1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  */
27 
28 /*
29  * IEEE 802.11 support (DragonFlyBSD-specific code)
30  */
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
41 
42 #include <sys/socket.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_clone.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/route.h>
52 #include <net/ifq_var.h>
53 
54 #include <netproto/802_11/ieee80211_var.h>
55 #include <netproto/802_11/ieee80211_input.h>
56 
57 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
58 
59 #ifdef IEEE80211_DEBUG
60 int	ieee80211_debug = 0;
61 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
62 	    0, "debugging printfs");
63 #endif
64 
65 int	ieee80211_force_swcrypto = 0;
66 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
67 	    &ieee80211_force_swcrypto, 0, "force software crypto");
68 
69 MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
70 
71 
72 static int	wlan_clone_destroy(struct ifnet *);
73 static int	wlan_clone_create(struct if_clone *, int, caddr_t);
74 
75 static struct if_clone wlan_cloner =
76 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
77 	    0, IF_MAXUNIT);
78 
79 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
80 
81 /*
82  * Allocate/free com structure in conjunction with ifnet;
83  * these routines are registered with if_register_com_alloc
84  * below and are called automatically by the ifnet code
85  * when the ifnet of the parent device is created.
86  */
87 static void *
88 wlan_alloc(u_char type, struct ifnet *ifp)
89 {
90 	struct ieee80211com *ic;
91 
92 	ic = kmalloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
93 	ic->ic_ifp = ifp;
94 
95 	return (ic);
96 }
97 
98 static void
99 wlan_free(void *ic, u_char type)
100 {
101 	kfree(ic, M_80211_COM);
102 }
103 
104 static int
105 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
106 {
107 	struct ieee80211_clone_params cp;
108 	struct ieee80211vap *vap;
109 	struct ieee80211com *ic;
110 	struct ifnet *ifp;
111 	int error;
112 
113 	error = copyin(params, &cp, sizeof(cp));
114 	if (error)
115 		return error;
116 
117 	ifnet_lock();
118 
119 	ifp = ifunit(cp.icp_parent);
120 	if (ifp == NULL) {
121 		ifnet_unlock();
122 		return ENXIO;
123 	}
124 	/* XXX move printfs to DIAGNOSTIC before release */
125 	if (ifp->if_type != IFT_IEEE80211) {
126 		if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
127 		ifnet_unlock();
128 		return ENXIO;
129 	}
130 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
131 		if_printf(ifp, "%s: invalid opmode %d\n",
132 		    __func__, cp.icp_opmode);
133 		ifnet_unlock();
134 		return EINVAL;
135 	}
136 	ic = ifp->if_l2com;
137 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
138 		if_printf(ifp, "%s mode not supported\n",
139 		    ieee80211_opmode_name[cp.icp_opmode]);
140 		ifnet_unlock();
141 		return EOPNOTSUPP;
142 	}
143 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
144 #ifdef IEEE80211_SUPPORT_TDMA
145 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
146 #else
147 	    (1)
148 #endif
149 	) {
150 		if_printf(ifp, "TDMA not supported\n");
151 		ifnet_unlock();
152 		return EOPNOTSUPP;
153 	}
154 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
155 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
156 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
157 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
158 
159 	ifnet_unlock();
160 
161 	return (vap == NULL ? EIO : 0);
162 }
163 
164 static int
165 wlan_clone_destroy(struct ifnet *ifp)
166 {
167 	struct ieee80211vap *vap = ifp->if_softc;
168 	struct ieee80211com *ic = vap->iv_ic;
169 
170 	ic->ic_vap_delete(vap);
171 
172 	return 0;
173 }
174 
175 const char *wlan_last_enter_func;
176 const char *wlan_last_exit_func;
177 
178 /*
179  * These serializer functions are used by wlan and all drivers.
180  * They are not recursive.  The serializer must be held on
181  * any OACTIVE interactions.  Dragonfly automatically holds
182  * the serializer on most ifp->if_*() calls but calls made
183  * from wlan into ath might not.
184  */
185 void
186 _wlan_serialize_enter(const char *funcname)
187 {
188 	lwkt_serialize_enter(&wlan_global_serializer);
189 	wlan_last_enter_func = funcname;
190 }
191 
192 void
193 _wlan_serialize_exit(const char *funcname)
194 {
195 	lwkt_serialize_exit(&wlan_global_serializer);
196 	wlan_last_exit_func = funcname;
197 }
198 
199 int
200 _wlan_is_serialized(void)
201 {
202 	return (IS_SERIALIZED(&wlan_global_serializer));
203 }
204 
205 /*
206  * Push/pop allows the wlan serializer to be entered recursively.
