xref: /dragonfly/sys/opencrypto/crypto.c (revision fcf53d9b)
1 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $	*/
2 /*-
3  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 /*
27  * Cryptographic Subsystem.
28  *
29  * This code is derived from the Openbsd Cryptographic Framework (OCF)
30  * that has the copyright shown below.  Very little of the original
31  * code remains.
32  */
33 
34 /*-
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #define	CRYPTO_TIMING				/* enable timing support */
56 
57 #include "opt_ddb.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/lock.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
67 #include <sys/proc.h>
68 #include <sys/sysctl.h>
69 #include <sys/objcache.h>
70 
71 #include <sys/thread2.h>
72 #include <sys/mplock2.h>
73 
74 #include <ddb/ddb.h>
75 
76 #include <opencrypto/cryptodev.h>
77 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
78 
79 #include <sys/kobj.h>
80 #include <sys/bus.h>
81 #include "cryptodev_if.h"
82 
83 /*
84  * Crypto drivers register themselves by allocating a slot in the
85  * crypto_drivers table with crypto_get_driverid() and then registering
86  * each algorithm they support with crypto_register() and crypto_kregister().
87  */
88 static	struct lock crypto_drivers_lock;	/* lock on driver table */
89 #define	CRYPTO_DRIVER_LOCK()	lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
90 #define	CRYPTO_DRIVER_UNLOCK()	lockmgr(&crypto_drivers_lock, LK_RELEASE)
91 #define	CRYPTO_DRIVER_ASSERT()	KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
92 
93 /*
94  * Crypto device/driver capabilities structure.
95  *
96  * Synchronization:
97  * (d) - protected by CRYPTO_DRIVER_LOCK()
98  * (q) - protected by CRYPTO_Q_LOCK()
99  * Not tagged fields are read-only.
100  */
101 struct cryptocap {
102 	device_t	cc_dev;			/* (d) device/driver */
103 	u_int32_t	cc_sessions;		/* (d) # of sessions */
104 	u_int32_t	cc_koperations;		/* (d) # os asym operations */
105 	/*
106 	 * Largest possible operator length (in bits) for each type of
107 	 * encryption algorithm. XXX not used
108 	 */
109 	u_int16_t	cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
110 	u_int8_t	cc_alg[CRYPTO_ALGORITHM_MAX + 1];
111 	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
112 
113 	int		cc_flags;		/* (d) flags */
114 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
115 	int		cc_qblocked;		/* (q) symmetric q blocked */
116 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
117 };
118 static	struct cryptocap *crypto_drivers = NULL;
119 static	int crypto_drivers_num = 0;
120 
121 typedef struct crypto_tdinfo {
122 	TAILQ_HEAD(,cryptop)	crp_q;		/* request queues */
123 	TAILQ_HEAD(,cryptkop)	crp_kq;
124 	thread_t		crp_td;
125 	struct lock		crp_lock;
126 	int			crp_sleep;
127 } *crypto_tdinfo_t;
128 
129 /*
130  * There are two queues for crypto requests; one for symmetric (e.g.
131  * cipher) operations and one for asymmetric (e.g. MOD) operations.
132  * See below for how synchronization is handled.
133  * A single lock is used to lock access to both queues.  We could
134  * have one per-queue but having one simplifies handling of block/unblock
135  * operations.
136  */
137 static  struct crypto_tdinfo tdinfo_array[MAXCPU];
138 
139 #define	CRYPTO_Q_LOCK(tdinfo)	lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
140 #define	CRYPTO_Q_UNLOCK(tdinfo)	lockmgr(&tdinfo->crp_lock, LK_RELEASE)
141 
142 /*
143  * There are two queues for processing completed crypto requests; one
144  * for the symmetric and one for the asymmetric ops.  We only need one
145  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
146  * lock is used to lock access to both queues.  Note that this lock
147  * must be separate from the lock on request queues to insure driver
148  * callbacks don't generate lock order reversals.
149  */
150 static	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queues */
151 static	TAILQ_HEAD(,cryptkop) crp_ret_kq;
152 static	struct lock crypto_ret_q_lock;
153 #define	CRYPTO_RETQ_LOCK()	lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
154 #define	CRYPTO_RETQ_UNLOCK()	lockmgr(&crypto_ret_q_lock, LK_RELEASE)
155 #define	CRYPTO_RETQ_EMPTY()	(TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
156 
157 /*
158  * Crypto op and desciptor data structures are allocated
159  * from separate object caches.
160  */
161 static struct objcache *cryptop_oc, *cryptodesc_oc;
162 
163 static MALLOC_DEFINE(M_CRYPTO_OP, "crypto op", "crypto op");
164 static MALLOC_DEFINE(M_CRYPTO_DESC, "crypto desc", "crypto desc");
165 
166 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
167 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
168 	   &crypto_userasymcrypto, 0,
169 	   "Enable/disable user-mode access to asymmetric crypto support");
170 int	crypto_devallowsoft = 0;	/* only use hardware crypto for asym */
171 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
172 	   &crypto_devallowsoft, 0,
173 	   "Enable/disable use of software asym crypto support");
174 int	crypto_altdispatch = 0;		/* dispatch to alternative cpu */
175 SYSCTL_INT(_kern, OID_AUTO, cryptoaltdispatch, CTLFLAG_RW,
176 	   &crypto_altdispatch, 0,
177 	   "Do not queue crypto op on current cpu");
178 
179 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
180 
181 static	void crypto_proc(void *dummy);
182 static	void crypto_ret_proc(void *dummy);
183 static	struct thread *cryptoretthread;
184 static	void crypto_destroy(void);
185 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
186 static	int crypto_kinvoke(struct cryptkop *krp, int flags);
187 
188 static struct cryptostats cryptostats;
189 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
190 	    cryptostats, "Crypto system statistics");
191 
192 #ifdef CRYPTO_TIMING
193 static	int crypto_timing = 0;
194 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
195 	   &crypto_timing, 0, "Enable/disable crypto timing support");
196 #endif
197 
198 static int
199 crypto_init(void)
200 {
201 	crypto_tdinfo_t tdinfo;
202 	int error;
203 	int n;
204 
205 	lockinit(&crypto_drivers_lock, "crypto driver table", 0, LK_CANRECURSE);
206 
207 	TAILQ_INIT(&crp_ret_q);
208 	TAILQ_INIT(&crp_ret_kq);
209 	lockinit(&crypto_ret_q_lock, "crypto return queues", 0, LK_CANRECURSE);
210 
211 	cryptop_oc = objcache_create_simple(M_CRYPTO_OP, sizeof(struct cryptop));
212 	cryptodesc_oc = objcache_create_simple(M_CRYPTO_DESC,
213 				sizeof(struct cryptodesc));
214 	if (cryptodesc_oc == NULL || cryptop_oc == NULL) {
215 		kprintf("crypto_init: cannot setup crypto caches\n");
216 		error = ENOMEM;
217 		goto bad;
218 	}
219 
220 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
221 	crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
222 				 M_CRYPTO_DATA, M_WAITOK | M_ZERO);
223 	if (crypto_drivers == NULL) {
224 		kprintf("crypto_init: cannot malloc driver table\n");
225 		error = ENOMEM;
226 		goto bad;
227 	}
228 
229 	for (n = 0; n < ncpus; ++n) {
230 		tdinfo = &tdinfo_array[n];
231 		TAILQ_INIT(&tdinfo->crp_q);
232 		TAILQ_INIT(&tdinfo->crp_kq);
233 		lockinit(&tdinfo->crp_lock, "crypto op queues",
234 			 0, LK_CANRECURSE);
235 		kthread_create_cpu(crypto_proc, tdinfo, &tdinfo->crp_td,
236 				   n, "crypto %d", n);
237 	}
238 	kthread_create(crypto_ret_proc, NULL,
239 		       &cryptoretthread, "crypto returns");
240 	return 0;
241 bad:
242 	crypto_destroy();
243 	return error;
244 }
245 
246 /*
247  * Signal a crypto thread to terminate.  We use the driver
248  * table lock to synchronize the sleep/wakeups so that we
249  * are sure the threads have terminated before we release
250  * the data structures they use.  See crypto_finis below
251  * for the other half of this song-and-dance.
