 } 1066 1067 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1068 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1069 return; 1070 1071 /* 1072 * if we get upper-layer reachability confirmation many times, 1073 * it is possible we have false information. 1074 */ 1075 if (!force) { 1076 ln->ln_byhint++; 1077 if (ln->ln_byhint > nd6_maxnudhint) 1078 return; 1079 } 1080 1081 ln->ln_state = ND6_LLINFO_REACHABLE; 1082 if (ln->ln_expire) 1083 ln->ln_expire = time_uptime + 1084 ND_IFINFO(rt->rt_ifp)->reachable; 1085 } 1086 1087 void 1088 nd6_rtrequest(int req, struct rtentry *rt) 1089 { 1090 struct sockaddr *gate = rt->rt_gateway; 1091 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1092 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1093 struct ifnet *ifp = rt->rt_ifp; 1094 struct ifaddr *ifa; 1095 1096 if ((rt->rt_flags & RTF_GATEWAY)) 1097 return; 1098 1099 if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) { 1100 /* 1101 * This is probably an interface direct route for a link 1102 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1103 * We do not need special treatment below for such a route. 1104 * Moreover, the RTF_LLINFO flag which would be set below 1105 * would annoy the ndp(8) command. 1106 */ 1107 return; 1108 } 1109 1110 if (req == RTM_RESOLVE && 1111 (nd6_need_cache(ifp) == 0 || /* stf case */ 1112 ((!nd6_onlink_ns_rfc4861 || rt->rt_parent == NULL || 1113 (rt->rt_parent->rt_flags & (RTF_PRCLONING | RTF_LLINFO)) != 1114 (RTF_PRCLONING | RTF_LLINFO)) && 1115 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp)))) { 1116 /* 1117 * FreeBSD and BSD/OS often make a cloned host route based 1118 * on a less-specific route (e.g. the default route). 1119 * If the less specific route does not have a "gateway" 1120 * (this is the case when the route just goes to a p2p or an 1121 * stf interface), we'll mistakenly make a neighbor cache for 1122 * the host route, and will see strange neighbor solicitation 1123 * for the corresponding destination. In order to avoid the 1124 * confusion, we check if the destination of the route is 1125 * a neighbor in terms of neighbor discovery, and stop the 1126 * process if not. Additionally, we remove the LLINFO flag 1127 * so that ndp(8) will not try to get the neighbor information 1128 * of the destination. 1129 */ 1130 rt->rt_flags &= ~RTF_LLINFO; 1131 return; 1132 } 1133 1134 switch (req) { 1135 case RTM_ADD: 1136 /* 1137 * There is no backward compatibility :) 1138 * 1139 * if (!(rt->rt_flags & RTF_HOST) && 1140 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1141 * rt->rt_flags |= RTF_CLONING; 1142 */ 1143 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1144 /* 1145 * Case 1: This route should come from 1146 * a route to interface. RTF_LLINFO flag is set 1147 * for a host route whose destination should be 1148 * treated as on-link. 1149 */ 1150 rt_setgate(rt, rt_key(rt), 1151 (struct sockaddr *)&null_sdl, 1152 RTL_DONTREPORT); 1153 gate = rt->rt_gateway; 1154 SDL(gate)->sdl_type = ifp->if_type; 1155 SDL(gate)->sdl_index = ifp->if_index; 1156 if (ln) 1157 ln->ln_expire = time_uptime; 1158 if (ln && ln->ln_expire == 0) { 1159 /* kludge for desktops */ 1160 ln->ln_expire = 1; 1161 } 1162 if ((rt->rt_flags & RTF_CLONING)) 1163 break; 1164 } 1165 /* 1166 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1167 * We don't do that here since llinfo is not ready yet. 1168 * 1169 * There are also couple of other things to be discussed: 1170 * - unsolicited NA code needs improvement beforehand 1171 * - RFC2461 says we MAY send multicast unsolicited NA 1172 * (7.2.6 paragraph 4), however, it also says that we 1173 * SHOULD provide a mechanism to prevent multicast NA storm. 1174 * we don't have anything like it right now. 1175 * note that the mechanism needs a mutual agreement 1176 * between proxies, which means that we need to implement 1177 * a new protocol, or a new kludge. 