1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $
27  */
28 
29 /*
30  * IEEE 802.11 protocol support.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 
40 #include <sys/socket.h>
41 #include <sys/sockio.h>
42 
43 #include <net/if.h>
44 #include <net/if_media.h>
45 #include <net/route.h>
46 
47 #include <netproto/802_11/ieee80211_var.h>
48 #include <netproto/802_11/ieee80211_adhoc.h>
49 #include <netproto/802_11/ieee80211_sta.h>
50 #include <netproto/802_11/ieee80211_hostap.h>
51 #include <netproto/802_11/ieee80211_wds.h>
52 #ifdef IEEE80211_SUPPORT_MESH
53 #include <netproto/802_11/ieee80211_mesh.h>
54 #endif
55 #include <netproto/802_11/ieee80211_monitor.h>
56 #include <netproto/802_11/ieee80211_input.h>
57 
58 /* XXX tunables */
59 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
60 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
61 
62 const char *ieee80211_mgt_subtype_name[] = {
63 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
64 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
65 	"beacon",	"atim",		"disassoc",	"auth",
66 	"deauth",	"action",	"reserved#14",	"reserved#15"
67 };
68 const char *ieee80211_ctl_subtype_name[] = {
69 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
70 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
71 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
72 	"cts",		"ack",		"cf_end",	"cf_end_ack"
73 };
74 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
75 	"IBSS",		/* IEEE80211_M_IBSS */
76 	"STA",		/* IEEE80211_M_STA */
77 	"WDS",		/* IEEE80211_M_WDS */
78 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
79 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
80 	"MONITOR",	/* IEEE80211_M_MONITOR */
81 	"MBSS"		/* IEEE80211_M_MBSS */
82 };
83 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
84 	"INIT",		/* IEEE80211_S_INIT */
85 	"SCAN",		/* IEEE80211_S_SCAN */
86 	"AUTH",		/* IEEE80211_S_AUTH */
87 	"ASSOC",	/* IEEE80211_S_ASSOC */
88 	"CAC",		/* IEEE80211_S_CAC */
89 	"RUN",		/* IEEE80211_S_RUN */
90 	"CSA",		/* IEEE80211_S_CSA */
91 	"SLEEP",	/* IEEE80211_S_SLEEP */
92 };
93 const char *ieee80211_wme_acnames[] = {
94 	"WME_AC_BE",
95 	"WME_AC_BK",
96 	"WME_AC_VI",
97 	"WME_AC_VO",
98 	"WME_UPSD",
99 };
100 
101 static void beacon_miss_task(void *, int);
102 static void beacon_swmiss_task(void *, int);
103 static void parent_updown_task(void *, int);
104 static void update_mcast_task(void *, int);
105 static void update_promisc_task(void *, int);
106 static void update_channel_task(void *, int);
107 static void ieee80211_newstate_task(void *, int);
108 static int ieee80211_new_state_locked(struct ieee80211vap *,
109 	enum ieee80211_state, int);
110 
111 static int
112 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
113 	const struct ieee80211_bpf_params *params)
114 {
115 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
116 
117 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
118 	m_freem(m);
119 	return ENETDOWN;
120 }
121 
122 void
123 ieee80211_proto_attach(struct ieee80211com *ic)
124 {
125 	struct ifnet *ifp = ic->ic_ifp;
126 
127 	/* override the 802.3 setting */
128 	ifp->if_hdrlen = ic->ic_headroom
129 		+ sizeof(struct ieee80211_qosframe_addr4)
130 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
131 		+ IEEE80211_WEP_EXTIVLEN;
132 	/* XXX no way to recalculate on ifdetach */
133 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
134 		/* XXX sanity check... */
135 		max_linkhdr = ALIGN(ifp->if_hdrlen);
136 		max_hdr = max_linkhdr + max_protohdr;
137 		max_datalen = MHLEN - max_hdr;
138 	}
139 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
140 
141 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown_task, ifp);
142 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast_task, ic);
143 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc_task, ic);
144 	TASK_INIT(&ic->ic_chan_task, 0, update_channel_task, ic);
145 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss_task, ic);
146 
147 	ic->ic_wme.wme_hipri_switch_hysteresis =
148 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
149 
150 	/* initialize management frame handlers */
151 	ic->ic_send_mgmt = ieee80211_send_mgmt;
152 	ic->ic_raw_xmit = null_raw_xmit;
153 
154 	ieee80211_adhoc_attach(ic);
155 	ieee80211_sta_attach(ic);
156 	ieee80211_wds_attach(ic);
157 	ieee80211_hostap_attach(ic);
158 #ifdef IEEE80211_SUPPORT_MESH
159 	ieee80211_mesh_attach(ic);
160 #endif
161 	ieee80211_monitor_attach(ic);
162 }
163 
164 void
165 ieee80211_proto_detach(struct ieee80211com *ic)
166 {
167 	ieee80211_monitor_detach(ic);
168 #ifdef IEEE80211_SUPPORT_MESH
169 	ieee80211_mesh_detach(ic);
170 #endif
171 	ieee80211_hostap_detach(ic);
172 	ieee80211_wds_detach(ic);
173 	ieee80211_adhoc_detach(ic);
174 	ieee80211_sta_detach(ic);
175 }
176 
177 static void
178 null_update_beacon(struct ieee80211vap *vap, int item)
179 {
180 }
181 
182 void
183 ieee80211_proto_vattach(struct ieee80211vap *vap)
184 {
185 	struct ieee80211com *ic = vap->iv_ic;
186 	struct ifnet *ifp = vap->iv_ifp;
187 	int i;
188 
189 	/* override the 802.3 setting */
190 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
191 
192 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
193 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
194 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
195 	callout_init_mp(&vap->iv_swbmiss);
196 	callout_init_mp(&vap->iv_mgtsend);
197 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_task, vap);
198 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss_task, vap);
199 	/*
200 	 * Install default tx rate handling: no fixed rate, lowest
201 	 * supported rate for mgmt and multicast frames.  Default
202 	 * max retry count.  These settings can be changed by the
203 	 * driver and/or user applications.
204 	 */
205 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
206 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
207 
208 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
209 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
210 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
211 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
212 		} else {
213 			vap->iv_txparms[i].mgmtrate =
214 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
215 			vap->iv_txparms[i].mcastrate =
216 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
217 		}
218 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
219 	}
220 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
221 
222 	vap->iv_update_beacon = null_update_beacon;
223 	vap->iv_deliver_data = ieee80211_deliver_data;
224 
225 	/* attach support for operating mode */
226 	ic->ic_vattach[vap->iv_opmode](vap);
227 }
228 
229 void
230 ieee80211_proto_vdetach(struct ieee80211vap *vap)
231 {
232 #define	FREEAPPIE(ie) do { \
233 	if (ie != NULL) \
234 		kfree(ie, M_80211_NODE_IE); \
235 } while (0)
236 	/*
237 	 * Detach operating mode module.
238 	 */
239 	if (vap->iv_opdetach != NULL)
240 		vap->iv_opdetach(vap);
241 	/*
242 	 * This should not be needed as we detach when reseting
243 	 * the state but be conservative here since the
244 	 * authenticator may do things like spawn kernel threads.
