xref: /dragonfly/sys/opencrypto/xform.c (revision 6e278935)
1 /*	$FreeBSD: src/sys/opencrypto/xform.c,v 1.10 2008/10/23 15:53:51 des Exp $	*/
2 /*	$OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $	*/
3 /*-
4  * The authors of this code are John Ioannidis (ji@tla.org),
5  * Angelos D. Keromytis (kermit@csd.uch.gr) and
6  * Niels Provos (provos@physnet.uni-hamburg.de).
7  *
8  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
9  * in November 1995.
10  *
11  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12  * by Angelos D. Keromytis.
13  *
14  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
15  * and Niels Provos.
16  *
17  * Additional features in 1999 by Angelos D. Keromytis.
18  *
19  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
20  * Angelos D. Keromytis and Niels Provos.
21  *
22  * Copyright (C) 2001, Angelos D. Keromytis.
23  *
24  * Permission to use, copy, and modify this software with or without fee
25  * is hereby granted, provided that this entire notice is included in
26  * all copies of any software which is or includes a copy or
27  * modification of this software.
28  * You may use this code under the GNU public license if you so wish. Please
29  * contribute changes back to the authors under this freer than GPL license
30  * so that we may further the use of strong encryption without limitations to
31  * all.
32  *
33  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
34  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
35  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
36  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
37  * PURPOSE.
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/sysctl.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <machine/cpu.h>
48 
49 #include <crypto/blowfish/blowfish.h>
50 #include <crypto/des/des.h>
51 #include <crypto/rijndael/rijndael.h>
52 #include <crypto/camellia/camellia.h>
53 #include <crypto/twofish/twofish.h>
54 #include <crypto/serpent/serpent.h>
55 #include <crypto/sha1.h>
56 
57 #include <opencrypto/cast.h>
58 #include <opencrypto/deflate.h>
59 #include <opencrypto/rmd160.h>
60 #include <opencrypto/skipjack.h>
61 #include <opencrypto/gmac.h>
62 
63 #include <sys/md5.h>
64 
65 #include <opencrypto/cryptodev.h>
66 #include <opencrypto/xform.h>
67 
68 static void null_encrypt(caddr_t, u_int8_t *, u_int8_t *);
69 static void null_decrypt(caddr_t, u_int8_t *, u_int8_t *);
70 static int null_setkey(u_int8_t **, u_int8_t *, int);
71 static void null_zerokey(u_int8_t **);
72 
73 static	int des1_setkey(u_int8_t **, u_int8_t *, int);
74 static	int des3_setkey(u_int8_t **, u_int8_t *, int);
75 static	int blf_setkey(u_int8_t **, u_int8_t *, int);
76 static	int cast5_setkey(u_int8_t **, u_int8_t *, int);
77 static	int skipjack_setkey(u_int8_t **, u_int8_t *, int);
78 static	int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
79 static	int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
80 static	int aes_ctr_setkey(u_int8_t **, u_int8_t *, int);
81 static	int cml_setkey(u_int8_t **, u_int8_t *, int);
82 static	int twofish128_setkey(u_int8_t **, u_int8_t *, int);
83 static	int serpent128_setkey(u_int8_t **, u_int8_t *, int);
84 static	int twofish_xts_setkey(u_int8_t **, u_int8_t *, int);
85 static	int serpent_xts_setkey(u_int8_t **, u_int8_t *, int);
86 static	void des1_encrypt(caddr_t, u_int8_t *, u_int8_t *);
87 static	void des3_encrypt(caddr_t, u_int8_t *, u_int8_t *);
88 static	void blf_encrypt(caddr_t, u_int8_t *, u_int8_t *);
89 static	void cast5_encrypt(caddr_t, u_int8_t *, u_int8_t *);
90 static	void skipjack_encrypt(caddr_t, u_int8_t *, u_int8_t *);
91 static	void rijndael128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
92 static	void aes_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
93 static	void cml_encrypt(caddr_t, u_int8_t *, u_int8_t *);
94 static	void twofish128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
95 static	void serpent128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
96 static	void twofish_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
97 static	void serpent_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
98 static	void des1_decrypt(caddr_t, u_int8_t *, u_int8_t *);
99 static	void des3_decrypt(caddr_t, u_int8_t *, u_int8_t *);
100 static	void blf_decrypt(caddr_t, u_int8_t *, u_int8_t *);
101 static	void cast5_decrypt(caddr_t, u_int8_t *, u_int8_t *);
102 static	void skipjack_decrypt(caddr_t, u_int8_t *, u_int8_t *);
