1 /*
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * Alternatively, this software may be distributed under the terms of the
18  * GNU General Public License ("GPL") version 2 as published by the Free
19  * Software Foundation.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.26.2.8 2006/09/02 15:06:04 sam Exp $
33  * $DragonFly: src/sys/netproto/802_11/wlan/ieee80211_output.c,v 1.24 2007/09/15 07:19:23 sephe Exp $
34  */
35 
36 #include "opt_inet.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/bpf.h>
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_llc.h>
51 #include <net/if_media.h>
52 #include <net/vlan/if_vlan_var.h>
53 
54 #include <netproto/802_11/ieee80211_var.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/if_ether.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #endif
62 
63 #ifdef IEEE80211_DEBUG
64 /*
65  * Decide if an outbound management frame should be
66  * printed when debugging is enabled.  This filters some
67  * of the less interesting frames that come frequently
68  * (e.g. beacons).
69  */
70 static __inline int
71 doprint(struct ieee80211com *ic, int subtype)
72 {
73 	switch (subtype) {
74 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
75 		return (ic->ic_opmode == IEEE80211_M_IBSS);
76 	}
77 	return 1;
78 }
79 #endif
80 
81 /*
82  * Set the direction field and address fields of an outgoing
83  * non-QoS frame.  Note this should be called early on in
84  * constructing a frame as it sets i_fc[1]; other bits can
85  * then be or'd in.
86  */
87 static void
88 ieee80211_send_setup(struct ieee80211com *ic,
89 	struct ieee80211_node *ni,
90 	struct ieee80211_frame *wh,
91 	int type,
92 	const uint8_t sa[IEEE80211_ADDR_LEN],
93 	const uint8_t da[IEEE80211_ADDR_LEN],
94 	const uint8_t bssid[IEEE80211_ADDR_LEN])
95 {
96 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
97 
98 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
99 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
100 		switch (ic->ic_opmode) {
101 		case IEEE80211_M_STA:
102 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
103 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
104 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
105 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
106 			break;
107 		case IEEE80211_M_IBSS:
108 		case IEEE80211_M_AHDEMO:
109 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
110 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
111 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
112 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
113 			break;
114 		case IEEE80211_M_HOSTAP:
115 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
116 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
117 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
118 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
119 			break;
120 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
121 			break;
122 		}
123 	} else {
124 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
125 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
126 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
127 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
128 	}
129 	*(uint16_t *)&wh->i_dur[0] = 0;
130 	/* NB: use non-QoS tid */
131 	*(uint16_t *)&wh->i_seq[0] =
132 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
133 	ni->ni_txseqs[0]++;
134 #undef WH4
135 }
136 
137 /*
138  * Send a management frame to the specified node.  The node pointer
139  * must have a reference as the pointer will be passed to the driver
140  * and potentially held for a long time.  If the frame is successfully
141  * dispatched to the driver, then it is responsible for freeing the
142  * reference (and potentially free'ing up any associated storage).
143  */
144 static int
145 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
146     struct mbuf *m, int type, int timer, int encrypt)
147 {
148 	struct ifnet *ifp = ic->ic_ifp;
149 	struct ieee80211_frame *wh;
150 
151 	KASSERT(ni != NULL, ("null node"));
152 
153 	/*
154 	 * Yech, hack alert!  We want to pass the node down to the
155 	 * driver's start routine.  If we don't do so then the start
156 	 * routine must immediately look it up again and that can
157 	 * cause a lock order reversal if, for example, this frame
158 	 * is being sent because the station is being timedout and
159 	 * the frame being sent is a DEAUTH message.  We could stick
160 	 * this in an m_tag and tack that on to the mbuf.  However
161 	 * that's rather expensive to do for every frame so instead
162 	 * we stuff it in the rcvif field since outbound frames do
163 	 * not (presently) use this.
164 	 */
165 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
166 	if (m == NULL)
167 		return ENOMEM;
168 	KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
169 	m->m_pkthdr.rcvif = (void *)ni;
170 
171 	wh = mtod(m, struct ieee80211_frame *);
172 	ieee80211_send_setup(ic, ni, wh,
173 		IEEE80211_FC0_TYPE_MGT | type,
174 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
175 	if (encrypt) {
176 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
177 			"[%6D] encrypting frame (%s)\n",
178 			wh->i_addr1, ":", __func__);
179 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
180 	}
181 #ifdef IEEE80211_DEBUG
182 	/* avoid printing too many frames */
183 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
184 	    ieee80211_msg_dumppkts(ic)) {
185 		kprintf("[%6D] send %s on channel %u\n",
186 		    wh->i_addr1, ":",
187 		    ieee80211_mgt_subtype_name[
188 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
189 				IEEE80211_FC0_SUBTYPE_SHIFT],
190 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
191 	}
192 #endif
193 	IEEE80211_NODE_STAT(ni, tx_mgmt);
194 	IF_ENQUEUE(&ic->ic_mgtq, m);
195 	if (timer) {
196 		/*
197 		 * Set the mgt frame timeout.
198 		 */
199 		ic->ic_mgt_timer = timer;
200 		ifp->if_timer = 1;
201 	}
202 	ifp->if_start(ifp);
203 	return 0;
204 }
205 
206 /*
207  * Send a null data frame to the specified node.
208  *
209  * NB: the caller is assumed to have setup a node reference
210  *     for use; this is necessary to deal with a race condition
211  *     when probing for inactive stations.
212  */
213 int
214 ieee80211_send_nulldata(struct ieee80211_node *ni)
215 {
216 	struct ieee80211com *ic = ni->ni_ic;
217 	struct ifnet *ifp = ic->ic_ifp;
218 	struct mbuf *m;
219 	struct ieee80211_frame *wh;
220 
221 	MGETHDR(m, MB_DONTWAIT, MT_HEADER);
222 	if (m == NULL) {
223 		/* XXX debug msg */
224 		ic->ic_stats.is_tx_nobuf++;
225 		ieee80211_unref_node(&ni);
226 		return ENOMEM;
227 	}
228 	m->m_pkthdr.rcvif = (void *) ni;
229 
230 	wh = mtod(m, struct ieee80211_frame *);
231 	ieee80211_send_setup(ic, ni, wh,
232 		IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
233 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
234 	/* NB: power management bit is never sent by an AP */
235 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
236 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
237 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
238 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
239 
240 	IEEE80211_NODE_STAT(ni, tx_data);
241 
242 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
243 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
244 	    ni->ni_macaddr, ":",
245 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
246 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
247 
248 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
249 	ifp->if_start(ifp);
250 	return 0;
251 }
252 
253 /*
254  * Assign priority to a frame based on any vlan tag assigned
255  * to the station and/or any Diffserv setting in an IP header.
256  * Finally, if an ACM policy is setup (in station mode) it's
257  * applied.
258  */
259 int
260 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
261 {
262 	int v_wme_ac = 0, d_wme_ac, ac;
263 #ifdef INET
264 	struct ether_header *eh;
265 #endif
266 
267 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
268 		ac = WME_AC_BE;
269 		goto done;
270 	}
271 
272 #ifdef FREEBSD_VLAN
273 	/*
274 	 * If node has a vlan tag then all traffic
275 	 * to it must have a matching tag.
276 	 */
277 	v_wme_ac = 0;
278 	if (ni->ni_vlan != 0) {
279 		struct m_tag *mtag = VLAN_OUTPUT_TAG(ic->ic_ifp, m);
280 		if (mtag == NULL) {
281 			IEEE80211_NODE_STAT(ni, tx_novlantag);
282 			return 1;
283 		}
284 		if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
285 		    EVL_VLANOFTAG(ni->ni_vlan)) {
286 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
287 			return 1;
288 		}
289 		/* map vlan priority to AC */
290 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
291 		case 1:
292 		case 2:
293 			v_wme_ac = WME_AC_BK;
294 			break;
295 		case 0:
296 		case 3:
297 			v_wme_ac = WME_AC_BE;
298 			break;
299 		case 4:
300 		case 5:
301 			v_wme_ac = WME_AC_VI;
302 			break;
303 		case 6:
304 		case 7:
305 			v_wme_ac = WME_AC_VO;
306 			break;
307 		}
308 	}
309 #endif	/* FREEBSD_VLAN */
310 
311 #ifdef INET
312 	eh = mtod(m, struct ether_header *);
313 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
314 		const struct ip *ip = (struct ip *)
315 			(mtod(m, uint8_t *) + sizeof (*eh));
316 		/*
317 		 * IP frame, map the TOS field.
