xref: /dragonfly/sys/opencrypto/xform.c (revision a68e0df0)
1 /*	$FreeBSD: src/sys/opencrypto/xform.c,v 1.10 2008/10/23 15:53:51 des Exp $	*/
2 /*	$OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $	*/
3 /*-
4  * The authors of this code are John Ioannidis (ji@tla.org),
5  * Angelos D. Keromytis (kermit@csd.uch.gr) and
6  * Niels Provos (provos@physnet.uni-hamburg.de).
7  *
8  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
9  * in November 1995.
10  *
11  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12  * by Angelos D. Keromytis.
13  *
14  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
15  * and Niels Provos.
16  *
17  * Additional features in 1999 by Angelos D. Keromytis.
18  *
19  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
20  * Angelos D. Keromytis and Niels Provos.
21  *
22  * Copyright (C) 2001, Angelos D. Keromytis.
23  *
24  * Permission to use, copy, and modify this software with or without fee
25  * is hereby granted, provided that this entire notice is included in
26  * all copies of any software which is or includes a copy or
27  * modification of this software.
28  * You may use this code under the GNU public license if you so wish. Please
29  * contribute changes back to the authors under this freer than GPL license
30  * so that we may further the use of strong encryption without limitations to
31  * all.
32  *
33  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
34  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
35  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
36  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
37  * PURPOSE.
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/sysctl.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <machine/cpu.h>
48 
49 #include <crypto/blowfish/blowfish.h>
50 #include <crypto/des/des.h>
51 #include <crypto/rijndael/rijndael.h>
52 #include <crypto/camellia/camellia.h>
53 #include <crypto/sha1.h>
54 
55 #include <opencrypto/cast.h>
56 #include <opencrypto/deflate.h>
57 #include <opencrypto/rmd160.h>
58 #include <opencrypto/skipjack.h>
59 
60 #include <sys/md5.h>
61 
62 #include <opencrypto/cryptodev.h>
63 #include <opencrypto/xform.h>
64 
65 static void null_encrypt(caddr_t, u_int8_t *);
66 static void null_decrypt(caddr_t, u_int8_t *);
67 static int null_setkey(u_int8_t **, u_int8_t *, int);
68 static void null_zerokey(u_int8_t **);
69 
70 static	int des1_setkey(u_int8_t **, u_int8_t *, int);
71 static	int des3_setkey(u_int8_t **, u_int8_t *, int);
72 static	int blf_setkey(u_int8_t **, u_int8_t *, int);
73 static	int cast5_setkey(u_int8_t **, u_int8_t *, int);
74 static	int skipjack_setkey(u_int8_t **, u_int8_t *, int);
75 static	int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
76 static	int cml_setkey(u_int8_t **, u_int8_t *, int);
77 static	void des1_encrypt(caddr_t, u_int8_t *);
78 static	void des3_encrypt(caddr_t, u_int8_t *);
79 static	void blf_encrypt(caddr_t, u_int8_t *);
80 static	void cast5_encrypt(caddr_t, u_int8_t *);
81 static	void skipjack_encrypt(caddr_t, u_int8_t *);
82 static	void rijndael128_encrypt(caddr_t, u_int8_t *);
83 static	void cml_encrypt(caddr_t, u_int8_t *);
84 static	void des1_decrypt(caddr_t, u_int8_t *);
85 static	void des3_decrypt(caddr_t, u_int8_t *);
86 static	void blf_decrypt(caddr_t, u_int8_t *);
87 static	void cast5_decrypt(caddr_t, u_int8_t *);
88 static	void skipjack_decrypt(caddr_t, u_int8_t *);
89 static	void rijndael128_decrypt(caddr_t, u_int8_t *);
90 static	void cml_decrypt(caddr_t, u_int8_t *);
91 static	void des1_zerokey(u_int8_t **);
92 static	void des3_zerokey(u_int8_t **);
93 static	void blf_zerokey(u_int8_t **);