103 static	void rijndael128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
104 static	void aes_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
105 static	void cml_decrypt(caddr_t, u_int8_t *, u_int8_t *);
106 static	void twofish128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
107 static	void serpent128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
108 static	void twofish_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
109 static	void serpent_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
110 static	void des1_zerokey(u_int8_t **);
111 static	void des3_zerokey(u_int8_t **);
112 static	void blf_zerokey(u_int8_t **);
113 static	void cast5_zerokey(u_int8_t **);
114 static	void skipjack_zerokey(u_int8_t **);
115 static	void rijndael128_zerokey(u_int8_t **);
116 static	void aes_xts_zerokey(u_int8_t **);
117 static	void aes_ctr_zerokey(u_int8_t **);
118 static	void cml_zerokey(u_int8_t **);
119 static	void twofish128_zerokey(u_int8_t **);
120 static	void serpent128_zerokey(u_int8_t **);
121 static	void twofish_xts_zerokey(u_int8_t **);
122 static	void serpent_xts_zerokey(u_int8_t **);
123 
124 static	void aes_ctr_crypt(caddr_t, u_int8_t *, u_int8_t *);
125 
126 static	void aes_ctr_reinit(caddr_t, u_int8_t *);
127 static	void aes_xts_reinit(caddr_t, u_int8_t *);
128 static	void aes_gcm_reinit(caddr_t, u_int8_t *);
129 static	void twofish_xts_reinit(caddr_t, u_int8_t *);
130 static	void serpent_xts_reinit(caddr_t, u_int8_t *);
131 
132 static	void null_init(void *);
133 static	int null_update(void *, u_int8_t *, u_int16_t);
134 static	void null_final(u_int8_t *, void *);
135 static	int MD5Update_int(void *, u_int8_t *, u_int16_t);
136 static	void SHA1Init_int(void *);
137 static	int SHA1Update_int(void *, u_int8_t *, u_int16_t);
138 static	void SHA1Final_int(u_int8_t *, void *);
139 static	int RMD160Update_int(void *, u_int8_t *, u_int16_t);
140 static	int SHA256Update_int(void *, u_int8_t *, u_int16_t);
141 static	int SHA384Update_int(void *, u_int8_t *, u_int16_t);
142 static	int SHA512Update_int(void *, u_int8_t *, u_int16_t);
143 
144 static	u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
145 static	u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
146 
147 /* Helper */
148 struct aes_xts_ctx;
149 struct twofish_xts_ctx;
150 struct serpent_xts_ctx;
151 static void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int8_t *, u_int);
152 static void twofish_xts_crypt(struct twofish_xts_ctx *, u_int8_t *, u_int8_t *,
153     u_int);
154 static void serpent_xts_crypt(struct serpent_xts_ctx *, u_int8_t *, u_int8_t *,
155     u_int);
156 
157 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
158 
159 /* Encryption instances */
160 struct enc_xform enc_xform_null = {
161 	CRYPTO_NULL_CBC, "NULL",
162 	/* NB: blocksize of 4 is to generate a properly aligned ESP header */
163 	NULL_BLOCK_LEN, NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
164 	null_encrypt,
165 	null_decrypt,
166 	null_setkey,
167 	null_zerokey,
168 	NULL
169 };
170 
171 struct enc_xform enc_xform_des = {
172 	CRYPTO_DES_CBC, "DES",
173 	DES_BLOCK_LEN, DES_BLOCK_LEN, 8, 8,
174 	des1_encrypt,
175 	des1_decrypt,
176 	des1_setkey,
177 	des1_zerokey,
178 	NULL
179 };
180 
181 struct enc_xform enc_xform_3des = {
182 	CRYPTO_3DES_CBC, "3DES",
183 	DES3_BLOCK_LEN, DES3_BLOCK_LEN, 24, 24,
184 	des3_encrypt,
185 	des3_decrypt,
186 	des3_setkey,
187 	des3_zerokey,
188 	NULL
189 };
190 
191 struct enc_xform enc_xform_blf = {
192 	CRYPTO_BLF_CBC, "Blowfish",
193 	BLOWFISH_BLOCK_LEN, BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
194 	blf_encrypt,
195 	blf_decrypt,
196 	blf_setkey,
197 	blf_zerokey,
198 	NULL
199 };
200 
201 struct enc_xform enc_xform_cast5 = {
202 	CRYPTO_CAST_CBC, "CAST-128",
203 	CAST128_BLOCK_LEN, CAST128_BLOCK_LEN, 5, 16,
204 	cast5_encrypt,
205 	cast5_decrypt,
206 	cast5_setkey,
207 	cast5_zerokey,
208 	NULL
209 };
210 
211 struct enc_xform enc_xform_skipjack = {
212 	CRYPTO_SKIPJACK_CBC, "Skipjack",
213 	SKIPJACK_BLOCK_LEN, SKIPJACK_BLOCK_LEN, 10, 10,
214 	skipjack_encrypt,
215 	skipjack_decrypt,
216 	skipjack_setkey,
217 	skipjack_zerokey,
218 	NULL
219 };
220 
221 struct enc_xform enc_xform_rijndael128 = {
222 	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
223 	RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, 8, 32,
224 	rijndael128_encrypt,
225 	rijndael128_decrypt,
226 	rijndael128_setkey,
227 	rijndael128_zerokey,
228 	NULL
229 };
230 
231 struct enc_xform enc_xform_aes_xts = {
232 	CRYPTO_AES_XTS, "AES-XTS",