245 	 */
246 	if (vap->iv_auth->ia_detach != NULL)
247 		vap->iv_auth->ia_detach(vap);
248 	/*
249 	 * Detach any ACL'ator.
250 	 */
251 	if (vap->iv_acl != NULL)
252 		vap->iv_acl->iac_detach(vap);
253 
254 	FREEAPPIE(vap->iv_appie_beacon);
255 	FREEAPPIE(vap->iv_appie_probereq);
256 	FREEAPPIE(vap->iv_appie_proberesp);
257 	FREEAPPIE(vap->iv_appie_assocreq);
258 	FREEAPPIE(vap->iv_appie_assocresp);
259 	FREEAPPIE(vap->iv_appie_wpa);
260 #undef FREEAPPIE
261 }
262 
263 /*
264  * Simple-minded authenticator module support.
265  */
266 
267 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
268 /* XXX well-known names */
269 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
270 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
271 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
272 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
273 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
274 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
275 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
276 };
277 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
278 
279 static const struct ieee80211_authenticator auth_internal = {
280 	.ia_name		= "wlan_internal",
281 	.ia_attach		= NULL,
282 	.ia_detach		= NULL,
283 	.ia_node_join		= NULL,
284 	.ia_node_leave		= NULL,
285 };
286 
287 /*
288  * Setup internal authenticators once; they are never unregistered.
289  */
290 static void
291 ieee80211_auth_setup(void)
292 {
293 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
294 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
295 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
296 }
297 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
298 
299 const struct ieee80211_authenticator *
300 ieee80211_authenticator_get(int auth)
301 {
302 	if (auth >= IEEE80211_AUTH_MAX)
303 		return NULL;
304 	if (authenticators[auth] == NULL)
305 		ieee80211_load_module(auth_modnames[auth]);
306 	return authenticators[auth];
307 }
308 
309 void
310 ieee80211_authenticator_register(int type,
311 	const struct ieee80211_authenticator *auth)
312 {
313 	if (type >= IEEE80211_AUTH_MAX)
314 		return;
315 	authenticators[type] = auth;
316 }
317 
318 void
319 ieee80211_authenticator_unregister(int type)
320 {
321 
322 	if (type >= IEEE80211_AUTH_MAX)
323 		return;
324 	authenticators[type] = NULL;
325 }
326 
327 /*
328  * Very simple-minded ACL module support.
329  */
330 /* XXX just one for now */
331 static	const struct ieee80211_aclator *acl = NULL;
332 
333 void
334 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
335 {
336 	kprintf("wlan: %s acl policy registered\n", iac->iac_name);
337 	acl = iac;
338 }
339 
340 void
341 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
342 {
343 	if (acl == iac)
344 		acl = NULL;
345 	kprintf("wlan: %s acl policy unregistered\n", iac->iac_name);
346 }
347 
348 const struct ieee80211_aclator *
349 ieee80211_aclator_get(const char *name)
350 {
351 	if (acl == NULL)
352 		ieee80211_load_module("wlan_acl");
353 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
354 }
355 
356 void
357 ieee80211_print_essid(const uint8_t *essid, int len)
358 {
359 	const uint8_t *p;
360 	int i;
361 
362 	if (len > IEEE80211_NWID_LEN)
363 		len = IEEE80211_NWID_LEN;
364 	/* determine printable or not */
365 	for (i = 0, p = essid; i < len; i++, p++) {
366 		if (*p < ' ' || *p > 0x7e)
367 			break;
368 	}
369 	if (i == len) {
370 		kprintf("\"");
371 		for (i = 0, p = essid; i < len; i++, p++)
372 			kprintf("%c", *p);
373 		kprintf("\"");
374 	} else {
375 		kprintf("0x");
376 		for (i = 0, p = essid; i < len; i++, p++)
377 			kprintf("%02x", *p);
378 	}
379 }
380 
381 void
382 ieee80211_dump_pkt(struct ieee80211com *ic,
383 	const uint8_t *buf, int len, int rate, int rssi)
384 {
385 	const struct ieee80211_frame *wh;
386 	int i;
387 
388 	wh = (const struct ieee80211_frame *)buf;
389 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
390 	case IEEE80211_FC1_DIR_NODS:
391 		kprintf("NODS %6D", wh->i_addr2, ":");
392 		kprintf("->%6D", wh->i_addr1, ":");
393 		kprintf("(%6D)", wh->i_addr3, ":");
394 		break;
395 	case IEEE80211_FC1_DIR_TODS:
396 		kprintf("TODS %6D", wh->i_addr2, ":");
397 		kprintf("->%6D", wh->i_addr3, ":");
398 		kprintf("(%6D)", wh->i_addr1, ":");
399 		break;
400 	case IEEE80211_FC1_DIR_FROMDS:
401 		kprintf("FRDS %6D", wh->i_addr3, ":");
402 		kprintf("->%6D", wh->i_addr1, ":");
403 		kprintf("(%6D)", wh->i_addr2, ":");
404 		break;
405 	case IEEE80211_FC1_DIR_DSTODS:
406 		kprintf("DSDS %6D", (const uint8_t *)&wh[1], ":");
407 		kprintf("->%6D", wh->i_addr3, ":");
408 		kprintf("(%6D", wh->i_addr2, ":");
409 		kprintf("->%6D)", wh->i_addr1, ":");
410 		break;
411 	}
412 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
413 	case IEEE80211_FC0_TYPE_DATA:
414 		kprintf(" data");
415 		break;
416 	case IEEE80211_FC0_TYPE_MGT:
417 		kprintf(" %s", ieee80211_mgt_subtype_name[
418 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
419 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
420 		break;
421 	default:
422 		kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
423 		break;
424 	}
425 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
426 		const struct ieee80211_qosframe *qwh =
427 			(const struct ieee80211_qosframe *)buf;
428 		kprintf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
429 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
430 	}
431 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
432 		int off;
433 
434 		off = ieee80211_anyhdrspace(ic, wh);
435 		kprintf(" WEP [IV %.02x %.02x %.02x",
436 			buf[off+0], buf[off+1], buf[off+2]);
437 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
438 			kprintf(" %.02x %.02x %.02x",
439 				buf[off+4], buf[off+5], buf[off+6]);
440 		kprintf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
441 	}
442 	if (rate >= 0)
443 		kprintf(" %dM", rate / 2);
444 	if (rssi >= 0)
445 		kprintf(" +%d", rssi);
446 	kprintf("\n");
447 	if (len > 0) {
448 		for (i = 0; i < len; i++) {
449 			if ((i & 1) == 0)
450 				kprintf(" ");
451 			kprintf("%02x", buf[i]);
452 		}
453 		kprintf("\n");
454 	}
455 }
456 
457 static __inline int
458 findrix(const struct ieee80211_rateset *rs, int r)
459 {
460 	int i;
461 
462 	for (i = 0; i < rs->rs_nrates; i++)
463 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
464 			return i;
465 	return -1;
466 }
467 
468 int
469 ieee80211_fix_rate(struct ieee80211_node *ni,
470 	struct ieee80211_rateset *nrs, int flags)
471 {
472 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
473 	struct ieee80211vap *vap = ni->ni_vap;
474 	struct ieee80211com *ic = ni->ni_ic;
475 	int i, j, rix, error;
476 	int okrate, badrate, fixedrate, ucastrate;
477 	const struct ieee80211_rateset *srs;
478 	uint8_t r;
479 
480 	error = 0;
481 	okrate = badrate = 0;
482 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
483 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
484 		/*
485 		 * Workaround awkwardness with fixed rate.  We are called
486 		 * to check both the legacy rate set and the HT rate set
487 		 * but we must apply any legacy fixed rate check only to the
488 		 * legacy rate set and vice versa.  We cannot tell what type
489 		 * of rate set we've been given (legacy or HT) but we can
490 		 * distinguish the fixed rate type (MCS have 0x80 set).