252  */
253 static void
254 crypto_terminate(struct thread **tp, void *q)
255 {
256 	struct thread *t;
257 
258 	KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
259 	t = *tp;
260 	*tp = NULL;
261 	if (t) {
262 		kprintf("crypto_terminate: start\n");
263 		wakeup_one(q);
264 		crit_enter();
265 		tsleep_interlock(t, 0);
266 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
267 		crit_exit();
268 		tsleep(t, PINTERLOCKED, "crypto_destroy", 0);
269 		CRYPTO_DRIVER_LOCK();
270 		kprintf("crypto_terminate: end\n");
271 	}
272 }
273 
274 static void
275 crypto_destroy(void)
276 {
277 	crypto_tdinfo_t tdinfo;
278 	int n;
279 
280 	/*
281 	 * Terminate any crypto threads.
282 	 */
283 	CRYPTO_DRIVER_LOCK();
284 	for (n = 0; n < ncpus; ++n) {
285 		tdinfo = &tdinfo_array[n];
286 		crypto_terminate(&tdinfo->crp_td, &tdinfo->crp_q);
287 		lockuninit(&tdinfo->crp_lock);
288 	}
289 	crypto_terminate(&cryptoretthread, &crp_ret_q);
290 	CRYPTO_DRIVER_UNLOCK();
291 
292 	/* XXX flush queues??? */
293 
294 	/*
295 	 * Reclaim dynamically allocated resources.
296 	 */
297 	if (crypto_drivers != NULL)
298 		kfree(crypto_drivers, M_CRYPTO_DATA);
299 
300 	if (cryptodesc_oc != NULL)
301 		objcache_destroy(cryptodesc_oc);
302 	if (cryptop_oc != NULL)
303 		objcache_destroy(cryptop_oc);
304 	lockuninit(&crypto_ret_q_lock);
305 	lockuninit(&crypto_drivers_lock);
306 }
307 
308 static struct cryptocap *
309 crypto_checkdriver(u_int32_t hid)
310 {
311 	if (crypto_drivers == NULL)
312 		return NULL;
313 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
314 }
315 
316 /*
317  * Compare a driver's list of supported algorithms against another
318  * list; return non-zero if all algorithms are supported.
319  */
320 static int
321 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
322 {
323 	const struct cryptoini *cr;
324 
325 	/* See if all the algorithms are supported. */
326 	for (cr = cri; cr; cr = cr->cri_next)
327 		if (cap->cc_alg[cr->cri_alg] == 0)
328 			return 0;
329 	return 1;
330 }
331 
332 /*
333  * Select a driver for a new session that supports the specified
334  * algorithms and, optionally, is constrained according to the flags.
335  * The algorithm we use here is pretty stupid; just use the
336  * first driver that supports all the algorithms we need. If there
337  * are multiple drivers we choose the driver with the fewest active
338  * sessions.  We prefer hardware-backed drivers to software ones.
339  *
340  * XXX We need more smarts here (in real life too, but that's
341  * XXX another story altogether).
342  */
343 static struct cryptocap *
344 crypto_select_driver(const struct cryptoini *cri, int flags)
345 {
346 	struct cryptocap *cap, *best;
347 	int match, hid;
348 
349 	CRYPTO_DRIVER_ASSERT();
350 
351 	/*
352 	 * Look first for hardware crypto devices if permitted.
353 	 */
354 	if (flags & CRYPTOCAP_F_HARDWARE)
355 		match = CRYPTOCAP_F_HARDWARE;
356 	else
357 		match = CRYPTOCAP_F_SOFTWARE;
358 	best = NULL;
359 again:
360 	for (hid = 0; hid < crypto_drivers_num; hid++) {
361 		cap = &crypto_drivers[hid];
362 		/*
363 		 * If it's not initialized, is in the process of
364 		 * going away, or is not appropriate (hardware
365 		 * or software based on match), then skip.
366 		 */
367 		if (cap->cc_dev == NULL ||
368 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
369 		    (cap->cc_flags & match) == 0)
370 			continue;
371 
372 		/* verify all the algorithms are supported. */
373 		if (driver_suitable(cap, cri)) {
374 			if (best == NULL ||
375 			    cap->cc_sessions < best->cc_sessions)
376 				best = cap;
377 		}
378 	}
379 	if (best != NULL)
380 		return best;
381 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
382 		/* sort of an Algol 68-style for loop */
383 		match = CRYPTOCAP_F_SOFTWARE;
384 		goto again;
385 	}
386 	return best;
387 }
388 
389 /*
390  * Create a new session.  The crid argument specifies a crypto
391  * driver to use or constraints on a driver to select (hardware
392  * only, software only, either).  Whatever driver is selected
393  * must be capable of the requested crypto algorithms.
394  */
395 int
396 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
397 {
398 	struct cryptocap *cap;
399 	u_int32_t hid, lid;
400 	int err;
401 
402 	CRYPTO_DRIVER_LOCK();
403 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
404 		/*
405 		 * Use specified driver; verify it is capable.
406 		 */
407 		cap = crypto_checkdriver(crid);
408 		if (cap != NULL && !driver_suitable(cap, cri))
409 			cap = NULL;
410 	} else {
411 		/*
412 		 * No requested driver; select based on crid flags.
413 		 */
414 		cap = crypto_select_driver(cri, crid);
415 		/*
416 		 * if NULL then can't do everything in one session.