207  */
208 int
209 _wlan_serialize_push(const char *funcname)
210 {
211 	if (IS_SERIALIZED(&wlan_global_serializer)) {
212 		return 0;
213 	} else {
214 		_wlan_serialize_enter(funcname);
215 		return 1;
216 	}
217 }
218 
219 void
220 _wlan_serialize_pop(const char *funcname, int wst)
221 {
222 	if (wst) {
223 		_wlan_serialize_exit(funcname);
224 	}
225 }
226 
227 #if 0
228 
229 int
230 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
231 {
232 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
233 }
234 
235 /*
236  * condition-var functions which interlock the ic lock (which is now
237  * just wlan_global_serializer)
238  */
239 void
240 wlan_cv_init(struct cv *cv, const char *desc)
241 {
242 	cv->cv_desc = desc;
243 	cv->cv_waiters = 0;
244 }
245 
246 int
247 wlan_cv_timedwait(struct cv *cv, int ticks)
248 {
249 	int error;
250 
251 	++cv->cv_waiters;
252 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
253 	return (error);
254 }
255 
256 void
257 wlan_cv_wait(struct cv *cv)
258 {
259 	++cv->cv_waiters;
260 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
261 }
262 
263 void
264 wlan_cv_signal(struct cv *cv, int broadcast)
265 {
266 	if (cv->cv_waiters) {
267 		if (broadcast) {
268 			cv->cv_waiters = 0;
269 			wakeup(cv);
270 		} else {
271 			--cv->cv_waiters;
272 			wakeup_one(cv);
273 		}
274 	}
275 }
276 
277 #endif
278 
279 /*
280  * Misc
281  */
282 int
283 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
284 {
285 	struct ifnet *ifp = vap->iv_ifp;
286 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&ifp->if_snd);
287 	int error;
288 	int wst;
289 
290 	/*
291 	 * When transmitting via the VAP, we shouldn't hold
292 	 * any IC TX lock as the VAP TX path will acquire it.
293 	 */
294 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
295 
296 	error = ifsq_enqueue(ifsq, m, NULL);
297 	wst = wlan_serialize_push();
298 	ifp->if_start(ifp, ifsq);
299 	wlan_serialize_pop(wst);
300 
301 	return error;
302 }
303 
304 int
305 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
306 {
307 	struct ifnet *parent = ic->ic_ifp;
308 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&parent->if_snd);
309 	int error;
310 	int wst;
311 
312 	/*
313 	 * Assert the IC TX lock is held - this enforces the
314 	 * processing -> queuing order is maintained
315 	 */
316 	IEEE80211_TX_LOCK_ASSERT(ic);
317 
318 	error = ifsq_enqueue(ifsq, m, NULL);
319 	wst = wlan_serialize_push();
320 	parent->if_start(parent, ifsq);
321 	wlan_serialize_pop(wst);
322 
323 	return error;
324 }
325 
326 void
327 ieee80211_vap_destroy(struct ieee80211vap *vap)
328 {
329 	/*
330 	 * WLAN serializer must _not_ be held for if_clone_destroy(),
331 	 * since it could dead-lock the domsg to netisrs.
332 	 */
333 	wlan_serialize_exit();
334 	if_clone_destroy(vap->iv_ifp->if_xname);
335 	wlan_serialize_enter();
336 }
337 
338 /*
339  * NOTE: This handler is used generally to convert milliseconds
340  *	 to ticks for various simple sysctl variables and does not
341  *	 need to be serialized.
