xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 409b4c59)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  * $DragonFly: src/sys/platform/pc64/isa/clock.c,v 1.1 2008/08/29 17:07:19 dillon Exp $
40  */
41 
42 /*
43  * Routines to handle clock hardware.
44  */
45 
46 /*
47  * inittodr, settodr and support routines written
48  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
49  *
50  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
51  */
52 
53 //#include "use_apm.h"
54 //#include "opt_clock.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #ifndef SMP
63 #include <sys/lock.h>
64 #endif
65 #include <sys/sysctl.h>
66 #include <sys/cons.h>
67 #include <sys/systimer.h>
68 #include <sys/globaldata.h>
69 #include <sys/thread2.h>
70 #include <sys/systimer.h>
71 #include <sys/machintr.h>
72 
73 #include <machine/clock.h>
74 #ifdef CLK_CALIBRATION_LOOP
75 #endif
76 #include <machine/cputypes.h>
77 #include <machine/frame.h>
78 #include <machine/ipl.h>
79 #include <machine/limits.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/segments.h>
83 #include <machine/smp.h>
84 #include <machine/specialreg.h>
85 
86 #include <machine_base/icu/icu.h>
87 #include <bus/isa/isa.h>
88 #include <bus/isa/rtc.h>
89 #include <machine_base/isa/timerreg.h>
90 
91 #include <machine_base/isa/intr_machdep.h>
92 
93 #ifdef APIC_IO
94 /* The interrupt triggered by the 8254 (timer) chip */
95 int apic_8254_intr;
96 static void setup_8254_mixed_mode (void);
97 #endif
98 static void i8254_restore(void);
99 static void resettodr_on_shutdown(void *arg __unused);
100 
101 /*
102  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
103  * can use a simple formula for leap years.
104  */
105 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
106 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
107 
108 #ifndef TIMER_FREQ
109 #define TIMER_FREQ   1193182
110 #endif
111 
112 static uint8_t i8254_walltimer_sel;
113 static uint16_t i8254_walltimer_cntr;
114 
115 int	adjkerntz;		/* local offset from GMT in seconds */
116 int	disable_rtc_set;	/* disable resettodr() if != 0 */
117 int	statclock_disable = 1;	/* we don't use the statclock right now */
118 int	tsc_present;
119 int64_t	tsc_frequency;
120 int	tsc_is_broken;
121 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
122 int	timer0_running;
123 enum tstate { RELEASED, ACQUIRED };
124 enum tstate timer0_state;
125 enum tstate timer1_state;
126 enum tstate timer2_state;
127 
128 static	int	beeping = 0;
129 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
130 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
131 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
132 static  int	rtc_loaded;
133 
134 static int i8254_cputimer_div;
135 
136 static struct callout sysbeepstop_ch;
137 
138 static sysclock_t i8254_cputimer_count(void);
139 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
140 static void i8254_cputimer_destruct(struct cputimer *cputimer);
141 
142 static struct cputimer	i8254_cputimer = {
143     SLIST_ENTRY_INITIALIZER,
144     "i8254",
145     CPUTIMER_PRI_8254,
146     0,
147     i8254_cputimer_count,
148     cputimer_default_fromhz,
149     cputimer_default_fromus,
150     i8254_cputimer_construct,
151     i8254_cputimer_destruct,
152     TIMER_FREQ,
153     0, 0, 0
154 };
155 
156 /*
157  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
158  * counting as of this interrupt.  We use timer1 in free-running mode (not
159  * generating any interrupts) as our main counter.  Each cpu has timeouts
160  * pending.
161  *
162  * This code is INTR_MPSAFE and may be called without the BGL held.
163  */
164 static void
165 clkintr(void *dummy, void *frame_arg)
166 {
167 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
168 	struct globaldata *gd = mycpu;
169 #ifdef SMP
170 	struct globaldata *gscan;
171 	int n;
172 #endif
173 
174 	/*
175 	 * SWSTROBE mode is a one-shot, the timer is no longer running
176 	 */
177 	timer0_running = 0;
178 
179 	/*
180 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
181 	 * directly or via IPI for any cpu with systimers queued, which is
182 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
183 	 */
184 	sysclock_count = sys_cputimer->count();
185 #ifdef SMP
186 	for (n = 0; n < ncpus; ++n) {
187 	    gscan = globaldata_find(n);
188 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
189 		continue;
190 	    if (gscan != gd) {
191 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
192 				&sysclock_count, 0);
193 	    } else {
194 		systimer_intr(&sysclock_count, 0, frame_arg);
195 	    }
196 	}
197 #else
198 	if (TAILQ_FIRST(&gd->gd_systimerq) != NULL)
199 	    systimer_intr(&sysclock_count, 0, frame_arg);
200 #endif
201 }
202 
203 
204 /*
205  * NOTE! not MP safe.