417 		 * XXX Fix this. We need to inject a "virtual" session
418 		 * XXX layer right about here.
419 		 */
420 	}
421 	if (cap != NULL) {
422 		/* Call the driver initialization routine. */
423 		hid = cap - crypto_drivers;
424 		lid = hid;		/* Pass the driver ID. */
425 		err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
426 		if (err == 0) {
427 			(*sid) = (cap->cc_flags & 0xff000000)
428 			       | (hid & 0x00ffffff);
429 			(*sid) <<= 32;
430 			(*sid) |= (lid & 0xffffffff);
431 			cap->cc_sessions++;
432 		}
433 	} else
434 		err = EINVAL;
435 	CRYPTO_DRIVER_UNLOCK();
436 	return err;
437 }
438 
439 static void
440 crypto_remove(struct cryptocap *cap)
441 {
442 
443 	KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
444 	if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
445 		bzero(cap, sizeof(*cap));
446 }
447 
448 /*
449  * Delete an existing session (or a reserved session on an unregistered
450  * driver).
451  */
452 int
453 crypto_freesession(u_int64_t sid)
454 {
455 	struct cryptocap *cap;
456 	u_int32_t hid;
457 	int err;
458 
459 	CRYPTO_DRIVER_LOCK();
460 
461 	if (crypto_drivers == NULL) {
462 		err = EINVAL;
463 		goto done;
464 	}
465 
466 	/* Determine two IDs. */
467 	hid = CRYPTO_SESID2HID(sid);
468 
469 	if (hid >= crypto_drivers_num) {
470 		err = ENOENT;
471 		goto done;
472 	}
473 	cap = &crypto_drivers[hid];
474 
475 	if (cap->cc_sessions)
476 		cap->cc_sessions--;
477 
478 	/* Call the driver cleanup routine, if available. */
479 	err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
480 
481 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
482 		crypto_remove(cap);
483 
484 done:
485 	CRYPTO_DRIVER_UNLOCK();
486 	return err;
487 }
488 
489 /*
490  * Return an unused driver id.  Used by drivers prior to registering
491  * support for the algorithms they handle.
492  */
493 int32_t
494 crypto_get_driverid(device_t dev, int flags)
495 {
496 	struct cryptocap *newdrv;
497 	int i;
498 
499 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
500 		kprintf("%s: no flags specified when registering driver\n",
501 		    device_get_nameunit(dev));
502 		return -1;
503 	}
504 
505 	CRYPTO_DRIVER_LOCK();
506 
507 	for (i = 0; i < crypto_drivers_num; i++) {
508 		if (crypto_drivers[i].cc_dev == NULL &&
509 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
510 			break;
511 		}
512 	}
513 
514 	/* Out of entries, allocate some more. */
515 	if (i == crypto_drivers_num) {
516 		/* Be careful about wrap-around. */
517 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
518 			CRYPTO_DRIVER_UNLOCK();
519 			kprintf("crypto: driver count wraparound!\n");
520 			return -1;
521 		}
522 
523 		newdrv = kmalloc(2 * crypto_drivers_num *
524 				 sizeof(struct cryptocap),
525 				 M_CRYPTO_DATA, M_WAITOK|M_ZERO);
526 		if (newdrv == NULL) {
527 			CRYPTO_DRIVER_UNLOCK();
528 			kprintf("crypto: no space to expand driver table!\n");
529 			return -1;
530 		}
531 
532 		bcopy(crypto_drivers, newdrv,
533 		    crypto_drivers_num * sizeof(struct cryptocap));
534 
535 		crypto_drivers_num *= 2;
536 
537 		kfree(crypto_drivers, M_CRYPTO_DATA);
538 		crypto_drivers = newdrv;
539 	}
540 
541 	/* NB: state is zero'd on free */
542 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
543 	crypto_drivers[i].cc_dev = dev;
544 	crypto_drivers[i].cc_flags = flags;
545 	if (bootverbose)
546 		kprintf("crypto: assign %s driver id %u, flags %u\n",
547 		    device_get_nameunit(dev), i, flags);
548 
549 	CRYPTO_DRIVER_UNLOCK();
550 
551 	return i;
552 }
553 
554 /*
555  * Lookup a driver by name.  We match against the full device
556  * name and unit, and against just the name.  The latter gives
557  * us a simple widlcarding by device name.  On success return the
558  * driver/hardware identifier; otherwise return -1.
559  */
560 int
561 crypto_find_driver(const char *match)
562 {
563 	int i, len = strlen(match);
564 
565 	CRYPTO_DRIVER_LOCK();
566 	for (i = 0; i < crypto_drivers_num; i++) {
567 		device_t dev = crypto_drivers[i].cc_dev;
568 		if (dev == NULL ||
569 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
570 			continue;
571 		if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
572 		    strncmp(match, device_get_name(dev), len) == 0)
573 			break;
574 	}
575 	CRYPTO_DRIVER_UNLOCK();
576 	return i < crypto_drivers_num ? i : -1;
577 }
578 
579 /*
580  * Return the device_t for the specified driver or NULL
581  * if the driver identifier is invalid.
582  */
583 device_t
584 crypto_find_device_byhid(int hid)
585 {
586 	struct cryptocap *cap = crypto_checkdriver(hid);
587 	return cap != NULL ? cap->cc_dev : NULL;
588 }
589 
590 /*
591  * Return the device/driver capabilities.
592  */
593 int
594 crypto_getcaps(int hid)
595 {
596 	struct cryptocap *cap = crypto_checkdriver(hid);
597 	return cap != NULL ? cap->cc_flags : 0;
598 }
599 
600 /*
601  * Register support for a key-related algorithm.  This routine
602  * is called once for each algorithm supported a driver.
603  */
604 int
605 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
606 {
607 	struct cryptocap *cap;
608 	int err;
609 
610 	CRYPTO_DRIVER_LOCK();
611 
612 	cap = crypto_checkdriver(driverid);
613 	if (cap != NULL &&
614 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
615 		/*
616 		 * XXX Do some performance testing to determine placing.
617 		 * XXX We probably need an auxiliary data structure that
618 		 * XXX describes relative performances.
619 		 */
620 
621 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
622 		if (bootverbose)
623 			kprintf("crypto: %s registers key alg %u flags %u\n"
624 				, device_get_nameunit(cap->cc_dev)
625 				, kalg
626 				, flags
627 			);
628 
629 		err = 0;
630 	} else
631 		err = EINVAL;
632 
633 	CRYPTO_DRIVER_UNLOCK();
634 	return err;
635 }
636 
637 /*
638  * Register support for a non-key-related algorithm.  This routine
639  * is called once for each such algorithm supported by a driver.