318 		 */
319 		switch (ip->ip_tos) {
320 		case 0x08:
321 		case 0x20:
322 			d_wme_ac = WME_AC_BK;	/* background */
323 			break;
324 		case 0x28:
325 		case 0xa0:
326 			d_wme_ac = WME_AC_VI;	/* video */
327 			break;
328 		case 0x30:			/* voice */
329 		case 0xe0:
330 		case 0x88:			/* XXX UPSD */
331 		case 0xb8:
332 			d_wme_ac = WME_AC_VO;
333 			break;
334 		default:
335 			d_wme_ac = WME_AC_BE;
336 			break;
337 		}
338 	} else {
339 #endif /* INET */
340 		d_wme_ac = WME_AC_BE;
341 #ifdef INET
342 	}
343 #endif
344 	/*
345 	 * Use highest priority AC.
346 	 */
347 	if (v_wme_ac > d_wme_ac)
348 		ac = v_wme_ac;
349 	else
350 		ac = d_wme_ac;
351 
352 	/*
353 	 * Apply ACM policy.
354 	 */
355 	if (ic->ic_opmode == IEEE80211_M_STA) {
356 		static const int acmap[4] = {
357 			WME_AC_BK,	/* WME_AC_BE */
358 			WME_AC_BK,	/* WME_AC_BK */
359 			WME_AC_BE,	/* WME_AC_VI */
360 			WME_AC_VI,	/* WME_AC_VO */
361 		};
362 		while (ac != WME_AC_BK &&
363 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
364 			ac = acmap[ac];
365 	}
366 done:
367 	M_WME_SETAC(m, ac);
368 	return 0;
369 }
370 
371 /*
372  * Insure there is sufficient contiguous space to encapsulate the
373  * 802.11 data frame.  If room isn't already there, arrange for it.
374  * Drivers and cipher modules assume we have done the necessary work
375  * and fail rudely if they don't find the space they need.
376  */
377 static struct mbuf *
378 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
379 	struct ieee80211_key *key, struct mbuf *m)
380 {
381 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
382 	int needed_space = hdrsize + ic->ic_headroom;
383 
384 	if (key != NULL) {
385 		/* XXX belongs in crypto code? */
386 		if ((key->wk_flags & IEEE80211_KEY_NOHDR) == 0)
387 			needed_space += key->wk_cipher->ic_header;
388 		/* XXX frags */
389 		/*
390 		 * When crypto is being done in the host we must insure
391 		 * the data are writable for the cipher routines; clone
392 		 * a writable mbuf chain.
393 		 * XXX handle SWMIC specially
394 		 */
395 		if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) {
396 			m = ieee80211_mbuf_clone(m, MB_DONTWAIT);
397 			if (m == NULL) {
398 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
399 				    "%s: cannot get writable mbuf\n", __func__);
400 				ic->ic_stats.is_tx_nobuf++; /* XXX new stat */
401 				return NULL;
402 			}
403 		}
404 	}
405 	/*
406 	 * We know we are called just before stripping an Ethernet
407 	 * header and prepending an LLC header.  This means we know
408 	 * there will be
409 	 *	sizeof(struct ether_header) - sizeof(struct llc)
410 	 * bytes recovered to which we need additional space for the
411 	 * 802.11 header and any crypto header.
412 	 */
413 	/* XXX check trailing space and copy instead? */
414 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
415 		struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type);
416 		if (n == NULL) {
417 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
418 			    "%s: cannot expand storage\n", __func__);
419 			ic->ic_stats.is_tx_nobuf++;
420 			m_freem(m);
421 			return NULL;
422 		}
423 		KASSERT(needed_space <= MHLEN,
424 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
425 		/*
426 		 * Setup new mbuf to have leading space to prepend the
427 		 * 802.11 header and any crypto header bits that are
428 		 * required (the latter are added when the driver calls
429 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
430 		 */
431 		/* NB: must be first 'cuz it clobbers m_data */
432 		m_move_pkthdr(n, m);
433 		n->m_len = 0;			/* NB: m_gethdr does not set */
434 		n->m_data += needed_space;
435 		/*
436 		 * Pull up Ethernet header to create the expected layout.
437 		 * We could use m_pullup but that's overkill (i.e. we don't
438 		 * need the actual data) and it cannot fail so do it inline
439 		 * for speed.
440 		 */
441 		/* NB: struct ether_header is known to be contiguous */
442 		n->m_len += sizeof(struct ether_header);
443 		m->m_len -= sizeof(struct ether_header);
444 		m->m_data += sizeof(struct ether_header);
445 		/*
446 		 * Replace the head of the chain.
447 		 */
448 		n->m_next = m;
449 		m = n;
450 	}
451 	return m;
452 #undef TO_BE_RECLAIMED
453 }
454 
455 #define	KEY_UNDEFINED(k)	((k).wk_cipher == &ieee80211_cipher_none)
456 /*
457  * Return the transmit key to use in sending a unicast frame.
458  * If a unicast key is set we use that.  When no unicast key is set
459  * we fall back to the default transmit key.
460  */
461 static __inline struct ieee80211_key *
462 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
463 {
464 	if (KEY_UNDEFINED(ni->ni_ucastkey)) {
465 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
466 		    KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
467 			return NULL;
468 		return &ic->ic_nw_keys[ic->ic_def_txkey];
469 	} else {
470 		return &ni->ni_ucastkey;
471 	}
472 }
473 
474 /*
475  * Return the transmit key to use in sending a multicast frame.
476  * Multicast traffic always uses the group key which is installed as
477  * the default tx key.
478  */
479 static __inline struct ieee80211_key *
480 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
481 {
482 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
483 	    KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
484 		return NULL;
485 	return &ic->ic_nw_keys[ic->ic_def_txkey];
486 }
487 
488 /*
489  * Encapsulate an outbound data frame.  The mbuf chain is updated.
490  * If an error is encountered NULL is returned.  The caller is required
491  * to provide a node reference and pullup the ethernet header in the
492  * first mbuf.
493  */
494 struct mbuf *
495 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
496 	struct ieee80211_node *ni)
497 {
498 	struct ether_header eh;
499 	struct ieee80211_frame *wh;
500 	struct ieee80211_key *key;
501 	struct llc *llc;
502 	int hdrsize, datalen, addqos;
503 
504 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
505 	memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header));
506 
507 	/*
508 	 * Insure space for additional headers.  First identify
509 	 * transmit key to use in calculating any buffer adjustments
510 	 * required.  This is also used below to do privacy
511 	 * encapsulation work.  Then calculate the 802.11 header
512 	 * size and any padding required by the driver.
513 	 *
514 	 * Note key may be NULL if we fall back to the default
515 	 * transmit key and that is not set.  In that case the
516 	 * buffer may not be expanded as needed by the cipher
517 	 * routines, but they will/should discard it.
518 	 */
519 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
520 		if (ic->ic_opmode == IEEE80211_M_STA ||
521 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost))
522 			key = ieee80211_crypto_getucastkey(ic, ni);
523 		else
524 			key = ieee80211_crypto_getmcastkey(ic, ni);
525 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
526 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
527 			    "[%6D] no default transmit key (%s) deftxkey %u\n",
528 			    eh.ether_dhost, ":", __func__,
529 			    ic->ic_def_txkey);
530 			ic->ic_stats.is_tx_nodefkey++;
531 			goto bad;
532 		}
533 	} else
534 		key = NULL;
535 	/* XXX 4-address format */
536 	/*
537 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
538 	 * frames so suppress use.  This may be an issue if other
539 	 * ap's require all data frames to be QoS-encapsulated
540 	 * once negotiated in which case we'll need to make this
541 	 * configurable.