206  */
207 int
208 acquire_timer2(int mode)
209 {
210 	if (timer2_state != RELEASED)
211 		return (-1);
212 	timer2_state = ACQUIRED;
213 
214 	/*
215 	 * This access to the timer registers is as atomic as possible
216 	 * because it is a single instruction.  We could do better if we
217 	 * knew the rate.
218 	 */
219 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
220 	return (0);
221 }
222 
223 int
224 release_timer2(void)
225 {
226 	if (timer2_state != ACQUIRED)
227 		return (-1);
228 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
229 	timer2_state = RELEASED;
230 	return (0);
231 }
232 
233 /*
234  * This routine receives statistical clock interrupts from the RTC.
235  * As explained above, these occur at 128 interrupts per second.
236  * When profiling, we receive interrupts at a rate of 1024 Hz.
237  *
238  * This does not actually add as much overhead as it sounds, because
239  * when the statistical clock is active, the hardclock driver no longer
240  * needs to keep (inaccurate) statistics on its own.  This decouples
241  * statistics gathering from scheduling interrupts.
242  *
243  * The RTC chip requires that we read status register C (RTC_INTR)
244  * to acknowledge an interrupt, before it will generate the next one.
245  * Under high interrupt load, rtcintr() can be indefinitely delayed and
246  * the clock can tick immediately after the read from RTC_INTR.  In this
247  * case, the mc146818A interrupt signal will not drop for long enough
248  * to register with the 8259 PIC.  If an interrupt is missed, the stat
249  * clock will halt, considerably degrading system performance.  This is
250  * why we use 'while' rather than a more straightforward 'if' below.
251  * Stat clock ticks can still be lost, causing minor loss of accuracy
252  * in the statistics, but the stat clock will no longer stop.
253  */
254 static void
255 rtcintr(void *dummy, void *frame)
256 {
257 	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
258 		;
259 		/* statclock(frame); no longer used */
260 }
261 
262 #include "opt_ddb.h"
263 #ifdef DDB
264 #include <ddb/ddb.h>
265 
266 DB_SHOW_COMMAND(rtc, rtc)
267 {
268 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
269 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
270 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
271 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
272 }
273 #endif /* DDB */
274 
275 /*
276  * Return the current cpu timer count as a 32 bit integer.
277  */
278 static
279 sysclock_t
280 i8254_cputimer_count(void)
281 {
282 	static __uint16_t cputimer_last;
283 	__uint16_t count;
284 	sysclock_t ret;
285 
286 	clock_lock();
287 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
288 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
289 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
290 	count = -count;					/* -> countup */
291 	if (count < cputimer_last)			/* rollover */
292 		i8254_cputimer.base += 0x00010000;
293 	ret = i8254_cputimer.base | count;
294 	cputimer_last = count;
295 	clock_unlock();
296 	return(ret);
297 }
298 
299 /*
300  * This function is called whenever the system timebase changes, allowing
301  * us to calculate what is needed to convert a system timebase tick
302  * into an 8254 tick for the interrupt timer.  If we can convert to a
303  * simple shift, multiplication, or division, we do so.  Otherwise 64
304  * bit arithmatic is required every time the interrupt timer is reloaded.
305  */
306 void
307 cputimer_intr_config(struct cputimer *timer)
308 {
309     int freq;
310     int div;
311 
312     /*
313      * Will a simple divide do the trick?
314      */
315     div = (timer->freq + (i8254_cputimer.freq / 2)) / i8254_cputimer.freq;
316     freq = i8254_cputimer.freq * div;
317 
318     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
319 	i8254_cputimer_div = div;
320     else
321 	i8254_cputimer_div = 0;
322 }
323 
324 /*
325  * Reload for the next timeout.  It is possible for the reload value
326  * to be 0 or negative, indicating that an immediate timer interrupt
327  * is desired.  For now make the minimum 2 ticks.
328  *
329  * We may have to convert from the system timebase to the 8254 timebase.