1178 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1179 * we need to check ip6forwarding before sending it. 1180 * (or should we allow proxy ND configuration only for 1181 * routers? there's no mention about proxy ND from hosts) 1182 */ 1183 #if 0 1184 /* XXX it does not work */ 1185 if ((rt->rt_flags & RTF_ANNOUNCE) && mycpuid == 0) { 1186 nd6_na_output(ifp, 1187 &SIN6(rt_key(rt))->sin6_addr, 1188 &SIN6(rt_key(rt))->sin6_addr, 1189 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1190 1, NULL); 1191 } 1192 #endif 1193 /* FALLTHROUGH */ 1194 case RTM_RESOLVE: 1195 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1196 /* 1197 * Address resolution isn't necessary for a point to 1198 * point link, so we can skip this test for a p2p link. 1199 */ 1200 if (gate->sa_family != AF_LINK || 1201 gate->sa_len < sizeof(null_sdl)) { 1202 log(LOG_DEBUG, 1203 "nd6_rtrequest: bad gateway value: %s\n", 1204 if_name(ifp)); 1205 break; 1206 } 1207 SDL(gate)->sdl_type = ifp->if_type; 1208 SDL(gate)->sdl_index = ifp->if_index; 1209 } 1210 if (ln != NULL) 1211 break; /* This happens on a route change */ 1212 /* 1213 * Case 2: This route may come from cloning, or a manual route 1214 * add with a LL address. 1215 */ 1216 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1217 rt->rt_llinfo = (caddr_t)ln; 1218 if (!ln) { 1219 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1220 break; 1221 } 1222 nd6_inuse++; 1223 nd6_allocated++; 1224 bzero(ln, sizeof(*ln)); 1225 ln->ln_rt = rt; 1226 /* this is required for "ndp" command. - shin */ 1227 if (req == RTM_ADD) { 1228 /* 1229 * gate should have some valid AF_LINK entry, 1230 * and ln->ln_expire should have some lifetime 1231 * which is specified by ndp command. 1232 */ 1233 ln->ln_state = ND6_LLINFO_REACHABLE; 1234 ln->ln_byhint = 0; 1235 } else { 1236 /* 1237 * When req == RTM_RESOLVE, rt is created and 1238 * initialized in rtrequest(), so rt_expire is 0. 1239 */ 1240 ln->ln_state = ND6_LLINFO_NOSTATE; 1241 ln->ln_expire = time_uptime; 1242 } 1243 rt->rt_flags |= RTF_LLINFO; 1244 ln->ln_next = llinfo_nd6.ln_next; 1245 llinfo_nd6.ln_next = ln; 1246 ln->ln_prev = &llinfo_nd6; 1247 ln->ln_next->ln_prev = ln; 1248 1249 /* 1250 * check if rt_key(rt) is one of my address assigned 1251 * to the interface. 1252 */ 1253 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1254 &SIN6(rt_key(rt))->sin6_addr); 1255 if (ifa) { 1256 caddr_t macp = nd6_ifptomac(ifp); 1257 ln->ln_expire = 0; 1258 ln->ln_state = ND6_LLINFO_REACHABLE; 1259 ln->ln_byhint = 0; 1260 if (macp) { 1261 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1262 SDL(gate)->sdl_alen = ifp->if_addrlen; 1263 } 1264 if (nd6_useloopback) { 1265 rt->rt_ifp = loif; /* XXX */ 1266 /* 1267 * Make sure rt_ifa be equal to the ifaddr 1268 * corresponding to the address. 1269 * We need this because when we refer 1270 * rt_ifa->ia6_flags in ip6_input, we assume 1271 * that the rt_ifa points to the address instead 1272 * of the loopback address. 1273 */ 1274 if (ifa != rt->rt_ifa) { 1275 IFAFREE(rt->rt_ifa); 1276 IFAREF(ifa); 1277 rt->rt_ifa = ifa; 1278 } 1279 } 1280 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1281 ln->ln_expire = 0; 1282 ln->ln_state = ND6_LLINFO_REACHABLE; 1283 ln->ln_byhint = 0; 1284 1285 /* 1286 * Join solicited node multicast for proxy ND, and only 1287 * join it once on cpu0. 1288 */ 1289 if ((ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) { 1290 struct in6_addr llsol; 1291 int error; 1292 1293 llsol = SIN6(rt_key(rt))->sin6_addr; 1294 llsol.s6_addr16[0] = htons(0xff02); 1295 llsol.s6_addr16[1] = htons(ifp->if_index); 1296 llsol.s6_addr32[1] = 0; 1297 llsol.s6_addr32[2] = htonl(1); 1298 llsol.s6_addr8[12] = 0xff; 1299 1300 if (!in6_addmulti(&llsol, ifp, &error)) { 1301 nd6log((LOG_ERR, "%s: failed to join " 1302 "%s (errno=%d)\n", if_name(ifp), 1303 ip6_sprintf(&llsol), error)); 1304 } 1305 } 1306 } 1307 break; 1308 1309 case RTM_DELETE: 1310 if (!ln) 1311 break; 1312 /* 1313 * Leave from solicited node multicast for proxy ND, and only 1314 * leave it once on cpu0 (since we joined it once on cpu0). 