542 	 */
543 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
544 		 eh.ether_type != htons(ETHERTYPE_PAE);
545 	if (addqos)
546 		hdrsize = sizeof(struct ieee80211_qosframe);
547 	else
548 		hdrsize = sizeof(struct ieee80211_frame);
549 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
550 		hdrsize = roundup(hdrsize, sizeof(uint32_t));
551 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
552 	if (m == NULL) {
553 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
554 		goto bad;
555 	}
556 
557 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
558 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
559 	llc = mtod(m, struct llc *);
560 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
561 	llc->llc_control = LLC_UI;
562 	llc->llc_snap.org_code[0] = 0;
563 	llc->llc_snap.org_code[1] = 0;
564 	llc->llc_snap.org_code[2] = 0;
565 	llc->llc_snap.ether_type = eh.ether_type;
566 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
567 
568 	M_PREPEND(m, hdrsize, MB_DONTWAIT);
569 	if (m == NULL) {
570 		ic->ic_stats.is_tx_nobuf++;
571 		goto bad;
572 	}
573 	wh = mtod(m, struct ieee80211_frame *);
574 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
575 	*(uint16_t *)wh->i_dur = 0;
576 	switch (ic->ic_opmode) {
577 	case IEEE80211_M_STA:
578 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
579 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
580 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
581 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
582 		break;
583 	case IEEE80211_M_IBSS:
584 	case IEEE80211_M_AHDEMO:
585 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
586 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
587 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
588 		/*
589 		 * NB: always use the bssid from ic_bss as the
590 		 *     neighbor's may be stale after an ibss merge
591 		 */
592 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
593 		break;
594 	case IEEE80211_M_HOSTAP:
595 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
596 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
597 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
598 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
599 		break;
600 	case IEEE80211_M_MONITOR:
601 		goto bad;
602 	}
603 	if (m->m_flags & M_MORE_DATA)
604 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
605 	if (addqos) {
606 		struct ieee80211_qosframe *qwh =
607 			(struct ieee80211_qosframe *) wh;
608 		int ac, tid;
609 
610 		ac = M_WME_GETAC(m);
611 		/* map from access class/queue to 11e header priorty value */
612 		tid = WME_AC_TO_TID(ac);
613 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
614 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
615 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
616 		qwh->i_qos[1] = 0;
617 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
618 
619 		*(uint16_t *)wh->i_seq =
620 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
621 		ni->ni_txseqs[tid]++;
622 	} else {
623 		*(uint16_t *)wh->i_seq =
624 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
625 		ni->ni_txseqs[0]++;
626 	}
627 	if (key != NULL) {
628 		/*
629 		 * IEEE 802.1X: send EAPOL frames always in the clear.
630 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
631 		 */
632 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
633 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
634 		     (ic->ic_opmode == IEEE80211_M_STA ?
635 		      !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) {
636 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
637 			/* XXX do fragmentation */
638 			if (!ieee80211_crypto_enmic(ic, key, m, 0)) {
639 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
640 				    "[%6D] enmic failed, discard frame\n",
641 				    eh.ether_dhost, ":");
642 				ic->ic_stats.is_crypto_enmicfail++;
643 				goto bad;
644 			}
645 		}
646 	}
647 
648 	IEEE80211_NODE_STAT(ni, tx_data);
649 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
650 		IEEE80211_NODE_STAT(ni, tx_mcast);
651 	else
652 		IEEE80211_NODE_STAT(ni, tx_ucast);
653 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
654 
655 	return m;
656 bad:
657 	if (m != NULL)
658 		m_freem(m);
659 	return NULL;
660 }
661 
662 /*
663  * Add a supported rates element id to a frame.
664  */
665 uint8_t *
666 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
667 {
668 	int nrates;
669 
670 	*frm++ = IEEE80211_ELEMID_RATES;
671 	nrates = rs->rs_nrates;
672 	if (nrates > IEEE80211_RATE_SIZE)
673 		nrates = IEEE80211_RATE_SIZE;
674 	*frm++ = nrates;
675 	memcpy(frm, rs->rs_rates, nrates);
676 	return frm + nrates;
677 }
678 
679 /*
680  * Add an extended supported rates element id to a frame.
681  */
682 uint8_t *
683 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
684 {
685 	/*
686 	 * Add an extended supported rates element if operating in 11g mode.
687 	 */
688 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
689 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
690 		*frm++ = IEEE80211_ELEMID_XRATES;
691 		*frm++ = nrates;
692 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
693 		frm += nrates;
694 	}
695 	return frm;
696 }
697 
698 /*
699  * Add an ssid elemet to a frame.
700  */
701 uint8_t *
702 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
703 {
704 	*frm++ = IEEE80211_ELEMID_SSID;
705 	*frm++ = len;
706 	memcpy(frm, ssid, len);
707 	return frm + len;
708 }
709 
710 /*
711  * Add an erp element to a frame.
712  */
713 static uint8_t *
714 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
715 {
716 	uint8_t erp;
717 
718 	*frm++ = IEEE80211_ELEMID_ERP;
719 	*frm++ = 1;
720 	erp = 0;
721 	if (ic->ic_nonerpsta != 0)
722 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
723 	if (ic->ic_flags & IEEE80211_F_USEPROT)
724 		erp |= IEEE80211_ERP_USE_PROTECTION;
725 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
726 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
727 	*frm++ = erp;
728 	return frm;
729 }
730 
731 static uint8_t *
732 ieee80211_setup_wpa_ie(struct ieee80211com *ic, uint8_t *ie)
733 {
734 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
735 #define	ADDSHORT(frm, v) do {			\
736 	frm[0] = (v) & 0xff;			\
737 	frm[1] = (v) >> 8;			\
738 	frm += 2;				\
739 } while (0)
740 #define	ADDSELECTOR(frm, sel) do {		\
741 	memcpy(frm, sel, 4);			\
742 	frm += 4;				\
743 } while (0)
744 	static const uint8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
745 	static const uint8_t cipher_suite[][4] = {
746 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
747 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
748 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
749 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
750 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
751 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
752 	};
753 	static const uint8_t wep104_suite[4] =
754 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
755 	static const uint8_t key_mgt_unspec[4] =
756 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
757 	static const uint8_t key_mgt_psk[4] =
758 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
759 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
760 	uint8_t *frm = ie;
761 	uint8_t *selcnt;
762 
763 	*frm++ = IEEE80211_ELEMID_VENDOR;
764 	*frm++ = 0;				/* length filled in below */
765 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
766 	frm += sizeof(oui);
767 	ADDSHORT(frm, WPA_VERSION);
768 
769 	/* XXX filter out CKIP */
770 
771 	/* multicast cipher */
772 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
773 	    rsn->rsn_mcastkeylen >= 13)
774 		ADDSELECTOR(frm, wep104_suite);
775 	else
776 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
777 
778 	/* unicast cipher list */
779 	selcnt = frm;
780 	ADDSHORT(frm, 0);			/* selector count */
781 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
782 		selcnt[0]++;
783 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
784 	}
785 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
786 		selcnt[0]++;
787 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
788 	}
789 
790 	/* authenticator selector list */
791 	selcnt = frm;
792 	ADDSHORT(frm, 0);			/* selector count */
793 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
794 		selcnt[0]++;
795 		ADDSELECTOR(frm, key_mgt_unspec);
796 	}
797 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
798 		selcnt[0]++;
799 		ADDSELECTOR(frm, key_mgt_psk);
800 	}
801 
802 	/* optional capabilities */
803 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
804 		ADDSHORT(frm, rsn->rsn_caps);
805 
806 	/* calculate element length */
807 	ie[1] = frm - ie - 2;
808 	KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
809 		("WPA IE too big, %u > %zu",
810 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
811 	return frm;
812 #undef ADDSHORT
813 #undef ADDSELECTOR
814 #undef WPA_OUI_BYTES
815 }
816 
817 static uint8_t *
818 ieee80211_setup_rsn_ie(struct ieee80211com *ic, uint8_t *ie)
819 {
820 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
821 #define	ADDSHORT(frm, v) do {			\
822 	frm[0] = (v) & 0xff;			\
823 	frm[1] = (v) >> 8;			\
824 	frm += 2;				\
825 } while (0)
826 #define	ADDSELECTOR(frm, sel) do {		\
827 	memcpy(frm, sel, 4);			\
828 	frm += 4;				\
829 } while (0)
830 	static const uint8_t cipher_suite[][4] = {
831 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
832 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
833 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
834 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
835 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
836 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
837 	};
838 	static const uint8_t wep104_suite[4] =
839 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
840 	static const uint8_t key_mgt_unspec[4] =
841 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
842 	static const uint8_t key_mgt_psk[4] =
843 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
844 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
845 	uint8_t *frm = ie;
846 	uint8_t *selcnt;
847 
848 	*frm++ = IEEE80211_ELEMID_RSN;
849 	*frm++ = 0;				/* length filled in below */
850 	ADDSHORT(frm, RSN_VERSION);
851 
852 	/* XXX filter out CKIP */
853 
854 	/* multicast cipher */
855 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
856 	    rsn->rsn_mcastkeylen >= 13)
857 		ADDSELECTOR(frm, wep104_suite);
858 	else
859 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
860 
861 	/* unicast cipher list */
862 	selcnt = frm;
863 	ADDSHORT(frm, 0);			/* selector count */
864 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
865 		selcnt[0]++;
866 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
867 	}
868 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
869 		selcnt[0]++;
870 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
871 	}
872 
873 	/* authenticator selector list */
874 	selcnt = frm;
875 	ADDSHORT(frm, 0);			/* selector count */
876 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
877 		selcnt[0]++;
878 		ADDSELECTOR(frm, key_mgt_unspec);
879 	}
880 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
881 		selcnt[0]++;
882 		ADDSELECTOR(frm, key_mgt_psk);
883 	}
884 
885 	/* optional capabilities */
886 	ADDSHORT(frm, rsn->rsn_caps);
887 	/* XXX PMKID */
888 
889 	/* calculate element length */
890 	ie[1] = frm - ie - 2;
891 	KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
892 		("RSN IE too big, %u > %zu",
893 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
894 	return frm;
895 #undef ADDSELECTOR
896 #undef ADDSHORT
897 #undef RSN_OUI_BYTES
898 }
899 
900 /*
901  * Add a WPA/RSN element to a frame.