640  */
641 int
642 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
643 		u_int32_t flags)
644 {
645 	struct cryptocap *cap;
646 	int err;
647 
648 	CRYPTO_DRIVER_LOCK();
649 
650 	cap = crypto_checkdriver(driverid);
651 	/* NB: algorithms are in the range [1..max] */
652 	if (cap != NULL &&
653 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
654 		/*
655 		 * XXX Do some performance testing to determine placing.
656 		 * XXX We probably need an auxiliary data structure that
657 		 * XXX describes relative performances.
658 		 */
659 
660 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
661 		cap->cc_max_op_len[alg] = maxoplen;
662 		if (bootverbose)
663 			kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
664 				, device_get_nameunit(cap->cc_dev)
665 				, alg
666 				, flags
667 				, maxoplen
668 			);
669 		cap->cc_sessions = 0;		/* Unmark */
670 		err = 0;
671 	} else
672 		err = EINVAL;
673 
674 	CRYPTO_DRIVER_UNLOCK();
675 	return err;
676 }
677 
678 static void
679 driver_finis(struct cryptocap *cap)
680 {
681 	u_int32_t ses, kops;
682 
683 	CRYPTO_DRIVER_ASSERT();
684 
685 	ses = cap->cc_sessions;
686 	kops = cap->cc_koperations;
687 	bzero(cap, sizeof(*cap));
688 	if (ses != 0 || kops != 0) {
689 		/*
690 		 * If there are pending sessions,
691 		 * just mark as invalid.
692 		 */
693 		cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
694 		cap->cc_sessions = ses;
695 		cap->cc_koperations = kops;
696 	}
697 }
698 
699 /*
700  * Unregister a crypto driver. If there are pending sessions using it,
701  * leave enough information around so that subsequent calls using those
702  * sessions will correctly detect the driver has been unregistered and
703  * reroute requests.
704  */
705 int
706 crypto_unregister(u_int32_t driverid, int alg)
707 {
708 	struct cryptocap *cap;
709 	int i, err;
710 
711 	CRYPTO_DRIVER_LOCK();
712 	cap = crypto_checkdriver(driverid);
713 	if (cap != NULL &&
714 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
715 	    cap->cc_alg[alg] != 0) {
716 		cap->cc_alg[alg] = 0;
717 		cap->cc_max_op_len[alg] = 0;
718 
719 		/* Was this the last algorithm ? */
720 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) {
721 			if (cap->cc_alg[i] != 0)
722 				break;
723 		}
724 
725 		if (i == CRYPTO_ALGORITHM_MAX + 1)
726 			driver_finis(cap);
727 		err = 0;
728 	} else {
729 		err = EINVAL;
730 	}
731 	CRYPTO_DRIVER_UNLOCK();
732 
733 	return err;
734 }
735 
736 /*
737  * Unregister all algorithms associated with a crypto driver.
738  * If there are pending sessions using it, leave enough information
739  * around so that subsequent calls using those sessions will
740  * correctly detect the driver has been unregistered and reroute
741  * requests.
742  */
743 int
744 crypto_unregister_all(u_int32_t driverid)
745 {
746 	struct cryptocap *cap;
747 	int err;
748 
749 	CRYPTO_DRIVER_LOCK();
750 	cap = crypto_checkdriver(driverid);
751 	if (cap != NULL) {
752 		driver_finis(cap);
753 		err = 0;
754 	} else {
755 		err = EINVAL;
756 	}
757 	CRYPTO_DRIVER_UNLOCK();
758 
759 	return err;
760 }
761 
762 /*
763  * Clear blockage on a driver.  The what parameter indicates whether
764  * the driver is now ready for cryptop's and/or cryptokop's.
765  */
766 int
767 crypto_unblock(u_int32_t driverid, int what)
768 {
769 	crypto_tdinfo_t tdinfo;
770 	struct cryptocap *cap;
771 	int err;
772 	int n;
773 
774 	CRYPTO_DRIVER_LOCK();
775 	cap = crypto_checkdriver(driverid);
776 	if (cap != NULL) {
777 		if (what & CRYPTO_SYMQ)
778 			cap->cc_qblocked = 0;
779 		if (what & CRYPTO_ASYMQ)
780 			cap->cc_kqblocked = 0;
781 		for (n = 0; n < ncpus; ++n) {
782 			tdinfo = &tdinfo_array[n];
783 			CRYPTO_Q_LOCK(tdinfo);
784 			if (tdinfo[n].crp_sleep)
785 				wakeup_one(&tdinfo->crp_q);
786 			CRYPTO_Q_UNLOCK(tdinfo);
787 		}
788 		err = 0;
789 	} else {
790 		err = EINVAL;
791 	}
792 	CRYPTO_DRIVER_UNLOCK();
793 
794 	return err;
795 }
796 
797 static volatile int dispatch_rover;
798 
799 /*
800  * Add a crypto request to a queue, to be processed by the kernel thread.
801  */
802 int
803 crypto_dispatch(struct cryptop *crp)
804 {
805 	crypto_tdinfo_t tdinfo;
806 	struct cryptocap *cap;
807 	u_int32_t hid;
808 	int result;
809 	int n;
810 
811 	cryptostats.cs_ops++;
812 
813 #ifdef CRYPTO_TIMING
814 	if (crypto_timing)
815 		nanouptime(&crp->crp_tstamp);
816 #endif
817 
818 	hid = CRYPTO_SESID2HID(crp->crp_sid);
819 
820 	/*
821 	 * Dispatch the crypto op directly to the driver if the caller
822 	 * marked the request to be processed immediately or this is
823 	 * a synchronous callback chain occuring from within a crypto
824 	 * processing thread.
825 	 *
826 	 * Fall through to queueing the driver is blocked.
827 	 */
828 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0 ||
829 	    (curthread->td_flags & TDF_CRYPTO)) {
830 		cap = crypto_checkdriver(hid);
831 		/* Driver cannot disappeared when there is an active session. */
832 		KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
833 		if (!cap->cc_qblocked) {
834 			result = crypto_invoke(cap, crp, 0);
835 			if (result != ERESTART)
836 				return (result);
837 			/*
838 			 * The driver ran out of resources, put the request on
839 			 * the queue.
840 			 */
841 		}
842 	}
843 
844 	/*
845 	 * Dispatch to a cpu for action if possible.  Dispatch to a different
846 	 * cpu than the current cpu.
847 	 */
848 	if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SMP) {
849 		n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
850 		if (crypto_altdispatch && mycpu->gd_cpuid == n)
851 			++n;
852 		n = n % ncpus;
853 	} else {
854 		n = 0;
855 	}
856 	tdinfo = &tdinfo_array[n];
857 
858 	CRYPTO_Q_LOCK(tdinfo);
859 	TAILQ_INSERT_TAIL(&tdinfo->crp_q, crp, crp_next);
860 	if (tdinfo->crp_sleep)
861 		wakeup_one(&tdinfo->crp_q);
862 	CRYPTO_Q_UNLOCK(tdinfo);
863 	return 0;
864 }
865 
866 /*
867  * Add an asymetric crypto request to a queue,
868  * to be processed by the kernel thread.