1315 */ 1316 if ((rt->rt_flags & RTF_ANNOUNCE) && 1317 (ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) { 1318 struct in6_addr llsol; 1319 struct in6_multi *in6m; 1320 1321 llsol = SIN6(rt_key(rt))->sin6_addr; 1322 llsol.s6_addr16[0] = htons(0xff02); 1323 llsol.s6_addr16[1] = htons(ifp->if_index); 1324 llsol.s6_addr32[1] = 0; 1325 llsol.s6_addr32[2] = htonl(1); 1326 llsol.s6_addr8[12] = 0xff; 1327 1328 in6m = IN6_LOOKUP_MULTI(&llsol, ifp); 1329 if (in6m) 1330 in6_delmulti(in6m); 1331 } 1332 nd6_inuse--; 1333 ln->ln_next->ln_prev = ln->ln_prev; 1334 ln->ln_prev->ln_next = ln->ln_next; 1335 ln->ln_prev = NULL; 1336 rt->rt_llinfo = 0; 1337 rt->rt_flags &= ~RTF_LLINFO; 1338 if (ln->ln_hold) 1339 m_freem(ln->ln_hold); 1340 Free((caddr_t)ln); 1341 } 1342 } 1343 1344 int 1345 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1346 { 1347 struct in6_drlist *drl = (struct in6_drlist *)data; 1348 struct in6_prlist *prl = (struct in6_prlist *)data; 1349 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1350 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1351 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1352 struct nd_defrouter *dr, any; 1353 struct nd_prefix *pr; 1354 struct rtentry *rt; 1355 int i = 0, error = 0; 1356 1357 switch (cmd) { 1358 case SIOCGDRLST_IN6: 1359 /* 1360 * obsolete API, use sysctl under net.inet6.icmp6 1361 */ 1362 bzero(drl, sizeof(*drl)); 1363 mtx_lock(&nd6_mtx); 1364 dr = TAILQ_FIRST(&nd_defrouter); 1365 while (dr && i < DRLSTSIZ) { 1366 drl->defrouter[i].rtaddr = dr->rtaddr; 1367 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1368 /* XXX: need to this hack for KAME stack */ 1369 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1370 } else 1371 log(LOG_ERR, 1372 "default router list contains a " 1373 "non-linklocal address(%s)\n", 1374 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1375 1376 drl->defrouter[i].flags = dr->flags; 1377 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1378 drl->defrouter[i].expire = dr->expire; 1379 drl->defrouter[i].if_index = dr->ifp->if_index; 1380 i++; 1381 dr = TAILQ_NEXT(dr, dr_entry); 1382 } 1383 mtx_unlock(&nd6_mtx); 1384 break; 1385 case SIOCGPRLST_IN6: 1386 /* 1387 * obsolete API, use sysctl under net.inet6.icmp6 1388 */ 1389 /* 1390 * XXX meaning of fields, especialy "raflags", is very 1391 * differnet between RA prefix list and RR/static prefix list. 1392 * how about separating ioctls into two? 1393 */ 1394 bzero(prl, sizeof(*prl)); 1395 mtx_lock(&nd6_mtx); 1396 pr = nd_prefix.lh_first; 1397 while (pr && i < PRLSTSIZ) { 1398 struct nd_pfxrouter *pfr; 1399 int j; 1400 1401 in6_embedscope(&prl->prefix[i].prefix, 1402 &pr->ndpr_prefix, NULL, NULL); 1403 prl->prefix[i].raflags = pr->ndpr_raf; 1404 prl->prefix[i].prefixlen = pr->ndpr_plen; 1405 prl->prefix[i].vltime = pr->ndpr_vltime; 1406 prl->prefix[i].pltime = pr->ndpr_pltime; 1407 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1408 prl->prefix[i].expire = pr->ndpr_expire; 1409 1410 pfr = pr->ndpr_advrtrs.lh_first; 1411 j = 0; 1412 while (pfr) { 1413 if (j < DRLSTSIZ) { 1414 #define RTRADDR prl->prefix[i].advrtr[j] 1415 RTRADDR = pfr->router->rtaddr; 1416 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1417 /* XXX: hack for KAME */ 1418 RTRADDR.s6_addr16[1] = 0; 1419 } else 1420 log(LOG_ERR, 1421 "a router(%s) advertises " 1422 "a prefix with " 1423 "non-link local address\n", 1424 ip6_sprintf(&RTRADDR)); 1425 #undef RTRADDR 1426 } 1427 j++; 1428 pfr = pfr->pfr_next; 1429 } 1430 prl->prefix[i].advrtrs = j; 1431 prl->prefix[i].origin = PR_ORIG_RA; 1432 1433 i++; 1434 pr = pr->ndpr_next; 1435 } 1436 mtx_unlock(&nd6_mtx); 1437 1438 break; 1439 case OSIOCGIFINFO_IN6: 1440 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1441 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1442 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1443 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1444 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1445 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1446 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1447 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1448 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1449 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1450 break; 1451 case SIOCGIFINFO_IN6: 1452 ndi->ndi = *ND_IFINFO(ifp); 1453 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1454 break; 1455 case SIOCSIFINFO_FLAGS: 1456 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1457 break; 1458 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1459 /* flush default router list */ 1460 /* 1461 * xxx sumikawa: should not delete route if default 1462 * route equals to the top of default router list 1463 */ 1464 bzero(&any, sizeof(any)); 1465 defrouter_delreq(&any, 0); 1466 defrouter_select(); 1467 /* xxx sumikawa: flush prefix list */ 1468 break; 1469 case SIOCSPFXFLUSH_IN6: 1470 { 1471 /* flush all the prefix advertised by routers */ 1472 struct nd_prefix *pr, *next; 1473 1474 mtx_lock(&nd6_mtx); 1475 for (pr = nd_prefix.lh_first; pr; pr = next) { 1476 struct in6_ifaddr *ia, *ia_next; 1477 1478 next = pr->ndpr_next; 1479 1480 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1481 continue; /* XXX */ 1482 1483 /* do we really have to remove addresses as well? */ 1484 for (ia = in6_ifaddr; ia; ia = ia_next) { 1485 /* ia might be removed. keep the next ptr. */ 1486 ia_next = ia->ia_next; 1487 1488 if (!