902  */
903 static uint8_t *
904 ieee80211_add_wpa(uint8_t *frm, struct ieee80211com *ic)
905 {
906 
907 	KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
908 	if (ic->ic_flags & IEEE80211_F_WPA2)
909 		frm = ieee80211_setup_rsn_ie(ic, frm);
910 	if (ic->ic_flags & IEEE80211_F_WPA1)
911 		frm = ieee80211_setup_wpa_ie(ic, frm);
912 	return frm;
913 }
914 
915 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
916 /*
917  * Add a WME information element to a frame.
918  */
919 static uint8_t *
920 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
921 {
922 	static const struct ieee80211_wme_info info = {
923 		.wme_id		= IEEE80211_ELEMID_VENDOR,
924 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
925 		.wme_oui	= { WME_OUI_BYTES },
926 		.wme_type	= WME_OUI_TYPE,
927 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
928 		.wme_version	= WME_VERSION,
929 		.wme_info	= 0,
930 	};
931 	memcpy(frm, &info, sizeof(info));
932 	return frm + sizeof(info);
933 }
934 
935 /*
936  * Add a WME parameters element to a frame.
937  */
938 static uint8_t *
939 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
940 {
941 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
942 #define	ADDSHORT(frm, v) do {			\
943 	frm[0] = (v) & 0xff;			\
944 	frm[1] = (v) >> 8;			\
945 	frm += 2;				\
946 } while (0)
947 	/* NB: this works 'cuz a param has an info at the front */
948 	static const struct ieee80211_wme_info param = {
949 		.wme_id		= IEEE80211_ELEMID_VENDOR,
950 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
951 		.wme_oui	= { WME_OUI_BYTES },
952 		.wme_type	= WME_OUI_TYPE,
953 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
954 		.wme_version	= WME_VERSION,
955 	};
956 	int i;
957 
958 	memcpy(frm, &param, sizeof(param));
959 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
960 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
961 	*frm++ = 0;					/* reserved field */
962 	for (i = 0; i < WME_NUM_AC; i++) {
963 		const struct wmeParams *ac =
964 		       &wme->wme_bssChanParams.cap_wmeParams[i];
965 		*frm++ = SM(i, WME_PARAM_ACI)
966 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
967 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
968 		       ;
969 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
970 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
971 		       ;
972 		ADDSHORT(frm, ac->wmep_txopLimit);
973 	}
974 	return frm;
975 #undef SM
976 #undef ADDSHORT
977 }
978 #undef WME_OUI_BYTES
979 
980 /*
981  * Send a probe request frame with the specified ssid
982  * and any optional information element data.
983  */
984 int
985 ieee80211_send_probereq(struct ieee80211_node *ni,
986 	const uint8_t sa[IEEE80211_ADDR_LEN],
987 	const uint8_t da[IEEE80211_ADDR_LEN],
988 	const uint8_t bssid[IEEE80211_ADDR_LEN],
989 	const uint8_t *ssid, size_t ssidlen,
990 	const void *optie, size_t optielen)
991 {
992 	struct ieee80211com *ic = ni->ni_ic;
993 	struct ifnet *ifp = ic->ic_ifp;
994 	enum ieee80211_phymode mode;
995 	struct ieee80211_frame *wh;
996 	struct ieee80211_rateset rs;
997 	struct mbuf *m;
998 	uint8_t *frm;
999 
1000 	/*
1001 	 * Hold a reference on the node so it doesn't go away until after
1002 	 * the xmit is complete all the way in the driver.  On error we
1003 	 * will remove our reference.
1004 	 */
1005 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1006 		"ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1007 		__func__, __LINE__,
1008 		ni, ni->ni_macaddr, ":",
1009 		ieee80211_node_refcnt(ni) + 1);
1010 	ieee80211_ref_node(ni);
1011 
1012 	/*
1013 	 * prreq frame format
1014 	 *	[tlv] ssid
1015 	 *	[tlv] supported rates
1016 	 *	[tlv] extended supported rates
1017 	 *	[tlv] user-specified ie's
1018 	 */
1019 	m = ieee80211_getmgtframe(&frm,
1020 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1021 		 2 + IEEE80211_NWID_LEN
1022 	       + 2 + IEEE80211_RATE_SIZE
1023 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1024 	       + (optie != NULL ? optielen : 0)
1025 	);
1026 	if (m == NULL) {
1027 		ic->ic_stats.is_tx_nobuf++;
1028 		ieee80211_free_node(ni);
1029 		return ENOMEM;
1030 	}
1031 
1032 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1033 
1034 	/*
1035 	 * XXX
1036 	 * Clear basic rates.
1037 	 *
1038 	 * Though according to 802.11 standard: MSB of each supported rate
1039 	 * octet in (Extended) Supported Rates ie of probe requests should
1040 	 * be ignored, some HostAP implementations still check it ...
1041 	 */
1042 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1043 	rs = ic->ic_sup_rates[mode];
1044 	ieee80211_set_basicrates(&rs, IEEE80211_MODE_AUTO, 0);
1045 	frm = ieee80211_add_rates(frm, &rs);
1046 	frm = ieee80211_add_xrates(frm, &rs);
1047 
1048 	if (optie != NULL) {
1049 		memcpy(frm, optie, optielen);
1050 		frm += optielen;
1051 	}
1052 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1053 
1054 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1055 	if (m == NULL)
1056 		return ENOMEM;
1057 	KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
1058 	m->m_pkthdr.rcvif = (void *)ni;
1059 
1060 	wh = mtod(m, struct ieee80211_frame *);
1061 	ieee80211_send_setup(ic, ni, wh,
1062 		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1063 		sa, da, bssid);
1064 	/* XXX power management? */
1065 
1066 	IEEE80211_NODE_STAT(ni, tx_probereq);
1067 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1068 
1069 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1070 	    "[%6D] send probe req on channel %u\n",
1071 	    wh->i_addr1, ":",
1072 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
1073 
1074 	IF_ENQUEUE(&ic->ic_mgtq, m);
1075 	ifp->if_start(ifp);
1076 	return 0;
1077 }
1078 
1079 /*
1080  * Calculate capability information for mgt frames.