342  */
343 int
344 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
345 {
346 	int msecs = ticks_to_msecs(*(int *)arg1);
347 	int error, t;
348 
349 	error = sysctl_handle_int(oidp, &msecs, 0, req);
350 	if (error == 0 && req->newptr) {
351 		t = msecs_to_ticks(msecs);
352 		*(int *)arg1 = (t < 1) ? 1 : t;
353 	}
354 
355 	return error;
356 }
357 
358 static int
359 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
360 {
361 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
362 	int error;
363 
364 	error = sysctl_handle_int(oidp, &inact, 0, req);
365 	if (error == 0 && req->newptr)
366 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
367 
368 	return error;
369 }
370 
371 static int
372 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
373 {
374 	struct ieee80211com *ic = arg1;
375 	const char *name = ic->ic_ifp->if_xname;
376 
377 	return SYSCTL_OUT(req, name, strlen(name));
378 }
379 
380 static int
381 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
382 {
383 	struct ieee80211com *ic = arg1;
384 	int t = 0, error;
385 
386 	error = sysctl_handle_int(oidp, &t, 0, req);
387 	if (error == 0 && req->newptr)
388 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
389 
390 	return error;
391 }
392 
393 void
394 ieee80211_sysctl_attach(struct ieee80211com *ic)
395 {
396 }
397 
398 void
399 ieee80211_sysctl_detach(struct ieee80211com *ic)
400 {
401 }
402 
403 void
404 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
405 {
406 	struct ifnet *ifp = vap->iv_ifp;
407 	struct sysctl_ctx_list *ctx;
408 	struct sysctl_oid *oid;
409 	char num[14];			/* sufficient for 32 bits */
410 
411 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
412 		M_DEVBUF, M_INTWAIT | M_ZERO);
413 	if (ctx == NULL) {
414 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
415 			__func__);
416 		return;
417 	}
418 	sysctl_ctx_init(ctx);
419 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
420 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
421 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
422 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
423 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
424 		ieee80211_sysctl_parent, "A", "parent device");
425 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
426 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
427 		"driver capabilities");
428 #ifdef IEEE80211_DEBUG
429 	vap->iv_debug = ieee80211_debug;
430 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
431 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
432 		"control debugging printfs");
433 #endif
434 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
435 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
436 		"consecutive beacon misses before scanning");
437 	/* XXX inherit from tunables */
438 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
439 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
440 		ieee80211_sysctl_inact, "I",
441 		"station inactivity timeout (sec)");
442 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
443 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
444 		ieee80211_sysctl_inact, "I",
445 		"station inactivity probe timeout (sec)");
446 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
447 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
448 		ieee80211_sysctl_inact, "I",
449 		"station authentication timeout (sec)");
450 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
451 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
452 		ieee80211_sysctl_inact, "I",
453 		"station initial state timeout (sec)");
454 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
455 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
456 			"ampdu_mintraffic_bk", CTLFLAG_RW,
457 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
458 			"BK traffic tx aggr threshold (pps)");
459 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
460 			"ampdu_mintraffic_be", CTLFLAG_RW,
461 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
462 			"BE traffic tx aggr threshold (pps)");
463 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
464 			"ampdu_mintraffic_vo", CTLFLAG_RW,
465 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
466 			"VO traffic tx aggr threshold (pps)");
467 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
468 			"ampdu_mintraffic_vi", CTLFLAG_RW,
469 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
470 			"VI traffic tx aggr threshold (pps)");
471 	}
472 	if (vap->iv_caps & IEEE80211_C_DFS) {
473 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
474 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
475 			ieee80211_sysctl_radar, "I", "simulate radar event");
476 	}
477 	vap->iv_sysctl = ctx;
478 	vap->iv_oid = oid;
479 }
480 
481 void
482 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
483 {
484 
485 	if (vap->iv_sysctl != NULL) {
486 		sysctl_ctx_free(vap->iv_sysctl);
487 		kfree(vap->iv_sysctl, M_DEVBUF);
488 		vap->iv_sysctl = NULL;
489 	}
490 }
491 
492 int
493 ieee80211_node_dectestref(struct ieee80211_node *ni)
494 {
495 	/* XXX need equivalent of atomic_dec_and_test */
496 	atomic_subtract_int(&ni->ni_refcnt, 1);
497 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
498 }
499 
500 #if 0
501 /* XXX this breaks ALTQ's packet scheduler */
502 void
503 ieee80211_flush_ifq(struct ifaltq *ifq, struct ieee80211vap *vap)
504 {
505 	struct ieee80211_node *ni;
506 	struct mbuf *m, **mprev;
507 	struct ifaltq_subque *ifsq = ifq_get_subq_default(ifq);
508 
509 	wlan_assert_serialized();
510 
511 	ALTQ_SQ_LOCK(ifsq);
512 
513 	/*
514 	 * Fix normal queue
515 	 */
516 	mprev = &ifsq->ifsq_norm_head;
517 	while ((m = *mprev) != NULL) {
518 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
519 		if (ni != NULL && ni->ni_vap == vap) {
520 			*mprev = m->m_nextpkt;		/* remove from list */
521 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
522 
523 			m_freem(m);
524 			ieee80211_free_node(ni);	/* reclaim ref */
525 		} else
526 			mprev = &m->m_nextpkt;
527 	}
528 	/* recalculate tail ptr */
529 	m = ifsq->ifsq_norm_head;
530 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
531 		;
532 	ifsq->ifsq_norm_tail = m;
533 
534 	/*
535 	 * Fix priority queue
536 	 */
537 	mprev = &ifsq->ifsq_prio_head;
538 	while ((m = *mprev) != NULL) {
539 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
540 		if (ni != NULL && ni->ni_vap == vap) {
541 			*mprev = m->m_nextpkt;		/* remove from list */
542 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
543 			ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
544 
545 			m_freem(m);
546 			ieee80211_free_node(ni);	/* reclaim ref */
547 		} else
548 			mprev = &m->m_nextpkt;
549 	}
550 	/* recalculate tail ptr */
551 	m = ifsq->ifsq_prio_head;
552 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
553 		;
554 	ifsq->ifsq_prio_tail = m;
555 
556 	ALTQ_SQ_UNLOCK(ifsq);
557 }
558 #endif
559 
560 /*
561  * As above, for mbufs allocated with m_gethdr/MGETHDR
562  * or initialized by M_COPY_PKTHDR.