491 		 * So to deal with this the caller communicates whether to
492 		 * check MCS or legacy rate using the flags and we use the
493 		 * type of any fixed rate to avoid applying an MCS to a
494 		 * legacy rate and vice versa.
495 		 */
496 		if (ucastrate & 0x80) {
497 			if (flags & IEEE80211_F_DOFRATE)
498 				flags &= ~IEEE80211_F_DOFRATE;
499 		} else if ((ucastrate & 0x80) == 0) {
500 			if (flags & IEEE80211_F_DOFMCS)
501 				flags &= ~IEEE80211_F_DOFMCS;
502 		}
503 		/* NB: required to make MCS match below work */
504 		ucastrate &= IEEE80211_RATE_VAL;
505 	}
506 	fixedrate = IEEE80211_FIXED_RATE_NONE;
507 	/*
508 	 * XXX we are called to process both MCS and legacy rates;
509 	 * we must use the appropriate basic rate set or chaos will
510 	 * ensue; for now callers that want MCS must supply
511 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
512 	 * function so there are two variants, one for MCS and one
513 	 * for legacy rates.
514 	 */
515 	if (flags & IEEE80211_F_DOBRS)
516 		srs = (const struct ieee80211_rateset *)
517 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
518 	else
519 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
520 	for (i = 0; i < nrs->rs_nrates; ) {
521 		if (flags & IEEE80211_F_DOSORT) {
522 			/*
523 			 * Sort rates.
524 			 */
525 			for (j = i + 1; j < nrs->rs_nrates; j++) {
526 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
527 					r = nrs->rs_rates[i];
528 					nrs->rs_rates[i] = nrs->rs_rates[j];
529 					nrs->rs_rates[j] = r;
530 				}
531 			}
532 		}
533 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
534 		badrate = r;
535 		/*
536 		 * Check for fixed rate.
537 		 */
538 		if (r == ucastrate)
539 			fixedrate = r;
540 		/*
541 		 * Check against supported rates.
542 		 */
543 		rix = findrix(srs, r);
544 		if (flags & IEEE80211_F_DONEGO) {
545 			if (rix < 0) {
546 				/*
547 				 * A rate in the node's rate set is not
548 				 * supported.  If this is a basic rate and we
549 				 * are operating as a STA then this is an error.
550 				 * Otherwise we just discard/ignore the rate.
551 				 */
552 				if ((flags & IEEE80211_F_JOIN) &&
553 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
554 					error++;
555 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
556 				/*
557 				 * Overwrite with the supported rate
558 				 * value so any basic rate bit is set.
559 				 */
560 				nrs->rs_rates[i] = srs->rs_rates[rix];
561 			}
562 		}
563 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
564 			/*
565 			 * Delete unacceptable rates.
566 			 */
567 			nrs->rs_nrates--;
568 			for (j = i; j < nrs->rs_nrates; j++)
569 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
570 			nrs->rs_rates[j] = 0;
571 			continue;
572 		}
573 		if (rix >= 0)
574 			okrate = nrs->rs_rates[i];
575 		i++;
576 	}
577 	if (okrate == 0 || error != 0 ||
578 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
579 	     fixedrate != ucastrate)) {
580 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
581 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
582 		    "ucastrate %x\n", __func__, flags, okrate, error,
583 		    fixedrate, ucastrate);
584 		return badrate | IEEE80211_RATE_BASIC;
585 	} else
586 		return RV(okrate);
587 #undef RV
588 }
589 
590 /*
591  * Reset 11g-related state.
592  */
593 void
594 ieee80211_reset_erp(struct ieee80211com *ic)
595 {
596 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
597 	ic->ic_nonerpsta = 0;
598 	ic->ic_longslotsta = 0;
599 	/*
600 	 * Short slot time is enabled only when operating in 11g
601 	 * and not in an IBSS.  We must also honor whether or not
602 	 * the driver is capable of doing it.
603 	 */
604 	ieee80211_set_shortslottime(ic,
605 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
606 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
607 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
608 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
609 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
610 	/*
611 	 * Set short preamble and ERP barker-preamble flags.
612 	 */
613 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
614 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
615 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
616 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
617 	} else {
618 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
619 		ic->ic_flags |= IEEE80211_F_USEBARKER;
620 	}
621 }
622 
623 /*
624  * Set the short slot time state and notify the driver.
625  */
626 void
627 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
628 {
629 	if (onoff)
630 		ic->ic_flags |= IEEE80211_F_SHSLOT;
631 	else
632 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
633 	/* notify driver */
634 	if (ic->ic_updateslot != NULL)
635 		ic->ic_updateslot(ic->ic_ifp);
636 }
637 
638 /*
639  * Check if the specified rate set supports ERP.
640  * NB: the rate set is assumed to be sorted.
641  */
642 int
643 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
644 {
645 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
646 	int i, j;
647 
648 	if (rs->rs_nrates < NELEM(rates))
649 		return 0;
650 	for (i = 0; i < NELEM(rates); i++) {
651 		for (j = 0; j < rs->rs_nrates; j++) {
652 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
653 			if (rates[i] == r)
654 				goto next;
655 			if (r > rates[i])
656 				return 0;
657 		}
658 		return 0;
659 	next:
660 		;
661 	}
662 	return 1;
663 }
664 
665 /*
666  * Mark the basic rates for the rate table based on the
667  * operating mode.  For real 11g we mark all the 11b rates
668  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
669  * 11b rates.  There's also a pseudo 11a-mode used to mark only
670  * the basic OFDM rates.
671  */
672 static void
673 setbasicrates(struct ieee80211_rateset *rs,
674     enum ieee80211_phymode mode, int add)
675 {
676 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
677 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
678 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
679 					    /* NB: mixed b/g */
680 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
681 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
682 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
683 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
684 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
685 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
686 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
687 					    /* NB: mixed b/g */
688 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
689 	};
690 	int i, j;
691 
692 	for (i = 0; i < rs->rs_nrates; i++) {
693 		if (!add)
694 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
695 		for (j = 0; j < basic[mode].rs_nrates; j++)
696 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
697 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
698 				break;
699 			}
700 	}
701 }
702 
703 /*
704  * Set the basic rates in a rate set.