1081  */
1082 static uint16_t
1083 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan)
1084 {
1085 	uint16_t capinfo;
1086 
1087 	KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode"));
1088 
1089 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1090 		capinfo = IEEE80211_CAPINFO_ESS;
1091 	else if (ic->ic_opmode == IEEE80211_M_IBSS)
1092 		capinfo = IEEE80211_CAPINFO_IBSS;
1093 	else
1094 		capinfo = 0;
1095 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1096 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1097 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1098 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1099 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1100 		if (ic->ic_caps_ext & IEEE80211_CEXT_PBCC)
1101 			capinfo |= IEEE80211_CAPINFO_PBCC;
1102 	}
1103 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1104 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1105 	return capinfo;
1106 }
1107 
1108 static struct mbuf *
1109 _ieee80211_probe_resp_alloc(struct ieee80211com *ic, struct ieee80211_node *ni)
1110 {
1111 	const struct ieee80211_rateset *rs;
1112 	uint16_t capinfo;
1113 	struct mbuf *m;
1114 	uint8_t *frm;
1115 	int pktlen;
1116 
1117 	/*
1118 	 * probe response frame format
1119 	 *	[8] time stamp
1120 	 *	[2] beacon interval
1121 	 *	[2] cabability information
1122 	 *	[tlv] ssid
1123 	 *	[tlv] supported rates
1124 	 *	[tlv] parameter set (FH/DS)
1125 	 *	[4] parameter set (IBSS)
1126 	 *	[tlv] extended rate phy (ERP)
1127 	 *	[tlv] extended supported rates
1128 	 *	[tlv] WPA
1129 	 *	[tlv] WME (optional)
1130 	 */
1131 	KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO);
1132 	rs = &ic->ic_sup_rates[ic->ic_curmode];
1133 	pktlen =  8					/* time stamp */
1134 		+ sizeof(uint16_t)			/* beacon interval */
1135 		+ sizeof(uint16_t)			/* capabilities */
1136 		+ 2 + ni->ni_esslen			/* ssid */
1137 		+ 2 + IEEE80211_RATE_SIZE		/* supported rates */
1138 		+ 2 + 5 /* max(5,1) */			/* DS/FH parameters */
1139 		+ 2 + 2					/* IBSS parameters */
1140 		+ 2 + 1					/* ERP */
1141 		+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1142 		/* XXX !WPA1+WPA2 fits w/o a cluster */
1143 		+ (ic->ic_flags & IEEE80211_F_WPA ?	/* WPA 1+2 */
1144 		 	2*sizeof(struct ieee80211_ie_wpa) : 0)
1145 		+ sizeof(struct ieee80211_wme_param);	/* WME */
1146 
1147 	m = ieee80211_getmgtframe(&frm,
1148 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
1149 	if (m == NULL) {
1150 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1151 			"%s: cannot get buf; size %u\n", __func__, pktlen);
1152 		ic->ic_stats.is_tx_nobuf++;
1153 		return NULL;
1154 	}
1155 
1156 	memset(frm, 0, 8);	/* timestamp should be filled later */
1157 	frm += 8;
1158 	*(uint16_t *)frm = htole16(ni->ni_intval);
1159 	frm += 2;
1160 	capinfo = getcapinfo(ic, ni->ni_chan);
1161 	*(uint16_t *)frm = htole16(capinfo);
1162 	frm += 2;
1163 
1164 	frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1165 	frm = ieee80211_add_rates(frm, rs);
1166 
1167 	if (ic->ic_phytype == IEEE80211_T_FH) {
1168 		*frm++ = IEEE80211_ELEMID_FHPARMS;
1169 		*frm++ = 5;
1170 		*frm++ = ni->ni_fhdwell & 0x00ff;
1171 		*frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1172 		*frm++ = IEEE80211_FH_CHANSET(
1173 		    ieee80211_chan2ieee(ic, ni->ni_chan));
1174 		*frm++ = IEEE80211_FH_CHANPAT(
1175 		    ieee80211_chan2ieee(ic, ni->ni_chan));
1176 		*frm++ = ni->ni_fhindex;
1177 	} else {
1178 		*frm++ = IEEE80211_ELEMID_DSPARMS;
1179 		*frm++ = 1;
1180 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1181 	}
1182 
1183 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1184 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1185 		*frm++ = 2;
1186 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1187 	}
1188 	if (ic->ic_flags & IEEE80211_F_WPA)
1189 		frm = ieee80211_add_wpa(frm, ic);
1190 	if (ic->ic_curmode == IEEE80211_MODE_11G)
1191 		frm = ieee80211_add_erp(frm, ic);
1192 	frm = ieee80211_add_xrates(frm, rs);
1193 	if (ic->ic_flags & IEEE80211_F_WME)
1194 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1195 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1196 	KKASSERT(m->m_len <= pktlen);
1197 
1198 	return m;
1199 }
1200 
1201 /*
1202  * Send a management frame.  The node is for the destination (or ic_bss
1203  * when in station mode).  Nodes other than ic_bss have their reference
1204  * count bumped to reflect our use for an indeterminant time.
1205  */
1206 int
1207 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1208 	int type, int arg)
1209 {
1210 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1211 	struct mbuf *m;
1212 	uint8_t *frm;
1213 	uint16_t capinfo;
1214 	int has_challenge, is_shared_key, ret, timer, status, encrypt;
1215 	const struct ieee80211_rateset *rs;
1216 
1217 	KASSERT(ni != NULL, ("null node"));
1218 
1219 	/*
1220 	 * Hold a reference on the node so it doesn't go away until after
1221 	 * the xmit is complete all the way in the driver.  On error we
1222 	 * will remove our reference.
1223 	 */
1224 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1225 		"ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1226 		__func__, __LINE__,
1227 		ni, ni->ni_macaddr, ":",
1228 		ieee80211_node_refcnt(ni) + 1);
1229 	ieee80211_ref_node(ni);
1230 
1231 	encrypt = 0;
1232 	timer = 0;
1233 	switch (type) {
1234 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1235 		m = _ieee80211_probe_resp_alloc(ic, ic->ic_bss);
1236 		if (m == NULL) {
1237 			/* NB: Statistics have been updated. */
1238 			ret = ENOMEM;
1239 			goto bad;
1240 		}
1241 		break;
1242 
1243 	case IEEE80211_FC0_SUBTYPE_AUTH:
1244 		status = arg >> 16;
1245 		arg &= 0xffff;
1246 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1247 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1248 		    ni->ni_challenge != NULL);
1249 
1250 		/*
1251 		 * Deduce whether we're doing open authentication or
1252 		 * shared key authentication.  We do the latter if
1253 		 * we're in the middle of a shared key authentication
1254 		 * handshake or if we're initiating an authentication
1255 		 * request and configured to use shared key.