(ia->ia6_flags & IN6_IFF_AUTOCONF)) 1489 continue; 1490 1491 if (ia->ia6_ndpr == pr) 1492 in6_purgeaddr(&ia->ia_ifa); 1493 } 1494 prelist_remove(pr); 1495 } 1496 mtx_unlock(&nd6_mtx); 1497 break; 1498 } 1499 case SIOCSRTRFLUSH_IN6: 1500 { 1501 /* flush all the default routers */ 1502 struct nd_defrouter *dr, *next; 1503 1504 mtx_lock(&nd6_mtx); 1505 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1506 /* 1507 * The first entry of the list may be stored in 1508 * the routing table, so we'll delete it later. 1509 */ 1510 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1511 next = TAILQ_NEXT(dr, dr_entry); 1512 defrtrlist_del(dr); 1513 } 1514 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1515 } 1516 mtx_unlock(&nd6_mtx); 1517 break; 1518 } 1519 case SIOCGNBRINFO_IN6: 1520 { 1521 struct llinfo_nd6 *ln; 1522 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1523 1524 /* 1525 * XXX: KAME specific hack for scoped addresses 1526 * XXXX: for other scopes than link-local? 1527 */ 1528 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1529 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1530 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1531 1532 if (*idp == 0) 1533 *idp = htons(ifp->if_index); 1534 } 1535 1536 mtx_lock(&nd6_mtx); 1537 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1538 error = EINVAL; 1539 mtx_unlock(&nd6_mtx); 1540 break; 1541 } 1542 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1543 nbi->state = ln->ln_state; 1544 nbi->asked = ln->ln_asked; 1545 nbi->isrouter = ln->ln_router; 1546 nbi->expire = ln->ln_expire; 1547 mtx_unlock(&nd6_mtx); 1548 1549 break; 1550 } 1551 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1552 ndif->ifindex = nd6_defifindex; 1553 break; 1554 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1555 return (nd6_setdefaultiface(ndif->ifindex)); 1556 } 1557 return (error); 1558 } 1559 1560 /* 1561 * Create neighbor cache entry and cache link-layer address, 1562 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1563 */ 1564 struct rtentry * 1565 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1566 int lladdrlen, 1567 int type, /* ICMP6 type */ 1568 int code /* type dependent information */) 1569 { 1570 struct rtentry *rt = NULL; 1571 struct llinfo_nd6 *ln = NULL; 1572 int is_newentry; 1573 struct sockaddr_dl *sdl = NULL; 1574 int do_update; 1575 int olladdr; 1576 int llchange; 1577 int newstate = 0; 1578 1579 if (!ifp) 1580 panic("ifp == NULL in nd6_cache_lladdr"); 1581 if (!from) 1582 panic("from == NULL in nd6_cache_lladdr"); 1583 1584 /* nothing must be updated for unspecified address */ 1585 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1586 return NULL; 1587 1588 /* 1589 * Validation about ifp->if_addrlen and lladdrlen must be done in 1590 * the caller. 1591 * 1592 * XXX If the link does not have link-layer adderss, what should 1593 * we do? (ifp->if_addrlen == 0) 1594 * Spec says nothing in sections for RA, RS and NA. There's small 1595 * description on it in NS section (RFC 2461 7.2.3). 1596 */ 1597 1598 rt = nd6_lookup(from, 0, ifp); 1599 if (!rt) { 1600 #if 0 1601 /* nothing must be done if there's no lladdr */ 1602 if (!lladdr || !lladdrlen) 1603 return NULL; 1604 #endif 1605 1606 rt = nd6_lookup(from, 1, ifp); 1607 is_newentry = 1; 1608 } else { 1609 /* do nothing if static ndp is set */ 1610 if (rt->rt_flags & RTF_STATIC) 1611 return NULL; 1612 is_newentry = 0; 1613 } 1614 1615 if (!rt) 1616 return NULL; 1617 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1618 fail: 1619 nd6_free(rt); 1620 return NULL; 1621 } 1622 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1623 if (!ln) 1624 goto fail; 1625 if (!rt->rt_gateway) 1626 goto fail; 1627 if (rt->rt_gateway->sa_family != AF_LINK) 1628 goto fail; 1629 sdl = SDL(rt->rt_gateway); 1630 1631 olladdr = (sdl->sdl_alen) ? 