869  */
870 int
871 crypto_kdispatch(struct cryptkop *krp)
872 {
873 	crypto_tdinfo_t tdinfo;
874 	int error;
875 	int n;
876 
877 	cryptostats.cs_kops++;
878 
879 #if 0
880 	/* not sure how to test F_SMP here */
881 	n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
882 	n = n % ncpus;
883 #endif
884 	n = 0;
885 	tdinfo = &tdinfo_array[n];
886 
887 	error = crypto_kinvoke(krp, krp->krp_crid);
888 
889 	if (error == ERESTART) {
890 		CRYPTO_Q_LOCK(tdinfo);
891 		TAILQ_INSERT_TAIL(&tdinfo->crp_kq, krp, krp_next);
892 		if (tdinfo->crp_sleep)
893 			wakeup_one(&tdinfo->crp_q);
894 		CRYPTO_Q_UNLOCK(tdinfo);
895 		error = 0;
896 	}
897 	return error;
898 }
899 
900 /*
901  * Verify a driver is suitable for the specified operation.
902  */
903 static __inline int
904 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
905 {
906 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
907 }
908 
909 /*
910  * Select a driver for an asym operation.  The driver must
911  * support the necessary algorithm.  The caller can constrain
912  * which device is selected with the flags parameter.  The
913  * algorithm we use here is pretty stupid; just use the first
914  * driver that supports the algorithms we need. If there are
915  * multiple suitable drivers we choose the driver with the
916  * fewest active operations.  We prefer hardware-backed
917  * drivers to software ones when either may be used.
918  */
919 static struct cryptocap *
920 crypto_select_kdriver(const struct cryptkop *krp, int flags)
921 {
922 	struct cryptocap *cap, *best, *blocked;
923 	int match, hid;
924 
925 	CRYPTO_DRIVER_ASSERT();
926 
927 	/*
928 	 * Look first for hardware crypto devices if permitted.
929 	 */
930 	if (flags & CRYPTOCAP_F_HARDWARE)
931 		match = CRYPTOCAP_F_HARDWARE;
932 	else
933 		match = CRYPTOCAP_F_SOFTWARE;
934 	best = NULL;
935 	blocked = NULL;
936 again:
937 	for (hid = 0; hid < crypto_drivers_num; hid++) {
938 		cap = &crypto_drivers[hid];
939 		/*
940 		 * If it's not initialized, is in the process of
941 		 * going away, or is not appropriate (hardware
942 		 * or software based on match), then skip.
943 		 */
944 		if (cap->cc_dev == NULL ||
945 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
946 		    (cap->cc_flags & match) == 0)
947 			continue;
948 
949 		/* verify all the algorithms are supported. */
950 		if (kdriver_suitable(cap, krp)) {
951 			if (best == NULL ||
952 			    cap->cc_koperations < best->cc_koperations)
953 				best = cap;
954 		}
955 	}
956 	if (best != NULL)
957 		return best;
958 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
959 		/* sort of an Algol 68-style for loop */
960 		match = CRYPTOCAP_F_SOFTWARE;
961 		goto again;
962 	}
963 	return best;
964 }
965 
966 /*
967  * Dispatch an assymetric crypto request.
968  */
969 static int
970 crypto_kinvoke(struct cryptkop *krp, int crid)
971 {
972 	struct cryptocap *cap = NULL;
973 	int error;
974 
975 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
976 	KASSERT(krp->krp_callback != NULL,
977 	    ("%s: krp->crp_callback == NULL", __func__));
978 
979 	CRYPTO_DRIVER_LOCK();
980 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
981 		cap = crypto_checkdriver(crid);
982 		if (cap != NULL) {
983 			/*
984 			 * Driver present, it must support the necessary
985 			 * algorithm and, if s/w drivers are excluded,
986 			 * it must be registered as hardware-backed.
987 			 */
988 			if (!kdriver_suitable(cap, krp) ||
989 			    (!crypto_devallowsoft &&
990 			     (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
991 				cap = NULL;
992 		}
993 	} else {
994 		/*
995 		 * No requested driver; select based on crid flags.
996 		 */
997 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
998 			crid &= ~CRYPTOCAP_F_SOFTWARE;
999 		cap = crypto_select_kdriver(krp, crid);
1000 	}
1001 	if (cap != NULL && !cap->cc_kqblocked) {
1002 		krp->krp_hid = cap - crypto_drivers;
1003 		cap->cc_koperations++;
1004 		CRYPTO_DRIVER_UNLOCK();
1005 		error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1006 		CRYPTO_DRIVER_LOCK();
1007 		if (error == ERESTART) {
1008 			cap->cc_koperations--;
1009 			CRYPTO_DRIVER_UNLOCK();
1010 			return (error);
1011 		}
1012 	} else {
1013 		/*
1014 		 * NB: cap is !NULL if device is blocked; in
1015 		 *     that case return ERESTART so the operation
1016 		 *     is resubmitted if possible.
1017 		 */
1018 		error = (cap == NULL) ? ENODEV : ERESTART;
1019 	}
1020 	CRYPTO_DRIVER_UNLOCK();
1021 
1022 	if (error) {
1023 		krp->krp_status = error;
1024 		crypto_kdone(krp);
1025 	}
1026 	return 0;
1027 }
1028 
1029 #ifdef CRYPTO_TIMING
1030 static void
1031 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1032 {
1033 	struct timespec now, t;
1034 
1035 	nanouptime(&now);
1036 	t.tv_sec = now.tv_sec - tv->tv_sec;
1037 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1038 	if (t.tv_nsec < 0) {
1039 		t.tv_sec--;
1040 		t.tv_nsec += 1000000000;
1041 	}
1042 	timespecadd(&ts->acc, &t);
1043 	if (timespeccmp(&t, &ts->min, <))
1044 		ts->min = t;
1045 	if (timespeccmp(&t, &ts->max, >))
1046 		ts->max = t;
1047 	ts->count++;
1048 
1049 	*tv = now;
1050 }
1051 #endif
1052 
1053 /*
1054  * Dispatch a crypto request to the appropriate crypto devices.
1055  */
1056 static int
1057 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1058 {
1059 
1060 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1061 	KASSERT(crp->crp_callback != NULL,
1062 	    ("%s: crp->crp_callback == NULL", __func__));
1063 	KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1064 
1065 #ifdef CRYPTO_TIMING
1066 	if (crypto_timing)
1067 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1068 #endif
1069 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1070 		struct cryptodesc *crd;
1071 		u_int64_t nid;
1072 
1073 		/*
1074 		 * Driver has unregistered; migrate the session and return
1075 		 * an error to the caller so they'll resubmit the op.