233 	AES_XTS_BLOCK_LEN, AES_XTS_IV_LEN, 32, 64,
234 	aes_xts_encrypt,
235 	aes_xts_decrypt,
236 	aes_xts_setkey,
237 	aes_xts_zerokey,
238 	aes_xts_reinit
239 };
240 
241 struct enc_xform enc_xform_aes_ctr = {
242 	CRYPTO_AES_CTR, "AES-CTR",
243 	AESCTR_BLOCK_LEN, AESCTR_IV_LEN, 16+4, 32+4,
244 	aes_ctr_crypt,
245 	aes_ctr_crypt,
246 	aes_ctr_setkey,
247 	aes_ctr_zerokey,
248 	aes_ctr_reinit
249 };
250 
251 struct enc_xform enc_xform_aes_gcm = {
252 	CRYPTO_AES_GCM_16, "AES-GCM",
253 	AESGCM_BLOCK_LEN, AESGCM_IV_LEN, 16+4, 32+4,
254 	aes_ctr_crypt,
255 	aes_ctr_crypt,
256 	aes_ctr_setkey,
257 	aes_ctr_zerokey,
258 	aes_gcm_reinit
259 };
260 
261 struct enc_xform enc_xform_aes_gmac = {
262 	CRYPTO_AES_GMAC, "AES-GMAC",
263 	AESGMAC_BLOCK_LEN, AESGMAC_IV_LEN, 16+4, 32+4,
264 	NULL,
265 	NULL,
266 	NULL,
267 	NULL,
268 	NULL
269 };
270 
271 struct enc_xform enc_xform_arc4 = {
272 	CRYPTO_ARC4, "ARC4",
273 	1, 1, 1, 32,
274 	NULL,
275 	NULL,
276 	NULL,
277 	NULL,
278 	NULL
279 };
280 
281 struct enc_xform enc_xform_camellia = {
282 	CRYPTO_CAMELLIA_CBC, "Camellia",
283 	CAMELLIA_BLOCK_LEN, CAMELLIA_BLOCK_LEN, 8, 32,
284 	cml_encrypt,
285 	cml_decrypt,
286 	cml_setkey,
287 	cml_zerokey,
288 	NULL
289 };
290 
291 struct enc_xform enc_xform_twofish = {
292 	CRYPTO_TWOFISH_CBC, "Twofish",
293 	TWOFISH_BLOCK_LEN, TWOFISH_BLOCK_LEN, 8, 32,
294 	twofish128_encrypt,
295 	twofish128_decrypt,
296 	twofish128_setkey,
297 	twofish128_zerokey,
298 	NULL
299 };
300 
301 struct enc_xform enc_xform_serpent = {
302 	CRYPTO_SERPENT_CBC, "Serpent",
303 	SERPENT_BLOCK_LEN, SERPENT_BLOCK_LEN, 8, 32,
304 	serpent128_encrypt,
305 	serpent128_decrypt,
306 	serpent128_setkey,
307 	serpent128_zerokey,
308 	NULL
309 };
310 
311 struct enc_xform enc_xform_twofish_xts = {
312 	CRYPTO_TWOFISH_XTS, "TWOFISH-XTS",
313 	TWOFISH_XTS_BLOCK_LEN, TWOFISH_XTS_IV_LEN, 32, 64,
314 	twofish_xts_encrypt,
315 	twofish_xts_decrypt,
316 	twofish_xts_setkey,
317 	twofish_xts_zerokey,
318 	twofish_xts_reinit
319 };
320 
321 struct enc_xform enc_xform_serpent_xts = {
322 	CRYPTO_SERPENT_XTS, "SERPENT-XTS",
323 	SERPENT_XTS_BLOCK_LEN, SERPENT_XTS_IV_LEN, 32, 64,
324 	serpent_xts_encrypt,
325 	serpent_xts_decrypt,
326 	serpent_xts_setkey,
327 	serpent_xts_zerokey,
328 	serpent_xts_reinit
329 };
330 
331 
332 /* Authentication instances */
333 struct auth_hash auth_hash_null = {
334 	CRYPTO_NULL_HMAC, "NULL-HMAC",
335 	0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int),	/* NB: context isn't used */
336 	null_init, NULL, NULL, null_update, null_final
337 };
338 
339 struct auth_hash auth_hash_hmac_md5 = {
340 	CRYPTO_MD5_HMAC, "HMAC-MD5",
341 	16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
342 	(void (*) (void *)) MD5Init, NULL, NULL,
343 	MD5Update_int,
344 	(void (*) (u_int8_t *, void *)) MD5Final
345 };
346 
347 struct auth_hash auth_hash_hmac_sha1 = {
348 	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
349 	20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
350 	SHA1Init_int, NULL, NULL,
351 	SHA1Update_int, SHA1Final_int
352 };
353 
354 struct auth_hash auth_hash_hmac_ripemd_160 = {
355 	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
356 	20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
357 	(void (*)(void *)) RMD160Init, NULL, NULL,
358 	RMD160Update_int,
359 	(void (*)(u_int8_t *, void *)) RMD160Final
360 };
361 
362 struct auth_hash auth_hash_key_md5 = {
363 	CRYPTO_MD5_KPDK, "Keyed MD5",
364 	0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
365 	(void (*)(void *)) MD5Init, NULL, NULL,
366 	MD5Update_int,
367 	(void (*)(u_int8_t *, void *)) MD5Final
368 };
369 
370 struct auth_hash auth_hash_key_sha1 = {
371 	CRYPTO_SHA1_KPDK, "Keyed SHA1",
372 	0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
373 	SHA1Init_int, NULL, NULL,
374 	SHA1Update_int, SHA1Final_int
375 };
376 
377 struct auth_hash auth_hash_hmac_sha2_256 = {
378 	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
379 	32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
380 	(void (*)(void *)) SHA256_Init, NULL, NULL,
381 	SHA256Update_int,
382 	(void (*)(u_int8_t *, void *)) SHA256_Final
383 };
384 
385 struct auth_hash auth_hash_hmac_sha2_384 = {
386 	CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
387 	48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
388 	(void (*)(void *)) SHA384_Init, NULL, NULL,
389 	SHA384Update_int,
390 	(void (*)(u_int8_t *, void *)) SHA384_Final
391 };
392 
393 struct auth_hash auth_hash_hmac_sha2_512 = {