1256 		 */
1257 		is_shared_key = has_challenge ||
1258 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1259 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1260 		      ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1261 
1262 		m = ieee80211_getmgtframe(&frm,
1263 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1264 			  3 * sizeof(uint16_t)
1265 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1266 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1267 		);
1268 		if (m == NULL)
1269 			senderr(ENOMEM, is_tx_nobuf);
1270 
1271 		((uint16_t *)frm)[0] =
1272 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1273 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1274 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1275 		((uint16_t *)frm)[2] = htole16(status);/* status */
1276 
1277 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1278 			((uint16_t *)frm)[3] =
1279 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1280 			    IEEE80211_ELEMID_CHALLENGE);
1281 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1282 			    IEEE80211_CHALLENGE_LEN);
1283 			m->m_pkthdr.len = m->m_len =
1284 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1285 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1286 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1287 				    "[%6D] request encrypt frame (%s)\n",
1288 				    ni->ni_macaddr, ":", __func__);
1289 				encrypt = 1;	/* WEP-encrypt, please */
1290 			}
1291 		} else
1292 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1293 
1294 		/* XXX not right for shared key */
1295 		if (status == IEEE80211_STATUS_SUCCESS)
1296 			IEEE80211_NODE_STAT(ni, tx_auth);
1297 		else
1298 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1299 
1300 		if (ic->ic_opmode == IEEE80211_M_STA)
1301 			timer = IEEE80211_TRANS_WAIT;
1302 		break;
1303 
1304 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1305 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1306 			"[%6D] send station deauthenticate (reason %d)\n",
1307 			ni->ni_macaddr, ":", arg);
1308 		m = ieee80211_getmgtframe(&frm,
1309 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1310 			sizeof(uint16_t));
1311 		if (m == NULL)
1312 			senderr(ENOMEM, is_tx_nobuf);
1313 		*(uint16_t *)frm = htole16(arg);	/* reason */
1314 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1315 
1316 		IEEE80211_NODE_STAT(ni, tx_deauth);
1317 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1318 
1319 		ieee80211_node_unauthorize(ni);		/* port closed */
1320 		break;
1321 
1322 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1323 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1324 		/*
1325 		 * asreq frame format
1326 		 *	[2] capability information
1327 		 *	[2] listen interval
1328 		 *	[6*] current AP address (reassoc only)
1329 		 *	[tlv] ssid
1330 		 *	[tlv] supported rates
1331 		 *	[tlv] extended supported rates
1332 		 *	[tlv] WME
1333 		 *	[tlv] user-specified ie's
1334 		 */
1335 		m = ieee80211_getmgtframe(&frm,
1336 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1337 			 sizeof(uint16_t)
1338 		       + sizeof(uint16_t)
1339 		       + IEEE80211_ADDR_LEN
1340 		       + 2 + IEEE80211_NWID_LEN
1341 		       + 2 + IEEE80211_RATE_SIZE
1342 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1343 		       + sizeof(struct ieee80211_wme_info)
1344 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1345 		);
1346 		if (m == NULL)
1347 			senderr(ENOMEM, is_tx_nobuf);
1348 
1349 		KASSERT(ic->ic_opmode == IEEE80211_M_STA,
1350 		    ("wrong mode %u", ic->ic_opmode));
1351 		capinfo = IEEE80211_CAPINFO_ESS;
1352 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1353 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1354 		/*
1355 		 * NB: Some 11a AP's reject the request when
1356 		 *     short premable or PBCC modulation is set.
1357 		 */
1358 		if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
1359 			if (ic->ic_caps & IEEE80211_C_SHPREAMBLE)
1360 				capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1361 			if (ic->ic_caps_ext & IEEE80211_CEXT_PBCC)
1362 				capinfo |= IEEE80211_CAPINFO_PBCC;
1363 		}
1364 		if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) &&
1365 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1366 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1367 		*(uint16_t *)frm = htole16(capinfo);
1368 		frm += 2;
1369 
1370 		KKASSERT(ic->ic_bss->ni_intval != 0);
1371 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1372 						   ic->ic_bss->ni_intval));
1373 		frm += 2;
1374 
1375 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1376 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1377 			frm += IEEE80211_ADDR_LEN;
1378 		}
1379 
1380 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1381 
1382 		rs = &ic->ic_sup_rates[ieee80211_chan2mode(ic, ni->ni_chan)];
1383 		frm = ieee80211_add_rates(frm, rs);
1384 		frm = ieee80211_add_xrates(frm, rs);
1385 
1386 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1387 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1388 		if (ic->ic_opt_ie != NULL) {
1389 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1390 			frm += ic->ic_opt_ie_len;
1391 		}
1392 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1393 
1394 		timer = IEEE80211_TRANS_WAIT;
1395 		break;
1396 
1397 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1398 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1399 		/*
1400 		 * asreq frame format
1401 		 *	[2] capability information
1402 		 *	[2] status
1403 		 *	[2] association ID
1404 		 *	[tlv] supported rates
1405 		 *	[tlv] extended supported rates
1406 		 *	[tlv] WME (if enabled and STA enabled)
1407 		 */
1408 		m = ieee80211_getmgtframe(&frm,
1409 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1410 			 sizeof(uint16_t)
1411 		       + sizeof(uint16_t)
1412 		       + sizeof(uint16_t)
1413 		       + 2 + IEEE80211_RATE_SIZE
1414 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1415 		       + sizeof(struct ieee80211_wme_param)
1416 		);
1417 		if (m == NULL)
1418 			senderr(ENOMEM, is_tx_nobuf);
1419 
1420 		capinfo = getcapinfo(ic, ic->ic_curchan);
1421 		*(uint16_t *)frm = htole16(capinfo);
1422 		frm += 2;
1423 
1424 		*(uint16_t *)frm = htole16(arg);	/* status */
1425 		frm += 2;
1426 
1427 		if (arg == IEEE80211_STATUS_SUCCESS) {
1428 			*(uint16_t *)frm = htole16(ni->ni_associd);
1429 			IEEE80211_NODE_STAT(ni, tx_assoc);
1430 		} else
1431 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1432 		frm += 2;
1433 
1434 		KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO);
1435 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1436 		frm = ieee80211_add_rates(frm, rs);
1437 		frm = ieee80211_add_xrates(frm, rs);
1438 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1439 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1440 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1441 		break;
1442 
1443 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
1444 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1445 			"[%6D] send station disassociate (reason %d)\n",
1446 			ni->ni_macaddr, ":", arg);
1447 		m = ieee80211_getmgtframe(&frm,
1448 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1449 			sizeof(uint16_t));
1450 		if (m == NULL)
1451 			senderr(ENOMEM, is_tx_nobuf);
1452 		*(uint16_t *)frm = htole16(arg);	/* reason */
1453 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1454 
1455 		IEEE80211_NODE_STAT(ni, tx_disassoc);
1456 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1457 		break;
1458 
1459 	default:
1460 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1461 			"[%6D] invalid mgmt frame type %u\n",
1462 			ni->ni_macaddr, ":", type);
1463 		senderr(EINVAL, is_tx_unknownmgt);
1464 		/* NOTREACHED */
1465 	}
1466 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer, encrypt);
1467 	if (ret != 0) {
1468 bad:
1469 		ieee80211_free_node(ni);
1470 	}
1471 	return ret;
1472 #undef senderr
1473 }
1474 
1475 /*
1476  * Allocate a probe response frame and fillin the appropriate bits.
1477  */
1478 struct mbuf *
1479 ieee80211_probe_resp_alloc(struct ieee80211com *ic, struct ieee80211_node *ni)
1480 {
1481 	struct ieee80211_frame *wh;
1482 	struct mbuf *m;
1483 
1484 	m = _ieee80211_probe_resp_alloc(ic, ni);
1485 	if (m == NULL)
1486 		return NULL;
1487 
1488 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1489 	KASSERT(m != NULL, ("no space for 802.11 header?"));
1490 
1491 	wh = mtod(m, struct ieee80211_frame *);
1492 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1493 		      IEEE80211_FC0_SUBTYPE_PROBE_RESP;
1494 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1495 	*(uint16_t *)wh->i_dur = 0;
1496 	bzero(wh->i_addr1, sizeof(wh->i_addr1));
1497 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1498 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1499 	*(uint16_t *)wh->i_seq = 0;
1500 
1501 	return m;
1502 }
1503 
1504 /*
1505  * Allocate a beacon frame and fillin the appropriate bits.
1506  */
1507 struct mbuf *
1508 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1509 	struct ieee80211_beacon_offsets *bo)
1510 {
1511 	struct ifnet *ifp = ic->ic_ifp;
1512 	struct ieee80211_frame *wh;
1513 	struct mbuf *m;
1514 	int pktlen;
1515 	uint8_t *frm, *efrm;
1516 	uint16_t capinfo;
1517 	const struct ieee80211_rateset *rs;
1518 
1519 	/*
1520 	 * beacon frame format
1521 	 *	[8] time stamp
1522 	 *	[2] beacon interval
1523 	 *	[2] cabability information
1524 	 *	[tlv] ssid
1525 	 *	[tlv] supported rates
1526 	 *	[3] parameter set (DS)
1527 	 *	[tlv] parameter set (IBSS/TIM)
1528 	 *	[tlv] extended rate phy (ERP)
1529 	 *	[tlv] extended supported rates
1530 	 *	[tlv] WME parameters
1531 	 *	[tlv] WPA/RSN parameters
1532 	 * XXX Vendor-specific OIDs (e.g. Atheros)
1533 	 * NB: we allocate the max space required for the TIM bitmap.