330  */
331 void
332 cputimer_intr_reload(sysclock_t reload)
333 {
334     __uint16_t count;
335 
336     if (i8254_cputimer_div)
337 	reload /= i8254_cputimer_div;
338     else
339 	reload = (int64_t)reload * i8254_cputimer.freq / sys_cputimer->freq;
340 
341     if ((int)reload < 2)
342 	reload = 2;
343 
344     clock_lock();
345     if (timer0_running) {
346 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
347 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
348 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
349 	if (reload < count) {
350 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
351 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
352 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
353 	}
354     } else {
355 	timer0_running = 1;
356 	if (reload > 0xFFFF)
357 	    reload = 0;		/* full count */
358 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
359 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
360 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
361     }
362     clock_unlock();
363 }
364 
365 /*
366  * DELAY(usec)	     - Spin for the specified number of microseconds.
367  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
368  *		       but do a thread switch in the loop
369  *
370  * Relies on timer 1 counting down from (cputimer_freq / hz)
371  * Note: timer had better have been programmed before this is first used!
372  */
373 static void
374 DODELAY(int n, int doswitch)
375 {
376 	int delta, prev_tick, tick, ticks_left;
377 
378 #ifdef DELAYDEBUG
379 	int getit_calls = 1;
380 	int n1;
381 	static int state = 0;
382 
383 	if (state == 0) {
384 		state = 1;
385 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
386 			DELAY(n1);
387 		state = 2;
388 	}
389 	if (state == 1)
390 		kprintf("DELAY(%d)...", n);
391 #endif
392 	/*
393 	 * Guard against the timer being uninitialized if we are called
394 	 * early for console i/o.
395 	 */
396 	if (timer0_state == RELEASED)
397 		i8254_restore();
398 
399 	/*
400 	 * Read the counter first, so that the rest of the setup overhead is
401 	 * counted.  Then calculate the number of hardware timer ticks
402 	 * required, rounding up to be sure we delay at least the requested
403 	 * number of microseconds.
404 	 */
405 	prev_tick = sys_cputimer->count();
406 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
407 		     1000000;
408 
409 	/*
410 	 * Loop until done.
411 	 */
412 	while (ticks_left > 0) {
413 		tick = sys_cputimer->count();
414 #ifdef DELAYDEBUG
415 		++getit_calls;
416 #endif
417 		delta = tick - prev_tick;
418 		prev_tick = tick;
419 		if (delta < 0)
420 			delta = 0;
421 		ticks_left -= delta;
422 		if (doswitch && ticks_left > 0)
423 			lwkt_switch();
424 	}
425 #ifdef DELAYDEBUG
426 	if (state == 1)
427 		kprintf(" %d calls to getit() at %d usec each\n",
428 		       getit_calls, (n + 5) / getit_calls);
429 #endif
430 }
431 
432 void
433 DELAY(int n)
434 {
435 	DODELAY(n, 0);
436 }
437 
438 void
439 DRIVERSLEEP(int usec)
440 {
441 	globaldata_t gd = mycpu;
442 
443 	if (gd->gd_intr_nesting_level ||
444 	    gd->gd_spinlock_rd ||
445 	    gd->gd_spinlocks_wr) {
446 		DODELAY(usec, 0);
447 	} else {
448 		DODELAY(usec, 1);
449 	}
450 }
451 
452 static void
453 sysbeepstop(void *chan)
454 {
455 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
456 	beeping = 0;
457 	release_timer2();
458 }
459 
460 int
461 sysbeep(int pitch, int period)
462 {
463 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
464 		return(-1);
465 	/*
466 	 * Nobody else is using timer2, we do not need the clock lock
467 	 */
468 	outb(TIMER_CNTR2, pitch);
469 	outb(TIMER_CNTR2, (pitch>>8));
470 	if (!beeping) {
471 		/* enable counter2 output to speaker */
472 		outb(IO_PPI, inb(IO_PPI) | 3);
473 		beeping = period;
474 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
475 	}
476 	return (0);
477 }
478 
479 /*
480  * RTC support routines
481  */
482 
483 int
484 rtcin(int reg)
485 {
486 	u_char val;
487 
488 	crit_enter();
489 	outb(IO_RTC, reg);
490 	inb(0x84);
491 	val = inb(IO_RTC + 1);
492 	inb(0x84);
493 	crit_exit();
494 	return (val);
495 }
496 
497 static __inline void
498 writertc(u_char reg, u_char val)
499 {
500 	crit_enter();
501 	inb(0x84);
502 	outb(IO_RTC, reg);
503 	inb(0x84);
504 	outb(IO_RTC + 1, val);
505 	inb(0x84);		/* XXX work around wrong order in rtcin() */
506 	crit_exit();
507 }
508 
509 static __inline int
510 readrtc(int port)
511 {
512 	return(bcd2bin(rtcin(port)));
513 }
514 
515 static u_int
516 calibrate_clocks(void)
517 {
518 	u_int64_t old_tsc;
519 	u_int count, prev_count, tot_count;