394 	CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
395 	64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
396 	(void (*)(void *)) SHA512_Init, NULL, NULL,
397 	SHA512Update_int,
398 	(void (*)(u_int8_t *, void *)) SHA512_Final
399 };
400 
401 struct auth_hash auth_hash_gmac_aes_128 = {
402 	CRYPTO_AES_128_GMAC, "GMAC-AES-128",
403 	16+4, 16, 16, sizeof(AES_GMAC_CTX),
404 	(void (*)(void *)) AES_GMAC_Init,
405 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
406 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
407 	(int  (*)(void *, u_int8_t *, u_int16_t)) AES_GMAC_Update,
408 	(void (*)(u_int8_t *, void *)) AES_GMAC_Final
409 };
410 
411 struct auth_hash auth_hash_gmac_aes_192 = {
412 	CRYPTO_AES_192_GMAC, "GMAC-AES-192",
413 	24+4, 16, 16, sizeof(AES_GMAC_CTX),
414 	(void (*)(void *)) AES_GMAC_Init,
415 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
416 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
417 	(int  (*)(void *, u_int8_t *, u_int16_t)) AES_GMAC_Update,
418 	(void (*)(u_int8_t *, void *)) AES_GMAC_Final
419 };
420 
421 struct auth_hash auth_hash_gmac_aes_256 = {
422 	CRYPTO_AES_256_GMAC, "GMAC-AES-256",
423 	32+4, 16, 16, sizeof(AES_GMAC_CTX),
424 	(void (*)(void *)) AES_GMAC_Init,
425 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
426 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
427 	(int  (*)(void *, u_int8_t *, u_int16_t)) AES_GMAC_Update,
428 	(void (*)(u_int8_t *, void *)) AES_GMAC_Final
429 };
430 
431 /* Compression instance */
432 struct comp_algo comp_algo_deflate = {
433 	CRYPTO_DEFLATE_COMP, "Deflate",
434 	90, deflate_compress,
435 	deflate_decompress
436 };
437 
438 /*
439  * Encryption wrapper routines.
440  */
441 static void
442 null_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
443 {
444 }
445 static void
446 null_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
447 {
448 }
449 static int
450 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
451 {
452 	*sched = NULL;
453 	return 0;
454 }
455 static void
456 null_zerokey(u_int8_t **sched)
457 {
458 	*sched = NULL;
459 }
460 
461 static void
462 des1_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
463 {
464 	des_cblock *cb = (des_cblock *) blk;
465 	des_key_schedule *p = (des_key_schedule *) key;
466 
467 	des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
468 }
469 
470 static void
471 des1_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
472 {
473 	des_cblock *cb = (des_cblock *) blk;
474 	des_key_schedule *p = (des_key_schedule *) key;
475 
476 	des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
477 }
478 
479 static int
480 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
481 {
482 	des_key_schedule *p;
483 	int err;
484 
485 	p = kmalloc(sizeof (des_key_schedule),
486 		    M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
487 	if (p != NULL) {
488 		des_set_key((des_cblock *) key, p[0]);
489 		err = 0;
490 	} else
491 		err = ENOMEM;
492 	*sched = (u_int8_t *) p;
493 	return err;
494 }
495 
496 static void
497 des1_zerokey(u_int8_t **sched)
498 {
499 	bzero(*sched, sizeof (des_key_schedule));
500 	kfree(*sched, M_CRYPTO_DATA);
501 	*sched = NULL;
502 }
503 
504 static void
505 des3_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
506 {
507 	des_cblock *cb = (des_cblock *) blk;
508 	des_key_schedule *p = (des_key_schedule *) key;
509 
510 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
511 }
512 
513 static void
514 des3_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
515 {
516 	des_cblock *cb = (des_cblock *) blk;
517 	des_key_schedule *p = (des_key_schedule *) key;
518 
519 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
520 }
521 
522 static int
523 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
524 {
525 	des_key_schedule *p;
526 	int err;
527 
528 	p = kmalloc(3 * sizeof(des_key_schedule),
529 		    M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
530 	if (p != NULL) {
531 		des_set_key((des_cblock *)(key +  0), p[0]);
532 		des_set_key((des_cblock *)(key +  8), p[1]);
533 		des_set_key((des_cblock *)(key + 16), p[2]);
534 		err = 0;
535 	} else
536 		err = ENOMEM;
537 	*sched = (u_int8_t *) p;
538 	return err;
539 }
540 
541 static void
542 des3_zerokey(u_int8_t **sched)
543 {
544 	bzero(*sched, 3*sizeof (des_key_schedule));
545 	kfree(*sched, M_CRYPTO_DATA);
546 	*sched = NULL;
547 }
548 
549 static void
550 blf_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
551 {
552 	BF_LONG t[2];
553 
554 	memcpy(t, blk, sizeof (t));