563  */
564 #define	MC_ALIGN(m, len)						\
565 do {									\
566 	(m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1);	\
567 } while (/* CONSTCOND */ 0)
568 
569 /*
570  * Allocate and setup a management frame of the specified
571  * size.  We return the mbuf and a pointer to the start
572  * of the contiguous data area that's been reserved based
573  * on the packet length.  The data area is forced to 32-bit
574  * alignment and the buffer length to a multiple of 4 bytes.
575  * This is done mainly so beacon frames (that require this)
576  * can use this interface too.
577  */
578 struct mbuf *
579 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
580 {
581 	struct mbuf *m;
582 	u_int len;
583 
584 	/*
585 	 * NB: we know the mbuf routines will align the data area
586 	 *     so we don't need to do anything special.
587 	 */
588 	len = roundup2(headroom + pktlen, 4);
589 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
590 	if (len < MINCLSIZE) {
591 		m = m_gethdr(M_NOWAIT, MT_DATA);
592 		/*
593 		 * Align the data in case additional headers are added.
594 		 * This should only happen when a WEP header is added
595 		 * which only happens for shared key authentication mgt
596 		 * frames which all fit in MHLEN.
597 		 */
598 		if (m != NULL)
599 			MH_ALIGN(m, len);
600 	} else {
601 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
602 		if (m != NULL)
603 			MC_ALIGN(m, len);
604 	}
605 	if (m != NULL) {
606 		m->m_data += headroom;
607 		*frm = m->m_data;
608 	}
609 	return m;
610 }
611 
612 /*
613  * Re-align the payload in the mbuf.  This is mainly used (right now)
614  * to handle IP header alignment requirements on certain architectures.
615  */
616 struct mbuf *
617 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
618 {
619 	int pktlen, space;
620 	struct mbuf *n = NULL;
621 
622 	pktlen = m->m_pkthdr.len;
623 	space = pktlen + align;
624 	if (space < MINCLSIZE) {
625 		n = m_gethdr(M_NOWAIT, MT_DATA);
626 	} else {
627 		if (space <= MCLBYTES)
628 			space = MCLBYTES;
629 		else if (space <= MJUMPAGESIZE)
630 			space = MJUMPAGESIZE;
631 		else if (space <= MJUM9BYTES)
632 			space = MJUM9BYTES;
633 		else
634 			space = MJUM16BYTES;
635 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, space);
636 	}
637 	if (__predict_true(n != NULL)) {
638 		m_move_pkthdr(n, m);
639 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
640 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
641 		n->m_len = pktlen;
642 	} else {
643 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
644 		    mtod(m, const struct ieee80211_frame *), NULL,
645 		    "%s", "no mbuf to realign");
646 		vap->iv_stats.is_rx_badalign++;
647 	}
648 	m_freem(m);
649 	return n;
650 }
651 
652 int
653 ieee80211_add_callback(struct mbuf *m,
654 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
655 {
656 	struct m_tag *mtag;
657 	struct ieee80211_cb *cb;
658 
659 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
660 			sizeof(struct ieee80211_cb), M_INTWAIT);
661 	if (mtag == NULL)
662 		return 0;
663 
664 	cb = (struct ieee80211_cb *)(mtag+1);
665 	cb->func = func;
666 	cb->arg = arg;
667 	m_tag_prepend(m, mtag);
668 	m->m_flags |= M_TXCB;
669 	return 1;
670 }
671 
672 void
673 ieee80211_process_callback(struct ieee80211_node *ni,
674 	struct mbuf *m, int status)
675 {
676 	struct m_tag *mtag;
677 
678 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
679 	if (mtag != NULL) {
680 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
681 		cb->func(ni, cb->arg, status);
682 	}
683 }
684 
685 #include <sys/libkern.h>
686 
687 void
688 get_random_bytes(void *p, size_t n)
689 {
690 	uint8_t *dp = p;
691 
692 	while (n > 0) {
693 		uint32_t v = karc4random();
694 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
695 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
696 		dp += sizeof(uint32_t), n -= nb;
697 	}
698 }
699 
700 /*
701  * Helper function for events that pass just a single mac address.