1 : 0; 1632 if (olladdr && lladdr) { 1633 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1634 llchange = 1; 1635 else 1636 llchange = 0; 1637 } else 1638 llchange = 0; 1639 1640 /* 1641 * newentry olladdr lladdr llchange (*=record) 1642 * 0 n n -- (1) 1643 * 0 y n -- (2) 1644 * 0 n y -- (3) * STALE 1645 * 0 y y n (4) * 1646 * 0 y y y (5) * STALE 1647 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1648 * 1 -- y -- (7) * STALE 1649 */ 1650 1651 if (lladdr) { /* (3-5) and (7) */ 1652 /* 1653 * Record source link-layer address 1654 * XXX is it dependent to ifp->if_type? 1655 */ 1656 sdl->sdl_alen = ifp->if_addrlen; 1657 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1658 } 1659 1660 if (!is_newentry) { 1661 if ((!olladdr && lladdr) || /* (3) */ 1662 (olladdr && lladdr && llchange)) { /* (5) */ 1663 do_update = 1; 1664 newstate = ND6_LLINFO_STALE; 1665 } else { /* (1-2,4) */ 1666 do_update = 0; 1667 } 1668 } else { 1669 do_update = 1; 1670 if (!lladdr) /* (6) */ 1671 newstate = ND6_LLINFO_NOSTATE; 1672 else /* (7) */ 1673 newstate = ND6_LLINFO_STALE; 1674 } 1675 1676 if (do_update) { 1677 /* 1678 * Update the state of the neighbor cache. 1679 */ 1680 ln->ln_state = newstate; 1681 1682 if (ln->ln_state == ND6_LLINFO_STALE) { 1683 /* 1684 * XXX: since nd6_output() below will cause 1685 * state tansition to DELAY and reset the timer, 1686 * we must set the timer now, although it is actually 1687 * meaningless. 1688 */ 1689 ln->ln_expire = time_uptime + nd6_gctimer; 1690 1691 if (ln->ln_hold) { 1692 /* 1693 * we assume ifp is not a p2p here, so just 1694 * set the 2nd argument as the 1st one. 1695 */ 1696 nd6_output(ifp, ifp, ln->ln_hold, 1697 (struct sockaddr_in6 *)rt_key(rt), rt); 1698 ln->ln_hold = NULL; 1699 } 1700 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1701 /* probe right away */ 1702 ln->ln_expire = time_uptime; 1703 } 1704 } 1705 1706 /* 1707 * ICMP6 type dependent behavior. 1708 * 1709 * NS: clear IsRouter if new entry 1710 * RS: clear IsRouter 1711 * RA: set IsRouter if there's lladdr 1712 * redir: clear IsRouter if new entry 1713 * 1714 * RA case, (1): 1715 * The spec says that we must set IsRouter in the following cases: 1716 * - If lladdr exist, set IsRouter. This means (1-5). 1717 * - If it is old entry (!newentry), set IsRouter. This means (7). 1718 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1719 * A quetion arises for (1) case. (1) case has no lladdr in the 1720 * neighbor cache, this is similar to (6). 1721 * This case is rare but we figured that we MUST NOT set IsRouter. 1722 * 1723 * newentry olladdr lladdr llchange NS RS RA redir 1724 * D R 1725 * 0 n n -- (1) c ? s 1726 * 0 y n -- (2) c s s 1727 * 0 n y -- (3) c s s 1728 * 0 y y n (4) c s s 1729 * 0 y y y (5) c s s 1730 * 1 -- n -- (6) c c c s 1731 * 1 -- y -- (7) c c s c s 1732 * 1733 * (c=clear s=set) 1734 */ 1735 switch (type & 0xff) { 1736 case ND_NEIGHBOR_SOLICIT: 1737 /* 1738 * New entry must have is_router flag cleared. 1739 */ 1740 if (is_newentry) /* (6-7) */ 1741 ln->ln_router = 0; 1742 break; 1743 case ND_REDIRECT: 1744 /* 1745 * If the icmp is a redirect to a better router, always set the 1746 * is_router flag. Otherwise, if the entry is newly created, 1747 * clear the flag. [RFC 2461, sec 8.3] 1748 */ 1749 if (code == ND_REDIRECT_ROUTER) 1750 ln->ln_router = 1; 1751 else if (is_newentry) /* (6-7) */ 1752 ln->ln_router = 0; 1753 break; 1754 case ND_ROUTER_SOLICIT: 1755 /* 1756 * is_router flag must always be cleared. 1757 */ 1758 ln->ln_router = 0; 1759 break; 1760 case ND_ROUTER_ADVERT: 1761 /* 1762 * Mark an entry with lladdr as a router. 1763 */ 1764 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1765 (is_newentry && lladdr)) { /* (7) */ 1766 ln->ln_router = 1; 1767 } 1768 break; 1769 } 1770 1771 /* 1772 * When the link-layer address of a router changes, select the 1773 * best router again. In particular, when the neighbor entry is newly 1774 * created, it might affect the selection policy. 