555 	t[0] = ntohl(t[0]);
556 	t[1] = ntohl(t[1]);
557 	/* NB: BF_encrypt expects the block in host order! */
558 	BF_encrypt(t, (BF_KEY *) key);
559 	t[0] = htonl(t[0]);
560 	t[1] = htonl(t[1]);
561 	memcpy(blk, t, sizeof (t));
562 }
563 
564 static void
565 blf_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
566 {
567 	BF_LONG t[2];
568 
569 	memcpy(t, blk, sizeof (t));
570 	t[0] = ntohl(t[0]);
571 	t[1] = ntohl(t[1]);
572 	/* NB: BF_decrypt expects the block in host order! */
573 	BF_decrypt(t, (BF_KEY *) key);
574 	t[0] = htonl(t[0]);
575 	t[1] = htonl(t[1]);
576 	memcpy(blk, t, sizeof (t));
577 }
578 
579 static int
580 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
581 {
582 	int err;
583 
584 	*sched = kmalloc(sizeof(BF_KEY), M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
585 	if (*sched != NULL) {
586 		BF_set_key((BF_KEY *) *sched, len, key);
587 		err = 0;
588 	} else
589 		err = ENOMEM;
590 	return err;
591 }
592 
593 static void
594 blf_zerokey(u_int8_t **sched)
595 {
596 	bzero(*sched, sizeof(BF_KEY));
597 	kfree(*sched, M_CRYPTO_DATA);
598 	*sched = NULL;
599 }
600 
601 static void
602 cast5_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
603 {
604 	cast_encrypt((cast_key *) key, blk, blk);
605 }
606 
607 static void
608 cast5_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
609 {
610 	cast_decrypt((cast_key *) key, blk, blk);
611 }
612 
613 static int
614 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
615 {
616 	int err;
617 
618 	*sched = kmalloc(sizeof(cast_key), M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
619 	if (*sched != NULL) {
620 		cast_setkey((cast_key *)*sched, key, len);
621 		err = 0;
622 	} else
623 		err = ENOMEM;
624 	return err;
625 }
626 
627 static void
628 cast5_zerokey(u_int8_t **sched)
629 {
630 	bzero(*sched, sizeof(cast_key));
631 	kfree(*sched, M_CRYPTO_DATA);
632 	*sched = NULL;
633 }
634 
635 static void
636 skipjack_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
637 {
638 	skipjack_forwards(blk, blk, (u_int8_t **) key);
639 }
640 
641 static void
642 skipjack_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
643 {
644 	skipjack_backwards(blk, blk, (u_int8_t **) key);
645 }
646 
647 static int
648 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
649 {
650 	int err;
651 
652 	/* NB: allocate all the memory that's needed at once */
653 	*sched = kmalloc(10 * (sizeof(u_int8_t *) + 0x100),
654 			 M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
655 	if (*sched != NULL) {
656 		u_int8_t** key_tables = (u_int8_t**) *sched;
657 		u_int8_t* table = (u_int8_t*) &key_tables[10];
658 		int k;
659 
660 		for (k = 0; k < 10; k++) {
661 			key_tables[k] = table;
662 			table += 0x100;
663 		}
664 		subkey_table_gen(key, (u_int8_t **) *sched);
665 		err = 0;
666 	} else
667 		err = ENOMEM;
668 	return err;
669 }
670 
671 static void
672 skipjack_zerokey(u_int8_t **sched)
673 {
674 	bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
675 	kfree(*sched, M_CRYPTO_DATA);
676 	*sched = NULL;
677 }
678 
679 static void
680 rijndael128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
681 {
682 	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
683 }
684 
685 static void
686 rijndael128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
687 {
688 	rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
689 	    (u_char *) blk);
690 }
691 
692 static int
693 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
694 {
695 	int err;
696 
697 	if (len != 16 && len != 24 && len != 32)
698 		return (EINVAL);
699 	*sched = kmalloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
700 			 M_INTWAIT | M_ZERO);
701 	if (*sched != NULL) {
702 		rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
703 		    len * 8);
704 		err = 0;
705 	} else
706 		err = ENOMEM;
707 	return err;
708 }
709 
710 static void
711 rijndael128_zerokey(u_int8_t **sched)
712 {
713 	bzero(*sched, sizeof(rijndael_ctx));
714 	kfree(*sched, M_CRYPTO_DATA);
715 	*sched = NULL;
716 }
717 
718 #define AES_XTS_ALPHA		0x87	/* GF(2^128) generator polynomial */
719 
720 struct aes_xts_ctx {
721 	rijndael_ctx key1;
722 	rijndael_ctx key2;
723 };
724 
725 void
726 aes_xts_reinit(caddr_t key, u_int8_t *iv)
727 {
728 	struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
729 #if 0
730 	u_int64_t blocknum;
731 	u_int i;
732 #endif
733 
734 #if 0
735 	/*
736 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
737 	 * of a 64-bit block number which we allow to be passed in directly.