520 	int sec, start_sec, timeout;
521 
522 	if (bootverbose)
523 	        kprintf("Calibrating clock(s) ... ");
524 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
525 		goto fail;
526 	timeout = 100000000;
527 
528 	/* Read the mc146818A seconds counter. */
529 	for (;;) {
530 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
531 			sec = rtcin(RTC_SEC);
532 			break;
533 		}
534 		if (--timeout == 0)
535 			goto fail;
536 	}
537 
538 	/* Wait for the mC146818A seconds counter to change. */
539 	start_sec = sec;
540 	for (;;) {
541 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
542 			sec = rtcin(RTC_SEC);
543 			if (sec != start_sec)
544 				break;
545 		}
546 		if (--timeout == 0)
547 			goto fail;
548 	}
549 
550 	/* Start keeping track of the i8254 counter. */
551 	prev_count = sys_cputimer->count();
552 	tot_count = 0;
553 
554 	if (tsc_present)
555 		old_tsc = rdtsc();
556 	else
557 		old_tsc = 0;		/* shut up gcc */
558 
559 	/*
560 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
561 	 * counter for each iteration since this is convenient and only
562 	 * costs a few usec of inaccuracy. The timing of the final reads
563 	 * of the counters almost matches the timing of the initial reads,
564 	 * so the main cause of inaccuracy is the varying latency from
565 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
566 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
567 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
568 	 */
569 	start_sec = sec;
570 	for (;;) {
571 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
572 			sec = rtcin(RTC_SEC);
573 		count = sys_cputimer->count();
574 		tot_count += (int)(count - prev_count);
575 		prev_count = count;
576 		if (sec != start_sec)
577 			break;
578 		if (--timeout == 0)
579 			goto fail;
580 	}
581 
582 	/*
583 	 * Read the cpu cycle counter.  The timing considerations are
584 	 * similar to those for the i8254 clock.
585 	 */
586 	if (tsc_present) {
587 		tsc_frequency = rdtsc() - old_tsc;
588 	}
589 
590 	if (tsc_present)
591 		kprintf("TSC clock: %llu Hz, ", tsc_frequency);
592 	kprintf("i8254 clock: %u Hz\n", tot_count);
593 	return (tot_count);
594 
595 fail:
596 	kprintf("failed, using default i8254 clock of %u Hz\n",
597 		i8254_cputimer.freq);
598 	return (i8254_cputimer.freq);
599 }
600 
601 static void
602 i8254_restore(void)
603 {
604 	timer0_state = ACQUIRED;
605 
606 	clock_lock();
607 
608 	/*
609 	 * Timer0 is our fine-grained variable clock interrupt
610 	 */
611 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
612 	outb(TIMER_CNTR0, 2);	/* lsb */
613 	outb(TIMER_CNTR0, 0);	/* msb */
614 	clock_unlock();
615 
616 	/*
617 	 * Timer1 or timer2 is our free-running clock, but only if another
618 	 * has not been selected.
619 	 */
620 	cputimer_register(&i8254_cputimer);
621 	cputimer_select(&i8254_cputimer, 0);
622 }
623 
624 static void
625 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
626 {
627  	int which;
628 
629 	/*
630 	 * Should we use timer 1 or timer 2 ?
631 	 */
632 	which = 0;
633 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
634 	if (which != 1 && which != 2)
635 		which = 2;
636 
637 	switch(which) {
638 	case 1:
639 		timer->name = "i8254_timer1";
640 		timer->type = CPUTIMER_8254_SEL1;
641 		i8254_walltimer_sel = TIMER_SEL1;
642 		i8254_walltimer_cntr = TIMER_CNTR1;
643 		timer1_state = ACQUIRED;
644 		break;
645 	case 2:
646 		timer->name = "i8254_timer2";
647 		timer->type = CPUTIMER_8254_SEL2;
648 		i8254_walltimer_sel = TIMER_SEL2;
649 		i8254_walltimer_cntr = TIMER_CNTR2;
650 		timer2_state = ACQUIRED;
651 		break;
652 	}
653 
654 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
655 
656 	clock_lock();
657 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
658 	outb(i8254_walltimer_cntr, 0);	/* lsb */
659 	outb(i8254_walltimer_cntr, 0);	/* msb */
660 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
661 	clock_unlock();
662 }
663 
664 static void
665 i8254_cputimer_destruct(struct cputimer *timer)
666 {
667 	switch(timer->type) {
668 	case CPUTIMER_8254_SEL1:
669 	    timer1_state = RELEASED;
670 	    break;
671 	case CPUTIMER_8254_SEL2:
672 	    timer2_state = RELEASED;
673 	    break;
674 	default:
675 	    break;
676 	}
677 	timer->type = 0;
678 }
679 
680 static void
681 rtc_restore(void)
682 {
683 	/* Restore all of the RTC's "status" (actually, control) registers. */
684 	writertc(RTC_STATUSB, RTCSB_24HR);
685 	writertc(RTC_STATUSA, rtc_statusa);
686 	writertc(RTC_STATUSB, rtc_statusb);
687 }
688 
689 /*
690  * Restore all the timers.