94 static	void cast5_zerokey(u_int8_t **);
95 static	void skipjack_zerokey(u_int8_t **);
96 static	void rijndael128_zerokey(u_int8_t **);
97 static	void cml_zerokey(u_int8_t **);
98 
99 static	void null_init(void *);
100 static	int null_update(void *, u_int8_t *, u_int16_t);
101 static	void null_final(u_int8_t *, void *);
102 static	int MD5Update_int(void *, u_int8_t *, u_int16_t);
103 static	void SHA1Init_int(void *);
104 static	int SHA1Update_int(void *, u_int8_t *, u_int16_t);
105 static	void SHA1Final_int(u_int8_t *, void *);
106 static	int RMD160Update_int(void *, u_int8_t *, u_int16_t);
107 static	int SHA256Update_int(void *, u_int8_t *, u_int16_t);
108 static	int SHA384Update_int(void *, u_int8_t *, u_int16_t);
109 static	int SHA512Update_int(void *, u_int8_t *, u_int16_t);
110 
111 static	u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
112 static	u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
113 
114 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
115 
116 /* Encryption instances */
117 struct enc_xform enc_xform_null = {
118 	CRYPTO_NULL_CBC, "NULL",
119 	/* NB: blocksize of 4 is to generate a properly aligned ESP header */
120 	NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
121 	null_encrypt,
122 	null_decrypt,
123 	null_setkey,
124 	null_zerokey,
125 };
126 
127 struct enc_xform enc_xform_des = {
128 	CRYPTO_DES_CBC, "DES",
129 	DES_BLOCK_LEN, 8, 8,
130 	des1_encrypt,
131 	des1_decrypt,
132 	des1_setkey,
133 	des1_zerokey,
134 };
135 
136 struct enc_xform enc_xform_3des = {
137 	CRYPTO_3DES_CBC, "3DES",
138 	DES3_BLOCK_LEN, 24, 24,
139 	des3_encrypt,
140 	des3_decrypt,
141 	des3_setkey,
142 	des3_zerokey
143 };
144 
145 struct enc_xform enc_xform_blf = {
146 	CRYPTO_BLF_CBC, "Blowfish",
147 	BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
148 	blf_encrypt,
149 	blf_decrypt,
150 	blf_setkey,
151 	blf_zerokey
152 };
153 
154 struct enc_xform enc_xform_cast5 = {
155 	CRYPTO_CAST_CBC, "CAST-128",
156 	CAST128_BLOCK_LEN, 5, 16,
157 	cast5_encrypt,
158 	cast5_decrypt,
159 	cast5_setkey,
160 	cast5_zerokey
161 };
162 
163 struct enc_xform enc_xform_skipjack = {
164 	CRYPTO_SKIPJACK_CBC, "Skipjack",
165 	SKIPJACK_BLOCK_LEN, 10, 10,
166 	skipjack_encrypt,
167 	skipjack_decrypt,
168 	skipjack_setkey,
169 	skipjack_zerokey
170 };
171 
172 struct enc_xform enc_xform_rijndael128 = {
173 	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
174 	RIJNDAEL128_BLOCK_LEN, 8, 32,
175 	rijndael128_encrypt,
176 	rijndael128_decrypt,
177 	rijndael128_setkey,
178 	rijndael128_zerokey,
179 };
180 
181 struct enc_xform enc_xform_arc4 = {
182 	CRYPTO_ARC4, "ARC4",
183 	1, 1, 32,
184 	NULL,
185 	NULL,
186 	NULL,
187 	NULL,
188 };
189 
190 struct enc_xform enc_xform_camellia = {
191 	CRYPTO_CAMELLIA_CBC, "Camellia",
192 	CAMELLIA_BLOCK_LEN, 8, 32,
193 	cml_encrypt,
194 	cml_decrypt,
195 	cml_setkey,
196 	cml_zerokey,
197 };
198 
199 /* Authentication instances */
200 struct auth_hash auth_hash_null = {
201 	CRYPTO_NULL_HMAC, "NULL-HMAC",
202 	0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int),	/* NB: context isn't used */
203 	null_init, null_update, null_final
204 };
205 
206 struct auth_hash auth_hash_hmac_md5 = {
207 	CRYPTO_MD5_HMAC, "HMAC-MD5",
208 	16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
209 	(void (*) (void *)) MD5Init, MD5Update_int,
210 	(void (*) (u_int8_t *, void *)) MD5Final
211 };
212 
213 struct auth_hash auth_hash_hmac_sha1 = {
214 	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
215 	20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
216 	SHA1Init_int, SHA1Update_int, SHA1Final_int
217 };
218 