705  */
706 void
707 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
708     enum ieee80211_phymode mode)
709 {
710 	setbasicrates(rs, mode, 0);
711 }
712 
713 /*
714  * Add basic rates to a rate set.
715  */
716 void
717 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
718     enum ieee80211_phymode mode)
719 {
720 	setbasicrates(rs, mode, 1);
721 }
722 
723 /*
724  * WME protocol support.
725  *
726  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
727  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
728  * Draft 2.0 Test Plan (Appendix D).
729  *
730  * Static/Dynamic Turbo mode settings come from Atheros.
731  */
732 typedef struct phyParamType {
733 	uint8_t		aifsn;
734 	uint8_t		logcwmin;
735 	uint8_t		logcwmax;
736 	uint16_t	txopLimit;
737 	uint8_t 	acm;
738 } paramType;
739 
740 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
741 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
742 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
743 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
744 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
745 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
746 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
747 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
748 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
749 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
750 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
751 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
752 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
753 };
754 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
755 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
756 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
757 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
758 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
759 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
760 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
761 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
762 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
763 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
764 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
765 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
766 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
767 };
768 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
769 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
770 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
771 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
772 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
773 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
774 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
775 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
776 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
777 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
778 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
779 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
780 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
781 };
782 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
783 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
784 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
785 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
786 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
787 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
788 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
789 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
790 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
791 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
792 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
793 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
794 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
795 };
796 
797 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
798 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
799 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
800 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
801 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
802 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
803 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
804 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
805 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
806 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
807 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
808 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
809 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
810 };
811 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
812 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
813 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
814 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
815 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
816 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
817 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
818 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
819 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
820 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
821 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
822 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
823 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
824 };
825 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
826 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
827 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
828 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
829 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
830 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
831 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
832 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
833 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
834 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
835 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
836 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
837 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
838 };
839 
840 static void
841 _setifsparams(struct wmeParams *wmep, const paramType *phy)
842 {
843 	wmep->wmep_aifsn = phy->aifsn;
844 	wmep->wmep_logcwmin = phy->logcwmin;
845 	wmep->wmep_logcwmax = phy->logcwmax;
846 	wmep->wmep_txopLimit = phy->txopLimit;
847 }
848 
849 static void
850 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
851 	struct wmeParams *wmep, const paramType *phy)
852 {
853 	wmep->wmep_acm = phy->acm;
854 	_setifsparams(wmep, phy);
855 
856 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
857 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
858 	    ieee80211_wme_acnames[ac], type,
859 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
860 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
861 }
862 
863 static void
864 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
865 {
866 	struct ieee80211com *ic = vap->iv_ic;
867 	struct ieee80211_wme_state *wme = &ic->ic_wme;
868 	const paramType *pPhyParam, *pBssPhyParam;
869 	struct wmeParams *wmep;
870 	enum ieee80211_phymode mode;
871 	int i;
872 
873 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
874 		return;
875 
876 	/*
877 	 * Select mode; we can be called early in which case we
878 	 * always use auto mode.  We know we'll be called when
879 	 * entering the RUN state with bsschan setup properly
880 	 * so state will eventually get set correctly
881 	 */
882 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
883 		mode = ieee80211_chan2mode(ic->ic_bsschan);
884 	else
885 		mode = IEEE80211_MODE_AUTO;
886 	for (i = 0; i < WME_NUM_AC; i++) {
887 		switch (i) {
888 		case WME_AC_BK:
889 			pPhyParam = &phyParamForAC_BK[mode];
890 			pBssPhyParam = &phyParamForAC_BK[mode];
891 			break;
892 		case WME_AC_VI:
893 			pPhyParam = &phyParamForAC_VI[mode];
894 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
895 			break;
896 		case WME_AC_VO:
897 			pPhyParam = &phyParamForAC_VO[mode];
898 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
899 			break;
900 		case WME_AC_BE:
901 		default:
902 			pPhyParam = &phyParamForAC_BE[mode];
903 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
904 			break;
905 		}
906 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
907 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
908 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
909 		} else {
910 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
911 		}
912 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
913 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
914 	}
915 	/* NB: check ic_bss to avoid NULL deref on initial attach */
916 	if (vap->iv_bss != NULL) {
917 		/*
918 		 * Calculate agressive mode switching threshold based
919 		 * on beacon interval.  This doesn't need locking since
920 		 * we're only called before entering the RUN state at
921 		 * which point we start sending beacon frames.
922 		 */
923 		wme->wme_hipri_switch_thresh =
924 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
925 		wme->wme_flags &= ~WME_F_AGGRMODE;
926 		ieee80211_wme_updateparams(vap);
927 	}
928 }
929 
930 void
931 ieee80211_wme_initparams(struct ieee80211vap *vap)
932 {
933 	struct ieee80211com *ic = vap->iv_ic;
934 
935 	ic = vap->iv_ic;
936 	ieee80211_wme_initparams_locked(vap);
937 }
938 
939 /*
940  * Update WME parameters for ourself and the BSS.
941  */
942 void
943 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
944 {
945 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
946 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
947 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
948 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
949 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
950 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
951 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
952 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
953 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
954 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
955 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
956 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
957 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
958 	};
959 	struct ieee80211com *ic = vap->iv_ic;
960 	struct ieee80211_wme_state *wme = &ic->ic_wme;
961 	const struct wmeParams *wmep;
962 	struct wmeParams *chanp, *bssp;
963 	enum ieee80211_phymode mode;
964 	int i;
965 
966        	/*
967 	 * Set up the channel access parameters for the physical
968 	 * device.  First populate the configured settings.
969 	 */
970 	for (i = 0; i < WME_NUM_AC; i++) {
971 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
972 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
973 		chanp->wmep_aifsn = wmep->wmep_aifsn;
974 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
975 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
976 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
977 
978 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
979 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
980 		chanp->wmep_aifsn = wmep->wmep_aifsn;
981 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
982 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
983 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
984 	}
985 
986 	/*
987 	 * Select mode; we can be called early in which case we
988 	 * always use auto mode.  We know we'll be called when
989 	 * entering the RUN state with bsschan setup properly
990 	 * so state will eventually get set correctly
991 	 */
992 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
993 		mode = ieee80211_chan2mode(ic->ic_bsschan);
994 	else
995 		mode = IEEE80211_MODE_AUTO;
996 
997 	/*
998 	 * This implements agressive mode as found in certain
999 	 * vendors' AP's.  When there is significant high
1000 	 * priority (VI/VO) traffic in the BSS throttle back BE
1001 	 * traffic by using conservative parameters.  Otherwise
1002 	 * BE uses agressive params to optimize performance of
1003 	 * legacy/non-QoS traffic.