1076 		 *
1077 		 * XXX: What if there are more already queued requests for this
1078 		 *      session?
1079 		 */
1080 		crypto_freesession(crp->crp_sid);
1081 
1082 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1083 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1084 
1085 		/* XXX propagate flags from initial session? */
1086 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1087 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1088 			crp->crp_sid = nid;
1089 
1090 		crp->crp_etype = EAGAIN;
1091 		crypto_done(crp);
1092 		return 0;
1093 	} else {
1094 		/*
1095 		 * Invoke the driver to process the request.
1096 		 */
1097 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1098 	}
1099 }
1100 
1101 /*
1102  * Release a set of crypto descriptors.
1103  */
1104 void
1105 crypto_freereq(struct cryptop *crp)
1106 {
1107 	struct cryptodesc *crd;
1108 #ifdef DIAGNOSTIC
1109 	crypto_tdinfo_t tdinfo;
1110 	struct cryptop *crp2;
1111 	int n;
1112 #endif
1113 
1114 	if (crp == NULL)
1115 		return;
1116 
1117 #ifdef DIAGNOSTIC
1118 	for (n = 0; n < ncpus; ++n) {
1119 		tdinfo = &tdinfo_array[n];
1120 
1121 		CRYPTO_Q_LOCK(tdinfo);
1122 		TAILQ_FOREACH(crp2, &tdinfo->crp_q, crp_next) {
1123 			KASSERT(crp2 != crp,
1124 			    ("Freeing cryptop from the crypto queue (%p).",
1125 			    crp));
1126 		}
1127 		CRYPTO_Q_UNLOCK(tdinfo);
1128 	}
1129 	CRYPTO_RETQ_LOCK();
1130 	TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1131 		KASSERT(crp2 != crp,
1132 		    ("Freeing cryptop from the return queue (%p).",
1133 		    crp));
1134 	}
1135 	CRYPTO_RETQ_UNLOCK();
1136 #endif
1137 
1138 	while ((crd = crp->crp_desc) != NULL) {
1139 		crp->crp_desc = crd->crd_next;
1140 		objcache_put(cryptodesc_oc, crd);
1141 	}
1142 	objcache_put(cryptop_oc, crp);
1143 }
1144 
1145 /*
1146  * Acquire a set of crypto descriptors.
1147  */
1148 struct cryptop *
1149 crypto_getreq(int num)
1150 {
1151 	struct cryptodesc *crd;
1152 	struct cryptop *crp;
1153 
1154 	crp = objcache_get(cryptop_oc, M_WAITOK);
1155 	if (crp != NULL) {
1156 		bzero(crp, sizeof (*crp));
1157 		while (num--) {
1158 			crd = objcache_get(cryptodesc_oc, M_WAITOK);
1159 			if (crd == NULL) {
1160 				crypto_freereq(crp);
1161 				return NULL;
1162 			}
1163 			bzero(crd, sizeof (*crd));
1164 
1165 			crd->crd_next = crp->crp_desc;
1166 			crp->crp_desc = crd;
1167 		}
1168 	}
1169 	return crp;
1170 }
1171 
1172 /*
1173  * Invoke the callback on behalf of the driver.
1174  */
1175 void
1176 crypto_done(struct cryptop *crp)
1177 {
1178 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1179 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1180 	crp->crp_flags |= CRYPTO_F_DONE;
1181 	if (crp->crp_etype != 0)
1182 		cryptostats.cs_errs++;
1183 #ifdef CRYPTO_TIMING
1184 	if (crypto_timing)
1185 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1186 #endif
1187 	/*
1188 	 * CBIMM means unconditionally do the callback immediately;
1189 	 * CBIFSYNC means do the callback immediately only if the
1190 	 * operation was done synchronously.  Both are used to avoid
1191 	 * doing extraneous context switches; the latter is mostly
1192 	 * used with the software crypto driver.
1193 	 */
1194 	if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1195 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1196 	     (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1197 		/*
1198 		 * Do the callback directly.  This is ok when the
1199 		 * callback routine does very little (e.g. the
1200 		 * /dev/crypto callback method just does a wakeup).
1201 		 */
1202 #ifdef CRYPTO_TIMING
1203 		if (crypto_timing) {
1204 			/*
1205 			 * NB: We must copy the timestamp before
1206 			 * doing the callback as the cryptop is
1207 			 * likely to be reclaimed.
1208 			 */
1209 			struct timespec t = crp->crp_tstamp;
1210 			crypto_tstat(&cryptostats.cs_cb, &t);
1211 			crp->crp_callback(crp);
1212 			crypto_tstat(&cryptostats.cs_finis, &t);
1213 		} else
1214 #endif
1215 			crp->crp_callback(crp);
1216 	} else {
1217 		/*
1218 		 * Normal case; queue the callback for the thread.
1219 		 */
1220 		CRYPTO_RETQ_LOCK();
1221 		if (CRYPTO_RETQ_EMPTY())
1222 			wakeup_one(&crp_ret_q);	/* shared wait channel */
1223 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1224 		CRYPTO_RETQ_UNLOCK();
1225 	}
1226 }
1227 
1228 /*
1229  * Invoke the callback on behalf of the driver.
1230  */
1231 void
1232 crypto_kdone(struct cryptkop *krp)
1233 {
1234 	struct cryptocap *cap;
1235 
1236 	if (krp->krp_status != 0)
1237 		cryptostats.cs_kerrs++;
1238 	CRYPTO_DRIVER_LOCK();
1239 	/* XXX: What if driver is loaded in the meantime? */
1240 	if (krp->krp_hid < crypto_drivers_num) {
1241 		cap = &crypto_drivers[krp->krp_hid];
1242 		cap->cc_koperations--;
1243 		KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1244 		if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1245 			crypto_remove(cap);
1246 	}
1247 	CRYPTO_DRIVER_UNLOCK();
1248 	CRYPTO_RETQ_LOCK();
1249 	if (CRYPTO_RETQ_EMPTY())
1250 		wakeup_one(&crp_ret_q);		/* shared wait channel */
1251 	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1252 	CRYPTO_RETQ_UNLOCK();
1253 }
1254 
1255 int
1256 crypto_getfeat(int *featp)
1257 {
1258 	int hid, kalg, feat = 0;
1259 
1260 	CRYPTO_DRIVER_LOCK();
1261 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1262 		const struct cryptocap *cap = &crypto_drivers[hid];
1263 
1264 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1265 		    !crypto_devallowsoft) {
1266 			continue;
1267 		}
1268 		for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
1269 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1270 				feat |=  1 << kalg;
1271 	}
1272 	CRYPTO_DRIVER_UNLOCK();
1273 	*featp = feat;
1274 	return (0);
1275 }
1276 
1277 /*
1278  * Terminate a thread at module unload.  The process that
1279  * initiated this is waiting for us to signal that we're gone;
1280  * wake it up and exit.  We use the driver table lock to insure
1281  * we don't do the wakeup before they're waiting.  There is no
1282  * race here because the waiter sleeps on the proc lock for the
1283  * thread so it gets notified at the right time because of an
1284  * extra wakeup that's done in exit1().