691  *
692  * This function is called to resynchronize our core timekeeping after a
693  * long halt, e.g. from apm_default_resume() and friends.  It is also
694  * called if after a BIOS call we have detected munging of the 8254.
695  * It is necessary because cputimer_count() counter's delta may have grown
696  * too large for nanouptime() and friends to handle, or (in the case of 8254
697  * munging) might cause the SYSTIMER code to prematurely trigger.
698  */
699 void
700 timer_restore(void)
701 {
702 	crit_enter();
703 	i8254_restore();		/* restore timer_freq and hz */
704 	rtc_restore();			/* reenable RTC interrupts */
705 	crit_exit();
706 }
707 
708 /*
709  * Initialize 8254 timer 0 early so that it can be used in DELAY().
710  */
711 void
712 startrtclock(void)
713 {
714 	u_int delta, freq;
715 
716 	/*
717 	 * Can we use the TSC?
718 	 */
719 	if (cpu_feature & CPUID_TSC)
720 		tsc_present = 1;
721 	else
722 		tsc_present = 0;
723 
724 	/*
725 	 * Initial RTC state, don't do anything unexpected
726 	 */
727 	writertc(RTC_STATUSA, rtc_statusa);
728 	writertc(RTC_STATUSB, RTCSB_24HR);
729 
730 	/*
731 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
732 	 * generate an interrupt, which we will ignore for now.
733 	 *
734 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
735 	 * (so it counts a full 2^16 and repeats).  We will use this timer
736 	 * for our counting.
737 	 */
738 	i8254_restore();
739 	freq = calibrate_clocks();
740 #ifdef CLK_CALIBRATION_LOOP
741 	if (bootverbose) {
742 		kprintf(
743 		"Press a key on the console to abort clock calibration\n");
744 		while (cncheckc() == -1)
745 			calibrate_clocks();
746 	}
747 #endif
748 
749 	/*
750 	 * Use the calibrated i8254 frequency if it seems reasonable.
751 	 * Otherwise use the default, and don't use the calibrated i586
752 	 * frequency.
753 	 */
754 	delta = freq > i8254_cputimer.freq ?
755 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
756 	if (delta < i8254_cputimer.freq / 100) {
757 #ifndef CLK_USE_I8254_CALIBRATION
758 		if (bootverbose)
759 			kprintf(
760 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
761 		freq = i8254_cputimer.freq;
762 #endif
763 		cputimer_set_frequency(&i8254_cputimer, freq);
764 	} else {
765 		if (bootverbose)
766 			kprintf(
767 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
768 			       freq, i8254_cputimer.freq);
769 		tsc_frequency = 0;
770 	}
771 
772 #ifndef CLK_USE_TSC_CALIBRATION
773 	if (tsc_frequency != 0) {
774 		if (bootverbose)
775 			kprintf(
776 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
777 		tsc_frequency = 0;
778 	}
779 #endif
780 	if (tsc_present && tsc_frequency == 0) {
781 		/*
782 		 * Calibration of the i586 clock relative to the mc146818A
783 		 * clock failed.  Do a less accurate calibration relative
784 		 * to the i8254 clock.
785 		 */
786 		u_int64_t old_tsc = rdtsc();
787 
788 		DELAY(1000000);
789 		tsc_frequency = rdtsc() - old_tsc;
790 #ifdef CLK_USE_TSC_CALIBRATION
791 		if (bootverbose) {
792 			kprintf("TSC clock: %llu Hz (Method B)\n",
793 				tsc_frequency);
794 		}
795 #endif
796 	}
797 
798 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
799 
800 #if !defined(SMP)
801 	/*
802 	 * We can not use the TSC in SMP mode, until we figure out a
803 	 * cheap (impossible), reliable and precise (yeah right!)  way
804 	 * to synchronize the TSCs of all the CPUs.
805 	 * Curse Intel for leaving the counter out of the I/O APIC.