1534 	 */
1535 	KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO);
1536 	rs = &ic->ic_sup_rates[ic->ic_curmode];
1537 	pktlen =   8					/* time stamp */
1538 		 + sizeof(uint16_t)			/* beacon interval */
1539 		 + sizeof(uint16_t)			/* capabilities */
1540 		 + 2 + ni->ni_esslen			/* ssid */
1541 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
1542 	         + 2 + 1				/* DS parameters */
1543 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
1544 		 + 2 + 1				/* ERP */
1545 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1546 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
1547 			sizeof(struct ieee80211_wme_param) : 0)
1548 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
1549 			2*sizeof(struct ieee80211_ie_wpa) : 0)
1550 		 ;
1551 	m = ieee80211_getmgtframe(&frm,
1552 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
1553 	if (m == NULL) {
1554 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1555 			"%s: cannot get buf; size %u\n", __func__, pktlen);
1556 		ic->ic_stats.is_tx_nobuf++;
1557 		return NULL;
1558 	}
1559 
1560 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
1561 	frm += 8;
1562 	*(uint16_t *)frm = htole16(ni->ni_intval);
1563 	frm += 2;
1564 	capinfo = getcapinfo(ic, ni->ni_chan);
1565 	bo->bo_caps = (uint16_t *)frm;
1566 	*(uint16_t *)frm = htole16(capinfo);
1567 	frm += 2;
1568 	*frm++ = IEEE80211_ELEMID_SSID;
1569 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1570 		*frm++ = ni->ni_esslen;
1571 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
1572 		frm += ni->ni_esslen;
1573 	} else
1574 		*frm++ = 0;
1575 	frm = ieee80211_add_rates(frm, rs);
1576 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
1577 		*frm++ = IEEE80211_ELEMID_DSPARMS;
1578 		*frm++ = 1;
1579 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1580 	}
1581 	bo->bo_tim = frm;
1582 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1583 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1584 		*frm++ = 2;
1585 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1586 		bo->bo_tim_len = 0;
1587 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1588 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1589 
1590 		tie->tim_ie = IEEE80211_ELEMID_TIM;
1591 		tie->tim_len = 4;	/* length */
1592 		tie->tim_count = 0;	/* DTIM count */
1593 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
1594 		tie->tim_bitctl = 0;	/* bitmap control */
1595 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
1596 		frm += sizeof(struct ieee80211_tim_ie);
1597 		bo->bo_tim_len = 1;
1598 	}
1599 	bo->bo_trailer = frm;
1600 	if (ic->ic_flags & IEEE80211_F_WME) {
1601 		bo->bo_wme = frm;
1602 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1603 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1604 	}
1605 	if (ic->ic_flags & IEEE80211_F_WPA)
1606 		frm = ieee80211_add_wpa(frm, ic);
1607 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1608 		bo->bo_erp = frm;
1609 		frm = ieee80211_add_erp(frm, ic);
1610 	}
1611 	efrm = ieee80211_add_xrates(frm, rs);
1612 	bo->bo_trailer_len = efrm - bo->bo_trailer;
1613 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, uint8_t *);
1614 	KKASSERT(m->m_len <= pktlen);
1615 
1616 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1617 	KASSERT(m != NULL, ("no space for 802.11 header?"));
1618 	wh = mtod(m, struct ieee80211_frame *);
1619 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1620 	    IEEE80211_FC0_SUBTYPE_BEACON;
1621 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1622 	*(uint16_t *)wh->i_dur = 0;
1623 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1624 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1625 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1626 	*(uint16_t *)wh->i_seq = 0;
1627 
1628 	return m;
1629 }
1630 
1631 /*
1632  * Update the dynamic parts of a beacon frame based on the current state.
1633  */
1634 int
1635 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1636 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1637 {
1638 	int len_changed = 0;
1639 	uint16_t capinfo;
1640 
1641 	ASSERT_SERIALIZED(ic->ic_ifp->if_serializer);
1642 
1643 	/* XXX faster to recalculate entirely or just changes? */
1644 	capinfo = getcapinfo(ic, ni->ni_chan);
1645 	*bo->bo_caps = htole16(capinfo);
1646 
1647 	if (ic->ic_flags & IEEE80211_F_WME) {
1648 		struct ieee80211_wme_state *wme = &ic->ic_wme;
1649 
1650 		/*
1651 		 * Check for agressive mode change.  When there is
1652 		 * significant high priority traffic in the BSS
1653 		 * throttle back BE traffic by using conservative
1654 		 * parameters.  Otherwise BE uses agressive params
1655 		 * to optimize performance of legacy/non-QoS traffic.
1656 		 */
1657 		if (wme->wme_flags & WME_F_AGGRMODE) {
1658 			if (wme->wme_hipri_traffic >
1659 			    wme->wme_hipri_switch_thresh) {
1660 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1661 				    "%s: traffic %u, disable aggressive mode\n",
1662 				    __func__, wme->wme_hipri_traffic);
1663 				wme->wme_flags &= ~WME_F_AGGRMODE;
1664 				ieee80211_wme_updateparams(ic);
1665 				wme->wme_hipri_traffic =
1666 					wme->wme_hipri_switch_hysteresis;
1667 			} else
1668 				wme->wme_hipri_traffic = 0;
1669 		} else {
1670 			if (wme->wme_hipri_traffic <=
1671 			    wme->wme_hipri_switch_thresh) {
1672 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1673 				    "%s: traffic %u, enable aggressive mode\n",
1674 				    __func__, wme->wme_hipri_traffic);
1675 				wme->wme_flags |= WME_F_AGGRMODE;
1676 				ieee80211_wme_updateparams(ic);
1677 				wme->wme_hipri_traffic = 0;
1678 			} else
1679 				wme->wme_hipri_traffic =
1680 					wme->wme_hipri_switch_hysteresis;
1681 		}
1682 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1683 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
1684 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1685 		}
1686 	}
1687 
1688 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
1689 		struct ieee80211_tim_ie *tie =
1690 			(struct ieee80211_tim_ie *) bo->bo_tim;
1691 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1692 			u_int timlen, timoff, i;
1693 			/*
1694 			 * ATIM/DTIM needs updating.  If it fits in the
1695 			 * current space allocated then just copy in the
1696 			 * new bits.  Otherwise we need to move any trailing
1697 			 * data to make room.  Note that we know there is
1698 			 * contiguous space because ieee80211_beacon_allocate
1699 			 * insures there is space in the mbuf to write a
1700 			 * maximal-size virtual bitmap (based on ic_max_aid).
1701 			 */
1702 			/*
1703 			 * Calculate the bitmap size and offset, copy any
1704 			 * trailer out of the way, and then copy in the
1705 			 * new bitmap and update the information element.
1706 			 * Note that the tim bitmap must contain at least
1707 			 * one byte and any offset must be even.