1285  */
1286 static void
1287 crypto_finis(void *chan)
1288 {
1289 	CRYPTO_DRIVER_LOCK();
1290 	wakeup_one(chan);
1291 	CRYPTO_DRIVER_UNLOCK();
1292 	kthread_exit();
1293 }
1294 
1295 /*
1296  * Crypto thread, dispatches crypto requests.
1297  *
1298  * MPSAFE
1299  */
1300 static void
1301 crypto_proc(void *arg)
1302 {
1303 	crypto_tdinfo_t tdinfo = arg;
1304 	struct cryptop *crp, *submit;
1305 	struct cryptkop *krp;
1306 	struct cryptocap *cap;
1307 	u_int32_t hid;
1308 	int result, hint;
1309 
1310 	CRYPTO_Q_LOCK(tdinfo);
1311 
1312 	curthread->td_flags |= TDF_CRYPTO;
1313 
1314 	for (;;) {
1315 		/*
1316 		 * Find the first element in the queue that can be
1317 		 * processed and look-ahead to see if multiple ops
1318 		 * are ready for the same driver.
1319 		 */
1320 		submit = NULL;
1321 		hint = 0;
1322 		TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1323 			hid = CRYPTO_SESID2HID(crp->crp_sid);
1324 			cap = crypto_checkdriver(hid);
1325 			/*
1326 			 * Driver cannot disappeared when there is an active
1327 			 * session.
1328 			 */
1329 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1330 			    __func__, __LINE__));
1331 			if (cap == NULL || cap->cc_dev == NULL) {
1332 				/* Op needs to be migrated, process it. */
1333 				if (submit == NULL)
1334 					submit = crp;
1335 				break;
1336 			}
1337 			if (!cap->cc_qblocked) {
1338 				if (submit != NULL) {
1339 					/*
1340 					 * We stop on finding another op,
1341 					 * regardless whether its for the same
1342 					 * driver or not.  We could keep
1343 					 * searching the queue but it might be
1344 					 * better to just use a per-driver
1345 					 * queue instead.
1346 					 */
1347 					if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1348 						hint = CRYPTO_HINT_MORE;
1349 					break;
1350 				} else {
1351 					submit = crp;
1352 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1353 						break;
1354 					/* keep scanning for more are q'd */
1355 				}
1356 			}
1357 		}
1358 		if (submit != NULL) {
1359 			TAILQ_REMOVE(&tdinfo->crp_q, submit, crp_next);
1360 			hid = CRYPTO_SESID2HID(submit->crp_sid);
1361 			cap = crypto_checkdriver(hid);
1362 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1363 			    __func__, __LINE__));
1364 
1365 			CRYPTO_Q_UNLOCK(tdinfo);
1366 			result = crypto_invoke(cap, submit, hint);
1367 			CRYPTO_Q_LOCK(tdinfo);
1368 
1369 			if (result == ERESTART) {
1370 				/*
1371 				 * The driver ran out of resources, mark the
1372 				 * driver ``blocked'' for cryptop's and put
1373 				 * the request back in the queue.  It would
1374 				 * best to put the request back where we got
1375 				 * it but that's hard so for now we put it
1376 				 * at the front.  This should be ok; putting
1377 				 * it at the end does not work.
1378 				 */
1379 				/* XXX validate sid again? */
1380 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1381 				TAILQ_INSERT_HEAD(&tdinfo->crp_q,
1382 						  submit, crp_next);
1383 				cryptostats.cs_blocks++;
1384 			}
1385 		}
1386 
1387 		/* As above, but for key ops */
1388 		TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1389 			cap = crypto_checkdriver(krp->krp_hid);
1390 			if (cap == NULL || cap->cc_dev == NULL) {
1391 				/*
1392 				 * Operation needs to be migrated, invalidate
1393 				 * the assigned device so it will reselect a
1394 				 * new one below.  Propagate the original
1395 				 * crid selection flags if supplied.
1396 				 */
1397 				krp->krp_hid = krp->krp_crid &
1398 				    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1399 				if (krp->krp_hid == 0)
1400 					krp->krp_hid =
1401 				    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1402 				break;
1403 			}
1404 			if (!cap->cc_kqblocked)
1405 				break;
1406 		}
1407 		if (krp != NULL) {
1408 			TAILQ_REMOVE(&tdinfo->crp_kq, krp, krp_next);
1409 
1410 			CRYPTO_Q_UNLOCK(tdinfo);
1411 			result = crypto_kinvoke(krp, krp->krp_hid);
1412 			CRYPTO_Q_LOCK(tdinfo);
1413 
1414 			if (result == ERESTART) {
1415 				/*
1416 				 * The driver ran out of resources, mark the
1417 				 * driver ``blocked'' for cryptkop's and put
1418 				 * the request back in the queue.  It would
1419 				 * best to put the request back where we got
1420 				 * it but that's hard so for now we put it
1421 				 * at the front.  This should be ok; putting
1422 				 * it at the end does not work.
1423 				 */
1424 				/* XXX validate sid again? */
1425 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1426 				TAILQ_INSERT_HEAD(&tdinfo->crp_kq,
1427 						  krp, krp_next);
1428 				cryptostats.cs_kblocks++;
1429 			}
1430 		}
1431 
1432 		if (submit == NULL && krp == NULL) {
1433 			/*
1434 			 * Nothing more to be processed.  Sleep until we're
1435 			 * woken because there are more ops to process.
1436 			 * This happens either by submission or by a driver
1437 			 * becoming unblocked and notifying us through
1438 			 * crypto_unblock.  Note that when we wakeup we
1439 			 * start processing each queue again from the
1440 			 * front. It's not clear that it's important to
1441 			 * preserve this ordering since ops may finish
1442 			 * out of order if dispatched to different devices
1443 			 * and some become blocked while others do not.
1444 			 */
1445 			tdinfo->crp_sleep = 1;
1446 			lksleep (&tdinfo->crp_q, &tdinfo->crp_lock,
1447 				 0, "crypto_wait", 0);
1448 			tdinfo->crp_sleep = 0;
1449 			if (tdinfo->crp_td == NULL)
1450 				break;
1451 			cryptostats.cs_intrs++;
1452 		}
1453 	}
1454 	CRYPTO_Q_UNLOCK(tdinfo);
1455 
1456 	crypto_finis(&tdinfo->crp_q);
1457 }
1458 
1459 /*
1460  * Crypto returns thread, does callbacks for processed crypto requests.