702  */
703 static void
704 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
705 {
706 	struct ieee80211_join_event iev;
707 
708 	memset(&iev, 0, sizeof(iev));
709 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
710 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
711 }
712 
713 void
714 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
715 {
716 	struct ieee80211vap *vap = ni->ni_vap;
717 	struct ifnet *ifp = vap->iv_ifp;
718 
719 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
720 	    (ni == vap->iv_bss) ? "bss " : "");
721 
722 	if (ni == vap->iv_bss) {
723 		notify_macaddr(ifp, newassoc ?
724 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
725 		if_link_state_change(ifp);
726 	} else {
727 		notify_macaddr(ifp, newassoc ?
728 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
729 	}
730 }
731 
732 void
733 ieee80211_notify_node_leave(struct ieee80211_node *ni)
734 {
735 	struct ieee80211vap *vap = ni->ni_vap;
736 	struct ifnet *ifp = vap->iv_ifp;
737 
738 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
739 	    (ni == vap->iv_bss) ? "bss " : "");
740 
741 	if (ni == vap->iv_bss) {
742 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
743 		if_link_state_change(ifp);
744 	} else {
745 		/* fire off wireless event station leaving */
746 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
747 	}
748 }
749 
750 void
751 ieee80211_notify_scan_done(struct ieee80211vap *vap)
752 {
753 	struct ifnet *ifp = vap->iv_ifp;
754 
755 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
756 
757 	/* dispatch wireless event indicating scan completed */
758 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
759 }
760 
761 void
762 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
763 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
764 	u_int64_t rsc, int tid)
765 {
766 	struct ifnet *ifp = vap->iv_ifp;
767 
768 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
769 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
770 	    k->wk_cipher->ic_name, (intmax_t) rsc,
771 	    (intmax_t) k->wk_keyrsc[tid],
772 	    k->wk_keyix, k->wk_rxkeyix);
773 
774 	if (ifp != NULL) {		/* NB: for cipher test modules */
775 		struct ieee80211_replay_event iev;
776 
777 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
778 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
779 		iev.iev_cipher = k->wk_cipher->ic_cipher;
780 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
781 			iev.iev_keyix = k->wk_rxkeyix;
782 		else
783 			iev.iev_keyix = k->wk_keyix;
784 		iev.iev_keyrsc = k->wk_keyrsc[tid];
785 		iev.iev_rsc = rsc;
786 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
787 	}
788 }
789 
790 void
791 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
792 	const struct ieee80211_frame *wh, u_int keyix)
793 {
794 	struct ifnet *ifp = vap->iv_ifp;
795 
796 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
797 	    "michael MIC verification failed <keyix %u>", keyix);
798 	vap->iv_stats.is_rx_tkipmic++;
799 
800 	if (ifp != NULL) {		/* NB: for cipher test modules */
801 		struct ieee80211_michael_event iev;
802 
803 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
804 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
805 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
806 		iev.iev_keyix = keyix;
807 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
808 	}
809 }
810 
811 void
812 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
813 {
814 	struct ieee80211vap *vap = ni->ni_vap;
815 	struct ifnet *ifp = vap->iv_ifp;
816 
817 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
818 }
819 
820 void
821 ieee80211_notify_csa(struct ieee80211com *ic,
822 	const struct ieee80211_channel *c, int mode, int count)
823 {
824 	struct ifnet *ifp = ic->ic_ifp;
825 	struct ieee80211_csa_event iev;
826 
827 	memset(&iev, 0, sizeof(iev));
828 	iev.iev_flags = c->ic_flags;
829 	iev.iev_freq = c->ic_freq;
830 	iev.iev_ieee = c->ic_ieee;
831 	iev.iev_mode = mode;
832 	iev.iev_count = count;
833 	rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
834 }
835 
836 void
837 ieee80211_notify_radar(struct ieee80211com *ic,
838 	const struct ieee80211_channel *c)
839 {
840 	struct ifnet *ifp = ic->ic_ifp;
841 	struct ieee80211_radar_event iev;
842 
843 	memset(&iev, 0, sizeof(iev));