1004 	 */
1005         if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1006 	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1007 	    (vap->iv_opmode == IEEE80211_M_STA &&
1008 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1009 	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1010 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1011 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1012 
1013 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1014 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1015 		    aggrParam[mode].logcwmin;
1016 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1017 		    aggrParam[mode].logcwmax;
1018 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1019 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1020 			aggrParam[mode].txopLimit : 0;
1021 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1022 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1023 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1024 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1025 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1026 	}
1027 
1028 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1029 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1030 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1031 		    [IEEE80211_MODE_AUTO]	= 3,
1032 		    [IEEE80211_MODE_11A]	= 3,
1033 		    [IEEE80211_MODE_11B]	= 4,
1034 		    [IEEE80211_MODE_11G]	= 3,
1035 		    [IEEE80211_MODE_FH]		= 4,
1036 		    [IEEE80211_MODE_TURBO_A]	= 3,
1037 		    [IEEE80211_MODE_TURBO_G]	= 3,
1038 		    [IEEE80211_MODE_STURBO_A]	= 3,
1039 		    [IEEE80211_MODE_HALF]	= 3,
1040 		    [IEEE80211_MODE_QUARTER]	= 3,
1041 		    [IEEE80211_MODE_11NA]	= 3,
1042 		    [IEEE80211_MODE_11NG]	= 3,
1043 		};
1044 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1045 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1046 
1047 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1048 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1049 		    "update %s (chan+bss) logcwmin %u\n",
1050 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1051     	}
1052 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1053 		/*
1054 		 * Arrange for a beacon update and bump the parameter
1055 		 * set number so associated stations load the new values.
1056 		 */
1057 		wme->wme_bssChanParams.cap_info =
1058 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1059 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1060 	}
1061 
1062 	wme->wme_update(ic);
1063 
1064 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1065 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1066 	    vap->iv_opmode == IEEE80211_M_STA ?
1067 		wme->wme_wmeChanParams.cap_info :
1068 		wme->wme_bssChanParams.cap_info);
1069 }
1070 
1071 void
1072 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1073 {
1074 	struct ieee80211com *ic = vap->iv_ic;
1075 
1076 	if (ic->ic_caps & IEEE80211_C_WME) {
1077 		ieee80211_wme_updateparams_locked(vap);
1078 	}
1079 }
1080 
1081 static void
1082 parent_updown_task(void *arg, int npending)
1083 {
1084 	struct ifnet *parent = arg;
1085 
1086 	wlan_serialize_enter();
1087 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL, curthread->td_ucred);
1088 	wlan_serialize_exit();
1089 }
1090 
1091 static void
1092 update_mcast_task(void *arg, int npending)
1093 {
1094 	struct ieee80211com *ic = arg;
1095 	struct ifnet *parent = ic->ic_ifp;
1096 
1097 	wlan_serialize_enter();
1098 	ic->ic_update_mcast(parent);
1099 	wlan_serialize_exit();
1100 }
1101 
1102 static void
1103 update_promisc_task(void *arg, int npending)
1104 {
1105 	struct ieee80211com *ic = arg;
1106 	struct ifnet *parent = ic->ic_ifp;
1107 
1108 	wlan_serialize_enter();
1109 	ic->ic_update_promisc(parent);
1110 	wlan_serialize_exit();
1111 }
1112 
1113 static void
1114 update_channel_task(void *arg, int npending)
1115 {
1116 	struct ieee80211com *ic = arg;
1117 
1118 	wlan_serialize_enter();
1119 	ic->ic_set_channel(ic);
1120 	ieee80211_radiotap_chan_change(ic);
1121 	wlan_serialize_exit();
1122 }
1123 
1124 /*
1125  * Block until the parent is in a known state.  This is
1126  * used after any operations that dispatch a task (e.g.
1127  * to auto-configure the parent device up/down).
1128  */
1129 void
1130 ieee80211_waitfor_parent(struct ieee80211com *ic)
1131 {
1132 	wlan_assert_serialized();
1133 	wlan_serialize_exit();	/* exit to block */
1134 	taskqueue_block(ic->ic_tq);
1135 	ieee80211_draintask(ic, &ic->ic_parent_task);
1136 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1137 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1138 	ieee80211_draintask(ic, &ic->ic_chan_task);
1139 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1140 	taskqueue_unblock(ic->ic_tq);
1141 	wlan_serialize_enter();	/* then re-enter */
1142 }
1143 
1144 /*
1145  * Start a vap running.  If this is the first vap to be
1146  * set running on the underlying device then we
1147  * automatically bring the device up.
1148  */
1149 void
1150 ieee80211_start_locked(struct ieee80211vap *vap)
1151 {
1152 	struct ifnet *ifp = vap->iv_ifp;
1153 	struct ieee80211com *ic = vap->iv_ic;
1154 	struct ifnet *parent = ic->ic_ifp;
1155 
1156 	IEEE80211_DPRINTF(vap,
1157 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1158 		"start running, %d vaps running\n", ic->ic_nrunning);
1159 
1160 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1161 		/*
1162 		 * Mark us running.  Note that it's ok to do this first;
1163 		 * if we need to bring the parent device up we defer that
1164 		 * to avoid dropping the com lock.  We expect the device
1165 		 * to respond to being marked up by calling back into us
1166 		 * through ieee80211_start_all at which point we'll come
1167 		 * back in here and complete the work.
1168 		 */
1169 		ifp->if_flags |= IFF_RUNNING;
1170 		/*
1171 		 * We are not running; if this we are the first vap
1172 		 * to be brought up auto-up the parent if necessary.
1173 		 */
1174 		if (ic->ic_nrunning++ == 0 &&
1175 		    (parent->if_flags & IFF_RUNNING) == 0) {
1176 			IEEE80211_DPRINTF(vap,
1177 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1178 			    "%s: up parent %s\n", __func__, parent->if_xname);
1179 			parent->if_flags |= IFF_UP;
1180 			ieee80211_runtask(ic, &ic->ic_parent_task);
1181 			return;
1182 		}
1183 	}
1184 	/*
1185 	 * If the parent is up and running, then kick the
1186 	 * 802.11 state machine as appropriate.
1187 	 */
1188 	if ((parent->if_flags & IFF_RUNNING) &&
1189 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1190 		if (vap->iv_opmode == IEEE80211_M_STA) {
1191 #if 0
1192 			/* XXX bypasses scan too easily; disable for now */
1193 			/*
1194 			 * Try to be intelligent about clocking the state
1195 			 * machine.  If we're currently in RUN state then
1196 			 * we should be able to apply any new state/parameters
1197 			 * simply by re-associating.  Otherwise we need to
1198 			 * re-scan to select an appropriate ap.
1199 			 */
1200 			if (vap->iv_state >= IEEE80211_S_RUN)
1201 				ieee80211_new_state_locked(vap,
1202 				    IEEE80211_S_ASSOC, 1);
1203 			else
1204 #endif
1205 				ieee80211_new_state_locked(vap,
1206 				    IEEE80211_S_SCAN, 0);
1207 		} else {
1208 			/*
1209 			 * For monitor+wds mode there's nothing to do but
1210 			 * start running.  Otherwise if this is the first
1211 			 * vap to be brought up, start a scan which may be
1212 			 * preempted if the station is locked to a particular
1213 			 * channel.
1214 			 */
1215 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1216 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1217 			    vap->iv_opmode == IEEE80211_M_WDS)
1218 				ieee80211_new_state_locked(vap,
1219 				    IEEE80211_S_RUN, -1);
1220 			else
1221 				ieee80211_new_state_locked(vap,
1222 				    IEEE80211_S_SCAN, 0);
1223 		}
1224 	}
1225 }
1226 
1227 /*
1228  * Start a single vap.