219 struct auth_hash auth_hash_hmac_ripemd_160 = {
220 	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
221 	20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
222 	(void (*)(void *)) RMD160Init, RMD160Update_int,
223 	(void (*)(u_int8_t *, void *)) RMD160Final
224 };
225 
226 struct auth_hash auth_hash_key_md5 = {
227 	CRYPTO_MD5_KPDK, "Keyed MD5",
228 	0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
229 	(void (*)(void *)) MD5Init, MD5Update_int,
230 	(void (*)(u_int8_t *, void *)) MD5Final
231 };
232 
233 struct auth_hash auth_hash_key_sha1 = {
234 	CRYPTO_SHA1_KPDK, "Keyed SHA1",
235 	0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
236 	SHA1Init_int, SHA1Update_int, SHA1Final_int
237 };
238 
239 struct auth_hash auth_hash_hmac_sha2_256 = {
240 	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
241 	32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
242 	(void (*)(void *)) SHA256_Init, SHA256Update_int,
243 	(void (*)(u_int8_t *, void *)) SHA256_Final
244 };
245 
246 struct auth_hash auth_hash_hmac_sha2_384 = {
247 	CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
248 	48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
249 	(void (*)(void *)) SHA384_Init, SHA384Update_int,
250 	(void (*)(u_int8_t *, void *)) SHA384_Final
251 };
252 
253 struct auth_hash auth_hash_hmac_sha2_512 = {
254 	CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
255 	64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
256 	(void (*)(void *)) SHA512_Init, SHA512Update_int,
257 	(void (*)(u_int8_t *, void *)) SHA512_Final
258 };
259 
260 /* Compression instance */
261 struct comp_algo comp_algo_deflate = {
262 	CRYPTO_DEFLATE_COMP, "Deflate",
263 	90, deflate_compress,
264 	deflate_decompress
265 };
266 
267 /*
268  * Encryption wrapper routines.
269  */
270 static void
271 null_encrypt(caddr_t key, u_int8_t *blk)
272 {
273 }
274 static void
275 null_decrypt(caddr_t key, u_int8_t *blk)
276 {
277 }
278 static int
279 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
280 {
281 	*sched = NULL;
282 	return 0;
283 }
284 static void
285 null_zerokey(u_int8_t **sched)
286 {
287 	*sched = NULL;
288 }
289 
290 static void
291 des1_encrypt(caddr_t key, u_int8_t *blk)
292 {
293 	des_cblock *cb = (des_cblock *) blk;
294 	des_key_schedule *p = (des_key_schedule *) key;
295 
296 	des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
297 }
298 
299 static void
300 des1_decrypt(caddr_t key, u_int8_t *blk)
301 {
302 	des_cblock *cb = (des_cblock *) blk;
303 	des_key_schedule *p = (des_key_schedule *) key;
304 
305 	des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
306 }
307 
308 static int
309 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
310 {
311 	des_key_schedule *p;
312 	int err;
313 
314 	p = kmalloc(sizeof (des_key_schedule),
315 		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
316 	if (p != NULL) {
317 		des_set_key((des_cblock *) key, p[0]);
318 		err = 0;
319 	} else
320 		err = ENOMEM;
321 	*sched = (u_int8_t *) p;
322 	return err;
323 }
324 
325 static void
326 des1_zerokey(u_int8_t **sched)
327 {
328 	bzero(*sched, sizeof (des_key_schedule));
329 	kfree(*sched, M_CRYPTO_DATA);
330 	*sched = NULL;
331 }
332 
333 static void
334 des3_encrypt(caddr_t key, u_int8_t *blk)
335 {
336 	des_cblock *cb = (des_cblock *) blk;
337 	des_key_schedule *p = (des_key_schedule *) key;
338 
339 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
340 }
341 
342 static void
343 des3_decrypt(caddr_t key, u_int8_t *blk)
344 {
345 	des_cblock *cb = (des_cblock *) blk;
346 	des_key_schedule *p = (des_key_schedule *) key;
347 
348 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