738 	 */
739 	/* XXX: possibly use htole64? */
740 #endif
741 	/* Last 64 bits of IV are always zero */
742 	bzero(iv + AES_XTS_IV_LEN, AES_XTS_IV_LEN);
743 
744 	rijndael_encrypt(&ctx->key2, iv, iv);
745 }
746 
747 void
748 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv, u_int do_encrypt)
749 {
750 	u_int8_t block[AES_XTS_BLOCK_LEN];
751 	u_int i, carry_in, carry_out;
752 
753 	for (i = 0; i < AES_XTS_BLOCK_LEN; i++)
754 		block[i] = data[i] ^ iv[i];
755 
756 	if (do_encrypt)
757 		rijndael_encrypt(&ctx->key1, block, data);
758 	else
759 		rijndael_decrypt(&ctx->key1, block, data);
760 
761 	for (i = 0; i < AES_XTS_BLOCK_LEN; i++)
762 		data[i] ^= iv[i];
763 
764 	/* Exponentiate tweak */
765 	carry_in = 0;
766 	for (i = 0; i < AES_XTS_BLOCK_LEN; i++) {
767 		carry_out = iv[i] & 0x80;
768 		iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
769 		carry_in = carry_out;
770 	}
771 	if (carry_in)
772 		iv[0] ^= AES_XTS_ALPHA;
773 	bzero(block, sizeof(block));
774 }
775 
776 void
777 aes_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
778 {
779 	aes_xts_crypt((struct aes_xts_ctx *)key, data, iv, 1);
780 }
781 
782 void
783 aes_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
784 {
785 	aes_xts_crypt((struct aes_xts_ctx *)key, data, iv, 0);
786 }
787 
788 int
789 aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
790 {
791 	struct aes_xts_ctx *ctx;
792 
793 	if (len != 32 && len != 64)
794 		return -1;
795 
796 	*sched = kmalloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
797 	    M_WAITOK | M_ZERO);
798 	ctx = (struct aes_xts_ctx *)*sched;
799 
800 	rijndael_set_key(&ctx->key1, key, len * 4);
801 	rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
802 
803 	return 0;
804 }
805 
806 void
807 aes_xts_zerokey(u_int8_t **sched)
808 {
809 	bzero(*sched, sizeof(struct aes_xts_ctx));
810 	kfree(*sched, M_CRYPTO_DATA);
811 	*sched = NULL;
812 }
813 
814 #define AESCTR_NONCESIZE	4
815 
816 struct aes_ctr_ctx {
817 	u_int32_t       ac_ek[4*(14 + 1)];
818 	u_int8_t        ac_block[AESCTR_BLOCK_LEN];
819 	int             ac_nr;
820 };
821 
822 void
823 aes_ctr_reinit(caddr_t key, u_int8_t *iv)
824 {
825 	struct aes_ctr_ctx *ctx;
826 
827 	ctx = (struct aes_ctr_ctx *)key;
828 	bcopy(iv, iv + AESCTR_NONCESIZE, AESCTR_IV_LEN);
829 	bcopy(ctx->ac_block, iv, AESCTR_NONCESIZE);
830 
831 	/* reset counter */
832 	bzero(iv + AESCTR_NONCESIZE + AESCTR_IV_LEN, 4);
833 }
834 
835 void
836 aes_ctr_crypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
837 {
838 	struct aes_ctr_ctx *ctx;
839 	u_int8_t keystream[AESCTR_BLOCK_LEN];
840 	int i;
841 
842 	ctx = (struct aes_ctr_ctx *)key;
843 	/* increment counter */
844 	for (i = AESCTR_BLOCK_LEN - 1;
845 	i >= AESCTR_NONCESIZE + AESCTR_IV_LEN; i--)
846 		if (++iv[i])   /* continue on overflow */
847 			break;
848 	rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, iv, keystream);
849 	for (i = 0; i < AESCTR_BLOCK_LEN; i++)
850 		data[i] ^= keystream[i];
851 	bzero(keystream, sizeof(keystream));
852 }
853 
854 int
855 aes_ctr_setkey(u_int8_t **sched, u_int8_t *key, int len)
856 {
857 	struct aes_ctr_ctx *ctx;
858 
859 	if (len < AESCTR_NONCESIZE)
860 		return -1;
861 
862 	*sched = kmalloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA,
863 	M_WAITOK | M_ZERO);
864 	ctx = (struct aes_ctr_ctx *)*sched;
865 	ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key,
866 	(len - AESCTR_NONCESIZE) * 8);
867 	if (ctx->ac_nr == 0) {
868 		aes_ctr_zerokey(sched);
869 		return -1;
870 	}
871 	bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
872 	return 0;
873 }
874 
875 void
876 aes_ctr_zerokey(u_int8_t **sched)
877 {
878 	bzero(*sched, sizeof(struct aes_ctr_ctx));
879 	kfree(*sched, M_CRYPTO_DATA);
880 	*sched = NULL;
881 }
882 
883 static void
884 aes_gcm_reinit(caddr_t key, u_int8_t *iv)
885 {
886 	struct aes_ctr_ctx *ctx;
887 
888 	ctx = (struct aes_ctr_ctx *)key;
889 	bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IV_LEN);
890 
891 	/* reset counter */
892 	bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IV_LEN, 4);
893 	ctx->ac_block[AESCTR_BLOCK_LEN - 1] = 1; /* GCM starts with 1 */
894 }
895 
896 static void
897 cml_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
898 {
899 	camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
900 }
901 
902 static void
903 cml_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
904 {
905 	camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
906 	    (u_char *) blk);
907 }
908 
909 static int
910 cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
911 {
912 	int err;
913 
914 	if (len != 16 && len != 24 && len != 32)
915 		return (EINVAL);
916 	*sched = kmalloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
917 			 M_INTWAIT | M_ZERO);
918 	if (*sched != NULL) {
919 		camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
920 		    len * 8);
921 		err = 0;
922 	} else
923 		err = ENOMEM;
924 	return err;
925 }
926 
927 static void
928 cml_zerokey(u_int8_t **sched)
929 {
930 	bzero(*sched, sizeof(camellia_ctx));