1229  */
1230 void
1231 ieee80211_init(void *arg)
1232 {
1233 	struct ieee80211vap *vap = arg;
1234 
1235 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1236 	    "%s\n", __func__);
1237 
1238 	ieee80211_start_locked(vap);
1239 }
1240 
1241 /*
1242  * Start all runnable vap's on a device.
1243  */
1244 void
1245 ieee80211_start_all(struct ieee80211com *ic)
1246 {
1247 	struct ieee80211vap *vap;
1248 
1249 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1250 		struct ifnet *ifp = vap->iv_ifp;
1251 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1252 			ieee80211_start_locked(vap);
1253 	}
1254 }
1255 
1256 /*
1257  * Stop a vap.  We force it down using the state machine
1258  * then mark it's ifnet not running.  If this is the last
1259  * vap running on the underlying device then we close it
1260  * too to insure it will be properly initialized when the
1261  * next vap is brought up.
1262  */
1263 void
1264 ieee80211_stop_locked(struct ieee80211vap *vap)
1265 {
1266 	struct ieee80211com *ic = vap->iv_ic;
1267 	struct ifnet *ifp = vap->iv_ifp;
1268 	struct ifnet *parent = ic->ic_ifp;
1269 
1270 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1271 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1272 
1273 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1274 	if (ifp->if_flags & IFF_RUNNING) {
1275 		ifp->if_flags &= ~IFF_RUNNING;	/* mark us stopped */
1276 		if (--ic->ic_nrunning == 0 &&
1277 		    (parent->if_flags & IFF_RUNNING)) {
1278 			IEEE80211_DPRINTF(vap,
1279 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1280 			    "down parent %s\n", parent->if_xname);
1281 			parent->if_flags &= ~IFF_UP;
1282 			ieee80211_runtask(ic, &ic->ic_parent_task);
1283 		}
1284 	}
1285 }
1286 
1287 void
1288 ieee80211_stop(struct ieee80211vap *vap)
1289 {
1290 	struct ieee80211com *ic = vap->iv_ic;
1291 
1292 	ic = vap->iv_ic;
1293 	ieee80211_stop_locked(vap);
1294 }
1295 
1296 /*
1297  * Stop all vap's running on a device.
1298  */
1299 void
1300 ieee80211_stop_all(struct ieee80211com *ic)
1301 {
1302 	struct ieee80211vap *vap;
1303 
1304 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1305 		struct ifnet *ifp = vap->iv_ifp;
1306 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1307 			ieee80211_stop_locked(vap);
1308 	}
1309 
1310 	ieee80211_waitfor_parent(ic);
1311 }
1312 
1313 /*
1314  * Stop all vap's running on a device and arrange
1315  * for those that were running to be resumed.
1316  */
1317 void
1318 ieee80211_suspend_all(struct ieee80211com *ic)
1319 {
1320 	struct ieee80211vap *vap;
1321 
1322 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1323 		struct ifnet *ifp = vap->iv_ifp;
1324 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1325 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1326 			ieee80211_stop_locked(vap);
1327 		}
1328 	}
1329 
1330 	ieee80211_waitfor_parent(ic);
1331 }
1332 
1333 /*
1334  * Start all vap's marked for resume.
1335  */
1336 void
1337 ieee80211_resume_all(struct ieee80211com *ic)
1338 {
1339 	struct ieee80211vap *vap;
1340 
1341 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1342 		struct ifnet *ifp = vap->iv_ifp;
1343 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1344 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1345 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1346 			ieee80211_start_locked(vap);
1347 		}
1348 	}
1349 }
1350 
1351 void
1352 ieee80211_beacon_miss(struct ieee80211com *ic)
1353 {
1354 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1355 		/* Process in a taskq, the handler may reenter the driver */
1356 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1357 	}
1358 }
1359 
1360 static void
1361 beacon_miss_task(void *arg, int npending)
1362 {
1363 	struct ieee80211com *ic = arg;
1364 	struct ieee80211vap *vap;
1365 
1366 	wlan_serialize_enter();
1367 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1368 		/*
1369 		 * We only pass events through for sta vap's in RUN state;
1370 		 * may be too restrictive but for now this saves all the
1371 		 * handlers duplicating these checks.
1372 		 */
1373 		if (vap->iv_opmode == IEEE80211_M_STA &&
1374 		    vap->iv_state >= IEEE80211_S_RUN &&
1375 		    vap->iv_bmiss != NULL)
1376 			vap->iv_bmiss(vap);
1377 	}
1378 	wlan_serialize_exit();
1379 }
1380 
1381 static void
1382 beacon_swmiss_task(void *arg, int npending)
1383 {
1384 	struct ieee80211vap *vap = arg;
1385 
1386 	wlan_serialize_enter();
1387 	if (vap->iv_state == IEEE80211_S_RUN) {
1388 		/* XXX Call multiple times if npending > zero? */
1389 		vap->iv_bmiss(vap);
1390 	}
1391 	wlan_serialize_exit();
1392 }
1393 
1394 /*
1395  * Software beacon miss handling.  Check if any beacons
1396  * were received in the last period.  If not post a
1397  * beacon miss; otherwise reset the counter.
1398  */
1399 void
1400 ieee80211_swbmiss_callout(void *arg)
1401 {
1402 	struct ieee80211vap *vap = arg;
1403 	struct ieee80211com *ic = vap->iv_ic;
1404 
1405 	wlan_serialize_enter();
1406 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1407 	    ("wrong state %d", vap->iv_state));
1408 
1409 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1410 		/*
1411 		 * If scanning just ignore and reset state.  If we get a
1412 		 * bmiss after coming out of scan because we haven't had
1413 		 * time to receive a beacon then we should probe the AP
1414 		 * before posting a real bmiss (unless iv_bmiss_max has
1415 		 * been artifiically lowered).  A cleaner solution might
1416 		 * be to disable the timer on scan start/end but to handle
1417 		 * case of multiple sta vap's we'd need to disable the
1418 		 * timers of all affected vap's.
1419 		 */
1420 		vap->iv_swbmiss_count = 0;
1421 	} else if (vap->iv_swbmiss_count == 0) {
1422 		if (vap->iv_bmiss != NULL)
1423 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1424 		if (vap->iv_bmiss_count == 0)	/* don't re-arm timer */
1425 			goto done;
1426 	} else {
1427 		vap->iv_swbmiss_count = 0;
1428 	}
1429 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1430 		      ieee80211_swbmiss_callout, vap);
1431 done:
1432 	wlan_serialize_exit();
1433 }
1434 
1435 /*
1436  * Start an 802.11h channel switch.  We record the parameters,
1437  * mark the operation pending, notify each vap through the
1438  * beacon update mechanism so it can update the beacon frame
1439  * contents, and then switch vap's to CSA state to block outbound
1440  * traffic.  Devices that handle CSA directly can use the state
1441  * switch to do the right thing so long as they call
1442  * ieee80211_csa_completeswitch when it's time to complete the
1443  * channel change.  Devices that depend on the net80211 layer can
1444  * use ieee80211_beacon_update to handle the countdown and the
1445  * channel switch.