1775 * Question: can we restrict the first condition to the "is_newentry" 1776 * case? 1777 * XXX: when we hear an RA from a new router with the link-layer 1778 * address option, defrouter_select() is called twice, since 1779 * defrtrlist_update called the function as well. However, I believe 1780 * we can compromise the overhead, since it only happens the first 1781 * time. 1782 * XXX: although defrouter_select() should not have a bad effect 1783 * for those are not autoconfigured hosts, we explicitly avoid such 1784 * cases for safety. 1785 */ 1786 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1787 defrouter_select(); 1788 1789 return rt; 1790 } 1791 1792 static void 1793 nd6_slowtimo(void *arg __unused) 1794 { 1795 struct lwkt_msg *lmsg = &nd6_slowtimo_netmsg.lmsg; 1796 1797 KASSERT(mycpuid == 0, ("not on cpu0")); 1798 crit_enter(); 1799 if (lmsg->ms_flags & MSGF_DONE) 1800 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg); 1801 crit_exit(); 1802 } 1803 1804 static void 1805 nd6_slowtimo_dispatch(netmsg_t nmsg) 1806 { 1807 const struct ifnet_array *arr; 1808 struct nd_ifinfo *nd6if; 1809 int i; 1810 1811 ASSERT_NETISR0; 1812 1813 crit_enter(); 1814 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */ 1815 crit_exit(); 1816 1817 arr = ifnet_array_get(); 1818 1819 mtx_lock(&nd6_mtx); 1820 for (i = 0; i < arr->ifnet_count; ++i) { 1821 struct ifnet *ifp = arr->ifnet_arr[i]; 1822 1823 if (ifp->if_afdata[AF_INET6] == NULL) 1824 continue; 1825 nd6if = ND_IFINFO(ifp); 1826 if (nd6if->basereachable && /* already initialized */ 1827 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1828 /* 1829 * Since reachable time rarely changes by router 1830 * advertisements, we SHOULD insure that a new random 1831 * value gets recomputed at least once every few hours. 1832 * (RFC 2461, 6.3.4) 1833 */ 1834 nd6if->recalctm = nd6_recalc_reachtm_interval; 1835 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1836 } 1837 } 1838 mtx_unlock(&nd6_mtx); 1839 1840 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1841 nd6_slowtimo, NULL); 1842 } 1843 1844 #define gotoerr(e) { error = (e); goto bad;} 1845 1846 int 1847 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1848 struct sockaddr_in6 *dst, struct rtentry *rt) 1849 { 1850 struct llinfo_nd6 *ln = NULL; 1851 int error = 0; 1852 1853 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1854 goto sendpkt; 1855 1856 if (nd6_need_cache(ifp) == 0) 1857 goto sendpkt; 1858 1859 /* 1860 * Next hop determination. This routine is derived from rt_llroute. 1861 */ 1862 if (rt != NULL) { 1863 if (!(rt->rt_flags & RTF_UP)) { 1864 rt = rtlookup((struct sockaddr *)dst); 1865 if (rt == NULL) 1866 gotoerr(EHOSTUNREACH); 1867 rt->rt_refcnt--; 1868 if (rt->rt_ifp != ifp) { 1869 /* XXX: loop care? */ 1870 return nd6_output(ifp, origifp, m, dst, rt); 1871 } 1872 } 1873 if (rt->rt_flags & RTF_GATEWAY) { 1874 struct sockaddr_in6 *gw6; 1875 1876 /* 1877 * We skip link-layer address resolution and NUD 1878 * if the gateway is not a neighbor from ND point 1879 * of view, regardless of the value of nd_ifinfo.flags. 1880 * The second condition is a bit tricky; we skip 1881 * if the gateway is our own address, which is 1882 * sometimes used to install a route to a p2p link. 1883 */ 1884 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1885 if (!nd6_is_addr_neighbor(gw6, ifp) || 1886 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1887 /* 1888 * We allow this kind of tricky route only 1889 * when the outgoing interface is p2p. 1890 * XXX: we may need a more generic rule here. 1891 */ 1892 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1893 gotoerr(EHOSTUNREACH); 1894 1895 goto sendpkt; 1896 } 1897 1898 if (rt->rt_gwroute == NULL) { 1899 rt->rt_gwroute = rtlookup(rt->rt_gateway); 1900 if (rt->rt_gwroute == NULL) 1901 gotoerr(EHOSTUNREACH); 1902 } else if (!(rt->rt_gwroute->rt_flags & RTF_UP)) { 1903 rtfree(rt->rt_gwroute); 1904 rt->rt_gwroute = rtlookup(rt->rt_gateway); 1905 if (rt->rt_gwroute == NULL) 1906 gotoerr(EHOSTUNREACH); 1907 } 1908 rt = rt->rt_gwroute; 1909 } 1910 } 1911 1912 /* 1913 * Address resolution or Neighbor Unreachability Detection 1914 * for the next hop. 1915 * At this point, the destination of the packet must be a unicast 1916 * or an anycast address(i.e. not a multicast). 