1708 			 */
1709 			if (ic->ic_ps_pending != 0) {
1710 				timoff = 128;		/* impossibly large */
1711 				for (i = 0; i < ic->ic_tim_len; i++)
1712 					if (ic->ic_tim_bitmap[i]) {
1713 						timoff = i &~ 1;
1714 						break;
1715 					}
1716 				KASSERT(timoff != 128, ("tim bitmap empty!"));
1717 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
1718 					if (ic->ic_tim_bitmap[i])
1719 						break;
1720 				timlen = 1 + (i - timoff);
1721 			} else {
1722 				timoff = 0;
1723 				timlen = 1;
1724 			}
1725 			if (timlen != bo->bo_tim_len) {
1726 				/* copy up/down trailer */
1727 				int adjust = tie->tim_bitmap+timlen
1728 					   - bo->bo_trailer;
1729 				ovbcopy(bo->bo_trailer, bo->bo_trailer+adjust,
1730 					bo->bo_trailer_len);
1731 				bo->bo_trailer += adjust;
1732 				bo->bo_wme += adjust;
1733 				bo->bo_erp += adjust;
1734 				bo->bo_tim_len = timlen;
1735 
1736 				/* update information element */
1737 				tie->tim_len = 3 + timlen;
1738 				tie->tim_bitctl = timoff;
1739 				len_changed = 1;
1740 			}
1741 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
1742 				bo->bo_tim_len);
1743 
1744 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
1745 
1746 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1747 				"%s: TIM updated, pending %u, off %u, len %u\n",
1748 				__func__, ic->ic_ps_pending, timoff, timlen);
1749 		}
1750 		/* count down DTIM period */
1751 		if (tie->tim_count == 0)
1752 			tie->tim_count = tie->tim_period - 1;
1753 		else
1754 			tie->tim_count--;
1755 		/* update state for buffered multicast frames on DTIM */
1756 		if (mcast && tie->tim_count == 0)
1757 			tie->tim_bitctl |= 1;
1758 		else
1759 			tie->tim_bitctl &= ~1;
1760 		if (ic->ic_flags_ext & IEEE80211_FEXT_ERPUPDATE) {
1761 			/*
1762 			 * ERP element needs updating.
1763 			 */
1764 			(void) ieee80211_add_erp(bo->bo_erp, ic);
1765 			ic->ic_flags_ext &= ~IEEE80211_FEXT_ERPUPDATE;
1766 		}
1767 	}
1768 
1769 	return len_changed;
1770 }
1771 
1772 /*
1773  * Save an outbound packet for a node in power-save sleep state.
1774  * The new packet is placed on the node's saved queue, and the TIM
1775  * is changed, if necessary.
1776  */
1777 void
1778 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
1779 		  struct mbuf *m)
1780 {
1781 	int qlen, age;
1782 
1783 	ASSERT_SERIALIZED(ic->ic_ifp->if_serializer);
1784 
1785 	if (IF_QFULL(&ni->ni_savedq)) {
1786 		IF_DROP(&ni->ni_savedq);
1787 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1788 			"[%6D] pwr save q overflow, drops %d (size %d)\n",
1789 			ni->ni_macaddr, ":",
1790 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
1791 #ifdef IEEE80211_DEBUG
1792 		if (ieee80211_msg_dumppkts(ic)) {
1793 			ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_len,
1794 					   -1, -1);
1795 		}
1796 #endif
1797 		m_freem(m);
1798 		return;
1799 	}
1800 	/*
1801 	 * Tag the frame with it's expiry time and insert
1802 	 * it in the queue.  The aging interval is 4 times
1803 	 * the listen interval specified by the station.
1804 	 * Frames that sit around too long are reclaimed
1805 	 * using this information.
1806 	 */
1807 	/* TU -> secs.  XXX handle overflow? */
1808 	age = IEEE80211_TU_TO_MS((ni->ni_intval * ic->ic_bintval) << 2) / 1000;
1809 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
1810 
1811 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1812 		"[%6D] save frame with age %d, %u now queued\n",
1813 		ni->ni_macaddr, ":", age, qlen);
1814 
1815 	if (qlen == 1)
1816 		ic->ic_set_tim(ni, 1);
1817 }
1818 
1819 uint8_t
1820 ieee80211_ack_rate(struct ieee80211_node *ni, uint8_t rate)
1821 {
1822 	const struct ieee80211_rateset *rs = &ni->ni_rates;
1823 	uint8_t ack_rate = 0;
1824 	enum ieee80211_modtype modtype;
1825 	int i;
1826 
1827 	rate &= IEEE80211_RATE_VAL;
1828 
1829 	modtype = ieee80211_rate2modtype(rate);
1830 
1831 	for (i = 0; i < rs->rs_nrates; ++i) {
1832 		uint8_t rate1 = IEEE80211_RS_RATE(rs, i);
1833 
1834 		if (rate1 > rate) {
1835 			if (ack_rate != 0)
1836 				return ack_rate;
1837 			else
1838 				break;
1839 		}
1840 
1841 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
1842 		    ieee80211_rate2modtype(rate1) == modtype)
1843 			ack_rate = rate1;
1844 	}
1845 
1846 	switch (rate) {
1847 	/* CCK */
1848 	case 2:
1849 	case 4:
1850 	case 11:
1851 	case 22:
1852 		ack_rate = rate;
1853 		break;
1854 
1855 	/* PBCC */
1856 	case 44:
1857 		ack_rate = 22;
1858 		break;
1859 
1860 	/* OFDM */
1861 	case 12:
1862 	case 18:
1863 		ack_rate = 12;
1864 		break;
1865 	case 24:
1866 	case 36:
1867 		ack_rate = 24;
1868 		break;
1869 	case 48:
1870 	case 72:
1871 	case 96:
1872 	case 108:
1873 		ack_rate = 48;
1874 		break;
1875 	default:
1876 		panic("unsupported rate %d\n", rate);
1877 	}
1878 	return ack_rate;
1879 }
1880 
1881 /* IEEE Std 802.11a-1999, page 9, table 79 */
1882 #define IEEE80211_OFDM_SYM_TIME			4
1883 #define IEEE80211_OFDM_PREAMBLE_TIME		16
1884 #define IEEE80211_OFDM_SIGNAL_TIME		4
1885 /* IEEE Std 802.11g-2003, page 44 */
1886 #define IEEE80211_OFDM_SIGNAL_EXT_TIME		6
1887 
1888 /* IEEE Std 802.11a-1999, page 7, figure 107 */
1889 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS	16
1890 #define IEEE80211_OFDM_TAIL_NBITS		6
1891 
1892 #define IEEE80211_OFDM_NBITS(frmlen) \
1893 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
1894 	 ((frmlen) * NBBY) + \
1895 	 IEEE80211_OFDM_TAIL_NBITS)
1896 
1897 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
1898 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
1899 
1900 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
1901 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
1902 		IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
1903 
1904 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
1905 	(IEEE80211_OFDM_PREAMBLE_TIME + \
1906 	 IEEE80211_OFDM_SIGNAL_TIME + \
1907 	 (IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
1908 
1909 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
1910 #define IEEE80211_CCK_PREAMBLE_LEN	144
1911 #define IEEE80211_CCK_PLCP_HDR_TIME	48
1912 #define IEEE80211_CCK_SHPREAMBLE_LEN	72
1913 #define IEEE80211_CCK_SHPLCP_HDR_TIME	24
1914 
1915 #define IEEE80211_CCK_NBITS(frmlen)	((frmlen) * NBBY)
1916 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
1917 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
1918 
1919 uint16_t
1920 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
1921 		 uint32_t flags)
1922 {
1923 	struct ieee80211com *ic = ni->ni_ic;
1924 	enum ieee80211_modtype modtype;
1925 	uint16_t txtime;
1926 	int rate;
1927 
1928 	rs_rate &= IEEE80211_RATE_VAL;
1929 
1930 	rate = rs_rate * 500;	/* ieee80211 rate -> kbps */
1931 
1932 	modtype = ieee80211_rate2modtype(rs_rate);
1933 	if (modtype == IEEE80211_MODTYPE_OFDM) {
1934 		/*
1935 		 * IEEE Std 802.11a-1999, page 37, equation (29)
1936 		 * IEEE Std 802.11g-2003, page 44, equation (42)
1937 		 */
1938 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
1939 		if (ic->ic_curmode == IEEE80211_MODE_11G)
1940 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
1941 	} else {
1942 		/*
1943 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
1944 		 * IEEE Std 802.11g-2003, page 45, equation (43)
1945 		 */
1946 		if (modtype == IEEE80211_MODTYPE_PBCC)
1947 			++len;
1948 		txtime = IEEE80211_CCK_TXTIME(rate, len);
1949 
1950 		/*
1951 		 * Short preamble is not applicable for DS 1Mbits/s
1952 		 */
1953 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
1954 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
1955 				  IEEE80211_CCK_SHPLCP_HDR_TIME;
1956 		} else {
1957 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
1958 				  IEEE80211_CCK_PLCP_HDR_TIME;
1959 		}
1960 	}
1961 	return txtime;
1962 }
1963