1446  */
1447 void
1448 ieee80211_csa_startswitch(struct ieee80211com *ic,
1449 	struct ieee80211_channel *c, int mode, int count)
1450 {
1451 	struct ieee80211vap *vap;
1452 
1453 	ic->ic_csa_newchan = c;
1454 	ic->ic_csa_mode = mode;
1455 	ic->ic_csa_count = count;
1456 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1457 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1458 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1459 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1460 		    vap->iv_opmode == IEEE80211_M_MBSS)
1461 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1462 		/* switch to CSA state to block outbound traffic */
1463 		if (vap->iv_state == IEEE80211_S_RUN)
1464 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1465 	}
1466 	ieee80211_notify_csa(ic, c, mode, count);
1467 }
1468 
1469 static void
1470 csa_completeswitch(struct ieee80211com *ic)
1471 {
1472 	struct ieee80211vap *vap;
1473 
1474 	ic->ic_csa_newchan = NULL;
1475 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1476 
1477 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1478 		if (vap->iv_state == IEEE80211_S_CSA)
1479 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1480 }
1481 
1482 /*
1483  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1484  * We clear state and move all vap's in CSA state to RUN state
1485  * so they can again transmit.
1486  */
1487 void
1488 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1489 {
1490 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1491 
1492 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1493 	csa_completeswitch(ic);
1494 }
1495 
1496 /*
1497  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1498  * We clear state and move all vap's in CSA state to RUN state
1499  * so they can again transmit.
1500  */
1501 void
1502 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1503 {
1504 	csa_completeswitch(ic);
1505 }
1506 
1507 /*
1508  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1509  * We clear state and move all vap's in CAC state to RUN state.
1510  */
1511 void
1512 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1513 {
1514 	struct ieee80211com *ic = vap0->iv_ic;
1515 	struct ieee80211vap *vap;
1516 
1517 	/*
1518 	 * Complete CAC state change for lead vap first; then
1519 	 * clock all the other vap's waiting.
1520 	 */
1521 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1522 	    ("wrong state %d", vap0->iv_state));
1523 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1524 
1525 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1526 		if (vap->iv_state == IEEE80211_S_CAC)
1527 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1528 }
1529 
1530 /*
1531  * Force all vap's other than the specified vap to the INIT state
1532  * and mark them as waiting for a scan to complete.  These vaps
1533  * will be brought up when the scan completes and the scanning vap
1534  * reaches RUN state by wakeupwaiting.
1535  */
1536 static void
1537 markwaiting(struct ieee80211vap *vap0)
1538 {
1539 	struct ieee80211com *ic = vap0->iv_ic;
1540 	struct ieee80211vap *vap;
1541 
1542 	/*
1543 	 * A vap list entry can not disappear since we are running on the
1544 	 * taskqueue and a vap destroy will queue and drain another state
1545 	 * change task.
1546 	 */
1547 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1548 		if (vap == vap0)
1549 			continue;
1550 		if (vap->iv_state != IEEE80211_S_INIT) {
1551 			/* NB: iv_newstate may drop the lock */
1552 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1553 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1554 		}
1555 	}
1556 }
1557 
1558 /*
1559  * Wakeup all vap's waiting for a scan to complete.  This is the
1560  * companion to markwaiting (above) and is used to coordinate
1561  * multiple vaps scanning.
1562  * This is called from the state taskqueue.
1563  */
1564 static void
1565 wakeupwaiting(struct ieee80211vap *vap0)
1566 {
1567 	struct ieee80211com *ic = vap0->iv_ic;
1568 	struct ieee80211vap *vap;
1569 
1570 	/*
1571 	 * A vap list entry can not disappear since we are running on the
1572 	 * taskqueue and a vap destroy will queue and drain another state
1573 	 * change task.
1574 	 */
1575 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1576 		if (vap == vap0)
1577 			continue;
1578 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1579 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1580 			/* NB: sta's cannot go INIT->RUN */
1581 			/* NB: iv_newstate may drop the lock */
1582 			vap->iv_newstate(vap,
1583 			    vap->iv_opmode == IEEE80211_M_STA ?
1584 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1585 		}
1586 	}
1587 }
1588 
1589 /*
1590  * Handle post state change work common to all operating modes.
1591  */
1592 static void
1593 ieee80211_newstate_task(void *xvap, int npending)
1594 {
1595 	struct ieee80211vap *vap = xvap;
1596 	struct ieee80211com *ic;
1597 	enum ieee80211_state nstate, ostate;
1598 	int arg, rc;
1599 
1600 	wlan_serialize_enter();
1601 
1602 	ic = vap->iv_ic;
1603 	nstate = vap->iv_nstate;
1604 	arg = vap->iv_nstate_arg;
1605 
1606 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1607 		/*
1608 		 * We have been requested to drop back to the INIT before
1609 		 * proceeding to the new state.
1610 		 */
1611 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1612 		    "%s: %s -> %s arg %d\n", __func__,
1613 		    ieee80211_state_name[vap->iv_state],
1614 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1615 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1616 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1617 	}
1618 
1619 	ostate = vap->iv_state;
1620 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1621 		/*
1622 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1623 		 * vap's to INIT state and mark them as waiting for the scan to
1624 		 * complete.  This insures they don't interfere with our
1625 		 * scanning.  Since we are single threaded the vaps can not
1626 		 * transition again while we are executing.
1627 		 *
1628 		 * XXX not always right, assumes ap follows sta
1629 		 */
1630 		markwaiting(vap);
1631 	}
1632 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1633 	    "%s: %s -> %s arg %d\n", __func__,
1634 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1635 
1636 	rc = vap->iv_newstate(vap, nstate, arg);
1637 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1638 	if (rc != 0) {
1639 		/* State transition failed */
1640 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1641 		KASSERT(nstate != IEEE80211_S_INIT,
1642 		    ("INIT state change failed"));
1643 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1644 		    "%s: %s returned error %d\n", __func__,
1645 		    ieee80211_state_name[nstate], rc);
1646 		goto done;
1647 	}
1648 
1649 	/* No actual transition, skip post processing */
1650 	if (ostate == nstate)
1651 		goto done;
1652 
1653 	if (nstate == IEEE80211_S_RUN) {
1654 		/*
1655 		 * OACTIVE may be set on the vap if the upper layer
1656 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1657 		 * RUN state.  Clear it and restart xmit.
1658 		 *
1659 		 * Note this can also happen as a result of SLEEP->RUN
1660 		 * (i.e. coming out of power save mode).
1661 		 */
1662 		vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
1663 		vap->iv_ifp->if_start(vap->iv_ifp);
1664 
1665 		/* bring up any vaps waiting on us */
1666 		wakeupwaiting(vap);
1667 	} else if (nstate == IEEE80211_S_INIT) {
1668 		/*
1669 		 * Flush the scan cache if we did the last scan (XXX?)
1670 		 * and flush any frames on send queues from this vap.