931 	kfree(*sched, M_CRYPTO_DATA);
932 	*sched = NULL;
933 }
934 
935 static void
936 twofish128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
937 {
938 	twofish_encrypt((twofish_ctx *) key, (u_int8_t *) blk,
939 	    (u_int8_t *) blk);
940 }
941 
942 static void
943 twofish128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
944 {
945 	twofish_decrypt(((twofish_ctx *) key), (u_int8_t *) blk,
946 	    (u_int8_t *) blk);
947 }
948 
949 static int
950 twofish128_setkey(u_int8_t **sched, u_int8_t *key, int len)
951 {
952 	int err;
953 
954 	if (len != 16 && len != 24 && len != 32)
955 		return (EINVAL);
956 	*sched = kmalloc(sizeof(twofish_ctx), M_CRYPTO_DATA,
957 			 M_INTWAIT | M_ZERO);
958 	if (*sched != NULL) {
959 		twofish_set_key((twofish_ctx *) *sched, (u_int8_t *) key,
960 		    len * 8);
961 		err = 0;
962 	} else
963 		err = ENOMEM;
964 	return err;
965 }
966 
967 static void
968 twofish128_zerokey(u_int8_t **sched)
969 {
970 	bzero(*sched, sizeof(twofish_ctx));
971 	kfree(*sched, M_CRYPTO_DATA);
972 	*sched = NULL;
973 }
974 
975 static void
976 serpent128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
977 {
978 	serpent_encrypt((serpent_ctx *) key, (u_int8_t *) blk,
979 	    (u_int8_t *) blk);
980 }
981 
982 static void
983 serpent128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
984 {
985 	serpent_decrypt(((serpent_ctx *) key), (u_int8_t *) blk,
986 	    (u_int8_t *) blk);
987 }
988 
989 static int
990 serpent128_setkey(u_int8_t **sched, u_int8_t *key, int len)
991 {
992 	int err;
993 
994 	if (len != 16 && len != 24 && len != 32)
995 		return (EINVAL);
996 	*sched = kmalloc(sizeof(serpent_ctx), M_CRYPTO_DATA,
997 			 M_INTWAIT | M_ZERO);
998 	if (*sched != NULL) {
999 		serpent_set_key((serpent_ctx *) *sched, (u_int8_t *) key,
1000 		    len * 8);
1001 		err = 0;
1002 	} else
1003 		err = ENOMEM;
1004 	return err;
1005 }
1006 
1007 static void
1008 serpent128_zerokey(u_int8_t **sched)
1009 {
1010 	bzero(*sched, sizeof(serpent_ctx));
1011 	kfree(*sched, M_CRYPTO_DATA);
1012 	*sched = NULL;
1013 }
1014 
1015 
1016 struct twofish_xts_ctx {
1017 	twofish_ctx key1;
1018 	twofish_ctx key2;
1019 };
1020 
1021 void
1022 twofish_xts_reinit(caddr_t key, u_int8_t *iv)
1023 {
1024 	struct twofish_xts_ctx *ctx = (struct twofish_xts_ctx *)key;
1025 #if 0
1026 	u_int64_t blocknum;
1027 #endif
1028 
1029 #if 0
1030 	/*
1031 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
1032 	 * of a 64-bit block number which we allow to be passed in directly.
1033 	 */
1034 	/* XXX: possibly use htole64? */
1035 #endif
1036 	/* Last 64 bits of IV are always zero */
1037 	bzero(iv + TWOFISH_XTS_IV_LEN, TWOFISH_XTS_IV_LEN);
1038 
1039 	twofish_encrypt(&ctx->key2, iv, iv);
1040 }
1041 
1042 void
1043 twofish_xts_crypt(struct twofish_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv,
1044     u_int do_encrypt)
1045 {
1046 	u_int8_t block[TWOFISH_XTS_BLOCK_LEN];
1047 	u_int i, carry_in, carry_out;
1048 
1049 	for (i = 0; i < TWOFISH_XTS_BLOCK_LEN; i++)
1050 		block[i] = data[i] ^ iv[i];
1051 
1052 	if (do_encrypt)
1053 		twofish_encrypt(&ctx->key1, block, data);
1054 	else
1055 		twofish_decrypt(&ctx->key1, block, data);
1056 
1057 	for (i = 0; i < TWOFISH_XTS_BLOCK_LEN; i++)
1058 		data[i] ^= iv[i];
1059 
1060 	/* Exponentiate tweak */
1061 	carry_in = 0;
1062 	for (i = 0; i < TWOFISH_XTS_BLOCK_LEN; i++) {
1063 		carry_out = iv[i] & 0x80;
1064 		iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
1065 		carry_in = carry_out;
1066 	}
1067 	if (carry_in)
1068 		iv[0] ^= AES_XTS_ALPHA;
1069 	bzero(block, sizeof(block));
1070 }
1071 
1072 void
1073 twofish_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
1074 {
1075 	twofish_xts_crypt((struct twofish_xts_ctx *)key, data, iv, 1);
1076 }
1077 
1078 void
1079 twofish_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
1080 {
1081 	twofish_xts_crypt((struct twofish_xts_ctx *)key, data, iv, 0);
1082 }
1083 
1084 int
1085 twofish_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
1086 {
1087 	struct twofish_xts_ctx *ctx;
1088 
1089 	if (len != 32 && len != 64)
1090 		return -1;
1091 
1092 	*sched = kmalloc(sizeof(struct twofish_xts_ctx), M_CRYPTO_DATA,
1093 	    M_WAITOK | M_ZERO);
1094 	ctx = (struct twofish_xts_ctx *)*sched;
1095 
1096 	twofish_set_key(&ctx->key1, key, len * 4);
1097 	twofish_set_key(&ctx->key2, key + (len / 2), len * 4);
1098 
1099 	return 0;
1100 }
1101 
1102 void
1103 twofish_xts_zerokey(u_int8_t **sched)
1104 {
1105 	bzero(*sched, sizeof(struct twofish_xts_ctx));
1106 	kfree(*sched, M_CRYPTO_DATA);
1107 	*sched = NULL;
1108 }
1109 
1110 struct serpent_xts_ctx {
1111 	serpent_ctx key1;
1112 	serpent_ctx key2;
1113 };
1114 
1115 void
1116 serpent_xts_reinit(caddr_t key, u_int8_t *iv)
1117 {
1118 	struct serpent_xts_ctx *ctx = (struct serpent_xts_ctx *)key;
1119 #if 0
1120 	u_int64_t blocknum;
1121 	u_int i;
1122 #endif
1123 
1124 #if 0
1125 	/*
1126 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
1127 	 * of a 64-bit block number which we allow to be passed in directly.