844 	iev.iev_flags = c->ic_flags;
845 	iev.iev_freq = c->ic_freq;
846 	iev.iev_ieee = c->ic_ieee;
847 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
848 }
849 
850 void
851 ieee80211_notify_cac(struct ieee80211com *ic,
852 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
853 {
854 	struct ifnet *ifp = ic->ic_ifp;
855 	struct ieee80211_cac_event iev;
856 
857 	memset(&iev, 0, sizeof(iev));
858 	iev.iev_flags = c->ic_flags;
859 	iev.iev_freq = c->ic_freq;
860 	iev.iev_ieee = c->ic_ieee;
861 	iev.iev_type = type;
862 	rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
863 }
864 
865 void
866 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
867 {
868 	struct ieee80211vap *vap = ni->ni_vap;
869 	struct ifnet *ifp = vap->iv_ifp;
870 
871 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
872 
873 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
874 }
875 
876 void
877 ieee80211_notify_node_auth(struct ieee80211_node *ni)
878 {
879 	struct ieee80211vap *vap = ni->ni_vap;
880 	struct ifnet *ifp = vap->iv_ifp;
881 
882 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
883 
884 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
885 }
886 
887 void
888 ieee80211_notify_country(struct ieee80211vap *vap,
889 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
890 {
891 	struct ifnet *ifp = vap->iv_ifp;
892 	struct ieee80211_country_event iev;
893 
894 	memset(&iev, 0, sizeof(iev));
895 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
896 	iev.iev_cc[0] = cc[0];
897 	iev.iev_cc[1] = cc[1];
898 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
899 }
900 
901 void
902 ieee80211_notify_radio(struct ieee80211com *ic, int state)
903 {
904 	struct ifnet *ifp = ic->ic_ifp;
905 	struct ieee80211_radio_event iev;
906 
907 	memset(&iev, 0, sizeof(iev));
908 	iev.iev_state = state;
909 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
910 }
911 
912 /* IEEE Std 802.11a-1999, page 9, table 79 */
913 #define IEEE80211_OFDM_SYM_TIME                 4
914 #define IEEE80211_OFDM_PREAMBLE_TIME            16
915 #define IEEE80211_OFDM_SIGNAL_TIME              4
916 /* IEEE Std 802.11g-2003, page 44 */
917 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
918 
919 /* IEEE Std 802.11a-1999, page 7, figure 107 */
920 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
921 #define IEEE80211_OFDM_TAIL_NBITS               6
922 
923 #define IEEE80211_OFDM_NBITS(frmlen) \
924 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
925 	((frmlen) * NBBY) + \
926 	IEEE80211_OFDM_TAIL_NBITS)
927 
928 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
929 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
930 
931 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
932 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
933 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
934 
935 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
936 	(IEEE80211_OFDM_PREAMBLE_TIME + \
937 	IEEE80211_OFDM_SIGNAL_TIME + \
938 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
939 
940 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
941 #define IEEE80211_CCK_PREAMBLE_LEN      144
942 #define IEEE80211_CCK_PLCP_HDR_TIME     48
943 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
944 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
945 
946 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
947 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
948 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
949 
950 uint16_t
951 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
952 		uint32_t flags)
953 {
954 	struct ieee80211vap *vap = ni->ni_vap;
955 	uint16_t txtime;
956 	int rate;
957 
958 	rs_rate &= IEEE80211_RATE_VAL;
959 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
960 
961 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
962 		/*
963 		 * IEEE Std 802.11a-1999, page 37, equation (29)
964 		 * IEEE Std 802.11g-2003, page 44, equation (42)
965 		 */
966 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
967 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
968 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
969 	} else {
970 		/*
971 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
972 		 * IEEE Std 802.11g-2003, page 45, equation (43)
973 		 */
974 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