806 	 */
807 
808 #if NAPM > 0
809 	/*
810 	 * We can not use the TSC if we support APM. Precise timekeeping
811 	 * on an APM'ed machine is at best a fools pursuit, since
812 	 * any and all of the time spent in various SMM code can't
813 	 * be reliably accounted for.  Reading the RTC is your only
814 	 * source of reliable time info.  The i8254 looses too of course
815 	 * but we need to have some kind of time...
816 	 * We don't know at this point whether APM is going to be used
817 	 * or not, nor when it might be activated.  Play it safe.
818 	 */
819 	return;
820 #endif /* NAPM > 0 */
821 
822 #endif /* !defined(SMP) */
823 }
824 
825 /*
826  * Sync the time of day back to the RTC on shutdown, but only if
827  * we have already loaded it and have not crashed.
828  */
829 static void
830 resettodr_on_shutdown(void *arg __unused)
831 {
832  	if (rtc_loaded && panicstr == NULL) {
833 		resettodr();
834 	}
835 }
836 
837 /*
838  * Initialize the time of day register, based on the time base which is, e.g.
839  * from a filesystem.
840  */
841 void
842 inittodr(time_t base)
843 {
844 	unsigned long	sec, days;
845 	int		yd;
846 	int		year, month;
847 	int		y, m;
848 	struct timespec ts;
849 
850 	if (base) {
851 		ts.tv_sec = base;
852 		ts.tv_nsec = 0;
853 		set_timeofday(&ts);
854 	}
855 
856 	/* Look if we have a RTC present and the time is valid */
857 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
858 		goto wrong_time;
859 
860 	/* wait for time update to complete */
861 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
862 	crit_enter();
863 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
864 		crit_exit();
865 		crit_enter();
866 	}
867 
868 	days = 0;
869 #ifdef USE_RTC_CENTURY
870 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
871 #else
872 	year = readrtc(RTC_YEAR) + 1900;
873 	if (year < 1970)
874 		year += 100;
875 #endif
876 	if (year < 1970) {
877 		crit_exit();
878 		goto wrong_time;
879 	}
880 	month = readrtc(RTC_MONTH);
881 	for (m = 1; m < month; m++)
882 		days += daysinmonth[m-1];
883 	if ((month > 2) && LEAPYEAR(year))
884 		days ++;
885 	days += readrtc(RTC_DAY) - 1;
886 	yd = days;
887 	for (y = 1970; y < year; y++)
888 		days += DAYSPERYEAR + LEAPYEAR(y);
889 	sec = ((( days * 24 +
890 		  readrtc(RTC_HRS)) * 60 +
891 		  readrtc(RTC_MIN)) * 60 +
892 		  readrtc(RTC_SEC));
893 	/* sec now contains the number of seconds, since Jan 1 1970,
894 	   in the local time zone */
895 
896 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
897 
898 	y = time_second - sec;
899 	if (y <= -2 || y >= 2) {
900 		/* badly off, adjust it */
901 		ts.tv_sec = sec;
902 		ts.tv_nsec = 0;
903 		set_timeofday(&ts);
904 	}
905 	rtc_loaded = 1;
906 	crit_exit();
907 	return;
908 
909 wrong_time:
910 	kprintf("Invalid time in real time clock.\n");
911 	kprintf("Check and reset the date immediately!\n");
912 }
913 
914 /*
915  * Write system time back to RTC
916  */
917 void
918 resettodr(void)
919 {
920 	struct timeval tv;
921 	unsigned long tm;
922 	int m;
923 	int y;
924 
925 	if (disable_rtc_set)
926 		return;
927 
928 	microtime(&tv);
929 	tm = tv.tv_sec;
930 
931 	crit_enter();
932 	/* Disable RTC updates and interrupts. */
933 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
934 
935 	/* Calculate local time to put in RTC */
936 
937 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
938 
939 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
940 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
941 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
942 
943 	/* We have now the days since 01-01-1970 in tm */
944 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
945 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
946 	     tm >= m;
947 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
948 	     tm -= m;
949 
950 	/* Now we have the years in y and the day-of-the-year in tm */
951 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
952 #ifdef USE_RTC_CENTURY
953 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
954 #endif
955 	for (m = 0; ; m++) {
956 		int ml;
957 
958 		ml = daysinmonth[m];
959 		if (m == 1 && LEAPYEAR(y))
960 			ml++;
961 		if (tm < ml)
962 			break;
963 		tm -= ml;
964 	}
965 
966 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
967 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
968 
969 	/* Reenable RTC updates and interrupts. */
970 	writertc(RTC_STATUSB, rtc_statusb);
971 	crit_exit();
972 }
973 
974 
975 /*
976  * Start both clocks running.  DragonFly note: the stat clock is no longer
977  * used.  Instead, 8254 based systimers are used for all major clock
978  * interrupts.  statclock_disable is set by default.