1917 */ 1918 1919 /* Look up the neighbor cache for the nexthop */ 1920 if (rt && (rt->rt_flags & RTF_LLINFO)) 1921 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1922 else { 1923 /* 1924 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1925 * the condition below is not very efficient. But we believe 1926 * it is tolerable, because this should be a rare case. 1927 */ 1928 if (nd6_is_addr_neighbor(dst, ifp) && 1929 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1930 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1931 } 1932 if (!ln || !rt) { 1933 if (!(ifp->if_flags & IFF_POINTOPOINT) && 1934 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1935 log(LOG_DEBUG, 1936 "nd6_output: can't allocate llinfo for %s " 1937 "(ln=%p, rt=%p)\n", 1938 ip6_sprintf(&dst->sin6_addr), ln, rt); 1939 gotoerr(EIO); /* XXX: good error? */ 1940 } 1941 1942 goto sendpkt; /* send anyway */ 1943 } 1944 1945 /* We don't have to do link-layer address resolution on a p2p link. */ 1946 if ((ifp->if_flags & IFF_POINTOPOINT) && 1947 ln->ln_state < ND6_LLINFO_REACHABLE) { 1948 ln->ln_state = ND6_LLINFO_STALE; 1949 ln->ln_expire = time_uptime + nd6_gctimer; 1950 } 1951 1952 /* 1953 * The first time we send a packet to a neighbor whose entry is 1954 * STALE, we have to change the state to DELAY and a sets a timer to 1955 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1956 * neighbor unreachability detection on expiration. 1957 * (RFC 2461 7.3.3) 1958 */ 1959 if (ln->ln_state == ND6_LLINFO_STALE) { 1960 ln->ln_asked = 0; 1961 ln->ln_state = ND6_LLINFO_DELAY; 1962 ln->ln_expire = time_uptime + nd6_delay; 1963 } 1964 1965 /* 1966 * If the neighbor cache entry has a state other than INCOMPLETE 1967 * (i.e. its link-layer address is already resolved), just 1968 * send the packet. 1969 */ 1970 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1971 goto sendpkt; 1972 1973 /* 1974 * There is a neighbor cache entry, but no ethernet address 1975 * response yet. Replace the held mbuf (if any) with this 1976 * latest one. 1977 * 1978 * This code conforms to the rate-limiting rule described in Section 1979 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1980 * an NS below. 1981 */ 1982 if (ln->ln_state == ND6_LLINFO_NOSTATE) { 1983 /* 1984 * This neighbor cache entry was just created; change its 1985 * state to INCOMPLETE and start its life cycle. 1986 * 1987 * We force an NS output below by setting ln_expire to 1 1988 * (nd6_rtrequest() could set it to the current time_uptime) 1989 * and zeroing out ln_asked (XXX this may not be necessary). 1990 */ 1991 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1992 ln->ln_expire = 1; 1993 ln->ln_asked = 0; 1994 } 1995 if (ln->ln_hold) 1996 m_freem(ln->ln_hold); 1997 ln->ln_hold = m; 1998 if (ln->ln_expire) { 1999 if (ln->ln_asked < nd6_mmaxtries && 2000 ln->ln_expire < time_uptime) { 2001 ln->ln_asked++; 2002 ln->ln_expire = time_uptime + 2003 ND_IFINFO(ifp)->retrans / 1000; 2004 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2005 } 2006 } 2007 return (0); 2008 2009 sendpkt: 2010 if (ifp->if_flags & IFF_LOOPBACK) 2011 error = ifp->if_output(origifp, m, (struct sockaddr *)dst, rt); 2012 else 2013 error = ifp->if_output(ifp, m, (struct sockaddr *)dst, rt); 2014 return (error); 2015 2016 bad: 2017 m_freem(m); 2018 return (error); 2019 } 2020 #undef gotoerr 2021 2022 int 2023 nd6_need_cache(struct ifnet *ifp) 2024 { 2025 /* 2026 * XXX: we currently do not make neighbor cache on any interface 2027 * other than Ethernet and GIF. 2028 * 2029 * RFC2893 says: 2030 * - unidirectional tunnels needs no ND 2031 */ 2032 switch (ifp->if_type) { 2033 case IFT_ETHER: 2034 case IFT_IEEE1394: 2035 #ifdef IFT_L2VLAN 2036 case IFT_L2VLAN: 2037 #endif 2038 #ifdef IFT_IEEE80211 2039 case IFT_IEEE80211: 2040 #endif 2041 #ifdef IFT_CARP 2042 case IFT_CARP: 2043 #endif 2044 case IFT_GIF: /* XXX need more cases? */ 2045 return (1); 2046 default: 2047 return (0); 2048 } 2049 } 2050 2051 int 2052 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, 2053 struct sockaddr *dst, u_char *desten) 2054 { 2055 struct sockaddr_dl *sdl; 2056 struct rtentry *rt; 2057 2058 2059 if (m->m_flags & M_MCAST) { 2060 switch (ifp->if_type) { 2061 case IFT_ETHER: 2062 #ifdef IFT_L2VLAN 2063 case IFT_L2VLAN: 2064 #endif 2065 #ifdef IFT_IEEE80211 2066 case IFT_IEEE80211: 2067 #endif 2068 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2069 desten); 2070 return (1); 