1461  * Callbacks are done here, rather than in the crypto drivers, because
1462  * callbacks typically are expensive and would slow interrupt handling.
1463  *
1464  * MPSAFE
1465  */
1466 static void
1467 crypto_ret_proc(void *dummy __unused)
1468 {
1469 	struct cryptop *crpt;
1470 	struct cryptkop *krpt;
1471 
1472 	get_mplock();
1473 	CRYPTO_RETQ_LOCK();
1474 	for (;;) {
1475 		/* Harvest return q's for completed ops */
1476 		crpt = TAILQ_FIRST(&crp_ret_q);
1477 		if (crpt != NULL)
1478 			TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1479 
1480 		krpt = TAILQ_FIRST(&crp_ret_kq);
1481 		if (krpt != NULL)
1482 			TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1483 
1484 		if (crpt != NULL || krpt != NULL) {
1485 			CRYPTO_RETQ_UNLOCK();
1486 			/*
1487 			 * Run callbacks unlocked.
1488 			 */
1489 			if (crpt != NULL) {
1490 #ifdef CRYPTO_TIMING
1491 				if (crypto_timing) {
1492 					/*
1493 					 * NB: We must copy the timestamp before
1494 					 * doing the callback as the cryptop is
1495 					 * likely to be reclaimed.
1496 					 */
1497 					struct timespec t = crpt->crp_tstamp;
1498 					crypto_tstat(&cryptostats.cs_cb, &t);
1499 					crpt->crp_callback(crpt);
1500 					crypto_tstat(&cryptostats.cs_finis, &t);
1501 				} else
1502 #endif
1503 					crpt->crp_callback(crpt);
1504 			}
1505 			if (krpt != NULL)
1506 				krpt->krp_callback(krpt);
1507 			CRYPTO_RETQ_LOCK();
1508 		} else {
1509 			/*
1510 			 * Nothing more to be processed.  Sleep until we're
1511 			 * woken because there are more returns to process.
1512 			 */
1513 			lksleep (&crp_ret_q, &crypto_ret_q_lock,
1514 				 0, "crypto_ret_wait", 0);
1515 			if (cryptoretthread == NULL)
1516 				break;
1517 			cryptostats.cs_rets++;
1518 		}
1519 	}
1520 	CRYPTO_RETQ_UNLOCK();
1521 
1522 	crypto_finis(&crp_ret_q);
1523 }
1524 
1525 #ifdef DDB
1526 static void
1527 db_show_drivers(void)
1528 {
1529 	int hid;
1530 
1531 	db_printf("%12s %4s %4s %8s %2s %2s\n"
1532 		, "Device"
1533 		, "Ses"
1534 		, "Kops"
1535 		, "Flags"
1536 		, "QB"
1537 		, "KB"
1538 	);
1539 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1540 		const struct cryptocap *cap = &crypto_drivers[hid];
1541 		if (cap->cc_dev == NULL)
1542 			continue;
1543 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
1544 		    , device_get_nameunit(cap->cc_dev)
1545 		    , cap->cc_sessions
1546 		    , cap->cc_koperations
1547 		    , cap->cc_flags
1548 		    , cap->cc_qblocked
1549 		    , cap->cc_kqblocked
1550 		);
1551 	}
1552 }
1553 
1554 DB_SHOW_COMMAND(crypto, db_show_crypto)
1555 {
1556 	crypto_tdinfo_t tdinfo;
1557 	struct cryptop *crp;
1558 	int n;
1559 
1560 	db_show_drivers();
1561 	db_printf("\n");
1562 
1563 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1564 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1565 	    "Desc", "Callback");
1566 
1567 	for (n = 0; n < ncpus; ++n) {
1568 		tdinfo = &tdinfo_array[n];
1569 
1570 		TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1571 			db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1572 			    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1573 			    , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1574 			    , crp->crp_ilen, crp->crp_olen
1575 			    , crp->crp_etype
1576 			    , crp->crp_flags
1577 			    , crp->crp_desc
1578 			    , crp->crp_callback
1579 			);
1580 		}
1581 	}
1582 	if (!TAILQ_EMPTY(&crp_ret_q)) {
1583 		db_printf("\n%4s %4s %4s %8s\n",
1584 		    "HID", "Etype", "Flags", "Callback");
1585 		TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1586 			db_printf("%4u %4u %04x %8p\n"
1587 			    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1588 			    , crp->crp_etype
1589 			    , crp->crp_flags
1590 			    , crp->crp_callback
1591 			);
1592 		}
1593 	}
1594 }
1595 
1596 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1597 {
1598 	crypto_tdinfo_t tdinfo;
1599 	struct cryptkop *krp;
1600 	int n;
1601 
1602 	db_show_drivers();
1603 	db_printf("\n");
1604 
1605 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1606 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1607 
1608 	for (n = 0; n < ncpus; ++n) {
1609 		tdinfo = &tdinfo_array[n];
1610 
1611 		TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1612 			db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1613 			    , krp->krp_op
1614 			    , krp->krp_status
1615 			    , krp->krp_iparams, krp->krp_oparams
1616 			    , krp->krp_crid, krp->krp_hid
1617 			    , krp->krp_callback
1618 			);
1619 		}
1620 	}
1621 	if (!TAILQ_EMPTY(&crp_ret_q)) {
1622 		db_printf("%4s %5s %8s %4s %8s\n",
1623 		    "Op", "Status", "CRID", "HID", "Callback");
1624 		TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1625 			db_printf("%4u %5u %08x %4u %8p\n"
1626 			    , krp->krp_op
1627 			    , krp->krp_status
1628 			    , krp->krp_crid, krp->krp_hid
1629 			    , krp->krp_callback
1630 			);
1631 		}
1632 	}
1633 }
1634 #endif
1635 
1636 int crypto_modevent(module_t mod, int type, void *unused);
1637 
1638 /*
1639  * Initialization code, both for static and dynamic loading.
1640  * Note this is not invoked with the usual MODULE_DECLARE
1641  * mechanism but instead is listed as a dependency by the
1642  * cryptosoft driver.  This guarantees proper ordering of
1643  * calls on module load/unload.
1644  */
1645 int
1646 crypto_modevent(module_t mod, int type, void *unused)
1647 {
1648 	int error = EINVAL;
1649 
1650 	switch (type) {
1651 	case MOD_LOAD:
1652 		error = crypto_init();
1653 		if (error == 0 && bootverbose)
1654 			kprintf("crypto: <crypto core>\n");
1655 		break;
1656 	case MOD_UNLOAD:
1657 		/*XXX disallow if active sessions */
1658 		error = 0;
1659 		crypto_destroy();
1660 		return 0;
1661 	}
1662 	return error;
1663 }
1664 MODULE_VERSION(crypto, 1);
1665 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
1666