979  */
980 void
981 cpu_initclocks(void *arg __unused)
982 {
983 	int diag;
984 #ifdef APIC_IO
985 	int apic_8254_trial;
986 	void *clkdesc;
987 #endif /* APIC_IO */
988 
989 	if (statclock_disable) {
990 		/*
991 		 * The stat interrupt mask is different without the
992 		 * statistics clock.  Also, don't set the interrupt
993 		 * flag which would normally cause the RTC to generate
994 		 * interrupts.
995 		 */
996 		rtc_statusb = RTCSB_24HR;
997 	} else {
998 	        /* Setting stathz to nonzero early helps avoid races. */
999 		stathz = RTC_NOPROFRATE;
1000 		profhz = RTC_PROFRATE;
1001         }
1002 
1003 	/* Finish initializing 8253 timer 0. */
1004 #ifdef APIC_IO
1005 
1006 	apic_8254_intr = isa_apic_irq(0);
1007 	apic_8254_trial = 0;
1008 	if (apic_8254_intr >= 0 ) {
1009 		if (apic_int_type(0, 0) == 3)
1010 			apic_8254_trial = 1;
1011 	} else {
1012 		/* look for ExtInt on pin 0 */
1013 		if (apic_int_type(0, 0) == 3) {
1014 			apic_8254_intr = apic_irq(0, 0);
1015 			setup_8254_mixed_mode();
1016 		} else
1017 			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1018 	}
1019 
1020 	clkdesc = register_int(apic_8254_intr, clkintr, NULL, "clk",
1021 			       NULL,
1022 			       INTR_EXCL | INTR_FAST |
1023 			       INTR_NOPOLL | INTR_MPSAFE |
1024 			       INTR_NOENTROPY);
1025 	machintr_intren(apic_8254_intr);
1026 
1027 #else /* APIC_IO */
1028 
1029 	register_int(0, clkintr, NULL, "clk", NULL,
1030 		     INTR_EXCL | INTR_FAST |
1031 		     INTR_NOPOLL | INTR_MPSAFE |
1032 		     INTR_NOENTROPY);
1033 	machintr_intren(ICU_IRQ0);
1034 
1035 #endif /* APIC_IO */
1036 
1037 	/* Initialize RTC. */
1038 	writertc(RTC_STATUSA, rtc_statusa);
1039 	writertc(RTC_STATUSB, RTCSB_24HR);
1040 
1041 	if (statclock_disable == 0) {
1042 		diag = rtcin(RTC_DIAG);
1043 		if (diag != 0)
1044 			kprintf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1045 
1046 #ifdef APIC_IO
1047 		if (isa_apic_irq(8) != 8)
1048 			panic("APIC RTC != 8");
1049 #endif /* APIC_IO */
1050 
1051 		register_int(8, (inthand2_t *)rtcintr, NULL, "rtc", NULL,
1052 			     INTR_EXCL | INTR_FAST | INTR_NOPOLL |
1053 			     INTR_NOENTROPY);
1054 		machintr_intren(8);
1055 
1056 		writertc(RTC_STATUSB, rtc_statusb);
1057 	}
1058 
1059 #ifdef APIC_IO
1060 	if (apic_8254_trial) {
1061 		sysclock_t base;
1062 		long lastcnt;
1063 
1064 		lastcnt = get_interrupt_counter(apic_8254_intr);
1065 
1066 		/*
1067 		 * XXX this assumes the 8254 is the cpu timer.  Force an
1068 		 * 8254 Timer0 interrupt and wait 1/100s for it to happen,
1069 		 * then see if we got it.
1070 		 */
1071 		kprintf("APIC_IO: Testing 8254 interrupt delivery\n");
1072 		cputimer_intr_reload(2);	/* XXX assumes 8254 */
1073 		base = sys_cputimer->count();
1074 		while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1075 			;	/* nothing */
1076 		if (get_interrupt_counter(apic_8254_intr) - lastcnt == 0) {
1077 			/*
1078 			 * The MP table is broken.
1079 			 * The 8254 was not connected to the specified pin
1080 			 * on the IO APIC.
1081 			 * Workaround: Limited variant of mixed mode.