2071 case IFT_IEEE1394: 2072 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 2073 return (1); 2074 default: 2075 m_freem(m); 2076 return (0); 2077 } 2078 } 2079 if (rt0 == NULL) { 2080 /* this could happen, if we could not allocate memory */ 2081 m_freem(m); 2082 return (0); 2083 } 2084 if (rt_llroute(dst, rt0, &rt) != 0) { 2085 m_freem(m); 2086 return (0); 2087 } 2088 if (rt->rt_gateway->sa_family != AF_LINK) { 2089 kprintf("nd6_storelladdr: something odd happens\n"); 2090 m_freem(m); 2091 return (0); 2092 } 2093 sdl = SDL(rt->rt_gateway); 2094 if (sdl->sdl_alen == 0) { 2095 /* this should be impossible, but we bark here for debugging */ 2096 kprintf("nd6_storelladdr: sdl_alen == 0\n"); 2097 m_freem(m); 2098 return (0); 2099 } 2100 2101 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2102 return (1); 2103 } 2104 2105 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2106 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2107 #ifdef SYSCTL_DECL 2108 SYSCTL_DECL(_net_inet6_icmp6); 2109 #endif 2110 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2111 CTLFLAG_RD, nd6_sysctl_drlist, "List default routers"); 2112 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2113 CTLFLAG_RD, nd6_sysctl_prlist, "List prefixes"); 2114 2115 static int 2116 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2117 { 2118 int error; 2119 char buf[1024]; 2120 struct in6_defrouter *d, *de; 2121 struct nd_defrouter *dr; 2122 2123 if (req->newptr) 2124 return EPERM; 2125 error = 0; 2126 2127 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2128 dr = TAILQ_NEXT(dr, dr_entry)) { 2129 d = (struct in6_defrouter *)buf; 2130 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2131 2132 if (d + 1 <= de) { 2133 bzero(d, sizeof(*d)); 2134 d->rtaddr.sin6_family = AF_INET6; 2135 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2136 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, 2137 dr->ifp) != 0) 2138 log(LOG_ERR, 2139 "scope error in " 2140 "default router list (%s)\n", 2141 ip6_sprintf(&dr->rtaddr)); 2142 d->flags = dr->flags; 2143 d->rtlifetime = dr->rtlifetime; 2144 d->expire = dr->expire; 2145 d->if_index = dr->ifp->if_index; 2146 } else 2147 panic("buffer too short"); 2148 2149 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2150 if (error) 2151 break; 2152 } 2153 return error; 2154 } 2155 2156 static int 2157 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2158 { 2159 int error; 2160 char buf[1024]; 2161 struct in6_prefix *p, *pe; 2162 struct nd_prefix *pr; 2163 2164 if (req->newptr) 2165 return EPERM; 2166 error = 0; 2167 2168 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2169 u_short advrtrs; 2170 size_t advance; 2171 struct sockaddr_in6 *sin6, *s6; 2172 struct nd_pfxrouter *pfr; 2173 2174 p = (struct in6_prefix *)buf; 2175 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2176 2177 if (p + 1 <= pe) { 2178 bzero(p, sizeof(*p)); 2179 sin6 = (struct sockaddr_in6 *)(p + 1); 2180 2181 p->prefix = pr->ndpr_prefix; 2182 if (in6_recoverscope(&p->prefix, 2183 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2184 log(LOG_ERR, 2185 "scope error in prefix list (%s)\n", 2186 ip6_sprintf(&p->prefix.sin6_addr)); 2187 p->raflags = pr->ndpr_raf; 2188 p->prefixlen = pr->ndpr_plen; 2189 p->vltime = pr->ndpr_vltime; 2190 p->pltime = pr->ndpr_pltime; 2191 p->if_index = pr->ndpr_ifp->if_index; 2192 p->expire = pr->ndpr_expire; 2193 p->refcnt = pr->ndpr_refcnt; 2194 p->flags = pr->ndpr_stateflags; 2195 p->origin = PR_ORIG_RA; 2196 advrtrs = 0; 2197 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2198 pfr = pfr->pfr_next) { 2199 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2200 advrtrs++; 2201 continue; 2202 } 2203 s6 = &sin6[advrtrs]; 2204 bzero(s6, sizeof(*s6)); 2205 s6->sin6_family = AF_INET6; 2206 s6->sin6_len = sizeof(*sin6); 2207 if (in6_recoverscope(s6, &pfr->router->rtaddr, 2208 pfr->router->ifp) != 0) 2209 log(LOG_ERR, 2210 "scope error in " 2211 "prefix list (%s)\n", 2212 ip6_sprintf(&pfr->router->rtaddr)); 2213 advrtrs++; 2214 } 2215 p->advrtrs = advrtrs; 2216 } else { 2217 panic("buffer too short"); 2218 } 2219 2220 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2221 error = SYSCTL_OUT(req, buf, advance); 2222 if (error) 2223 break; 2224 } 2225 return error; 2226 } 2227