975 			++len;
976 		txtime = IEEE80211_CCK_TXTIME(rate, len);
977 
978 		/*
979 		 * Short preamble is not applicable for DS 1Mbits/s
980 		 */
981 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
982 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
983 				IEEE80211_CCK_SHPLCP_HDR_TIME;
984 		} else {
985 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
986 			IEEE80211_CCK_PLCP_HDR_TIME;
987 		}
988 	}
989 	return txtime;
990 }
991 
992 void
993 ieee80211_load_module(const char *modname)
994 {
995 
996 #ifdef notyet
997 	(void)kern_kldload(curthread, modname, NULL);
998 #else
999 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
1000 #endif
1001 }
1002 
1003 static eventhandler_tag wlan_bpfevent;
1004 static eventhandler_tag wlan_ifllevent;
1005 
1006 static void
1007 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
1008 {
1009 	/* NB: identify vap's by if_start */
1010 
1011 	if (dlt == DLT_IEEE802_11_RADIO &&
1012 	    ifp->if_start == ieee80211_vap_start) {
1013 		struct ieee80211vap *vap = ifp->if_softc;
1014 		/*
1015 		 * Track bpf radiotap listener state.  We mark the vap
1016 		 * to indicate if any listener is present and the com
1017 		 * to indicate if any listener exists on any associated
1018 		 * vap.  This flag is used by drivers to prepare radiotap
1019 		 * state only when needed.
1020 		 */
1021 		if (attach) {
1022 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1023 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1024 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1025 		} else if (!vap->iv_rawbpf) {
1026 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1027 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1028 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1029 		}
1030 	}
1031 }
1032 
1033 const char *
1034 ether_sprintf(const u_char *buf)
1035 {
1036 	static char ethstr[MAXCPU][ETHER_ADDRSTRLEN + 1];
1037 	char *ptr = ethstr[mycpu->gd_cpuid];
1038 
1039 	kether_ntoa(buf, ptr);
1040 	return (ptr);
1041 }
1042 
1043 static void
1044 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
1045 {
1046 	struct ieee80211com *ic = ifp->if_l2com;
1047 	struct ieee80211vap *vap, *next;
1048 
1049 	if (ifp->if_type != IFT_IEEE80211 || ic == NULL) {
1050 		return;
1051 	}
1052 
1053 	TAILQ_FOREACH_MUTABLE(vap, &ic->ic_vaps, iv_next, next) {
1054 		/*
1055 		 * If the MAC address has changed on the parent and it was
1056 		 * copied to the vap on creation then re-sync.
1057 		 */
1058 		if (vap->iv_ic == ic &&
1059 		    (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
1060 			IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1061 			if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
1062 				     IEEE80211_ADDR_LEN);
1063 		}
1064 	}
1065 }
1066 
1067 /*
1068  * Module glue.
1069  *
1070  * NB: the module name is "wlan" for compatibility with NetBSD.
1071  */
1072 static int
1073 wlan_modevent(module_t mod, int type, void *unused)
1074 {
1075 	int error;
1076 
1077 	switch (type) {
1078 	case MOD_LOAD:
1079 		if (bootverbose)
1080 			kprintf("wlan: <802.11 Link Layer>\n");
1081 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1082 					bpf_track_event, 0,
1083 					EVENTHANDLER_PRI_ANY);
1084 		if (wlan_bpfevent == NULL) {
1085 			error = ENOMEM;
1086 			break;
1087 		}
1088 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1089 					wlan_iflladdr_event, NULL,
1090 					EVENTHANDLER_PRI_ANY);
1091 		if (wlan_ifllevent == NULL) {
1092 			EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1093 			error = ENOMEM;
1094 			break;
1095 		}
1096 		if_clone_attach(&wlan_cloner);
1097 		if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
1098 		error = 0;
1099 		break;
1100 	case MOD_UNLOAD:
1101 		if_deregister_com_alloc(IFT_IEEE80211);
1102 		if_clone_detach(&wlan_cloner);
1103 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1104 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1105 		error = 0;
1106 		break;
1107 	default:
1108 		error = EINVAL;
1109 		break;
1110 	}
1111 	return error;
1112 }
1113 
1114 static moduledata_t wlan_mod = {
1115 	"wlan",
1116 	wlan_modevent,
1117 	0
1118 };
1119 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1120 MODULE_VERSION(wlan, 1);
1121 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1122