1671 		 * Note the mgt q is used only for legacy drivers and
1672 		 * will go away shortly.
1673 		 */
1674 		ieee80211_scan_flush(vap);
1675 
1676 		/* XXX NB: cast for altq */
1677 		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1678 	}
1679 done:
1680 	wlan_serialize_exit();
1681 }
1682 
1683 /*
1684  * Public interface for initiating a state machine change.
1685  * This routine single-threads the request and coordinates
1686  * the scheduling of multiple vaps for the purpose of selecting
1687  * an operating channel.  Specifically the following scenarios
1688  * are handled:
1689  * o only one vap can be selecting a channel so on transition to
1690  *   SCAN state if another vap is already scanning then
1691  *   mark the caller for later processing and return without
1692  *   doing anything (XXX? expectations by caller of synchronous operation)
1693  * o only one vap can be doing CAC of a channel so on transition to
1694  *   CAC state if another vap is already scanning for radar then
1695  *   mark the caller for later processing and return without
1696  *   doing anything (XXX? expectations by caller of synchronous operation)
1697  * o if another vap is already running when a request is made
1698  *   to SCAN then an operating channel has been chosen; bypass
1699  *   the scan and just join the channel
1700  *
1701  * Note that the state change call is done through the iv_newstate
1702  * method pointer so any driver routine gets invoked.  The driver
1703  * will normally call back into operating mode-specific
1704  * ieee80211_newstate routines (below) unless it needs to completely
1705  * bypass the state machine (e.g. because the firmware has it's
1706  * own idea how things should work).  Bypassing the net80211 layer
1707  * is usually a mistake and indicates lack of proper integration
1708  * with the net80211 layer.
1709  */
1710 static int
1711 ieee80211_new_state_locked(struct ieee80211vap *vap,
1712 	enum ieee80211_state nstate, int arg)
1713 {
1714 	struct ieee80211com *ic = vap->iv_ic;
1715 	struct ieee80211vap *vp;
1716 	enum ieee80211_state ostate;
1717 	int nrunning, nscanning;
1718 
1719 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1720 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1721 			/*
1722 			 * XXX The vap is being stopped, do no allow any other
1723 			 * state changes until this is completed.
1724 			 */
1725 			return -1;
1726 		} else if (vap->iv_state != vap->iv_nstate) {
1727 #if 0
1728 			/* Warn if the previous state hasn't completed. */
1729 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1730 			    "%s: pending %s -> %s transition lost\n", __func__,
1731 			    ieee80211_state_name[vap->iv_state],
1732 			    ieee80211_state_name[vap->iv_nstate]);
1733 #else
1734 			/* XXX temporarily enable to identify issues */
1735 			if_printf(vap->iv_ifp,
1736 			    "%s: pending %s -> %s transition lost\n",
1737 			    __func__, ieee80211_state_name[vap->iv_state],
1738 			    ieee80211_state_name[vap->iv_nstate]);
1739 #endif
1740 		}
1741 	}
1742 
1743 	nrunning = nscanning = 0;
1744 	/* XXX can track this state instead of calculating */
1745 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1746 		if (vp != vap) {
1747 			if (vp->iv_state >= IEEE80211_S_RUN)
1748 				nrunning++;
1749 			/* XXX doesn't handle bg scan */
1750 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1751 			else if (vp->iv_state > IEEE80211_S_INIT)
1752 				nscanning++;
1753 		}
1754 	}
1755 	ostate = vap->iv_state;
1756 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1757 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1758 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1759 	    nrunning, nscanning);
1760 	switch (nstate) {
1761 	case IEEE80211_S_SCAN:
1762 		if (ostate == IEEE80211_S_INIT) {
1763 			/*
1764 			 * INIT -> SCAN happens on initial bringup.
1765 			 */
1766 			KASSERT(!(nscanning && nrunning),
1767 			    ("%d scanning and %d running", nscanning, nrunning));
1768 			if (nscanning) {
1769 				/*
1770 				 * Someone is scanning, defer our state
1771 				 * change until the work has completed.
1772 				 */
1773 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1774 				    "%s: defer %s -> %s\n",
1775 				    __func__, ieee80211_state_name[ostate],
1776 				    ieee80211_state_name[nstate]);
1777 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1778 				return 0;
1779 			}
1780 			if (nrunning) {
1781 				/*
1782 				 * Someone is operating; just join the channel
1783 				 * they have chosen.
1784 				 */
1785 				/* XXX kill arg? */
1786 				/* XXX check each opmode, adhoc? */
1787 				if (vap->iv_opmode == IEEE80211_M_STA)
1788 					nstate = IEEE80211_S_SCAN;
1789 				else
1790 					nstate = IEEE80211_S_RUN;
1791 #ifdef IEEE80211_DEBUG
1792 				if (nstate != IEEE80211_S_SCAN) {
1793 					IEEE80211_DPRINTF(vap,
1794 					    IEEE80211_MSG_STATE,
1795 					    "%s: override, now %s -> %s\n",
1796 					    __func__,
1797 					    ieee80211_state_name[ostate],
1798 					    ieee80211_state_name[nstate]);
1799 				}
1800 #endif
1801 			}
1802 		}
1803 		break;
1804 	case IEEE80211_S_RUN:
1805 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1806 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1807 		    nscanning) {
1808 			/*
1809 			 * Legacy WDS with someone else scanning; don't
1810 			 * go online until that completes as we should
1811 			 * follow the other vap to the channel they choose.
1812 			 */
1813 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1814 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1815 			     ieee80211_state_name[ostate],
1816 			     ieee80211_state_name[nstate]);
1817 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1818 			return 0;
1819 		}
1820 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1821 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1822 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1823 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1824 			/*
1825 			 * This is a DFS channel, transition to CAC state
1826 			 * instead of RUN.  This allows us to initiate
1827 			 * Channel Availability Check (CAC) as specified
1828 			 * by 11h/DFS.
1829 			 */
1830 			nstate = IEEE80211_S_CAC;
1831 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1832 			     "%s: override %s -> %s (DFS)\n", __func__,
1833 			     ieee80211_state_name[ostate],
1834 			     ieee80211_state_name[nstate]);
1835 		}
1836 		break;
1837 	case IEEE80211_S_INIT:
1838 		/* cancel any scan in progress */
1839 		ieee80211_cancel_scan(vap);
1840 		if (ostate == IEEE80211_S_INIT ) {
1841 			/* XXX don't believe this */
1842 			/* INIT -> INIT. nothing to do */
1843 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1844 		}
1845 		/* fall thru... */
1846 	default:
1847 		break;
1848 	}
1849 	/* defer the state change to a thread */
1850 	vap->iv_nstate = nstate;
1851 	vap->iv_nstate_arg = arg;
1852 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1853 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1854 	return EINPROGRESS;
1855 }
1856 
1857 int
1858 ieee80211_new_state(struct ieee80211vap *vap,
1859 	enum ieee80211_state nstate, int arg)
1860 {
1861 	struct ieee80211com *ic = vap->iv_ic;
1862 	int rc;
1863 
1864 	ic = vap->iv_ic;
1865 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1866 	return rc;
1867 }
1868