1082 			 */
1083 			machintr_intrdis(apic_8254_intr);
1084 			unregister_int(clkdesc);
1085 			kprintf("APIC_IO: Broken MP table detected: "
1086 			       "8254 is not connected to "
1087 			       "IOAPIC #%d intpin %d\n",
1088 			       int_to_apicintpin[apic_8254_intr].ioapic,
1089 			       int_to_apicintpin[apic_8254_intr].int_pin);
1090 			/*
1091 			 * Revoke current ISA IRQ 0 assignment and
1092 			 * configure a fallback interrupt routing from
1093 			 * the 8254 Timer via the 8259 PIC to the
1094 			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1095 			 * We reuse the low level interrupt handler number.
1096 			 */
1097 			if (apic_irq(0, 0) < 0) {
1098 				revoke_apic_irq(apic_8254_intr);
1099 				assign_apic_irq(0, 0, apic_8254_intr);
1100 			}
1101 			apic_8254_intr = apic_irq(0, 0);
1102 			setup_8254_mixed_mode();
1103 			register_int(apic_8254_intr, clkintr, NULL, "clk",
1104 				     NULL,
1105 				     INTR_EXCL | INTR_FAST |
1106 				     INTR_NOPOLL | INTR_MPSAFE |
1107 				     INTR_NOENTROPY);
1108 			machintr_intren(apic_8254_intr);
1109 		}
1110 
1111 	}
1112 	if (apic_int_type(0, 0) != 3 ||
1113 	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1114 	    int_to_apicintpin[apic_8254_intr].int_pin != 0) {
1115 		kprintf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1116 		       int_to_apicintpin[apic_8254_intr].ioapic,
1117 		       int_to_apicintpin[apic_8254_intr].int_pin);
1118 	} else {
1119 		kprintf("APIC_IO: "
1120 		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1121 	}
1122 #endif
1123 	callout_init(&sysbeepstop_ch);
1124 }
1125 SYSINIT(clocks8254, SI_BOOT2_CLOCKREG, SI_ORDER_FIRST, cpu_initclocks, NULL)
1126 
1127 #ifdef APIC_IO
1128 
1129 static void
1130 setup_8254_mixed_mode(void)
1131 {
1132 	/*
1133 	 * Allow 8254 timer to INTerrupt 8259:
1134 	 *  re-initialize master 8259:
1135 	 *   reset; prog 4 bytes, single ICU, edge triggered
1136 	 */
1137 	outb(IO_ICU1, 0x13);
1138 	outb(IO_ICU1 + 1, IDT_OFFSET);	/* start vector (unused) */
1139 	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1140 	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1141 	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1142 
1143 	/* program IO APIC for type 3 INT on INT0 */
1144 	if (ext_int_setup(0, 0) < 0)
1145 		panic("8254 redirect via APIC pin0 impossible!");
1146 }
1147 #endif
1148 
1149 void
1150 setstatclockrate(int newhz)
1151 {
1152 	if (newhz == RTC_PROFRATE)
1153 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1154 	else
1155 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1156 	writertc(RTC_STATUSA, rtc_statusa);
1157 }
1158 
1159 #if 0
1160 static unsigned
1161 tsc_get_timecount(struct timecounter *tc)
1162 {
1163 	return (rdtsc());
1164 }
1165 #endif
1166 
1167 #ifdef KERN_TIMESTAMP
1168 #define KERN_TIMESTAMP_SIZE 16384
1169 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1170 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1171 	sizeof(tsc), "LU", "Kernel timestamps");
1172 void
1173 _TSTMP(u_int32_t x)
1174 {
1175 	static int i;
1176 
1177 	tsc[i] = (u_int32_t)rdtsc();
1178 	tsc[i+1] = x;
1179 	i = i + 2;
1180 	if (i >= KERN_TIMESTAMP_SIZE)
1181 		i = 0;
1182 	tsc[i] = 0; /* mark last entry */
1183 }
1184 #endif /* KERN_TIMESTAMP */
1185 
1186 /*
1187  *
1188  */
1189 
1190 static int
1191 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1192 {
1193     sysclock_t count;
1194     __uint64_t tscval;
1195     char buf[32];
1196 
1197     crit_enter();
1198     if (sys_cputimer == &i8254_cputimer)
1199 	count = sys_cputimer->count();
1200     else
1201 	count = 0;
1202     if (tsc_present)
1203 	tscval = rdtsc();
1204     else
1205 	tscval = 0;
1206     crit_exit();
1207     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1208     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1209 }
1210 
1211 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1212 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1213 	    "frequency");
1214 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1215 	    0, 0, hw_i8254_timestamp, "A", "");
1216 
1217 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1218 	    &tsc_present, 0, "TSC Available");
1219 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1220 	    &tsc_frequency, 0, "TSC Frequency");
1221 
1222