349 }
350 
351 static int
352 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
353 {
354 	des_key_schedule *p;
355 	int err;
356 
357 	p = kmalloc(3*sizeof (des_key_schedule),
358 		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
359 	if (p != NULL) {
360 		des_set_key((des_cblock *)(key +  0), p[0]);
361 		des_set_key((des_cblock *)(key +  8), p[1]);
362 		des_set_key((des_cblock *)(key + 16), p[2]);
363 		err = 0;
364 	} else
365 		err = ENOMEM;
366 	*sched = (u_int8_t *) p;
367 	return err;
368 }
369 
370 static void
371 des3_zerokey(u_int8_t **sched)
372 {
373 	bzero(*sched, 3*sizeof (des_key_schedule));
374 	kfree(*sched, M_CRYPTO_DATA);
375 	*sched = NULL;
376 }
377 
378 static void
379 blf_encrypt(caddr_t key, u_int8_t *blk)
380 {
381 	BF_LONG t[2];
382 
383 	memcpy(t, blk, sizeof (t));
384 	t[0] = ntohl(t[0]);
385 	t[1] = ntohl(t[1]);
386 	/* NB: BF_encrypt expects the block in host order! */
387 	BF_encrypt(t, (BF_KEY *) key);
388 	t[0] = htonl(t[0]);
389 	t[1] = htonl(t[1]);
390 	memcpy(blk, t, sizeof (t));
391 }
392 
393 static void
394 blf_decrypt(caddr_t key, u_int8_t *blk)
395 {
396 	BF_LONG t[2];
397 
398 	memcpy(t, blk, sizeof (t));
399 	t[0] = ntohl(t[0]);
400 	t[1] = ntohl(t[1]);
401 	/* NB: BF_decrypt expects the block in host order! */
402 	BF_decrypt(t, (BF_KEY *) key);
403 	t[0] = htonl(t[0]);
404 	t[1] = htonl(t[1]);
405 	memcpy(blk, t, sizeof (t));
406 }
407 
408 static int
409 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
410 {
411 	int err;
412 
413 	*sched = kmalloc(sizeof(BF_KEY),
414 		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
415 	if (*sched != NULL) {
416 		BF_set_key((BF_KEY *) *sched, len, key);
417 		err = 0;
418 	} else
419 		err = ENOMEM;
420 	return err;
421 }
422 
423 static void
424 blf_zerokey(u_int8_t **sched)
425 {
426 	bzero(*sched, sizeof(BF_KEY));
427 	kfree(*sched, M_CRYPTO_DATA);
428 	*sched = NULL;
429 }
430 
431 static void
432 cast5_encrypt(caddr_t key, u_int8_t *blk)
433 {
434 	cast_encrypt((cast_key *) key, blk, blk);
435 }
436 
437 static void
438 cast5_decrypt(caddr_t key, u_int8_t *blk)
439 {
440 	cast_decrypt((cast_key *) key, blk, blk);
441 }
442 
443 static int
444 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
445 {
446 	int err;
447 
448 	*sched = kmalloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
449 	if (*sched != NULL) {
450 		cast_setkey((cast_key *)*sched, key, len);
451 		err = 0;
452 	} else
453 		err = ENOMEM;
454 	return err;
455 }
456 
457 static void
458 cast5_zerokey(u_int8_t **sched)
459 {
460 	bzero(*sched, sizeof(cast_key));
461 	kfree(*sched, M_CRYPTO_DATA);
462 	*sched = NULL;
463 }
464 
465 static void
466 skipjack_encrypt(caddr_t key, u_int8_t *blk)
467 {
468 	skipjack_forwards(blk, blk, (u_int8_t **) key);
469 }
470 
471 static void
472 skipjack_decrypt(caddr_t key, u_int8_t *blk)
473 {
474 	skipjack_backwards(blk, blk, (u_int8_t **) key);
475 }
476 
477 static int
478 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
479 {
480 	int err;
481 
482 	/* NB: allocate all the memory that's needed at once */
483 	*sched = kmalloc(10 * (sizeof(u_int8_t *) + 0x100),
484 		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
485 	if (*sched != NULL) {
486 		u_int8_t** key_tables = (u_int8_t**) *sched;
487 		u_int8_t* table = (u_int8_t*) &key_tables[10];
488 		int k;
489 
490 		for (k = 0; k < 10; k++) {
491 			key_tables[k] = table;
492 			table += 0x100;
493 		}
494 		subkey_table_gen(key, (u_int8_t **) *sched);
495 		err = 0;
496 	} else
497 		err = ENOMEM;
498 	return err;
499 }
500 
501 static void
502 skipjack_zerokey(u_int8_t **sched)
503 {