1128 	 */
1129 	/* XXX: possibly use htole64? */
1130 #endif
1131 	/* Last 64 bits of IV are always zero */
1132 	bzero(iv + SERPENT_XTS_IV_LEN, SERPENT_XTS_IV_LEN);
1133 
1134 	serpent_encrypt(&ctx->key2, iv, iv);
1135 }
1136 
1137 void
1138 serpent_xts_crypt(struct serpent_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv,
1139     u_int do_encrypt)
1140 {
1141 	u_int8_t block[SERPENT_XTS_BLOCK_LEN];
1142 	u_int i, carry_in, carry_out;
1143 
1144 	for (i = 0; i < SERPENT_XTS_BLOCK_LEN; i++)
1145 		block[i] = data[i] ^ iv[i];
1146 
1147 	if (do_encrypt)
1148 		serpent_encrypt(&ctx->key1, block, data);
1149 	else
1150 		serpent_decrypt(&ctx->key1, block, data);
1151 
1152 	for (i = 0; i < SERPENT_XTS_BLOCK_LEN; i++)
1153 		data[i] ^= iv[i];
1154 
1155 	/* Exponentiate tweak */
1156 	carry_in = 0;
1157 	for (i = 0; i < SERPENT_XTS_BLOCK_LEN; i++) {
1158 		carry_out = iv[i] & 0x80;
1159 		iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
1160 		carry_in = carry_out;
1161 	}
1162 	if (carry_in)
1163 		iv[0] ^= AES_XTS_ALPHA;
1164 	bzero(block, sizeof(block));
1165 }
1166 
1167 void
1168 serpent_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
1169 {
1170 	serpent_xts_crypt((struct serpent_xts_ctx *)key, data, iv, 1);
1171 }
1172 
1173 void
1174 serpent_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
1175 {
1176 	serpent_xts_crypt((struct serpent_xts_ctx *)key, data, iv, 0);
1177 }
1178 
1179 int
1180 serpent_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
1181 {
1182 	struct serpent_xts_ctx *ctx;
1183 
1184 	if (len != 32 && len != 64)
1185 		return -1;
1186 
1187 	*sched = kmalloc(sizeof(struct serpent_xts_ctx), M_CRYPTO_DATA,
1188 	    M_WAITOK | M_ZERO);
1189 	ctx = (struct serpent_xts_ctx *)*sched;
1190 
1191 	serpent_set_key(&ctx->key1, key, len * 4);
1192 	serpent_set_key(&ctx->key2, key + (len / 2), len * 4);
1193 
1194 	return 0;
1195 }
1196 
1197 void
1198 serpent_xts_zerokey(u_int8_t **sched)
1199 {
1200 	bzero(*sched, sizeof(struct serpent_xts_ctx));
1201 	kfree(*sched, M_CRYPTO_DATA);
1202 	*sched = NULL;
1203 }
1204 
1205 
1206 /*
1207  * And now for auth.
1208  */
1209 
1210 static void
1211 null_init(void *ctx)
1212 {
1213 }
1214 
1215 static int
1216 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
1217 {
1218 	return 0;
1219 }
1220 
1221 static void
1222 null_final(u_int8_t *buf, void *ctx)
1223 {
1224 	if (buf != NULL)
1225 		bzero(buf, 12);
1226 }
1227 
1228 static int
1229 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1230 {
1231 	RMD160Update(ctx, buf, len);
1232 	return 0;
1233 }
1234 
1235 static int
1236 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1237 {
1238 	MD5Update(ctx, buf, len);
1239 	return 0;
1240 }
1241 
1242 static void
1243 SHA1Init_int(void *ctx)
1244 {
1245 	SHA1Init(ctx);
1246 }
1247 
1248 static int
1249 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1250 {
1251 	SHA1Update(ctx, buf, len);
1252 	return 0;
1253 }
1254 
1255 static void
1256 SHA1Final_int(u_int8_t *blk, void *ctx)
1257 {
1258 	SHA1Final(blk, ctx);
1259 }
1260 
1261 static int
1262 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1263 {
1264 	SHA256_Update(ctx, buf, len);
1265 	return 0;
1266 }
1267 
1268 static int
1269 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1270 {
1271 	SHA384_Update(ctx, buf, len);
1272 	return 0;
1273 }
1274 
1275 static int
1276 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1277 {
1278 	SHA512_Update(ctx, buf, len);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * And compression
1284  */
1285 
1286 static u_int32_t
1287 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
1288 {
1289 	return deflate_global(data, size, 0, out);
1290 }
1291 
1292 static u_int32_t
1293 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
1294 {
1295 	return deflate_global(data, size, 1, out);
1296 }
1297