504 	bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
505 	kfree(*sched, M_CRYPTO_DATA);
506 	*sched = NULL;
507 }
508 
509 static void
510 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
511 {
512 	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
513 }
514 
515 static void
516 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
517 {
518 	rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
519 	    (u_char *) blk);
520 }
521 
522 static int
523 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
524 {
525 	int err;
526 
527 	if (len != 16 && len != 24 && len != 32)
528 		return (EINVAL);
529 	*sched = kmalloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
530 	    M_NOWAIT|M_ZERO);
531 	if (*sched != NULL) {
532 		rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
533 		    len * 8);
534 		err = 0;
535 	} else
536 		err = ENOMEM;
537 	return err;
538 }
539 
540 static void
541 rijndael128_zerokey(u_int8_t **sched)
542 {
543 	bzero(*sched, sizeof(rijndael_ctx));
544 	kfree(*sched, M_CRYPTO_DATA);
545 	*sched = NULL;
546 }
547 
548 static void
549 cml_encrypt(caddr_t key, u_int8_t *blk)
550 {
551 	camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
552 }
553 
554 static void
555 cml_decrypt(caddr_t key, u_int8_t *blk)
556 {
557 	camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
558 	    (u_char *) blk);
559 }
560 
561 static int
562 cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
563 {
564 	int err;
565 
566 	if (len != 16 && len != 24 && len != 32)
567 		return (EINVAL);
568 	*sched = kmalloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
569 	    M_NOWAIT|M_ZERO);
570 	if (*sched != NULL) {
571 		camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
572 		    len * 8);
573 		err = 0;
574 	} else
575 		err = ENOMEM;
576 	return err;
577 }
578 
579 static void
580 cml_zerokey(u_int8_t **sched)
581 {
582 	bzero(*sched, sizeof(camellia_ctx));
583 	kfree(*sched, M_CRYPTO_DATA);
584 	*sched = NULL;
585 }
586 
587 /*
588  * And now for auth.
589  */
590 
591 static void
592 null_init(void *ctx)
593 {
594 }
595 
596 static int
597 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
598 {
599 	return 0;
600 }
601 
602 static void
603 null_final(u_int8_t *buf, void *ctx)
604 {
605 	if (buf != NULL)
606 		bzero(buf, 12);
607 }
608 
609 static int
610 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
611 {
612 	RMD160Update(ctx, buf, len);
613 	return 0;
614 }
615 
616 static int
617 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
618 {
619 	MD5Update(ctx, buf, len);
620 	return 0;
621 }
622 
623 static void
624 SHA1Init_int(void *ctx)
625 {
626 	SHA1Init(ctx);
627 }
628 
629 static int
630 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
631 {
632 	SHA1Update(ctx, buf, len);
633 	return 0;
634 }
635 
636 static void
637 SHA1Final_int(u_int8_t *blk, void *ctx)
638 {
639 	SHA1Final(blk, ctx);
640 }
641 
642 static int
643 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
644 {
645 	SHA256_Update(ctx, buf, len);
646 	return 0;
647 }
648 
649 static int
650 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
651 {
652 	SHA384_Update(ctx, buf, len);
653 	return 0;
654 }
655 
656 static int
657 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
658 {
659 	SHA512_Update(ctx, buf, len);
660 	return 0;
661 }
662 
663 /*
664  * And compression
665  */
666 
667 static u_int32_t
668 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
669 {
670 	return deflate_global(data, size, 0, out);
671 }
672 
673 static u_int32_t
674 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
675 {
676 	return deflate_global(data, size, 1, out);
677 }
678